高中数学公式与符号大全

合集下载

高中数学必备必考公式大全

高中数学必备必考公式大全

高考数学必备必考公式大全一、集合1.并集的运算A∪B={x|x∈A,或x∈B}2. 并集的运算性质(1) A∪A=A(2)A∪∅=A(3)A∪B=B∪A(4) A∪B=A⇔B⊆A3. 交集的运算A∩B={x|x∈A,且x∈B}4. 交集的运算性质(1)A∩A=A(2)A∩∅=∅(3)A∩B=B∩A(4)A∩B=A⇔A⊆B5. 补集的运算∁U A={x|x∈U,且x∉A}6. 补集的运算性质(1) ∁U (∁U A)=A(2) ∁U U=∅,∁U∅=U(3)A∪(∁U A)=U,A∩(∁U A)=∅(4) ∁U (A∩B)=( ∁U A)∪(∁U B), ∁U (A∪B)=( ∁U A)∩(∁U B)二、函数与导数公式1. 有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q)(2)=a r-s(a>0,r,s∈Q)(3)(a r)s=a rs(a>0,r,s∈Q)(4)(ab)r=a r b r(a>0,b>0,r∈Q)2.对数运算公式(1)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:log a(M·N)=log a M+log a N;log a=log a M-log a N;log a M n=n log a M(n∈R)(2)对数恒等式a log aN =N(a>0,且a≠1,N>0)(3)对数运算的换底公式log a b=(a>0,且a≠1;c>0,且c≠1;b>0)(4)换底公式的变形log a b·log b a=1,即log a b=lo b n=log a blog N M==(5)换底公式的推广log a b·log b c·log c d=log a d3.求导公式及运算法则(1)基本初等函数的导数公式a.若f(x)=c(c为常数),则f'(x)=0.b.若f(x)=x n(n∈Q*),则f'(x)=nx n-1.c.若f(x)=sin x,则f'(x)=cos x.d.若f(x)=cos x,则f'(x)=-sin x.e.若f(x)=a x,则f'(x)=a x ln a.f.若f(x)=e x,则f'(x)=e x.g.若f(x)=log a x,则f'(x)=.h.若f(x)=ln x,则f'(x)=.(2)导数运算法则a.[f(x)±g(x)]'=f'(x)±g'(x)b.[f(x)·g(x)]'=f'(x)g(x)+f(x)g'(x)c.[]'=(g(x)≠0)(3)复合函数的导数(理)设y=f(u),u=φ(x),则y'x=y'u u'x或记作f '[φ(x)]=f '(u)φ'(x).特别地,[f (ax +b )] '=a f' (ax+b).4.定积分的运算性质(理)(1)b a ⎰kf (x )d x=k b a ⎰f (x )d x (k 为常数)(2) b a ⎰[f (x )±g (x )]d x=b a ⎰f (x )d x±b a ⎰g (x )d x (3)b a ⎰f (x )d x=-a b ⎰f (x )d x(4)c a ⎰f (x )d x=b a ⎰f (x )d x+cb ⎰f (x )d x (a<b<c )三、三角函数1. 同角关系:(1)平方关系:sin 2α+cos 2α=1.(2)商的关系:=tan α(α≠+k π,k ∈Z ). 2. 诱导公式:奇变偶不变,符号看象限。

完整版)高中数学公式大全完整版

完整版)高中数学公式大全完整版

完整版)高中数学公式大全完整版高中数学常用公式及常用结论1.包含关系若集合A包含于集合B,则AB=B;若AB=B,则A为B 的子集;若C为A和B的并集,则B包含于C;若A和B的交集为∅,则AB=∅;若AB=R,则A和B互为补集。

2.集合的子集集合{a1,a2,…,an}的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个。

3.充要条件1)充分条件:若p→q,则p是q的充分条件。

2)必要条件:若q→p,则p是q的必要条件。

3)充要条件:若p→q,且q→p,则p是q的充要条件。

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然。

4.函数的单调性1)设x1≠x2,且x1,x2∈[a,b],则有:f(x1)−f(x2)>0 ⇔ f(x)在[a,b]上是增函数;f(x1)−f(x2)<0 ⇔ f(x)在[a,b]上是减函数。

2)设函数y=f(x)在某个区间内可导,如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。

5.函数的性质如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)+g(x)也是减函数;如果函数y=f(u)和u=g(x)在其对应的定义域上都是减函数,则复合函数y=f[g(x)]是增函数。

6.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,则这个函数是奇函数;如果一个函数的图象关于y轴对称,则这个函数是偶函数。

7.函数的对称轴对于函数y=f(x)(x∈R),若f(x+a)=f(b−x)恒成立,则函数f(x)的对称轴是函数x=a+b/2;函数y=f(x+a)与y=f(b−x)的图象关于直线x=a+b/2对称。

8.几个函数方程的周期(约定a>0)1)f(x)=f(x+a),则f(x)的周期T=a;2)f(x+a)=−f(x),或f(x+a)=f(−x)(f(x)≠0),则f(x)的周期T=2a。

高中数学公式大全(整理打印版)

高中数学公式大全(整理打印版)

高中数学公式抛物线:y = ax *+ bx + c就是 y 等于 ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为 y 轴还有顶点式 y = a(x+h * + k就是 y 等于 a 乘以(x+h的平方 +k-h是顶点坐标的 xk是顶点坐标的 y一般用于求最大值与最小值抛物线标准方程 :y^2=2px它表示抛物线的焦点在 x 的正半轴上 , 焦点坐标为 (p/2,0 准线方程为 x=-p/2由于抛物线的焦点可在任意半轴 , 故共有标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积 =4/3(pi (r^3面积 =(pi(r^2周长 =2(pir圆的标准方程 (x-a2+(y-b2=r2 注:(a,b 是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb 加上四倍的该椭圆长半轴长(a 与短半轴长(b 的差。

(二椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π乘该椭圆长半轴长(a 与短半轴长(b 的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率 T ,但这两个公式都是通过椭圆周率 T 推导演变而来。

常数为体,公式为用。

椭圆形物体体积计算公式椭圆的长半径 *短半径 *PAI*高三角函数:两角和公式sin(A+B=sinAcosB+cosAsinB sin(A-B=sinAcosB-sinBcosAcos(A+B=cosAcosB-sinAsinB cos(A-B=cosAcosB+sinAsinBtan(A+B=(tanA+tanB/(1-tanAtanB tan(A-B=(tanA-tanB/(1+tanAtanBcot(A+B=(cotAcotB-1/(cotB+cotA cot(A-B=(cotAcotB+1/(cotB-cotA倍角公式tan2A=2tanA/(1-tan2A cot2A=(cot2A-1/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n+sin(α+2π*2/n+sin(α+2π*3/n+…… +sin[α+2π*(n-1/n]=0 cosα+cos(α+2π/n+cos(α+2π*2/n+cos(α+2π*3/n+…… +cos[α+2π*(n-1/n]=0 以及sin^2(α+sin^2(α-2π/3+sin^2(α+2π/3=3/2tanAtanBtan(A+B+tanA+tanB-tan(A+B=0²万能公式:sinα=2tan(α/2/[1+tan^2(α/2]cosα=[1-tan^2(α/2]/[1+tan^2(α/2]tanα=2tan(α/2/[1-tan^2(α/2]半角公式sin(A/2=√ ((1-cosA/2 sin(A/2=-√ ((1-cosA/2cos(A/2=√ ((1+cosA/2 cos(A/2=-√ ((1+cosA/2tan(A/2=√ ((1-cosA/((1+cosA tan(A/2=-√ ((1-cosA/((1+cosAcot(A/2=√ ((1+cosA/((1-cosA cot(A/2=-√ ((1+cosA/((1-cosA和差化积2sinAcosB=sin(A+B+sin(A-B 2cosAsinB=sin(A+B-sin(A-B2cosAcosB=cos(A+B-sin(A-B -2sinAsinB=cos(A+B-cos(A-BsinA+sinB=2sin((A+B/2cos((A-B/2 cosA+cosB=2cos((A+B/2sin((A-B/2 tanA+tanB=sin(A+B/cosAcosB tanA-tanB=sin(A-B/cosAcosBcotA+cotBsin(A+B/sinAsinB -cotA+cotBsin(A+B/sinAsinB某些数列前 n 项和1+2+3+4+5+6+7+8+9+… +n=n(n+1/2 1+3+5+7+9+11+13+15+… +(2n-1=n22+4+6+8+10+12+14+… +(2n=n(n+1 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1(2n+1/61^3+2^3+3^3+4^3+5^3+6^3+… n^3=(n(n+1/2^2 1*2+2*3+3*4+4*5+5*6+6*7+… +n(n+1=n(n+1(n+2/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角乘法与因式分 a2-b2=(a+b(a-b a3+b3=(a+b(a2-ab+b2 a3-b3=(a-b(a2+ab+b2 三角不等式|a+b|≤ |a|+|b| |a-b|≤ |a|+|b| |a|≤ b<=>-b≤ a ≤ b|a-b|≥ |a|-|b| -|a|≤ a ≤ |a|一元二次方程的解 -b+√ (b2-4ac/2a -b-√ (b2-4ac/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 (x-a2+(y-b2=r2 注:(a,b 是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c'h'圆台侧面积 S=1/2(c+c'l=pi(R+rl 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数 r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中 ,S' 是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长 =(长 +宽³2正方形的周长 =边长³4长方形的面积 =长³宽正方形的面积 =边长³边长三角形的面积已知三角形底 a ,高 h ,则 S =ah/2已知三角形三边 a,b,c, 半周长 p, 则S =√ [p(p - a(p - b(p - c] (海伦公式(p=(a+b+c/2和:(a+b+c*(a+b-c*1/4已知三角形两边 a,b, 这两边夹角 C ,则 S =absinC/2设三角形三边分别为 a 、 b 、 c ,内切圆半径为 r则三角形面积 =(a+b+cr/2设三角形三边分别为 a 、 b 、 c ,外接圆半径为 r则三角形面积 =abc/4r已知三角形三边 a 、 b 、 c, 则S =√ {1/4[c^2a^2-((c^2+a^2-b^2/2^2]} (“三斜求积” 南宋秦九韶| a b 1 |S△ =1/2 * | c d 1 || e f 1 |【 | a b 1 || c d 1 | 为三阶行列式 , 此三角形 ABC 在平面直角坐标系内 A(a,b,B(c,d, C(e,f,这里 ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小! 】秦九韶三角形中线面积公式 :S=√ [(Ma+Mb+Mc*(Mb+Mc-Ma*(Mc+Ma-Mb*(Ma+Mb-Mc]/3其中 Ma,Mb,Mc 为三角形的中线长 .平行四边形的面积 =底³高梯形的面积 =(上底 +下底³高÷2直径 =半径³2 半径 =直径÷2圆的周长 =圆周率³直径 =圆周率³半径³2圆的面积 =圆周率³半径³半径长方体的表面积 =(长³宽 +长³高+宽³高³2长方体的体积 =长³宽³高正方体的表面积 =棱长³棱长³6正方体的体积 =棱长³棱长³棱长圆柱的侧面积 =底面圆的周长³高圆柱的表面积 =上下底面面积 +侧面积圆柱的体积 =底面积³高圆锥的体积 =底面积³高÷3长方体(正方体、圆柱体的体积 =底面积³高平面图形名称符号周长 C 和面积 S正方形 a—边长 C=4aS=a2长方形 a和 b -边长 C=2(a+bS=ab三角形 a,b,c-三边长h-a 边上的高s-周长的一半A,B,C-内角其中 s =(a+b+c/2 S=ah/2=ab/2?sinC=[s(s-a(s-b(s-c]1/2=a2sinBsinC/(2sinA1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于 180°18 推论 1 直角三角形的两个锐角互余19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理 (sas 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理 ( asa有两角和它们的夹边对应相等的两个三角形全等24 推论 (aas 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理 (sss 有三边对应相等的两个三角形全等26 斜边、直角边公理 (hl 有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论 3 等边三角形的各角都相等,并且每一个角都等于 60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等 (等角对等边35 推论 1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于 60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理 1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边 a 、 b 的平方和、等于斜边 c 的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长 a 、 b 、 c 有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于 360°49四边形的外角和等于 360°50多边形内角和定理 n边形的内角的和等于(n-2³180°51推论任意多边的外角和等于 360°52平行四边形性质定理 1 平行四边形的对角相等53平行四边形性质定理 2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理 3 平行四边形的对角线互相平分56平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60矩形性质定理 1 矩形的四个角都是直角61矩形性质定理 2 矩形的对角线相等62矩形判定定理 1 有三个角是直角的四边形是矩形63矩形判定定理 2 对角线相等的平行四边形是矩形64菱形性质定理 1 菱形的四条边都相等65菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积 =对角线乘积的一半,即 s=(a ³b ÷267菱形判定定理 1 四边都相等的四边形是菱形68菱形判定定理 2 对角线互相垂直的平行四边形是菱形69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等 70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理 1 关于中心对称的两个图形是全等的 72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74 等腰梯形性质定理等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形 78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l ³h 83 (1比例的基本性质如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么a:b=c:d 84 (2合比性质如果 a/b=c/d,那么(a±b/b=(c±d/d 85 (3等比性质如果 a /b=c/d=…=m/n(b+d+…+n≠0,那么(a+c+…+m/(b+d+… +n=a/b 86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例 87 推论平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例, 88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似(asa) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(sas) 94 判定定理 3 三边对应成比例,两三角形相似(sss) 95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理 2 相似三角形周长的比等于相似比 98 性质定理 3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101 圆是定点的距离等于定长的点的集合 102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合 104 同圆或等圆的半径相等 105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107 到已知角的两边距离相等的点的轨迹,是这个角的平分线 108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109 定理不在同一直线上的三点确定一个圆。

高中数学公式大全(整理打印版)

高中数学公式大全(整理打印版)

高中数学公式大全(整理打印版)高中数学公式:抛物线公式:y = ax^2 + bx + c,其中a。

0时开口向上,a < 0时开口向下,c = 0时抛物线经过原点,b = 0时抛物线对称轴为y轴。

顶点式为y = a(x+h)^2 + k,其中-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。

抛物线标准方程:y^2=2px,表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0),准线方程为x=-p/2.由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px,y^2=-2px,x^2=2py,x^2=-2py。

圆公式:体积=4/3(pi (r^3)),面积=(pi(r^2)),周长=2(pi*r),圆的标准方程为(x-a)^2+(y-b)^2=r^2,其中(a,b)是圆心坐标,圆的一般方程为x^2+y^2+Dx+Ey+F=0,其中D^2+E^2-4F>0.椭圆公式:周长公式L=2πb+4(a-b),周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb加上四倍的该椭圆长半轴长(a与短半轴长(b)的差。

面积公式S=πab,面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

椭圆形物体体积计算公式为椭圆的长半径*短半径*π*高。

三角函数公式:两角和公式:sin(A+B)=sinAcosB+cosAsinB,sin(A-B)=sinAcosB-sinBcosA,cos(A+B)=cosAcosB-sinAsinB,cos(A-B)=cosAcosB+sinAsinB,tan(A+B)=(tanA+tanB)/(1-tanAtanB),tan(A-B)=(tanA-tanB)/(1+tanAtanB),cot(A+B)=(cotAcotB-1)/(cotB+cotA),cot(A-B)=(cotAcotB+1)/(cotB-cotA)。

高中数学公式大全(完整版)

高中数学公式大全(完整版)

高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.集合12{,,,}n a a a 的子集个数共有2n个,真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个. 5.空集是任何集合的子集6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式⎩⎨⎧M x f x f N <<)()(的交集 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}m i n m a x m ax ()(),()(),()2b f x f f x f p f qa=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.看累了吧,休息一下吧 12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2))()(a x f x f +-=,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ;30.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数. 38.认真仔细思考39.数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式⎪⎪⎩⎪⎪⎨⎧>-=-+=-+=-)1()()1(11n d m n d n s s a a a a a n n n m n n 等差数例的性质:若a a a a q p n m q p n m +=+⇒+=+ 若p n m a a a p n m 22=+⇒=+ 重中之重:21+=奇奇奇a S2242133333a a a S ===+,3262155555a a a S ===+,61111a S =m,2m,32m m m S S S S S --仍成等差数列其前n 项和公式为()21n n a a n S +=1(1)2n n na d -=+41.等比数列的通项公式 定义:)0(1≠=+q q a a nn ⎪⎪⎩⎪⎪⎨⎧>-===---)1(111n S S a qa a q a a n n nm n m n n n等比数列性质:若q p n m a a a a q p n m =⇒+=+ 若22p n m a a a p n m =⇒=+()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数⎪⎩⎪⎨⎧=≠--=--=)1()1(11)1(111q na q qqa a q q a S n n n45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式 47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±= .22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin 22sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤.s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式,A B d=||AB ==11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=; 80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下. 若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分;111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0a x b yc ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0A x B yC ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02pCF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中22y px = .102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212|||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD共线且AB CD 、不共线⇔AB tCD = 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD xAB yAC =+⇔ (1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B点在l 上的射影'B ,则''||cos AB AB = 〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r (其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin ||||AB m arc AB m β⋅=(m为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+ (当且仅当90θ= 时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB = =. 135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =.d =d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例). 141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a ,a . 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯ . 151.排列数公式mnA =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n nA n m A -=-+; (2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n n n n n nA A A ++=-;(5)11m m m n n nA A mA -+=+. (6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 154.组合数的两个性质(1)m n C =mn n C - ; (2) m n C +1-m n C =m n C 1+.注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-; (3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C .(6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 .(10)nn n n n n n C C C C C 22222120)()()()(=++++ . 156.排列数与组合数的关系m mn nA m C =⋅! . 157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m=⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、...个相等,则其分配方法数有!...!!! (2)11c b a m C C C N m mn n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n = 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m=⋅=-.159.“错位问题”及其推广贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!n f n n n =-+-+- . 推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为 1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m ppmm mmf n m n C n C n C n C n C n p C n m =--+---+--+--++--12341224![1(1)(1)]p m p m m m m m m mp m n n n n n nC C C C C C n A A A A A A =-+-+-+-++- .160.不定方程2n x x x m = 1+++的解的个数(1)方程2n x x x m = 1+++(,n m N *∈)的正整数解有11m n C --个. (2) 方程2n x x x m = 1+++(,n m N *∈)的非负整数解有 11n m n C +--个.(3) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≥(k N *∈,21i n ≤≤-)的非负整数解有11(2)(1)m n n k C +----个.(4) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≤(k N *∈,21i n ≤≤-)的正整数解有12222321(2)11121221(1)n m n m n k n m n k n m n k n n n n n n C C C C C C C +--+---+---+---------+-+- 个.161.二项式定理nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,,=. 162.等可能性事件的概率()mP A n=. 163.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).164.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 165.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).166.n 个独立事件同时发生的概率P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ). 167.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n n P k C P P -=-168.离散型随机变量的分布列的两个性质 (1)0(1,2,)i P i ≥= ; (2)121P P ++= . 169.数学期望1122n n E x P x P x P ξ=++++170.数学期望的性质(1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=.。

高中数学公式大全

高中数学公式大全

常用符号∈一属于∈一一不属于包合于ー一真包合于ー一包合氰一真包含0一一空集符号=ー一集合相等符号∩一一交集符号Uー一并集符号Uー一全集符号Cッー一补集符号N一一自然数集Z一一整数集N,(N)一一正整数集Q一一有理数集R一一实数集CR:Q一一无理数集常用公式A∩A=AA∩=A∩U=A A UA = AAUの=A auu = uA∩CA=⑥ auc , a = uCu ( ) a ( ) ( ) ( c ,Cu ( ) ( ) ( b )A∩B={xxe∈A,且x∈BAUB={xkx∈A,或x∈}1(f(x)≠ fa )常用公式幂指数运算法则( " . as = ats ( a ) = ars ( = abr ( > 0 , r , s(2)当n为奇数时,Va=a;L,C>0当n为偶数时,Va=lal - a , a < 0(3)规定:an=Vam(a>0,m,7れ∈N',且n>1); n=(a>0,m,7L∈N,且n>1)°=1(a≠0).2.对数恒等式alga n=N, loga a=1,loga1=0.(其中N>0,a>0,3.对数运算法则设a>0,且a≠1,M>0,N>0,则log ( mn ) = log m + log n ,lo log . m - itlog n ? n = nlog4.对数换底公式log b(a>0且a≠1;C>0且c≠1;b>0常用公式1.二次函数式f(x)=ax2+bx+C=a(x-x1)(x-x2)=a(x-h)2+k(其中2.二次函数图象在x轴上两点间的距离la3.方程ax2+bx+C=0(a≠0):(1)判别式△=b2-4ac;(2)求根公式x1,2=-(A≥0)(3)根与系数的关、常用定理1.零点存在定理一般地,我们有:如果函数y=f(x)在区间[a,瑎的图象是连概念与符号1.函数的零点对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)点(zero)2.二分法对于在区间[a,小上的连续不断且f(a)f(b)<0的函数y=f(通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两点逐步逼近零点,进而得到零点近似值的方法叫做二分法( bisect断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也程f(x)=0的根。

数学公式符号

数学公式符号

数学公式符号1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。

4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。

8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。

“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。

9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。

高中数学公式大全(必备版)

高中数学公式大全(必备版)

高中数学公式及知识点速记1、函数的单调性(1) 设 x 1、 x 2 [ a, b],且 x 1 x 2 那么f ( x 1 ) f ( x 2 )0 f (x)在 [a, b] 上是增函数; f ( x 1 ) f ( x 2 )f (x)在 [a,b] 上是减函数 .(2) 设函数 y f ( x) 在某个区间内可导,若f (x) 0 ,则 f ( x) 为增函数;若 f (x) 0 ,则 f ( x) 为减函数;若 f (x)=0 ,则 f (x) 有极值。

2、函数的奇偶性若 f ( x) f (x) ,则 f ( x) 是偶函数;偶函数的图象关于 y 轴对称。

若 f ( x) f ( x) ,则 f ( x) 是奇函数;奇函数的图象关于原点对称。

3、函数 yf ( x) 在点 x 0 处的导数的几何意义函数 yf ( x) 在点 x 0 处的导数 f ( x 0 ) 是曲线 y f ( x) 在 P(x 0 , f (x 0 )) 处的切线的斜率,相应的切线方程是 y y 0 f (x 0 )( xx 0 ) .4、几种常见函数的导数① C ' 0 ; ② ( x n ) ' nx n 1 ;③ (sin x) ' cos x ; ④ (cos x)' sin x ; ⑤ (a x ) ' a x ln a ; ⑥ (e x ) 'e x ;⑦ (log a x) '1 ; ⑧ (ln x) '1xln ax5、导数的运算法则(1) (u v)' u 'v ' .(2) (uv)' u 'v uv ' . (3) ( u)'u 'v uv ' .vv 26、求函数 y f x 的极值的方法是:解方程 fx0 得 x 0 .当 f x0 时:① 如果在 x 0 附近的左侧 f x 0 ,右侧 f x 0 ,那么 f x 0 是极大值; ② 如果在 x 0 附近的左侧 f x0 ,右侧 f x0 ,那么 f x 0 是极小值.7、分数指数幂mna m .(1)a nm11(2)an.mna m8、根式的性质 a n(1) ( n a )na .(2)当 n 为奇数时, n a na ;当 n 为偶数时, n a n| a | a, a0 .a, a 0第1页(共 11页)9、有理指数幂的运算性质 (1)a r asa rs ;(2)( a r ) s a rs ; (3) ( )r r r.ab a b10、对数公式(1)指数式与对数式的互化式 : log a N b a bN 。

高中数学基础知识手册

高中数学基础知识手册

高中数学基础知识手册1. 数学符号与公式高中数学中使用了许多符号和公式,下面是一些常用的数学符号和公式的介绍:•加法符号(+):表示两个数的和。

•减法符号(-):表示两个数的差。

•乘法符号(×):表示两个数的积。

•除法符号(÷):表示两个数的商。

•平方符号(²):表示一个数的平方。

•开方符号(√):表示一个数的平方根。

•π(pi):一个无理数,代表圆的周长与直径的比值。

•Σ(求和符号):表示一系列数的求和。

•∑(累积求和符号):表示从一个数到另一个数的累积求和。

数学公式是用数学符号和字母表示的数学关系表达式,常用的数学公式包括:•一次方程:ax+b=0•二次方程:ax2+bx+c=0•直线方程:y=kx+b•圆的方程:(x−a)2+(y−b)2=r2•三角函数关系:$\\sin^2 \\theta + \\cos^2 \\theta = 1$•梯度下降法公式:$x_{n+1} = x_n - \\alpha \\cdot \ abla f(x_n)$2. 数学运算在高中数学中,常见的数学运算包括四则运算、幂运算、开方运算等。

2.1 四则运算四则运算包括加法、减法、乘法和除法。

•加法:将两个数相加,结果为它们的和。

•减法:将一个数减去另一个数,结果为它们的差。

•乘法:将两个数相乘,结果为它们的积。

•除法:将一个数除以另一个数,结果为它们的商。

2.2 幂运算幂运算指的是将一个数乘以自己若干次,表示为x n,其中x为底数,n为指数。

幂运算有一些特殊情况:•x1=x:任何数的1次方等于它本身。

•x0=1:任何非零数的0次方等于1。

•$x^{-n} = \\frac{1}{x^n}$:负指数表示取倒数。

2.3 开方运算开方运算是幂运算的逆运算,表示为$\\sqrt{x}$,其中x为被开方数。

开方运算有一些常见的规则:•$\\sqrt{x^2} = |x|$:一个数的平方根的平方等于该数的绝对值。

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。

解为 x = b/a。

2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。

解为 x =[b ± sqrt(b^2 4ac)] / 2a。

3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。

解为x = [b ± sqrt(b^2 3ac)] / 3a。

4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。

解为x = [b ± sqrt(b^2 4ac)] / 2a。

5. 分式方程:分子和分母均为多项式。

解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。

6. 二元一次方程组:由两个一元一次方程组成的方程组。

解法为消元法或代入法。

7. 二元二次方程组:由两个一元二次方程组成的方程组。

解法为消元法或代入法。

8. 三元一次方程组:由三个一元一次方程组成的方程组。

解法为消元法或代入法。

9. 等差数列:首项为 a1,公差为 d。

第 n 项为 an = a1 + (n 1)d。

前 n 项和为 Sn = n/2(a1 + an)。

10. 等比数列:首项为 a1,公比为 q。

第 n 项为 an = a1q^(n 1)。

前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。

二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。

(2)圆:圆心为 (a, b),半径为 r。

圆的方程为 (x a)^2 +(y b)^2 = r^2。

(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。

椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。

(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。

高中公式大全总结数学

高中公式大全总结数学

高中公式大全总结数学一、集合与常用逻辑用语。

1. 集合。

- 集合的基本运算。

- 交集:A∩ B = {xx∈ A且x∈ B}- 并集:A∪ B={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)- 集合间的关系。

- 子集:若对任意x∈ A,都有x∈ B,则A⊆ B- 真子集:若A⊆ B且A≠ B,则A⊂neqq B2. 常用逻辑用语。

- 充分条件与必要条件。

- 若pRightarrow q,则p是q的充分条件,q是p的必要条件。

- 若pLeftrightarrow q,则p是q的充分必要条件(充要条件)。

- 命题。

- 原命题:若p,则q;逆命题:若q,则p;否命题:若¬ p,则¬ q;逆否命题:若¬ q,则¬ p。

原命题与逆否命题同真同假,逆命题与否命题同真同假。

二、函数。

1. 函数的概念与性质。

- 函数的定义域。

- 分式函数y = (f(x))/(g(x)),g(x)≠0。

- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),f(x)≥slant0。

- 函数的单调性。

- 设x_1,x_2∈ D(D为函数y = f(x)的定义域),当x_1 < x_2时,若f(x_1),则y = f(x)在D上单调递增;若f(x_1)>f(x_2),则y = f(x)在D上单调递减。

- 函数的奇偶性。

- 对于函数y = f(x),定义域关于原点对称,如果f(-x)=f(x),则y = f(x)是偶函数;如果f(-x)= - f(x),则y = f(x)是奇函数。

2. 基本初等函数。

- 一次函数y = kx + b(k≠0)- 二次函数y=ax^2+bx + c(a≠0),对称轴x = -(b)/(2a),顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。

- 幂函数y = x^α(α∈ R),当α>0时,函数在[0,+∞)上单调递增;当α<0时,函数在(0,+∞)上单调递减。

高中数学公式符号归纳(含无法打出的)

高中数学公式符号归纳(含无法打出的)

高中数学公式符号大全sA= N+N+╮+-×÷±<>•∶∴∵∷≰∫∮∝∞∧∨º¹²³ ´ ¶ µ≠≤≥≈≡‖=≌∸≮≯∑∏∪∩ⅰ⊿≲√∟㎗㎖¢∠≱%‰℅°℃℉′〒¤▚µ㎎㎏㎐㎑㎒㎓㎔㎕㎗$£¥㎘□■ X¹ X² X³ 1°1′1〃↑ ↓ ← → ↖↗↙↘㊣◉⊕≰▚ ▬ △▖☆★◇◆□▔▽▘§¥£※■□∵∴θω ░ ▒▞▝▟▢◈♤▥‛♨▣♧▤♡▦▩▣▧▨▤▥▪ ▫ ▛ ▜ ☏☎☜☞◑◐▭ ° ☑₪╮,、~%#*‧;∶… ¨ ,• ˙ ‘ ’〃′ εїз ™ ✿。◕‿◕。◉▝▞▗▙▧▨◐◑↔ ↕ ㊊㊋㊌㊍㊎㊏㊐▀▄ █ ▌▕ (ε.メ)▣▤▥▦▩♭☀ஐ☈➽〠〄㍿㊚㊛㊙℗♯♩♫♬¤큐≡:,⊆⊂⊇⊃试比较cos1°与tan44°的大小。

1、几何符号≱‖∠≲≰≡≌△° |a| ≱∸∠∟‖|2、代数符号? ∝∧∨~∫ ≤ ≥ ≈ ∞ :〔〕〈〉《》「」『』】【〖3、运算符号{× ‚ √ ± ≠ ≡≮≯4、集合符号∪∩ⅰΦ ? ¢sA= N+N+{ } [ ] ()5、特殊符号∑ π(圆周率)@#☆★◈●◉◇◆□▔▓⊿※¥Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ Ψ Ω ∏6、推理符号ⅬⅭⅮⅯ↖↗↘↙∴∵∶∷T ? ü7、标点符号` ˉ ˇ ¨ 、· ‘’8、其他& ; § ℃№ $£¥‰ ℉☈☇≳≴≵≶≷≸≹≺≻≼Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ Ψ Ωα β γ δ ε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰ∏ ∑ ∕ √ ∝∞ ∟∠∣‖∧∨∩∪∫ ∮∴∵∶∷∸≈ ≌≈ ≠ ≡≤ ≥ ≤ ≥ ≮≯⊕≰≱⊿≲指数0123:o123 〃? ? ?符号意义∞ 无穷大PI 圆周率|x| 函数的绝对值∪集合并∩集合交≥ 大于等于≤ 小于等于≡恒等于或同余ln(x) 以e为底的对数lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数{x} 小数部分x - floor(x)∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况,如:∑[n is prime][n < 10]f(n)∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除n(m,n)=1 m与n互质a ⅰA a属于集合ACard(A) 集合A中的元素个数|a| ≱∸△∠∩∪≠ ∵∴≡± ≥ ≤ ⅰⅬⅭⅮⅯ↖↗↘↙‖∧∨¼ ½ ¾§≳≴≵≶≷≸≹≺≻≼α β γ δ ε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ωⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰ∏∑∕√∝∞∟∠∣‖∧∨∩∪∫∮∴∵∶∷∸≈≌≈≠≡≤≥≤≥≮≯⊕≰≱⊿≲为了方便,也做些约定!x的平方,可以打成x^2 (其它的以此类推)x+1的开方,可以打成√(x+1),记住加括号;x分之一,可以输入1/x;如果是x+1分之一,请输入1/(x+1),分子、分母请加括号<> 或>< 表示不等于例:a<>b 即a不等于b;<= 表示小于等于(不大于)例:a<=b 即a不大于b;>= 表示大于等于(不小于)例:a>=b 即a不小于b;^ 表示乘方例:a^b 即a的b次方, 也可用于开根号,例:a^(1/2) 表示a的平方根* 表示乘……/ 表示浮点除例:3/2=1.5\ 表示整除例:3\2=1……1()广义括号,允许多重嵌套,无大、中、小之分,优先级最高1 几何符号≱‖∠≲≰≡ ≌△2 代数符号∝∧∨~∫ ≠ ≤ ≥ ≈ ∞ ∶3运算符号× ‚ √ ±4集合符号∪∩ ⅰ5特殊符号∑ π(圆周率)6推理符号|a| ≱∸△∠∩ ∪≠ ≡ ± ≥ ≤ ⅰ←↑ → ↓ ↖↗↘↙‖∧∨&; §≳≴≵≶≷≸≹≺≻≼Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ Ψ Ωα β γ δ ε δ ε ζ η θ ι κ λμ ν π ξ ζ η υ θ χ ψ ωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰ∏ ∑ ∕ √ ∝∞ ∟ ∠∣‖∧∨∩ ∪∫ ∮∴∵∶∷∸≈ ≌≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮≯⊕≰≱⊿≲℃指数0123:º¹²³符号意义∞ 无穷大PI 圆周率|x| 函数的绝对值∪集合并∩ 集合交≥ 大于等于≤ 小于等于≡ 恒等于或同余ln(x) 自然对数lg(x) 以2为底的对数log(x) 常用对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数{x} 小数部分x - floor(x)∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分[P] P为真等于1否则等于0∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况如:∑[n is prime][n < 10]f(n)∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限f(z) f关于z的m阶导函数C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除nm≱n m与n互质a ⅰA a属于集合A#A 集合A中的元素个数∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和,如果f(n)是有结构式,f(n)应外引括号;∑(n=p,q ; r=s,t)f(n,r) 表示∑(r=s,t)[∑(n=p,q)f(n,r)],如果f(n,r)是有结构式,f(n,r)应外引括号;∏(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连乘积, 如果f(n)是有结构式,f(n)应外引括号;∏(n=p,q ; r=s,t)f(n,r) 表示∏(r=s,t)[∏(n=p,q)f(n,r)],如果f(n,r)是有结构式,f(n,r)应外引括号;lim(x→u)f(x) 表示f(x) 的x 趋向u 时的极限,如果f(x)是有结构式,f(x)应外引括号;lim(y→v ; x→u)f(x,y) 表示lim(y→v)[lim(x→u)f(x,y)],如果f(x,y)是有结构式,f(x,y)应外引括号;∫(a,b)f(x)dx 表示对f(x) 从x=a 至x=b 的积分,如果f(x)是有结构式,f(x)应外引括号;∫(c,d ; a,b)f(x,y)dxdy 表示∫(c,d)[∫(a,b)f(x,y)dx]dy,如果f(x,y)是有结构式,f(x,y)应外引括号;∫(L)f(x,y)ds 表示f(x,y) 在曲线L 上的积分,如果f(x,y)是有结构式,f(x,y)应外引括号;∫∫(D)f(x,y,z)dζ 表示f(x,y,z) 在曲面D 上的积分,如果f(x,y,z)是有结构式,f(x,y,z)应外引括号;∮(L)f(x,y)ds 表示f(x,y) 在闭曲线L 上的积分,如果f(x,y)是有结构式,f(x,y)应外引括号;∮∮(D)f(x,y,z)dζ 表示f(x,y,z) 在闭曲面 D 上的积分, 如果f(x,y)是有结构式,f(x,y)应外引括号;∪(n=p,q)A(n) 表示n从p到q之A(n)的并集,如果A(n)是有结构式,A(n)应外引括号;∪(n=p,q ; r=s,t)A(n,r) 表示∪(r=s,t)[∪(n=p,q)A(n,r)], 如果A(n,r)是有结构式,A(n,r)应外引括号;∩(n=p,q)A(n) 表示n从p到q逐步变化对A(n)的交集, 如果A(n)是有结构式,A(n)应外引括号;∩(n=p,q ; r=s,t)A(n,r) 表示∩(r=s,t)[∩(n=p,q)A(n,r)],如果A(n,r)是有结构式,A(n,r)应外引括号;。

高中数学符号大全

高中数学符号大全

高中数学符号大全一、数学逻辑符号1. ~ 非:表示取反,如~A表示非A。

2. ∧ 合取:表示同时成立,如A ∧ B表示A和B同时成立。

3. ∨ 析取:表示其中一个成立,如A ∨ B表示A和B 其中一个成立。

4. ⇒蕴含:表示如果……那么……,如A ⇒ B表示如果A成立,则B也成立。

5. ⇔等价:表示当且仅当,如A ⇔ B表示A和B等价。

6. ∃存在:表示存在一个数使命题成立,如∃x P(x)表示存在一个数x使P(x)成立。

7. ∀全称:表示对所有数都成立,如∀x P(x)表示对所有数x,都使P(x)成立。

二、基础代数与几何符号1. + 加号:表示两个数相加,如3+7表示3和7相加。

2. - 减号:表示两个数相减,如7-3表示7和3相减。

3. × 乘号:表示两个数相乘,如3×7表示3和7相乘。

4. ÷ 除号:表示两个数相除,如7÷3表示7除以3。

5. = 等号:表示两个数或表达式相等,如3+4=5+2表示3加4等于5加2。

6. ≠ 不等于号:表示两个数或表达式不相等,如3+4≠5+2表示3加4不等于5加2。

7. < 小于号:表示一个数小于另一个数,如3<7表示3小于7。

8. > 大于号:表示一个数大于另一个数,如7>3表示7大于3。

9. ≤ 小于等于号:表示一个数小于等于另一个数,如3≤7表示3小于等于7。

10. ≥ 大于等于号:表示一个数大于等于另一个数,如7≥3表示7大于等于3。

11. ∑ 总和号:表示连加,如∑ai表示a1+a2+a3+...+an。

12. ∏ 总积号:表示连乘,如∏ai表示a1×a2×a3×...×an。

13. √ 开方号:表示开方,如√9表示9的平方根。

14. ↑ 上标号:表示幂,如2²表示2的平方。

15. /尺规线:表示直线段,如AB/CD表示直线段AB 和CD。

高考数学公式大全

高考数学公式大全

高考数学公式大全 一、集合1.集合的运算符号:交集“I ”, 并集“Y ”补集“C ”子集“⊆”2.非空集合的子集个数:n 2(n 是指该集合元素的个数)3.空集的符号为∅ 二、函数1.定义域(整式型:R x ∈;分式型:分母0≠;零次幂型:底数0≠;对数型:真数0>;根式型:被开方数0≥)2.偶函数:)()(x f x f -= 奇函数:0)()(=-+x f x f 在计算时:偶函数常用:)1()1(-=f f奇函数常用:0)0(=f 或0)1()1(=-+f f3.单调增函数:当在x 递增, y 也递增;当x 在递减, y 也递减 单调减函数:与增函数相反4.指数函数计算:nm nmaa a +=⋅;nm n m aa a -=÷;nm n m aa ⋅=)(;m n mn a a=;10=a指数函数的性质:x a y =;当1>a 时, x a y =为增函数; 当10<<a 时, x a y =为减函数 指数函数必过定点)1,0(5.对数函数计算:1log =aa ;0log 1=a ;nm ana ma ⋅=+log log log ;nm a na m a log log log =-; ma m an nlog log =;m a mannlog 1log =对数的性质:xa y log = ;当10<<a 时, xa y log =为减函数.当1>a 时,xa y log =为增函数对数函数必过定点)0,1( 6.幂函数:a x y =7.函数的零点:①)(x f y =的零点指0)(=x f②)(x f y =在),(b a 内有零点;则0)()(<•b f a f三、三角函数①计算:1cos sin 22=+αα;θθθtan cos sin = ②正负符号判断:“一全正, 二正弦, 三切, 四余弦” ③和差公式:βαβαβαsin cos cos sin )sin(±=± βαββαsin sin cos cos )cos(μa =± βαβαβαtan tan 1tan tan )tan(•±=±μ④二倍角公式:αααcos sin 22sin •=;ααααα2222sin cos sin 211cos 22cos -=-=-=ααα2tan 1tan 2)2tan(-=;⑥诱导公式口诀“奇变偶不变;符号看象限。

数学公式符号大全

数学公式符号大全

数学公式符号大全
数学公式符号大全包括以下内容:
1.几何符号:⊥(垂直于)、∥(平行于)、∠(角)、⌒(圆弧)、⊙(圆心)、≌(全等)、△(三角形)等。

2.代数符号:∝(成正比)、∧(和)、∨(或)、~(近似于)、∫(积分)、∑(求和)、∪(并集)、∩(交集)等。

3.运算符号:+(加号)、-(减号)、×(乘号或·)、÷(除号)、∪(并集)、∩(交集)、√(根号)、|a|(绝对值)等。

4.关系符号:=(等于号)、≈(近似符号)、≠(不等于号)、>(大于号)、<(小于号)、≥(大于或等于号)、≮(不大于号)、≯
(不小于号)等。

5.推理符号:∵(因为)、∴(所以)、←(向左箭头)、↑(向上箭头)、→(向右箭头)、↓(向下箭头)等。

6.特殊符号:∑、π、⊙、∆、√、√ ̄、∣、∠、≌、∑、≈等。

7.运算符号:∪、∩、∈、∉、⊆、⊄、⊅、∍等。

8.特殊符号:∑、π、∣、√ ̄、△等。

9.运算符号:∪、∩、∈等。

10.推理符号:∵、∴等。

以上是数学公式符号大全的一部分,具体使用时需要根据不同的情况选择合适的符号。

高中数学常用公式及知识点总结

高中数学常用公式及知识点总结

高中数学常用公式及知识点总结一、代数与函数1. 一次函数:y = kx + b,其中k为斜率,b为截距。

2. 二次函数:y = ax^2 + bx + c,其中a、b、c为常数,a≠0。

3. 三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。

4. 幂函数:y = x^n,其中n为常数。

5. 对数函数:y = loga(x),其中a为底数,x为真数。

6. 复数:形式为a+bi,其中a为实部,b为虚部,i为虚数单位。

7. 不等式:常见的不等式有一元一次不等式、一元二次不等式和绝对值不等式。

二、几何与图形1. 平面几何基本公式:包括点、线、面的基本概念和性质,如点到直线的距离、直线的斜率等。

2. 三角形:包括三角形的周长、面积、勾股定理等。

3. 圆:包括圆的周长、面积、弧长、扇形面积等。

4. 直线与圆的位置关系:包括相交、相切、相离等情况。

5. 空间几何基本公式:包括空间点、直线、平面的基本概念和性质,如点到平面的距离、直线与平面的位置关系等。

6. 立体几何:包括长方体、正方体、棱柱、棱锥、球体等的表面积和体积计算公式。

三、概率与统计1. 概率:包括事件、样本空间、概率的计算公式,如加法原理、乘法原理等。

2. 离散型随机变量:包括随机变量的期望、方差等。

3. 连续型随机变量:包括随机变量的概率密度函数、累积分布函数等。

4. 统计:包括样本、总体、统计量、抽样等的基本概念和性质,如均值、标准差、相关系数等。

四、数列与数学归纳法1. 等差数列:包括等差数列的通项公式、前n项和公式等。

2. 等比数列:包括等比数列的通项公式、前n项和公式等。

3. 数学归纳法:包括数学归纳法的基本思想和应用。

五、数论与整除性质1. 质数与合数:质数只能被1和自身整除,合数能被除了1和自身之外的数整除。

2. 最大公因数与最小公倍数:最大公因数是两个或多个整数共有的因数中最大的一个,最小公倍数是能被两个或多个整数整除的最小的一个数。

数学公式及符号大全

数学公式及符号大全

数学公式及符号大全一、基础符号1.数字0-9:0,1,2,3,4,5,6,7,8,92.加法:+3.减法:-4.乘法:×或*5.除法:÷或/6.等于:=7.不等于:≠8.大于:>9.小于:<10.大于等于:≥11.小于等于:≤12.正无穷大:∞13.正无穷小:ο14.±:±15.百分号:%16.小数点:.二、代数符号1.变量:a,b,c,...,x,y,z2.常数:A,B,C,...,X,Y,Z3.集合:\(∅\)(空集),ℕ(自然数集),ℤ(整数集),ℚ(有理数集),ℝ(实数集),ℂ(复数集)4.符号:^(乘方),√(平方根),\(∑\)(求和),∏(求积),\(,\)(取绝对值),\(!\)(阶乘),\(∘\)(复合函数)三、三角函数及特殊函数符号1. 三角函数:sin (正弦), cos (余弦), tan (正切), cot (余切), sec (正割), csc (余割)2. 反三角函数:arcsin (反正弦), arccos (反余弦), arctan (反正切), arccot (反余切), arcsec (反正割), arccsc (反余割)3. 双曲函数:sinh (双曲正弦), cosh (双曲余弦), tanh (双曲正切), coth (双曲余切), sech (双曲正割), csch (双曲余割)4. 反双曲函数:arcsinh (反双曲正弦), arccosh (反双曲余弦), arctanh (反双曲正切), arccoth (反双曲余切), arcsech (反双曲正割), arccsch (反双曲余割)5. 对数函数:log (常用对数), ln (自然对数), lg (以10为底的对数)6. 特殊函数:exp (指数函数), erfc (实际互补误差函数), gamma (伽玛函数), erf (误差函数), Sinc (正弦积分函数), DiracDelta (狄拉克函数),Heaviside (海维赛德函数)四、微积分符号1. 极限:lim (极限)2. 微分:d(微分符号),dx(表示自变量x的微小增量)3.积分:∫(积分符号),+C(积分常数)4.偏导数:∂(偏导符号)5.梯度:∇(梯度符号)6.整除:,(整除符号)五、矩阵及线性代数符号1. 矩阵: \(A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\end{bmatrix}\)2.转置:\(A^T\)(矩阵A的转置)3.矩阵乘法:A×B(矩阵A与矩阵B的乘积)4. 行列式:det(A) (矩阵A的行列式)5.逆矩阵:\(A^{-1}\)(矩阵A的逆矩阵)6. 向量:\(\vec{a}, \vec{b}, \vec{c}\)六、集合论符号1.空集:∅2.包含:⊆(子集),⊂(真子集),∈(属于),∉(不属于)3.交集:∩(交),∪(并)4. 补集:\(\bar{A}\) (集合A的补集), A' (亦表示集合A的补集)七、概率统计符号1.概率:P(A)(事件A的概率)2.期望:E(X)(随机变量X的期望)3. 方差:Var(X) (随机变量X的方差)4.标准差:σ(标准差符号)5. 协方差:Cov(X, Y) (随机变量X和Y的协方差)6.相关系数:ρ(相关系数符号)7.分布:N(μ,σ^2)(正态分布,均值为μ,方差为σ^2)八、几何符号1.平行:,(平行符号)2.垂直:⊥(垂直符号)3.同位角:≌(同位角符号)4.三角形:△(三角形符号)5.直角:∠(直角符号)6.弧:∡(弧符号)。

高中数学所有公式汇总总结

高中数学所有公式汇总总结

高中数学所有公式汇总总结高中数学是学生学习的一门重要学科,其中涵盖了许多基本概念、定理和公式。

掌握并熟练运用这些公式是高中数学学习的关键。

在本文中,我们将对高中数学中的所有公式进行汇总总结,帮助学生更好地复习和掌握这些知识。

一、代数1. 二次函数的一般式:y=ax^2+bx+c2. 一元二次方程的解法:x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}3. 平方差公式:(a+b)^2=a^2+2ab+b^24. 定比分点公式:\frac{m}{n}=\frac{x_2-x}{x-x_1}5. 三角函数的基本关系:\sin^2\theta+\cos^2\theta=16. 余切的定义:\cot\theta=\frac{1}{\tan\theta}7. 对数运算规律:\log_ab=\frac{\log_cb}{\log_ca}8. 等比数列通项公式:a_n=a_1\cdot q^{n-1}9. 二项式定理:(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k10. 质因数分解:n=p_1^{a_1}p_2^{a_2}...p_k^{a_k}二、几何1. 三角形的面积公式:S=\frac{1}{2}bh2. 圆的面积公式:S=\pi r^23. 圆锥的体积公式:V=\frac{1}{3}\pi r^2h4. 锥台的体积公式:V=\frac{1}{3}\pi(R^2+r^2+Rr)h5. 二面角余角关系:\alpha+\beta=180^\circ6. 直角三角形三边关系:a^2+b^2=c^27. 多边形内角和公式:S=(n-2)\cdot180^\circ8. 圆心角与弦的关系:\theta=\frac{1}{2}m\alpha9. 角平分线定理:\frac{a}{b}=\frac{c}{d}10. 高度定理:h=\frac{2S}{a}三、概率1. 概率加法:P(A\cup B)=P(A)+P(B)-P(A\cap B)2. 条件概率公式:P(A|B)=\frac{P(A\cap B)}{P(B)}3. 互斥事件概率:P(A\cap B)=04. 独立事件概率:P(A\cap B)=P(A)\cdot P(B)5. 全概率公式:P(A)=\sum_{i=1}^{n}P(A|B_i)P(B_i)6. 二项分布概率:P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}7. 正态分布概率密度函数:f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}8. 期望的线性性质:E(aX+b)=aE(X)+b9. 二项分布的期望和方差:E(X)=np,Var(X)=np(1-p)10. 正态分布的期望和方差:E(X)=\mu,Var(X)=\sigma^2四、微积分1. 极限定义:\lim_{x\to a}f(x)=L2. 导数定义:f'(x)=\lim_{h\to0}\frac{f(x+h)-f(x)}{h}3. 导数基本法则:(Cf(x))'=Cf'(x)4. 高阶导数:f^{(n)}(x)5. 极大极小值判定法则:f'(x_0)=0\Rightarrow f(x_0)6. 不定积分线性性质:\int(kf(x)+g(x))dx=k\int f(x)dx+\int g(x)dx7. 分部积分法:\int u dv=uv-\int v du8. 定积分定义:\int_{a}^{b}f(x)dx=F(b)-F(a)9. 牛顿-莱布尼茨公式:\int_{a}^{b}f(x)dx=F(b)-F(a)10. 参数方程的曲线面积:S=\int_{\alpha}^{\beta}f(\theta)g'(\theta)d\theta五、线性代数1. 行列式定义:D=\begin{vmatrix}a & b\\c & d\end{vmatrix}=ad-bc2. 矩阵乘法:C=AB3. 矩阵转置:A^T4. 逆矩阵定义:AA^{-1}=A^{-1}A=I5. 矩阵行列式性质:|A^T|=|A|6. 向量叉乘定义:A\times B=|A|\cdot|B|\sin\theta n7. 点到直线距离公式:d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}8. 埃尔米特矩阵:A=A^*9. 特征值与特征向量:Ax=\lambda x10. 正交矩阵性质:A^TA=AA^T=I以上便是高中数学中所有公式的汇总总结,希朋对您有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式与符号大全
用文本方式表达(原非文本结构的)数学公式的初步的标准(希望可以给大家一个参考)
x^n 表示x 的n 次方,
如果n 是有结构式,n 应外引括号;
(有结构式是指多项式、多因式等表达式)
x^(n/m) 表示x 的n/m 次方;
SQR(x) 表示x 的开方;
sqrt(x) 表示x 的开方;
√(x) 表示x 的开方,
如果x 为单个字母表达式,x 的开方可简表为√x ;
x^(-n) 表示x 的n 次方的倒数;
x^(1/n) 表示x 开n 次方;
log_a,b 表示以a 为底b 的对数;
x_n 表示x 带足标n ;
∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和,
如果f(n)是有结构式,f(n)应外引括号;
∑(n=p,q ; r=s,t)f(n,r) 表示∑(r=s,t)[∑(n=p,q)f(n,r)],
如果f(n,r)是有结构式,f(n,r)应外引括号;
∏(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连乘积, 如果f(n)是有结构式,f(n)应外引括号;
∏(n=p,q ; r=s,t)f(n,r) 表示∏(r=s,t)[∏(n=p,q)f(n,r)], 如果f(n,r)是有结构式,f(n,r)应外引括号;
lim(x→u)f(x) 表示f(x) 的x 趋向u 时的极限,
如果f(x)是有结构式,f(x)应外引括号;
lim(y→v ; x→u)f(x,y) 表示lim(y→v)[lim(x→u)f(x,y)],
如果f(x,y)是有结构式,f(x,y)应外引括号;
∫(a,b)f(x)dx 表示对f(x) 从x=a 至x=b 的积分,
如果f(x)是有结构式,f(x)应外引括号;
∫(c,d ; a,b)f(x,y)dxdy 表示∫(c,d)[∫(a,b)f(x,y)dx]dy, 如果f(x,y)是有结构式,f(x,y)应外引括号;
∫(L)f(x,y)ds 表示f(x,y) 在曲线L 上的积分,
如果f(x,y)是有结构式,f(x,y)应外引括号;
∫∫(D)f(x,y,z)dσ表示f(x,y,z) 在曲面 D 上的积分,
如果f(x,y,z)是有结构式,f(x,y,z)应外引括号;
∮(L)f(x,y)ds 表示f(x,y) 在闭曲线L 上的积分, 如果f(x,y)是有结构式,f(x,y)应外引括号;
∮∮(D)f(x,y,z)dσ表示f(x,y,z) 在闭曲面 D 上的积分, 如果f(x,y)是有结构式,f(x,y)应外引括号;
∪(n=p,q)A(n) 表示n从p到q之A(n)的并集,
如果A(n)是有结构式,A(n)应外引括号;
∪(n=p,q ; r=s,t)A(n,r) 表示∪(r=s,t)[∪(n=p,q)A(n,r)], 如果A(n,r)是有结构式,A(n,r)应外引括号;
∩(n=p,q)A(n) 表示n从p到q逐步变化对A(n)的交集, 如果A(n)是有结构式,A(n)应外引括号;
∩(n=p,q ; r=s,t)A(n,r) 表示∩(r=s,t)[∩(n=p,q)A(n,r)], 如果A(n,r)是有结构式,A(n,r)应外引括号;
当文本格式表达找不到表达符的表达代替字符初步标准有:a(≤A 表示a为A的子集;
A ≥)a 表示A包含a;
a(<A 表示a为A的真子集;
A >)a 表示a为A的真子集;
注:
顺序结构的表达式是按以下的优先级决定运算次序:
1. 函数;
2. 幂运算;
3. 乘、除;
4. 加、减。

复合函数的运算次序为由内层至外层。

在表达式中如果某有结构式对于前面部分应作整体看待时,应将作整体看待的部分外加括号。

例如,相对论运动质量公式可表为:
m = m0 / SQR(1 - v^2/c^2 )
= m0 / SQR[1 - (vv)/(cc) ];
但不能表为
m = m0 / SQR(1 - vv/cc );
因上式中的vv/cc 会让人误解为v 平方除 c 再乘 c 。

连加连乘式中的∑∏等字符须用全角字符。

如果使用了
半角的ASCII字符,虽然公式紧凑了,有可能会因不同电脑、不同的软件、不同的设置中使用了不同ASCII字符集(ASCII
扩展字符,最高位为1)会显不同的字符。

结果会引起对方的
误解。

相关文档
最新文档