迈克尔逊干涉仪实验报告

合集下载

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告实验目的:通过迈克尔逊干涉仪实验,观察干涉条纹的形成规律,了解干涉仪的工作原理,并掌握干涉仪的使用方法。

实验仪器:迈克尔逊干涉仪、激光器、反射镜、分束镜、调节螺丝等。

实验原理:迈克尔逊干涉仪是利用光的干涉现象来测量光的波长、折射率等物理量的仪器。

通过将光分成两束,让它们分别经过不同的光程,再合成在一起,观察它们的干涉现象,从而推断出光的性质。

实验步骤:1. 调整迈克尔逊干涉仪,使得激光器发出的光经过分束镜分成两束光线,分别经过反射镜后再次汇聚在一起。

2. 调节反射镜和分束镜的角度,使得两束光线相互干涉产生清晰的干涉条纹。

3. 观察干涉条纹的变化,记录下不同调节下的干涉条纹情况。

实验结果:通过实验观察,我们成功地在迈克尔逊干涉仪上观察到了清晰的干涉条纹。

随着反射镜和分束镜角度的微小调整,干涉条纹的位置和形状发生了变化,验证了干涉仪的工作原理。

实验结论:通过本次实验,我们深入了解了迈克尔逊干涉仪的工作原理和使用方法,掌握了观察干涉条纹的技巧。

同时也加深了对光的干涉现象的理解,为今后的学习和研究打下了基础。

自查报告:在实验过程中,我们严格按照实验步骤进行操作,确保了实验结果的准确性。

同时,我们也对实验原理进行了深入的理解和探讨,对干涉仪的工作原理有了更清晰的认识。

在实验结果的记录和分析上,我们也进行了详细的记录和总结,确保了实验报告的完整性和准确性。

总体而言,本次实验取得了良好的实验结果,达到了预期的实验目的。

同时,也让我们对光学实验有了更深入的了解,为今后的学习和科研工作提供了宝贵的经验。

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告
1、实验简介
“迈克尔逊干涉仪”(Michaelson Interferometer)是一种便携式、利用干涉测量法测量平面镜和实物形状及尺寸的精密仪器。

它是一种无源距离测量方法,它通过分析干涉图像返回的距离信息来获得目标曲面和表面的精度参数,可以方便的测量玻璃、金属、涂层等表面的特性参数。

本实验拟采用迈克尔逊干涉仪,研究多次反射平面波的干涉斑图,用以了解平面镜形状和尺寸的变化对反射波的影响。

2、实验仪器设备
实验所用仪器设备主要包括迈克尔逊干涉仪、两只不同直径0.8NM 和 1.4NM 钨丝、测量单元、以及一个可调节电压的电源等。

3、实验原理
迈克尔逊干涉仪运用了光干涉原理,它弥补了简单显微镜无法获得距离的缺陷。

它的原理首先用照相机对光斑进行测量,然后根据各种参数来计算出测量结果,拟采用迈克尔逊干涉仪测量多次反射的平面波的位置、距离等数据,根据测量结果分析干涉斑图形状及尺寸变化,从而获知平面镜形状和尺寸的变化情况。

4、实验步骤与程序
(1)将0.8NM 和 1.4NM钨丝分别装入迈克尔逊干涉仪,连接测量单元,使电源与仪器相连;
(2)微调光源、参考物表面和探测物体等参数,使光束垂直射入参考物表面;
(3)拍摄干涉图,用记录仪将数据采样储储;
(4)改变参考物表面的粗糙度及尺寸,重复步骤2和3;
(5)通过分析干涉斑图形状及尺寸变化,研究多次反射平面波的干涉斑图。

5、实验结果及分析
实验结果表明:不同参考物表面粗糙度和尺寸会导致干涉斑图形状及尺寸变化,反射波数量及位置也有相应变化,从而揭示了平面镜形状和尺寸的变化对反射波的影响。

迈克尔逊干涉仪,实验报告

迈克尔逊干涉仪,实验报告

迈克尔逊干涉仪,实验报告迈克尔孙干涉仪实验报告迈克耳孙干涉仪实验报告实验目的1、了解迈克尔逊干涉仪的结构及工作原理,掌握其调试方法2、学会观察非定域干涉、等倾干涉、等厚干涉及光源的时间相干性,空间相干性等重要问题。

实验原理1. 迈克尔逊干涉仪的光路迈克尔逊干涉仪有多种多样的形式,其基本光路如图5.16.1所示。

从光源束光,在分束镜束1射出的半反射面发出的一上被分成光强近似相等的反射光束1和透射光束2。

反射光;光束2经过补偿板投向反射镜,反后投向反射镜,反射回来再穿过射回来再通过,在半反射面上反射。

于是,这两束相干光在空间相遇并产生干涉,通过望远镜或人眼可以观察到干涉条纹。

补偿板的材料和厚度都和分束镜相同,并且与分束镜平行放置,其作用是为了补偿反射光束1因在中往返两次所多走的光(来自: 写论文网:迈克尔逊干涉仪,实验报告)程,使干涉仪对不同波长的光可以同时满足等光程的要求。

2. 等倾干涉图样(1) 产生等倾干涉的等效光路如图2所示(图中没有绘出补偿板外,还可以看到镜经分束镜),观察者自点向镜看去,除直接看到镜的半反射面和反射的像。

这样,在观察者看来,两相干光束好象是由同一束光分别经涉仪所产生的干涉花样与形成时,只要考虑、、反射而来的。

因此从光学上来说,迈克尔逊干间的空气层所产生的干涉是一样的,在讨论干涉条纹的两个面和它们之间的空气层就可以了。

、和观察屏的相所以说,迈克尔逊干涉仪的干涉情况即干涉图像是由光源以及对配置来决定的。

(2) 等倾干涉图样的形成与单色光波长的测量当和镜垂直于镜时,与相互平行,相距为。

若光束以同一倾角入射在作垂直于光上,反射后形成1和两束相互平行的相干光,如图3所示。

过线。

因和之间为空气层,,则两光束的光程差为所以当固定时,由(1)式可以看出在倾角(1)相等的方向上两相干光束的光程差均相等。

由此可知,干涉条纹是一系列与不同倾角对应的同心圆形干涉条纹,称为等倾干涉条纹。

由于1、两列光波在无限远处才能相遇,因此,干涉条纹定域无限远处。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告英文回答:Michelson Interferometer Experiment Report。

Introduction。

The Michelson interferometer is an optical instrument that uses interference to measure the wavelength of light and the speed of light. It was invented by Albert A. Michelson in 1881. The interferometer consists of a light source, two mirrors, and a beam splitter. The light source is split into two beams by the beam splitter. One beam is reflected by one mirror and the other beam is reflected by the other mirror. The two beams are then recombined by the beam splitter and the interference pattern is observed.Methods。

This experiment determined the speed of light using aMichelson interferometer. The following apparatus was used: 1A Michelson interferometer。

2A helium-neon laser。

3A power supply。

4A photodetector。

5A digital oscilloscope。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告
实验目的:
通过迈克尔逊干涉仪实验,验证干涉现象,并测量出光的波长。

实验原理:
迈克尔逊干涉仪是一种利用干涉现象来测量光波长的仪器。


由半透镜、分束镜、反射镜等部件组成。

当光线通过分束镜后被分
成两束光线,分别经过反射镜反射后再次汇聚在半透镜上,产生干
涉现象。

通过移动一个反射镜,观察干涉条纹的移动,可以测量出
光的波长。

实验步骤:
1. 调整迈克尔逊干涉仪,使得两束光线在半透镜上产生干涉现象。

2. 通过微调反射镜的位置,观察干涉条纹的变化。

3. 记录不同位置下的干涉条纹的位置。

4. 根据干涉条纹的移动情况,计算出光的波长。

实验结果:
经过实验测量,我们得到了光的波长为XXX纳米。

实验结论:
通过迈克尔逊干涉仪实验,我们验证了光的干涉现象,并成功测量出了光的波长。

实验结果与理论值相符,实验达到了预期的目的。

自查报告:
在实验过程中,我们注意到了一些问题。

首先,在调整干涉仪时,需要保证光线的稳定,避免外界干扰。

其次,在测量干涉条纹位置时,需要精确记录数据,以减小误差。

在今后的实验中,我们将更加注意这些细节,以提高实验的准确性和可靠性。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告迈克尔逊干涉仪,听起来高大上,其实就是一种用来测量光波性质的仪器。

它的设计精巧得很,主要用来研究干涉现象。

说起干涉,简单来说,就是两束光波相遇时,可能会互相增强或抵消。

这样的现象在科学研究中非常重要。

一、迈克尔逊干涉仪的结构与原理1.1 结构迈克尔逊干涉仪由几个主要部分构成。

首先,有个光源。

然后是分光镜,把光分成两束。

接着,有两个反射镜,光线在这儿反射后,再次汇聚。

最后,合光的地方就是观察屏。

想象一下,光线就像两条小路,互相交叉。

这个设计让我们能够清晰地看到干涉条纹,神奇吧?1.2 原理干涉的原理其实很简单。

当两束光波相遇时,如果它们的波峰和波峰重合,就会加强;如果波峰和波谷重合,就会相互抵消。

这就是干涉现象的根本。

通过这种方式,迈克尔逊干涉仪能够测量光的波长,甚至是微小的变化。

二、实验步骤与过程2.1 准备工作在开始实验之前,首先要确保仪器各部分安装牢固。

光源要亮,分光镜要摆正。

这样的准备工作虽然麻烦,但非常关键。

小细节决定成败,大家懂的。

2.2 调整仪器调整仪器是个技术活。

反射镜的角度要调得刚刚好。

要是角度偏了,干涉条纹就模糊不清。

像个画家,认真地调整每一个细节,才能呈现出最美的画面。

2.3 观察干涉条纹一切准备就绪后,打开光源。

光线经过分光镜,形成两束光。

这时,观察屏上会出现一系列明暗相间的条纹。

哇,那感觉就像在看一幅动人的画卷!每一条条纹都在告诉我们光的奥秘,真是让人惊叹不已。

三、数据记录与分析3.1 数据记录实验过程中,要仔细记录每一次观察到的干涉条纹数量和相应的光源波长。

这些数据非常重要,可以帮助我们进一步分析干涉现象。

科学实验就是这样,数据就是我们的金钥匙。

3.2 数据分析分析数据时,要认真对比干涉条纹与光波长的关系。

每次计算都要小心翼翼,不能出错。

通过这些数据,我们能了解光的性质,还能探索更多未知的领域。

科学的魅力就在于此,永远有新的发现等着我们。

四、总结迈克尔逊干涉仪的实验不仅让我领略了光的奇妙,也让我体会到科学探索的乐趣。

迈克尔逊干涉仪的使用实验报告

迈克尔逊干涉仪的使用实验报告

迈克尔逊干涉仪的使用实验报告英文回答:The Michelson interferometer is a scientific instrument that uses interference to measure the velocity of light or the length of objects. Light is split into two beams, which are reflected by mirrors and recombined. The interference pattern can be used to determine the difference in the distances traveled by the two beams.I used a Michelson interferometer to measure the wavelength of a laser. I first set up the interferometer by aligning the mirrors so that the interference pattern was visible. I then placed the laser in the path of one of the beams. The interference pattern changed, and I was able to use the change to calculate the wavelength of the laser.The Michelson interferometer is a very sensitive instrument. It can be used to measure very small changes in distance, such as those caused by the expansion of amaterial when it is heated. The interferometer can also be used to measure the velocity of light with great accuracy.中文回答:迈克尔逊干涉仪是一种使用干涉来测量光速或物体长度的科学仪器。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告引言迈克尔逊干涉仪是一种利用光的干涉现象测量间距的仪器。

它是由美国物理学家亚伯拉罕·迈克尔逊于1881年发明的。

迈克尔逊干涉仪广泛应用于光学、激光技术、光纤通信等领域。

本实验旨在通过搭建迈克尔逊干涉仪并进行实验,了解其原理和应用。

实验设备•He-Ne氦氖激光器•1/10波片•片玻璃•半反射膜•波长计•读数显微镜•测距器实验原理迈克尔逊干涉仪利用光的波动性和波的干涉原理进行测量。

它由一个分束器、一面半反射镜、两面平行平板镜和一个光源组成。

光源发出的光经过分束器分为两束,一束经过半反射镜反射,另一束直接透射,然后它们分别在两面平行平板镜上反射,并最后再次汇聚在一起。

当两束光相遇时,会产生干涉现象。

通过调节其中一个平板镜的位置,可以使反射光程差发生变化,从而观察到干涉现象的变化。

实验步骤1.搭建迈克尔逊干涉仪。

安装好分束器、半反射镜和两面平行平板镜,并精确调整位置和方向。

2.打开He-Ne氦氖激光器,并调整光源位置和方向,使得光能够正常通过分束器。

3.将1/10波片放置在半反射镜旁边的光路上,调整它的角度,使得一部分光能够通过。

4.在反射光路上插入片玻璃,观察干涉条纹。

5.通过调整其中一个平板镜的位置,改变反射光程差,观察干涉条纹的变化。

6.使用读数显微镜和测距器,测量不同光程差下的干涉条纹的移动和位置。

实验结果与分析在实验中,我们观察到了干涉条纹的变化。

随着平板镜位置的调整,干涉条纹的位置发生了移动。

通过测量不同光程差下的干涉条纹的移动,我们得到了一组数据。

根据这组数据,我们可以计算出光的波长。

结论通过利用迈克尔逊干涉仪进行实验,我们成功观察到了干涉条纹的变化,并进行了测量。

实验结果证实了迈克尔逊干涉仪的原理,并且得到了光的波长的计算值。

迈克尔逊干涉仪在光学和激光技术中有着广泛的应用,了解和掌握它的原理和使用方法对于进一步研究和应用光学技术具有重要意义。

参考文献1.Smith, Robert W. (1998).。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告英文回答:Michelson Interferometer Experiment Report。

Introduction。

The Michelson interferometer is a scientific instrument used to measure the relative velocity between two objects.It was invented by Albert A. Michelson in 1881. The interferometer is based on the principle of interference, which occurs when two waves of the same frequency are superimposed on each other. The resulting wave pattern will have areas of constructive interference, where the waves reinforce each other, and areas of destructive interference, where the waves cancel each other out.Experimental Setup。

The Michelson interferometer consists of a light source,two mirrors, and a beam splitter. The light source emits a beam of light, which is split by the beam splitter into two beams. The two beams are then reflected by the mirrors and recombined by the beam splitter. The resulting beam is observed on a screen.Procedure。

迈克尔逊干涉实验报告

迈克尔逊干涉实验报告

迈克尔逊干涉实验报告一、实验目的1、了解迈克尔逊干涉仪的结构和工作原理。

2、掌握迈克尔逊干涉仪的调节方法。

3、观察等倾干涉和等厚干涉条纹,测量激光的波长。

二、实验原理迈克尔逊干涉仪是一种分振幅双光束干涉仪,其光路图如下图所示。

光源 S 发出的光经分光板 G1 分成两束,一束透过 G1 到达反射镜M1 后反射回来,另一束经 G1 反射到达反射镜 M2 后反射回来,两束光在 G1 处再次相遇并发生干涉。

若 M1 和 M2 严格垂直,则观察到的是等倾干涉条纹。

此时,两束光的光程差为:\\Delta = 2d\cos\theta\其中,d 为 M1 和 M2 之间的距离,θ 为入射光与 M1 法线的夹角。

当 M1 和 M2 不严格垂直时,观察到的是等厚干涉条纹。

三、实验仪器迈克尔逊干涉仪、HeNe 激光器、扩束镜、毛玻璃屏。

四、实验步骤1、仪器调节调节迈克尔逊干涉仪的底座水平,使干涉仪大致水平放置。

调节 M1 和 M2 背后的三个螺丝,使 M1 和 M2 大致垂直。

打开激光器,使激光束通过扩束镜后大致垂直入射到迈克尔逊干涉仪上。

调节 M2 下方的两个微调螺丝,使屏幕上出现清晰的干涉条纹。

2、观察等倾干涉条纹缓慢转动微调手轮,观察干涉条纹的变化。

记录条纹的形状、疏密和中心的“吞吐”情况。

3、测量激光波长先记录 M1 位置的读数 d1。

沿某一方向转动微调手轮,使中心条纹“吐出”或“吞进”一定数量 N (如 50 条)。

再次记录 M1 位置的读数 d2。

则激光波长λ可由下式计算:\lambda =\frac{2|d2 d1|}{N}\4、观察等厚干涉条纹调节 M2 背后的螺丝,使 M1 和 M2 有一定夹角。

观察等厚干涉条纹的形状和变化。

五、实验数据及处理1、测量激光波长的数据记录|次数| d1 (mm) | d2 (mm) | N (条) ||||||| 1 | 25123 | 25635 | 50 || 2 | 25234 | 25756 | 50 || 3 | 25345 | 25878 | 50 |2、数据处理分别计算每次测量的波长λ,然后取平均值。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告实验目的:本实验旨在通过迈克尔逊干涉仪观察干涉条纹的形成,并测量出干涉条纹的间距,从而验证干涉现象的存在并掌握干涉条纹的测量方法。

实验仪器:迈克尔逊干涉仪、激光器、透镜、半反射镜、平面镜、光电探测器等。

实验原理:迈克尔逊干涉仪利用半反射镜将激光分为两束光路,经过平面镜反射后再次汇聚在半反射镜上,形成干涉。

当两束光路相位差为整数倍的波长时,会出现明暗条纹。

通过调节其中一束光路的光程差,可以观察到干涉条纹的移动。

实验步骤:1. 调整迈克尔逊干涉仪使得两束光路重合在半反射镜上,并观察干涉条纹的形成。

2. 调节其中一束光路的光程差,观察干涉条纹的移动,并测量相邻明纹或暗纹的间距。

3. 重复实验多次,取多组数据进行平均处理。

实验结果:通过实验观察和测量,我们成功观察到了干涉条纹的形成,并测量出了相邻明纹或暗纹的间距。

根据实验数据,我们计算出了光的波长和光程差的关系,并验证了干涉现象的存在。

实验分析:在实验过程中,我们发现调节干涉仪的精度对于观察干涉条纹的清晰度有着重要影响。

同时,测量干涉条纹间距时需要注意测量的准确性,以减小误差。

实验结论:通过迈克尔逊干涉仪的实验,我们成功观察到了干涉条纹的形成,并测量出了干涉条纹的间距。

实验结果验证了干涉现象的存在,并掌握了干涉条纹的测量方法。

同时,我们也发现了实验中需要注意的一些问题,以便今后进行更精确的实验和测量。

自查报告:在实验中,我们注意到了实验步骤的重要性,需要严格按照步骤进行操作,以确保实验的准确性和可靠性。

同时,我们也意识到了实验数据的处理和分析对于实验结论的重要性,需要认真对待实验数据,并进行合理的处理和分析。

在今后的实验中,我们将继续加强对实验步骤和数据处理的重视,以提高实验的质量和可靠性。

迈克尔逊干涉仪(实验报告)

迈克尔逊干涉仪(实验报告)

迈克尔逊干涉仪(实验报告)引言。

迈克尔逊干涉仪是一种经典的干涉仪器,它利用干涉现象来测量光的波长、折射率等物理量。

本实验旨在通过迈克尔逊干涉仪的搭建和实验操作,加深对干涉现象的理解,并掌握干涉仪的使用方法和测量技术。

实验目的。

1.了解迈克尔逊干涉仪的结构和工作原理;2.掌握迈克尔逊干涉仪的搭建和调整方法;3.通过实验操作,测量光的波长和折射率。

实验原理。

迈克尔逊干涉仪是由美国物理学家阿尔伯特·亨利·迈克尔逊于1881年发明的。

它由半透镜、玻璃板、反射镜等部件组成。

当一束单色光通过半透镜后,被分为两束光线,分别经过两个相互垂直的光路,然后再次汇聚在半透镜上。

在汇聚的过程中,两束光线会发生干涉现象,最终形成干涉条纹。

实验材料和仪器。

1. 迈克尔逊干涉仪主体。

2. 单色光源。

3. 半透镜。

4. 反射镜。

5. 玻璃板。

6. 望远镜。

7. 读数显微镜。

8. 透镜。

9. 分光镜。

10. 测距仪。

11. 光学台。

实验步骤。

1. 搭建迈克尔逊干涉仪。

首先将反射镜固定在光学台上,然后安装半透镜和玻璃板,并调整它们的位置,使得光线能够顺利通过。

接着安装望远镜和读数显微镜,调整其位置和角度,使其能够准确观测干涉条纹。

2. 调整干涉仪。

利用分光镜和透镜对光源进行调节,使其成为单色光源。

然后调整反射镜的角度,使得两束光线能够相互干涉。

最后通过读数显微镜对干涉条纹进行调节,使其清晰可见。

3. 测量光的波长。

利用测距仪对干涉条纹的间距进行测量,然后根据干涉条件和反射镜的移动距离计算出光的波长。

4. 测量折射率。

通过改变玻璃板的厚度,观察干涉条纹的变化,并利用干涉条件和玻璃板的厚度计算出光在玻璃中的折射率。

实验结果与分析。

通过实验操作,我们成功搭建了迈克尔逊干涉仪,并观测到了清晰的干涉条纹。

在测量光的波长时,我们得到了与理论值相符的结果。

在测量折射率时,我们也得到了较为准确的数据。

这些结果表明,迈克尔逊干涉仪可以有效地用于测量光的波长和折射率。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

1.等倾干涉的特点等倾干涉:厚度一定的薄膜,其光程差只由入射角决定,即干涉条纹只随入射角的变化而变化。

薄膜参数h、n、n1、n2及入射光波长λ等保持不变,总光程差Δl或总相位差δ仅仅随光束入射角θ(或光束在薄膜内的折射角i)的不同而变化。

反射光总光程差:干涉条纹特点:具有相同入射角的光线与薄膜表面交点的轨迹对应干涉条纹的相同级次。

点光源垂直照明:同心圆环条纹扩展光源垂直照明:无限多个点源产生的位置重合的同心圆环条纹的强度和仍为同心圆环条纹——透镜总会把平行光会聚到同一点。

干涉图样形成的位置:无限远处或透镜的像方焦平面上。

以反射光为例,并设n1,n2<n,则亮纹条件:暗纹条件:相邻亮纹或暗纹间距:入射角很小时:第N个条纹附近相邻两圆环间的角间距(亮条纹中心到相邻暗条纹中心的角距离):圆环形干涉条纹半径和条纹间距:等倾干涉条纹为一组中心疏,边缘密的不等间距的同心圆环,干涉级次为内高外低,且中心级次最高。

薄膜厚度越大,中心条纹级次越大。

中心级次改变±1时,相应的薄膜厚度变化变化为2.关于迈克尔逊的历史美国物理学家。

1852 年12月19日出生于普鲁士斯特雷诺(现属波兰),后随父母移居美国,1837年毕业于美国海军学院,曾任芝加哥大学教授,美国科学促进协会主席,美国科学院院长;还被选为法国科学院院士和伦敦皇家学会会员,1931年5月9日在帕萨迪纳逝世。

迈克尔逊主要从事光学和光谱学方面的研究,他以毕生精力从事光速的精密测量,在他的有生之年,一直是光速测定的国际中心人物。

他发明了一种用以测定微小长度、折射率和光波波长的干涉仪(迈克尔逊干涉仪),在研究光谱线方面起着重要的作用。

1887年他与美国物理学家E.W.莫雷合作,进行了著名的迈克尔逊-莫雷实验,这是一个最重大的否定性实验,它动摇了经典物理学的基础。

他研制出高分辨率的光谱学仪器,经改进的衍射光栅和测距仪。

迈克尔逊首倡用光波波长作为长度基准,提出在天文学中利用干涉效应的可能性,并且用自己设计的星体干涉仪测量了恒星参宿四的直径。

迈克尔逊干涉仪 实验报告

迈克尔逊干涉仪 实验报告

迈克尔逊干涉仪实验报告迈克尔逊干涉仪实验报告引言:干涉是光学中的重要现象,通过干涉实验可以研究光的波动性质。

迈克尔逊干涉仪是一种经典的干涉实验装置,由美国物理学家迈克尔逊于1887年发明。

本实验旨在通过迈克尔逊干涉仪,观察和分析干涉现象,探索光的波动性质。

实验装置:迈克尔逊干涉仪由一个光源、一个半透明平板、两个反射镜和一个观察屏组成。

光源发出的光经过半透明平板后,一部分光被反射镜1反射,另一部分光经过反射镜1后被反射镜2反射,然后两束光在观察屏上相遇形成干涉条纹。

实验过程:1. 调整干涉仪的反射镜,使两束光线平行并重合在观察屏上。

观察屏上出现明暗相间的干涉条纹。

2. 逐渐移动反射镜2,观察屏上的干涉条纹发生变化。

当反射镜2移动一个波长的距离时,干涉条纹由明变暗或由暗变明。

3. 测量反射镜2移动的距离,以及由明变暗或由暗变明的干涉条纹的数量,计算出光的波长。

实验结果:通过实验,我们得到了反射镜2移动的距离和干涉条纹的数量的测量数据。

根据这些数据,我们计算出了光的波长为X纳米。

讨论与分析:1. 干涉条纹的形成:干涉条纹的出现是由于光的波动性质造成的。

当两束光线相遇时,它们会相互干涉,形成明暗相间的干涉条纹。

2. 干涉条纹的变化:反射镜2的移动导致干涉条纹的变化。

当反射镜2移动一个波长的距离时,两束光线的光程差发生变化,导致干涉条纹由明变暗或由暗变明。

3. 光的波长计算:通过测量反射镜2移动的距离和干涉条纹的数量,我们可以计算出光的波长。

这个结果与已知的光的波长进行比较,验证了实验的准确性。

4. 实验误差分析:在实验中,存在一些误差来源,例如仪器精度、环境因素等。

为了提高实验结果的准确性,我们可以采取一些措施,如增加测量次数、减小仪器误差等。

结论:通过迈克尔逊干涉仪的实验,我们观察到了干涉现象,计算出了光的波长。

这个实验不仅帮助我们理解光的波动性质,还展示了光学实验的重要性和实验方法的应用。

通过不断改进和深入研究,我们可以进一步探索光的性质,为光学科学的发展做出贡献。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告实验目的:通过迈克尔逊干涉仪实验,掌握干涉仪的原理和操作方法,观察干涉条纹的变化,验证干涉仪的工作原理。

实验仪器和材料:迈克尔逊干涉仪、激光器、半反射镜、全反射镜、调节螺丝、干涉滤光片、干涉棒、光学平台等。

实验原理:迈克尔逊干涉仪是利用光的干涉现象来测量长度的仪器。

它由一个光源、一个半反射镜和一个全反射镜组成。

当光线从光源射出,经过半反射镜和全反射镜后,分成两束光线,再次汇聚在半反射镜上,产生干涉现象。

通过观察干涉条纹的移动和变化,可以得出被测长度的结果。

实验步骤:1. 将迈克尔逊干涉仪放置在光学平台上,调整使其稳定。

2. 打开激光器,调节激光器的位置和方向,使激光垂直射向半反射镜。

3. 调节半反射镜和全反射镜的角度,使两束光线汇聚在同一点上。

4. 安装干涉滤光片和干涉棒,观察干涉条纹的变化。

5. 调节干涉滤光片和干涉棒的位置,记录干涉条纹的移动和变化。

6. 根据干涉条纹的变化,计算出被测长度的结果。

实验结果:通过实验观察和记录,得出了干涉条纹的移动规律,并根据干涉条纹的变化计算出了被测长度的结果。

实验结果与理论值基本吻合,验证了迈克尔逊干涉仪的工作原理。

实验总结:通过本次实验,我对迈克尔逊干涉仪的原理和操作方法有了更深入的了解,掌握了干涉仪的使用技巧。

同时,实验中也发现了一些操作上的不足之处,需要在以后的实验中加以改进。

通过这次实验,我对光学干涉现象有了更深入的认识,对实验方法和数据处理也有了更多的经验。

希望在以后的实验中能够更加熟练地操作干涉仪,取得更准确的实验结果。

迈克尔逊干涉仪的使用实验报告

迈克尔逊干涉仪的使用实验报告

迈克尔逊干涉仪的使用实验报告英文回答:Michaelson Interferometer Experiment Report。

Introduction。

The Michelson interferometer is a device that uses interference to measure the speed of light. It was invented by Albert Michelson in 1881. The interferometer consists of two mirrors that are placed at a distance of L from each other. A beam of light is split into two beams, and each beam is reflected by one of the mirrors. The two beams are then recombined, and the interference pattern is observed.Theory。

The interference pattern produced by the Michelson interferometer is a series of bright and dark bands. The bright bands occur when the two beams of light are in phase,and the dark bands occur when the two beams of light are out of phase. The distance between the bright bands is equal to λ/2, where λ is the wavelength of light.Experimental Procedure。

迈克尔逊干涉仪的实验报告

迈克尔逊干涉仪的实验报告

迈克尔逊干涉仪的实验报告迈克尔逊干涉仪的实验报告引言:迈克尔逊干涉仪是一种经典的光学实验仪器,它以其简单而精确的测量原理而闻名于世。

本实验旨在通过搭建迈克尔逊干涉仪并进行实际测量,探索干涉现象的原理以及应用。

实验装置:迈克尔逊干涉仪由一束光源、半透镜、分束镜和反射镜组成。

光源发出的光经过半透镜聚焦后,被分束镜分成两束光线,分别射向两个反射镜。

反射镜将光线反射回来,重新经过分束镜,最终在屏幕上形成干涉条纹。

实验过程:1. 搭建迈克尔逊干涉仪:首先,将光源放置在适当位置,并调整半透镜的位置和焦距,使光线能够通过分束镜。

然后,调整反射镜的位置和倾斜角度,使两束光线能够在屏幕上产生干涉条纹。

2. 测量干涉条纹的间距:通过移动一个反射镜,改变其中一束光线的光程差,观察屏幕上干涉条纹的变化。

使用尺子测量相邻两个亮纹或暗纹之间的距离,记录下来。

3. 分析干涉条纹的特点:观察干涉条纹的形状、亮度和间距,分析其特点。

根据干涉条纹的变化规律,可以推断出光程差的变化情况。

实验结果:在实验过程中,我们观察到干涉条纹呈现出明暗相间的特点。

亮纹和暗纹之间的间距随着光程差的增大而增大。

通过测量,我们发现相邻两个亮纹或暗纹之间的距离为X。

讨论与分析:迈克尔逊干涉仪的干涉现象是由于光线经过不同路径后再次叠加而产生的。

当两束光线相遇时,如果光程差为波长的整数倍,就会出现亮纹;如果光程差为波长的半整数倍,就会出现暗纹。

通过测量干涉条纹的间距,我们可以计算出光程差的大小,从而了解光线的传播特性。

迈克尔逊干涉仪的应用十分广泛。

例如,在光学测量中,可以利用干涉条纹的变化来测量物体的形状和表面质量。

在激光干涉仪中,迈克尔逊干涉仪被用于测量激光的相干性和波长。

此外,干涉仪还可以用于光学元件的测试和光学薄膜的表征等领域。

结论:通过本次实验,我们成功搭建了迈克尔逊干涉仪,并观察到了干涉条纹的特点。

通过测量干涉条纹的间距,我们进一步认识到光程差对干涉现象的影响。

迈克尔逊干涉实验报告

迈克尔逊干涉实验报告

迈克尔逊干涉实验报告迈克尔逊干涉实验报告迈克尔逊干涉实验是19世纪末由美国物理学家阿尔伯特·迈克尔逊提出并完成的一项经典实验。

该实验以光的干涉现象为基础,通过利用干涉仪探索光的波动性质,为光的本质提供了重要的实验证据。

本文将对迈克尔逊干涉实验的原理、实验过程和结果进行探讨。

一、实验原理迈克尔逊干涉实验基于光的波动理论,利用光的干涉现象来研究光的性质。

干涉是指两个或多个光波相遇时产生叠加的现象。

迈克尔逊干涉实验利用干涉仪,通过光的分波、反射和重合,观察干涉条纹的形成与变化,从而揭示光的波动本质。

二、实验装置迈克尔逊干涉实验主要由一束光源、一块半透半反射镜、两块平行玻璃板和一块反射镜组成。

光源发出的光经半透半反射镜分成两束,一束直接射向反射镜,另一束射向平行玻璃板后再反射到反射镜上。

两束光再次汇聚在半透半反射镜上,形成干涉条纹。

三、实验过程1. 调整装置:首先,需要将反射镜和半透半反射镜调整到合适的角度,使得两束光在半透半反射镜上重合。

同时,保证光源发出的光为单色光,以减小干涉条纹的扩散。

2. 观察干涉条纹:当光线通过半透半反射镜后,一部分光线直接射向反射镜,另一部分光线经过平行玻璃板后再反射到反射镜上。

两束光线再次汇聚在半透半反射镜上,形成干涉条纹。

通过调整反射镜和半透半反射镜的位置,可以观察到不同的干涉条纹。

四、实验结果迈克尔逊干涉实验的结果是通过观察干涉条纹的形态和变化来推测光的性质。

实验结果表明,干涉条纹的出现与光的波动性质密切相关。

当两束光的光程差为整数倍的波长时,干涉条纹明亮;当光程差为半波长时,干涉条纹暗淡。

这一现象表明光具有波动性,支持了光的波动理论。

五、实验意义迈克尔逊干涉实验为光的波动理论提供了有力的实验证据。

它揭示了光的波动性质,证明了光是一种波动的电磁现象。

这一实验成果对后来的光学理论和实验研究产生了重大影响,为光学的发展奠定了基础。

六、实验应用迈克尔逊干涉实验不仅在理论研究中具有重要意义,而且在实际应用中也有广泛的用途。

大学物理下-迈克尔逊干涉仪实验报告【全文】

大学物理下-迈克尔逊干涉仪实验报告【全文】

精选全文完整版可编辑修改大学物理实验报告3. 实验原理(请用自己的语言简明扼要地叙述,注意原理图需要画出,测试公式需要写明)(1)迈克耳孙干涉仪的结构与光路如图5.3. 1所示为迈克耳孙干涉仪的侧视图图与俯视图,导轨7固定在一只稳定的底座上,底座由三颗调平螺丝9及其锁紧螺丝10来调平。

丝杠6螺距为1mm,转动粗调手轮2,经一对齿轮带动丝杠转动,进而带动移动镜M在导轨上滑动。

移动距离可在毫米刻度尺5上读到1 mm,在窗口3中的刻度盘上读到0.01 mm。

转动微调手轮1,经1:100的蜗轮传动,可实现微动。

微动手轮上的最小刻度为0.0001 mm,可估读到0.00001 mm 。

分光板G1和补偿板G2固定在基座上,不得强扳,且不能用手接触其光学表面。

固定参考镜(定镜)13和移动镜(动镜)11后各有三颗螺丝,用于粗调两者相互垂直,不能拧得太紧或太松,以免使其变形或松动。

固定参考镜13的一侧和下部各有一颗微调螺丝 14和15,可用来微调13的左右偏转和俯视,微调螺丝也不能拧得太松或太紧。

丝杠的顶进力由丝杠顶进螺帽8来调整。

迈克尔逊干涉仪的实验原理如图5.3.2所示。

由光源S发出一束光,射到分光板G1的半透半反膜L上,L使反射光和反射的光强基本相同,所以称G1为分光板。

透过膜层L的光束(1)经G2到达参考镜M1后,被反射回来;被反射的光束(2) 到达移动镜M2后,也被反射回来。

由于(1)、(2)两束光满足光的相干条件,各自反射回来在膜层L所在表面相遇后,就发生干涉,在E处即可观察到干涉条纹。

G2是补偿板,它使光束(1)和(2)经过玻璃的次数相同,当使用白光作为光源时,G2还可以补偿G1的色散。

M1’是在G1中看到的M1的虚像。

(2) 单色点光源等倾干涉条纹的观察及波长的测量如图5.3.3所示,由He-Ne激光器发出的细束平行激光经过以钠光入射,它有两条谱线,对应空气中波长分别为λ 1和λ 2(设λ 1>λ 2),彼此十分接近,就会出现这样一种情况: 当d 为某一定值d1时,对同一入射角θi,有2d1cos θi=k λ2,且2d1cos θi=(k+1/2) λ 1,此时λ 2的k 级明条纹与λ1的k 级暗条纹重叠,视场中干涉条纹的可见度最低,如图5.3.5所示。

迈克尔逊干涉仪(实验报告)

迈克尔逊干涉仪(实验报告)

一、实验目的1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。

2、区别等倾干涉、等厚干涉和非定域干涉,测定 He-Ne 激光波长二、实验仪器迈克尔逊干涉仪、 He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。

(图一)(图二)三、实验原理①用 He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板 P1和 P2上后就将光分成了两束分别射到 M1 和 M2 上,反射后通过 P1 、 P2 就可以得到两束相关光,此时就会产生干涉条纹。

②产生干涉条纹的条件,如图 2 所示, B 、 C 是两个相干点光源,则到 A 点的光程差δ =AB-AC=BCcosi , 若在 A 点出产生了亮条纹,则δ =2dcosi=k λ (k 为亮条纹的级数 ) ,因为 i 和 k 均为不可测的量,所以取其差值,即λ =2 Δ d/ Δ k。

四、实验步骤1、打开激光电源,先不要放扩束镜,让激光照到分光镜 P1 上,并调节激光的反射光照射到激光筒上。

2、调节 M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。

3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在 P1分光镜上,看显示屏上有没有产生同心圆的干涉条纹图案。

没有的话重复 2 、 3 步骤,直到产生同心圆的干涉条纹图案。

4、微调 M2是干涉图案处于显示屏的中间。

5、转动微量读数鼓轮,使 M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。

记下当前位置的读数 d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进 30 次则记一次数据,共记录 10 次数据即 d0、 d1 (9)6、关闭激光电源,整理仪器,处理数据。

五、实验数据处理数据记录:数据处理:Δd0=d5-d0=0.05202mm Δd1=d6-d1=0.05225mm Δd2=d7-d2=0.04077mm Δd3=d8-d3=0.04077mm Δd4=d9-d4=0.05071mmΔd(平均)=(Δd0+Δd1+Δd2+Δd3+Δd4)/5 =0.047304mmA类不确定度σ=*10-6mΔk=150所以λ(平均)=2Δd(平均)/Δk = nmB类不确定度: UΔB=*10-7 m总不确定度: UΔd =*10-6 mUλ =2UΔd/Δk = nm所以λ=λ(平均)+Uλ= + nmEλ=()/ *100% =%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验目的:
1)学会使用迈克尔逊干涉仪
2)观察等倾、等厚和非定域干涉现象
3)测量氦氖激光的波长和钠光双线的波长差。

实验仪器:
氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏
实验原理:
1:迈克尔逊干涉仪的原理:
迈克尔逊干涉仪的光路图如图所示,光源S 出
发的光经过称。

45放置的背面镀银的半透玻璃板
1P 被分成互相垂直的强度几乎相等的两束光,光
路1通过1M 镜反射并再次通过1P 照射在观察平
面E 上,光路2通过厚度、折射率与1P 相同的玻
璃板2P 后由2M 镜反射再次通过2P 并由1P 背面的
反射层反射照射在观察平面E 上。

图中平行于1M 的'2M 是2M 经1P 反射所成的虚
像,即1P 到2M 与1P 到'2M 的光程距离相等,故从1P 到2M 的光路可用1P 到'2M 等
价替代。

这样可以认为1M 与'2M 之间形成了一个空气间隙,这个空气间隙的厚度
可以通过移动1M 完成,空气间隙的夹角可以通过改变1M 镜或2M 镜的角度实现。

当1M 与'2M 平行时可以在观察平面E 处观察到等倾干涉现象,当1M 与'2M 有一定的夹角时可以在观察平面E 处观察到等厚干涉现象。

2:激光器激光波长测量原理:
由等倾干涉条纹的特点,当θ =0 时的光程差δ 最大,即圆心所对应的
干 涉级别最高。

转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心“冒出” ;若 d 减小时,圆环逐渐 缩小,最后“淹没”在中心处。

每“冒”出或“缩”进一个干涉环,相应的光程差改变了一个波长,也就是 M 与M ’之间距离 变化了半个波长。

若将 M 与 M ’之间距离改变了△d 时,观察到 N 个干涉环变化,则△d=N λ2 由此可测单色光的波长。

3:钠光双线波长差的测定:
在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到随着动镜1M 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即反衬度从最大到最小再到最大的周期性变化,利用这一特性,可测量钠光双线波
长差,对于等倾干涉而言,波长差的计算公式为:Δλ=2
λ−2Δd 实验内容与数据处理:
(1)观察非定域干涉条纹
1)通过粗调手轮打开激光光源,调节激光器使其光束大致垂直于平面反光镜2M 入射,取掉投影屏E ,可以看到两排激光点
2)粗调手轮移动1M 镜的位置,使得通过分光板分开的两路光光程大致相等
3)调节1M 、2M 镜后面的两个旋钮,使两排激光点重合为一排,并使两个最亮的光点重合在一起。

此时再放上投影屏E ,就可以看到干涉条纹。

4)仔细调节1M 、2M 镜后面的两个旋钮,使1M 与'2M 平行,这时在屏上可
以看到同心圆条纹,这些条纹为非定域条纹。

5)转动微调手轮,观察干涉条纹的形状、疏密及中心“吞”、“吐”条纹随光程差改变的变化情况。

(2)测量He-Ne 激光波长
1)调整仪器的测量零点
2)向同一个方向缓旋动微调手轮,当观察到条纹显著的涌出或缩进时,开始记录此时1M 镜的位置0m 。

持续沿同一方向旋动微调手轮,条纹中心每“吞”或“吐”100条条纹记一次h 值,连续记录十次,并将数据记录在相应表格中,并计算出激光波长λ及其误差
(3)钠光双线波长差λ∆的测定
1)将光源换为钠灯,在钠光灯与1P 之间放置一块磨砂玻璃,并将投影屏E 取下,通过分光板A 直接观察干涉条纹。

2)缓慢旋动微调手轮,观察钠灯产生的干涉条纹的吞吐。

3)继续缓慢旋动微调手轮移动1M 镜,观察到条纹的反衬度周期变化,记录条纹从不可见到下个不可见时2M 的位置d 值,连续记录六次,讲数据记录在相应表格中,利用最小二乘法求出d ∆,计算钠光双线的波长差及其误差。

数据处理
由最小二乘法可得到
Δd 1 =0.03295mm
计算可得到波长λ=659nm
误差为:
|632.8−659.0632.8
|×100%=4.14% 由最小二乘法可得到Δd 2=0.28340mm
计算可得到波长差λ∆=0.6121nm
误差为:
|0.5967−0.61210.5967
|×100%=2.58% 实验分析讨论与结论:
本实验以迈克尔逊干涉仪为主要工具,观察了激光的等倾干涉和等厚干涉,并根据等倾干涉的特点,利用相关的公式测出了He-Ne 激光的波长以及钠光双线的波长差,由于仪器精度的影响,实验存在一定的误差,但在正常范围内,精度较高;在试验处理的时候如果不采用最小二乘法也可采用取平均值的方法,在一定程度上减小偶然误差的影响。

1:在计量图像“吞”下条纹时所移动的距离存在一定的误差,所以实验中一定要小心谨慎,细盘的转动要慢;对反衬度的判断也不足够精确。

2:大小鼓轮空转也会引起误差,所以每次测量必须沿同一方向旋转,不得中途倒退。

3:试验中的镜面只能大致的满足相互之间的几何关系,所以公式的推导有一定的误差,可在计算中加以适当的修正。

本次实验整体来看测得的实验数据符合要求。

结论:通过本次实验掌握了迈克尔逊干涉仪的使用,观察到了等倾干涉、等厚干涉的现象、较为准确的测出实验室所用He-Ne 激光的波长以及钠光双线的波长差。

参考文献:1:李朝荣、徐平、唐芳、王慕兵。

基础物理实验【M 】,北京航空航天大学出版社。

2:张三慧主编大学物理学,清华大学出版社。

相关文档
最新文档