人教版数学九年级下册教学设计教案-29.1 第2课时 正投影带反思
人教版数学九年级下《29.1.2正投影》同步练习教学反思设计案例学案说课稿.doc
29. L 2正投影基础训练知识点1正投影的定义1 •球的正投影是()A. |M|B.椭圆C.点D.圜环2.如图,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投3.把一个止五棱柱如图摆放,当投影线由止前方射到后方时,它的正投 影是(影是( ) 4A BCDA B C D4 •下列投影中,正投影有()A. 1个B. 2个C・3个 D. 4个5.如图所示的圆台的上、下底面与投影线平行,此圆台的止投影是C.等腰梯形D.圆环6.如图,箭头表示投影线的方向,则图中圆柱体的正投影是()A.圆B.圆柱C.梯形D.矩形7.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.正方形知识点2正投影的性质8.几何体在平面P的正投影,取决于()①几何体形状;②几何体与投影面的位置关系;③投影面P的大小.A.①②B.①③C.②③D.①②③9.当棱长为20 cm的正方体的某个面平行于投影面时,这个面的正投影的面积为()A. 20 cm2B. 300 cm2C. 400 cm2D. 600 cm210.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是()K ------- 3 ------- >1A. AB=CD B・ ABWCDC. AB>CDD. AB2CD11.如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是_______ .12.如图,请用平行投影的方法画出圆柱的正投影.提升训练考查角度1利用正投影的性质求影长(转化思想)13.已知一根长为8 cm的木棒AB与投影面平行,投影线垂直于投影面.(1)求此时的影子AM】的长度;(2)如图是将木棒绕其端点A逆时针旋转30°后的示意图(此时平面ABBA垂直于投影面),求旋转后木棒的影长A2B2.考查角度2利用解直角三角形求正投影的面积14.已知一纸板的形状为正方形ABCD,且边长为10 cm.如图,四边形AiBiCiDi 是正方形ABCD在面B上的正投影,AD, BC与投影面B半行,且AB, CD与投影0成30。
人教版九年级数学下册:29.1《投影》教学设计2
人教版九年级数学下册:29.1《投影》教学设计2一. 教材分析《投影》是人教版九年级数学下册第29.1节的内容,这部分内容是学生学习几何知识的重要环节,也是学生对几何知识进行深入理解的关键部分。
通过学习投影的知识,学生能够理解在特定情况下,物体在光线作用下的影子规律,同时,也为后续的立体几何学习打下基础。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于光线、影子等概念有了一定的了解。
但是,对于三维空间中的投影规律,部分学生可能会感到抽象难以理解。
因此,在教学过程中,需要结合学生的实际情况,采用生动形象的教学手段,帮助学生理解和掌握投影的知识。
三. 教学目标1.知识与技能:使学生理解投影的概念,掌握正投影和斜投影的特点,能够运用投影的知识解决实际问题。
2.过程与方法:通过观察、操作、思考等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作精神和探索精神。
四. 教学重难点1.重点:投影的概念,正投影和斜投影的特点。
2.难点:对三维空间中物体投影的理解和运用。
五. 教学方法采用问题驱动法、合作学习法、直观演示法等教学方法,通过生动形象的教学手段,激发学生的学习兴趣,引导学生主动探索,合作交流,从而达到理解掌握投影知识的目的。
六. 教学准备1.教师准备:投影仪、教具、课件等教学工具。
2.学生准备:预习相关内容,准备问题。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如手电筒照在物体上产生的影子,引导学生思考:什么是投影?为什么会产生投影?2.呈现(10分钟)利用课件和教具,呈现正投影和斜投影的图像,引导学生观察并总结正投影和斜投影的特点。
3.操练(10分钟)学生分组,每组利用教具进行投影实验,观察不同角度下的投影效果,巩固对投影的理解。
4.巩固(5分钟)教师提出几个问题,如:正投影和斜投影在哪些情况下会产生?如何判断一个物体的投影?学生回答,教师点评。
人教版九年级数学下册《二十九章 投影与视图 29.1 投影 正投影》公开课教案_5
26.1投影第二课时(正投影)教学设计【教材分析】在学习《正投影》这一节以前,我们已学习了投影知识,正投影是一种特殊的投影。
学习正投影是对前面知识的延续和发展,同时也是学习后面视图知识的必要知识储备。
本节从日常生活常见的具体实例入手,通过多媒体演示让学生分析不同的几何体由于位置摆放的不同,它们的正投影产生的不同效果,从而理解正投影的规律。
然后介绍了视图这一概念。
【学情分析】本节课的教学对象是九年级的学生,由于学生基础不同,素质也参差不齐。
之前,学生已学习了投影知识,具备了学习正投影所需要的基础知识,但也有部分学生不能正确分析中心投影、平行投影之间的关系和区别,不能把握中心投影、平行投影之间的内在联系,导致在判断物体的正投影时引起错误。
九年级学生已经有了一定的抽象思维能力;具有一定的分析、概括和归纳能力;有了一定的自主学习和合作学习能力。
他们对新鲜事物有强烈的好奇心,具有较强的求知欲。
【教学目标】1.知识与技能:(1)了解正投影的概念。
(2)能根据正投影的性质画出简单几何图形的正投影。
2.过程与方法:学生经历观察探究正投影性质,以及动手画几何图形正投影的过程,感受正投影的性质,培养学生的探究能力和动手作图能力。
3.情感、态度与价值观:经历数学活动过程,发展空间想象能力,加强学生的审美意识,体会数学来源于生活。
【教学重点】正投影性质,画几何图形的正投影。
【教学难点】正投影性质,画几何图形的正投影。
【教学媒体与手段】课件、多媒体等。
【教学方法】观察、交流探究等。
【教学时间】1课时。
【教学过程】一、复习导入1、提问:什么叫投影?它分几类?分别是怎么形成的?(学生举手回答)2、新课引入观察下列投影说出它们的相同点不同点:学生小议,举手回答出平行投影中的特殊情况。
教师根据学生的回答导入新课正投影,板书课题——正投影 教师根据特殊的平行投影介绍什么叫正投影,板书正投影定义。
二、课堂探究:探究1:把一根直的细铁丝(记为线段AB )放在三个不同的位置:教师演示,学生观察动画,分组讨论共同探究出规律。
人教版数学九年级下册29.1 投 影教案与反思
29.1 投影原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!古之学者必严其师,师严然后道尊。
欧阳修第1课时投影教学目标一、基本目标【知识与技能】1.通过实践探索,了解投影、投影面、平行投影和中心投影的概念.2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.【过程与方法】通过联系生活实际,初步感受平行投影和中心投影,体会数学与生活之间的密切联系.【情感态度与价值观】使学生学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心.二、重难点目标【教学重点】理解平行投影和中心投影的特征.【教学难点】在投影面上画出平面图形的平行投影或中心投影.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P87~P88的内容,完成下面练习.【3 min反馈】1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子,叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.由平行光线形成的投影叫做平行投影,由同一点(点光源)发出的光线形成的投影叫做中心投影.3.皮影戏是利用平行投影(填“平行投影”或“中心投影”)的一种表演艺术.4.如图,在灯光下,四个选项中,灯光与物体的影子最合理的是( A )环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】晚上小亮在路灯下散步,在小亮从远处走到灯下,再远离路灯这一过程中,他在地上的影子( )A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【互动探索】(引发学生思考)灯光的照射属于中心投影还是平行投影?其投影有什么特征?【分析】晚上小亮在路灯下散步,当小亮从远处走到灯下的时候,他在地上的影子由长变短,当他再远离路灯的时候,他在地上的影子由短变长.故选B.【答案】B【互动总结】(学生总结,老师点评)中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.【例2】如图所示,AB和DE是直立在地面上的两根立柱,AB=5 m,某一时刻AB在阳光下的投影BC=3 m.(1)请在图中画出此时DE在阳光下的投影;(2)在测量AB的投时,同时测量出DE在阳光下的投影长为6 m,请你计算DE 的长.【互动探索】(引发学生思考)阳光下的投影属于中心投影还是平行投影?其投影有什么特征?【解答】(1)如图所示,连结AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB =∠DFE .又∵∠ABC =∠DEF =90°,∴△ABC ∽△DEF , ∴AB DE =BC EF, 即错误!=错误!,∴DE =10 m.【互动总结】(学生总结,老师点评)在同一时刻的物体高度与影长的关系:物体高度物体影长=另一物体的高度另一物体的影长. 活动2 巩固练习(学生独学)1.下列结论正确的有( B )①同一时刻物体在阳光照射下影子的方向是相同的;②物体在任何光照射下影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在光线照射下,影子的长短仅与体的长短有关.A .1个B .2个C .3个D .4个2.如图所示,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2 m ,CD =6 m ,点P 到CD 的距离是2.7 m ,则AB 与CD 之间的距离是1.8m.3.李航想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量方法如下:如示意图,李航边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD =1.2 m ,CE =0.6 m ,CA =30 m(点A 、E 、C 在同一直线).已知李航的身高EF 是1.6 m ,请你帮李航求出楼高A B.解:如图,过点D 作DN ⊥AB ,垂足为N ,交EF 于点M ,则四边形CDME 、ACDN 是矩形.∴AN =ME =CD =1.2 m ,DN =AC =30 m ,DM =CE =0.6 m ,∴MF =EF -ME =1.6-1.2=0.4(m).∵EF ∥AB ,∴△DFM ∽△DBN , ∴DM DN =MF BN ,即0.630=0.4BN, ∴BN =20 m ,∴AB =BN +AN =20+1.2=21.2(m).即楼高为21.2 m.环节3 课堂小结,当堂达标(学生总结,老师点评)1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子,叫做物体的投影.2.⎩⎨⎧ 平行投影:由平行光线形成的投影中心投影:由同一点点光源发出的光线形成的投影练习设计请完成本课时对应练习!第2课时 正投影教学目标一、基本目标【知识与技能】1.掌握正投影的概念,了解中心投影、平行投影和正投影的关系.2.掌握线段、正方形、正方体的正投影的特征.【过程与方法】1.通过动手操作画图形的正投影,培养学生动手实践能力,发展空间想象能力.2.通过探究生活中有关正投影的数学问题,体会数学与实际生活的紧密联系,提高学生的数学应用意识.【情感态度与价值观】感受日常生活中的一些投影现象,体会数学与生活实际密不可分,激发学生学习数学的兴趣.二、重难点目标【教学重点】1.正投影的概念.2.能根据正投影的性质画出简单的平面图形的正投影.【教学难点】归纳正投影的性质,正确画出简单平面图形的正投影.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P88~P91的内容,完成下面练习.【3 min反馈】1.(1)投影线垂直于投影面产生的投影叫做正投影.(2)正投影是一种特殊的平行投影,它区别于一般的平行投影的不同之处是投影线垂直于投影面.(3)平行投影与中心投影的主要区别是光线是平行还是交于一点.(4)平行投影有两种情况:一种是投影线倾斜着照射投影面;另一种是投影线垂直照射投影面,这种投影就是正投影.教师点拨:注意区分正投影与平行投影之间的区别与联系,掌握正投影是特殊的平行投影,是光线垂直于投影面的特殊情况.2.线段的正投影是( D )A.直线B.线段C.射线D.线段或点环节2 合作探究,解决问题活动1 小组讨论(师生互学)(一)关于线段的正投影【例1】如图,把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情况下铁丝的正投影各是什么形状?【互动探索】(引发学生思考)(1)铁丝平行于投影面时,它的正投影的形状跟大小与它本身完全相等;(2)铁丝倾斜于投影面,它的正投影仍然是一条线段,但长度变短了;(3)铁丝垂直于投影面,它的正投影变成了一个点.【解答】(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB=A1B1.(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB>A2B2.(3)当线段AB垂直于投影面P时,它的正投影是一个点A3.【教师点拨】以上的规律可以通过用铅笔作投影试验得出.(二)关于平面的正投影【例2】如图,把一块正方形硬纸板Q(记为正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面.三种情况下纸板的正投影各是什么形状?【互动探索】(引发学生思考)(1)纸板Q平行于投影面P时,Q的正投影与Q 形状、大小一样(即全等);(2)纸板Q倾斜于投影面P时,Q的正投影与Q的形状、大小发生变化(面积变小);(3)纸板Q垂直于投影面P时,Q的正投影成为一条线段.【教师点拨】用作业本做一个投影试验就可得出结论.【互动总结】(学生总结,老师点评)当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.(三)有关立体图形的正投影【例3】画出如图摆放的正方体在投影面上的正投影.(1)正方体的一个面ABCD平行于投影面,如图1;(2)正方体的一个面ABCD倾斜于投影面,上底面ADEF垂直于投影面,并且上底面的对角线AE垂直于投影面,如图2.【互动探索】详细见教材P90~P91分析.【解答】(1)如图1,正方体的正投影为正方形A′B′C′D′,它与正方体的一个面是全等关系.(2)如图2,正方体的正投影为矩形F′G′C′D′,这个矩形的长等于正方体的底面对角线长,矩形的宽等于正方体的棱长.矩形上、下两边中点连线A′B′是正方体的侧棱AB及它所对的另一条侧棱EH的投影.【互动总结】(学生总结,老师点评)因为影子是光线被物体遮挡所形成的,所以要考虑到面与面,线与线的遮挡问题.【例4】如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )【互动探索】(引发学生思考)依题意,光线是垂直照下的,故只有D符合.【答案】D【互动总结】(学生总结,老师点评)当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形;若投影面不是平面,则投影形状要复杂得多.活动2 巩固练习(学生独学)1.把一个正五棱柱按如图所示的方式摆放,当投影线由正前方射到后方时,它的正投影是如图所示的( B )2.若木棒长1.2米,则它的正投影的长一定( D )A.大于1.2米B.小于1.2米C.等于1.2米D.小于或等于1.2米活动3 拓展延伸(学生对学)【例5】在长、宽都为4 m,高为3 m的房间正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8 cm,灯泡离地面2 m,为了使光线恰好照在相对的墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,2≈1.414)【互动探索】根据题意可知,AN=0.08 m,AM=2 m,由房间的地面为边长为4 m的正方形可算出DE的长,再根据△ABC∽△ADE利用相似三角形对应边成比例解答.【解答】如图,光线恰好照在墙角D、E处.由题意可知,AN=0.08 m,AM=2 m.∵房间的地面为边长为4 m的正方形,∴DE=4 2 m.∵BC∥DE,∴△ABC∽△ADE,∴BCDE=ANAM,即BC42=0.082,∴BC≈0.23 m.即灯罩的直径BC约为0.23 m.【互动总结】(学生总结,老师点评)解此题的关键是画出图形,合理使用相似的知识进行有关计算,计算时注意单位要统一.环节3 课堂小结,当堂达标(学生总结,老师点评)1.投影线垂直于投影面的投影叫做正投影.注意,正投影是特殊的平行投影,中心投影不可能是正投影.2.几种基本图形(线段、正方形、圆、正方体)的正投影分几种情况.3.当物体的某个面平行于投影面时,这个面的正投影与这个面全等;物体正投影的形状、大小与它相对于投影面的位置有关.练习设计请完成本课时对应练习!【素材积累】不怕你不懂不会,旧怕你不学不干。
初中数学人教版九年级下册优质教学设计29-1 第2课时《 正投影》
初中数学人教版九年级下册优质教学设计29-1 第2课时《正投影》一. 教材分析《正投影》是初中数学人教版九年级下册第29-1课时的内容,这部分教材主要是让学生了解和掌握正投影的定义、性质及其在几何图形中的应用。
通过学习正投影,学生能够更好地理解三维空间中的图形变换,提高空间想象能力。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和图形变换的基础知识,对于新的知识有一定的接受能力。
但同时,由于正投影概念比较抽象,学生可能难以理解,因此需要教师在教学过程中进行耐心讲解和引导。
三. 教学目标1.让学生了解正投影的定义和性质。
2.培养学生空间想象能力和图形变换能力。
3.使学生能够运用正投影的知识解决实际问题。
四. 教学重难点1.正投影的定义和性质。
2.正投影在几何图形中的应用。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探索、讨论和交流,提高学生对正投影的理解和应用能力。
六. 教学准备1.正投影的图片和案例。
2.多媒体教学设备。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的正投影现象,如建筑物的影子、手影等,引导学生关注正投影,激发学生学习兴趣。
2.呈现(10分钟)教师通过讲解和展示正投影的定义和性质,让学生初步了解和认识正投影。
同时,通过几何图形的正投影案例,使学生更好地理解和掌握正投影的概念。
3.操练(10分钟)学生分组进行合作学习,每组选择一个几何图形,讨论其在不同角度下的正投影,并绘制出来。
通过实际操作,加深学生对正投影的理解。
4.巩固(10分钟)教师提问学生关于正投影的问题,学生回答,教师进行点评和讲解。
通过提问和回答,巩固学生对正投影的知识。
5.拓展(10分钟)教师提出一些与正投影相关的实际问题,如建筑设计中的正投影应用,让学生进行思考和讨论。
通过实际问题的解决,提高学生对正投影的应用能力。
6.小结(5分钟)教师对本节课的主要内容进行总结,强调正投影的定义、性质和应用。
部审人教版九年级数学下册教学设计29.1 第2课时《正投影》
部审人教版九年级数学下册教学设计29.1 第2课时《正投影》一. 教材分析人教版九年级数学下册第29.1节《正投影》是立体几何学习的一个重要内容。
本节课主要让学生了解正投影的概念,学会如何运用正投影来描述和分析几何体的形状和位置关系。
教材通过丰富的图片和实例,引导学生探究正投影的性质和规律,培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面几何的知识有较深入的了解。
但学生在学习立体几何时,往往难以摆脱平面几何的思维定势,对空间图形的位置关系和形状认识不够清晰。
因此,在教学过程中,教师需要注重引导学生建立空间观念,激发学生的学习兴趣,突破平面思维的束缚。
三. 教学目标1.知识与技能:使学生了解正投影的概念,学会运用正投影来描述和分析几何体的形状和位置关系。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生学习立体几何的兴趣,体会数学与现实生活的联系。
四. 教学重难点1.重点:正投影的概念及其在描述几何体形状和位置关系中的应用。
2.难点:如何帮助学生建立空间观念,突破平面思维的束缚。
五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生直观地感受正投影的特点,激发学生的学习兴趣。
2.启发式教学法:在教学过程中,教师提问引导学生思考,培养学生的问题解决能力。
3.合作学习法:学生进行小组讨论和实践操作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教具:正投影模型、投影仪、幻灯片等。
2.学具:学生用书、练习题、笔记本等。
七. 教学过程1.导入(5分钟)利用投影仪展示一些生活中的正投影实例,如房屋、树木等,引导学生关注正投影在日常生活中的应用。
提问:“你们认为,什么是正投影?”让学生初步了解正投影的概念。
2.呈现(10分钟)通过幻灯片呈现正投影的定义和性质,引导学生学习正投影的相关知识。
人教版数学九年级下册29.1《投影》教学设计
人教版数学九年级下册29.1《投影》教学设计一. 教材分析人教版数学九年级下册29.1《投影》是本册的一个重点章节,主要介绍了中心投影和平行投影的概念,以及物体在投影中的基本性质。
本节内容是学生学习立体几何的基础,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面几何的知识有了一定的了解。
但投影的概念对学生来说较为抽象,不易理解。
因此,在教学过程中,教师需要利用实物和模型帮助学生建立投影的概念,并通过大量的练习让学生熟练掌握投影的性质和计算方法。
三. 教学目标1.了解中心投影和平行投影的概念,掌握它们的特点。
2.能够运用投影的性质解决一些简单的问题。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.投影的概念。
2.投影的性质。
3.中心投影和平行投影的区别。
五. 教学方法1.实物演示法:通过实物和模型展示投影的原理,让学生直观地理解投影的概念。
2.讲解法:对投影的性质和计算方法进行详细讲解,让学生掌握投影的基本知识。
3.练习法:布置适量的练习题,让学生在实践中巩固投影的知识。
六. 教学准备1.准备一些实物和模型,如立方体、球体等,用于展示投影的原理。
2.准备投影的PPT课件,用于辅助教学。
3.准备一些投影的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过展示一些实物和模型,如立方体、球体等,让学生观察它们在光线照射下的投影,引发学生对投影的兴趣。
然后提问:“你们知道什么是投影吗?”让学生回顾已知的投影知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT课件,向学生介绍中心投影和平行投影的概念,以及它们的特点。
同时,通过动画演示,让学生直观地理解投影的原理。
在此过程中,教师讲解投影的性质,如相似性、直线与平面的交角等。
3.操练(10分钟)教师布置一些投影的练习题,让学生独立完成。
人教版初三数学下册29[1].1投影教案
设问:课本的图片是在太阳光线下形成的,这些光线有什么样的特点呢?
(光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线.)
2.平行投影:由平行光线形成的投影是平行投影
2、认识平行投影和中心投影的主要区别。
3、掌握正投影的概念;
4、能根据正投影的性质画出简单的平面图形的正投影
过程与方法:
1、经历动手实践,观察与思考发展空间想象能力。
2、体会生活中有关投影的数学问题,提高数学的应用意识。
体会数学中的转化思想
情感,态度,价值观:
学生在感受日常生活中的一些投影现象的过程中,体验数学与生活的紧密联系,激发主动学习数学的情趣,增强对数学价值的认识.
三、教材分析
1本章在学生已有的有关投影和视图的初步感性认识的基础上,通过对一些典型问题的讨论,适当引入基本概念,归纳规律,使学生在原有的认识水平上得到提升,进一步培养运用几何知识分析和解决实际问题.
2本节对于培养学生空间想象能力具有突出的作用,立体图形与平面图形的相互转化问题,是本章的核心问题,实现这一转化的关键条件是:掌握立体图形与相应平面图形的相应联系,而投影规律是这两种转化的重要依据.也是本节课的重点。
例1画出如图摆放的正方体在投影面P上的正投影.
(1)正方体的一个面ABCD平行于投影面P图(1);
(2)正方体的一个面ABCD倾斜于投影面F,上底面ADEF垂直于投影面P,
并且上底面的对角线AE垂直于投影面P图(2).
分析口述画图要领,解答按课本板书
(ቤተ መጻሕፍቲ ባይዱ)巩固练习:(教师引导,观察,纠错)
人教初中数学九年级下册《29-1 投影》(教案)
人教初中数学九年级下册《29-1 投影》(教案)一. 教材分析人教初中数学九年级下册《投影》这一章节主要介绍了投影的概念、特点以及各种类型的投影。
通过学习,学生能够理解投影的定义,掌握正投影和斜投影的性质,能够运用投影的知识解决实际问题。
本节课的内容是学生对几何学习的一个拓展,也是对立体几何学习的铺垫。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何有较深入的了解。
但投影概念的引入,需要学生对三维空间有一定的认识,这对于学生来说是一个新的挑战。
因此,在教学过程中,需要引导学生从二维平面几何过渡到三维空间几何,建立空间观念。
三. 教学目标1.了解投影的概念,掌握正投影和斜投影的性质。
2.能够识别各种类型的投影,并运用投影的知识解决实际问题。
3.培养学生的空间观念,提高学生的几何思维能力。
四. 教学重难点1.投影的概念和性质。
2.不同类型投影的识别和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索、发现和解决问题。
2.利用多媒体教学,展示各种类型的投影,帮助学生建立空间观念。
3.采用合作学习的方式,让学生在讨论中加深对投影知识的理解。
六. 教学准备1.多媒体教学设备。
2.投影相关图片和实例。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的投影实例,如影子、建筑物的投影等,引导学生关注投影现象,激发学生的学习兴趣。
提问:你们对这些投影有什么观察和思考?2.呈现(10分钟)介绍投影的定义,展示正投影和斜投影的性质。
通过多媒体动画演示,让学生直观地感受不同类型的投影。
同时,给出一些投影的性质和规律,引导学生进行思考。
3.操练(10分钟)让学生分组讨论,识别给出的各种投影实例,并解释其投影类型。
每组选出一个代表进行汇报,其他组进行评价和补充。
4.巩固(10分钟)给出一些练习题,让学生独立完成。
题目包括判断题、选择题和解答题,涵盖投影的概念、性质以及应用。
人教版九年级数学RJ下册精品教案 第29章 投影与视图 29.1 投影 第2课时 正投影及其性质
第2课时正投影及其性质教师备课素材示例●归纳导入 1.如图,表示一块三角尺在光线照射下形成的投影,三个图中的投影线存在如下特点:图①中的投影线__集中于一点__,形成__中心投影__;图②③中,投影线互相__平行__,形成__平行投影__.2.图③中投影线__垂直__照射投影面,这种投影叫__正投影__,而图②中,投影线斜着照射投影面,不是正投影,所以平行投影不一定是__正投影__,但正投影一定是__平行投影__.正投影是__光线__与__投影面__之间的关系,与物体的放置方式无关.①②③【教学与建议】教学:经过观察、分析、比较的过程,抽象出正投影的概念.建议:让学生自主观察图形特点,结合概念加以理解.●置疑导入 1.什么叫投影?投影可以分为哪几种?2.如图表示一块三角尺在光线照射下形成的投影,图中①②③中的投影线有什么区别?它们分别形成了什么投影?3.图中②③都是平行投影,它们的投影线与投影面的位置有什么区别?①②③【教学与建议】教学:通过对投影的概念和类型的回顾,加强新旧知识之间的联系.建议:充分观察三个图形,发现其中的不同点,给出正投影的概念.影面影面影面【例1】如图,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是(D)A B C D【例2】下图左边是一个三棱柱,它的正投影是下图中的__②__.(填序号)①②③④物体正投影的形状、大小与物体和投影面相对位置有关,当物体平行于投影面时,物体与它的正投影大小相等.【例3】木棒长为1.2m ,则它的正投影的长一定(D)A.大于1.2mB.小于1.2mC.等于1.2mD.小于或等于1.2m【例4】已知如图所示圆锥正投影的尺寸(单位:cm),则圆锥的侧面积为__65π__cm2.高效课堂教学设计1.了解正投影的概念,能根据正投影的性质画出简单平面图形的正投影.2.经历观察、探究、思考、归纳的过程,掌握正投影的特征.3.培养抽象、概括能力,发展空间想象能力.▲重点正投影的含义及其性质.▲难点归纳正投影的性质,正确画出简单平面图形的正投影.◆活动1 新课导入如图表示一块三角尺在光线照射下形成的投影.其中哪些是中心投影,哪些是平行投影?图(2)(3)的投影线与投影面的位置关系有什么区别?解:(1)是中心投影,(2)(3)是平行投影;(2)的投影线与投影面不垂直,(3)的投影线与投影面垂直.◆活动2 探究新知1.教材P89第1个探究.提出问题:三种情形下铁丝的正投影各是什么形状?大小有什么关系?(1)当线段AB平行于投影面时,它的正投影是线段A1B1,它们的大小关系为__AB=A1B1__;(2)当线段AB倾斜于投影面时,它的正投影是线段A2B2,它们的大小关系为__AB>A2B2__;(3)当线段AB垂直于投影面时,它的正投影是__点A3(B3)__.学生完成并交流展示.2.教材P89第2个探究.提出问题:三种情形下纸板的正投影各是什么形状?大小有什么关系?(1)当纸板P平行于投影面时,P的正投影与P的形状、大小__相同__;(2)当纸板P倾斜于投影面时,P的正投影与P的形状、大小__不同__;(3)当纸板P垂直于投影面时,P的正投影成为__线段__.学生完成并交流展示.◆活动3 知识归纳投影线__垂直__于投影面产生的投影叫做正投影.(1)当线段平行于投影面时,线段与它的正投影的大小关系为__相等__;(2)当线段倾斜于投影面时,线段与它的正投影的大小关系为__线段大于影长__;(3)当线段垂直于投影面时,它的正投影是__一个点__.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小__一样__.◆活动4 例题与练习 例1 教材P 90 例题.例2 下列投影中,正投影是__③④⑤__.(填序号)例3 如图,已知线段AB =2cm ,投影面为P ,太阳光线与地面垂直.(1)当AB 垂直于投影面P 时(如图①),请画出线段AB 的投影; (2)当AB 平行于投影面P 时(如图②),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A 不动,线段AB 绕点A 在垂直于投影面P 的平面内逆时针旋转30°,请在图③中画出线段AB 的正投影,并求出其正投影的长.解:(1)如图①,点C 即为所求作的正投影;(2)如图②,线段CD 即为所求作的正投影,CD =2cm ;(3)如图③,线段CD 即为所求作的正投影,CD =2cos30°=3(cm). 练习1.教材P 92 练习. 2.当棱长为20cm 的正方体的某个面平行于投影面时,这个面的正投影的面积为( C )A .20cm 2B .300cm 2C .400cm 2D .600cm 2 3.圆柱的上底面平行于投影面,则圆柱的正投影是__圆__;长方体的前面是个长方形,且前面平行于投影面,则长方体的正投影是__长方形__.4.一个圆锥的轴截面平行于投影面,圆锥的正投影是边长为2的正三角形.(1)求圆锥的体积; (2)求圆锥的表面积.解:(1)由正投影可得,圆锥的底面直径为2,∴r =1,高h =3,∴V =13πr 2h =13π×12×3=33π;(2)l=2,∴S表=πr2+πrl=π×12+π×1×2=3π.◆活动5 完成附赠手册◆活动6 课堂小结1.正投影的概念.2.正投影的应用.1.作业布置(1)教材P92~93习题29.1第3,4题;(2)学生用书对应课时练习.2.教学反思。
人教版数学九年级下册29.1投影正投影(教案)
同学们,今天我们将要学习的是《投影正投影》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过物体在阳光下的影子?”(如树木、房屋的影子)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索正投影的奥秘。
4.几何体的正投影:研究正方体、长方体等几何体在正投影下的表现,掌握其投影规律。
5.实践与应用:结合实际例子,让学生运用投影知识解决生活中的问题,提高学生的实际操作能力。
二、核心素养目标
1.培养学生的空间想象力和直观想象能力,通过正投影的学习,让学生能够观察和描述现实生活中的几何体及其投影,提高对空间物体和几何图形的认识。
-举例:以正方体为例,指导学生如何从正面、上面、左面观察,并绘制对应视图。
-几何体的正投影规律:掌握正方体、长方体等几何体在正投影下的投影规律。
-举例:分析正方体在正投影下的投影特点,如正方形的投影是正方形,棱的投影是线段等。
2.教学难点
-投影与实际物体之间的关系:学生往往难以将三维物体与二维投影建立联系,理解它们之间的对应关系。
然而,我也注意到在实践活动和小组讨论环节,部分学生在面对实际问题时显得有些无所适从。特别是在分组讨论时,有些小组在分析正投影在实际生活中的应用时,思路不够开阔,这可能是因为他们对这个知识点还不够熟悉,或者是缺乏将理论知识与实际情境结合的经验。
在接下来的教学中,我需要考虑如何更有效地帮助学生将正投影的知识应用到具体问题中。可能需要设计更多的互动环节,比如让学生自己动手制作模型,然后根据模型绘制三视图。这样的实际操作可能会让学生对几何体的投影有更直观的认识。
九年级数学下册人教版29.1投影第二课时教学设计
作业要求:
-请同学们认真完成作业,尽量用自己的语言描述思考过程,展现对投影知识点的理解。
-对于拓展思考题,可以小组合作完成,鼓励学生之间相互交流,共同探讨。
-作业完成后,请进行自我检查,确保解答的正确性和书写的规范性。
-学生回答,教师总结并引导:“今天我们将学习投影的知识,了解它是如何将三维世界展现在二维平面上。”
2.利用多媒体展示一些生活中的投影现象,如物体在光源照射下的影子、地球仪上的经纬度等,让学生初步感受投影的应用。
3.提出问题:“如何用数学的方法来描述这些投影现象?它们有什么共同的特点和性质?”引发学生的思考,为后续新课的学习做好铺垫。
-通过小组合作、讨论交流等形式,促进学生相互学习、相互启发,共同攻克学习难点。
2.教学过程设想:
-导入新课:以生活中的投影现象为切入点,激发学生兴趣,为新课的学习做好铺垫。
-新课教学:通过讲解、演示、实践等多种教学手段,帮助学生掌握投影的基本知识和技能。
-练习巩固:设计不同难度的练习题,让学生在练习中巩固所学知识,形成技能。
1.基础巩固题:
-请同学们绘制一个正方体,并在不同的角度下,分别用中心投影和平行投影的方式表示出正方体的影子。
-根据课堂示例,选择一个日常生活中的投影现象,描述其投影类型,并解释其原理。
2.应用提高题:
-在平面直角坐标系中,给定一个点P(x, y, z),请计算出该点在xoy平面和yoz平面上的投影点坐标。
4.教学评价设想:
-结合课堂表现、练习成绩、实际应用等多方面,全面评价学生的学习效果。
-关注学生在学习过程中的进步,鼓励他们克服困难,不断提高。
人教版第2套人教初中数学九下 29.1 正投影教案
第2课时正投影了解正投影的概念,并利用概念解决有关问题.【重点难点】了解正投影的概念,并利用概念解决有关问题.【新课导入】1.什么是投影?它是如何分类的?2.将一个三角板放在太阳光下,它所形成的投影是什么图形?你能画出这些图形吗?【课堂探究】一、有关正投影的判断1.如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )2.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小(填“相同”、“不一定相同”或“不相同”).总结过渡:(1)正投影属于平行投影,特殊性在于投影线和投影面是垂直的.(2)你能由不同的投影面确定物体的正投影吗?二、正投影的画法3.如图,箭头表示投影线的方向,则图中圆柱体的正投影是( )(A)圆(B)圆柱 (C)梯形(D)矩形4.请画出光线由上到下照射一个茶叶盒(长方体)时的正投影,并分别指出长方体的各个面的正投影是什么?解:这个茶叶盒是一个长方体,其中这个长方体的上下底面是边长为6 cm的正方形,其他四个侧面是边长为6 cm和9 cm的长方形,光线的方向是由上往下,而所求正投影,上下面平行于投影面,四个侧面垂直于投影面,因此上下底面的正投影是边长为6 cm的正方形,四个侧面的正投影是长度为6 cm的线段.小结:(1)这节课你学习了哪些知识?(2)物体的正投影成像规律是怎样的?1.正投影的概念投影线垂直于投影面产生的投影叫正投影. 2.正投影的一画法物体正投影的形状、大小与它相对于投影面的位置有关.1.正方形在太阳光下的投影不可能是( )(A)正方形(B)一条线段 (C)矩形(D)三角形2.在同一时刻,两根长度不等的竹竿置于阳光之下,但看到它们的影长相等,那么这两根竹竿的相对位置是( )(A)两竹竿都垂直于地面 (B)两竹竿平行斜插在地上(C)两根竹竿不平行 (D)一根竹竿倒在地上3.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是( )(A)与窗户全等的矩形 (B)平行四边形 (C)比窗户略小的矩形 (D)比窗户略大的矩形4.一个与投影面平行的圆形铁片在阳光下的正投影为.5.正六棱柱的各个面的正投影是多边形,这些多边形中不同的多边形有种.6.如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是.教后反思:。
29.1 投影(第二课时)( 教学设计)九年级数学下册同步备课系列(人教版)
29.1 投影(第二课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级下册(以下统称“教材”)第二十九章“投影与视图”29.1 投影(第二课时),内容包括:理解正投影的概念.2.内容解析在学习本课时之前,学生已经具有一定的关于平面图形与立体图形的知识,并且在七年级上册接触过“从不同方向观察物体”和“点、线、面、体”之间的联系及基本几何体的平面展开图等反映平面图形与立体图形之间的联系问题,上一节课,学生又学习了投影的一些基础知识包括投影、中心投影、平行投影的概念,在此基础上,这节课主要学习正投影概念及探究正投影的成像规律,以正投影为平台,进一步深入研究投影的性质更深一层理解立体图形与平面图形的相互转化关系,培养学生的空间观念,这为过渡到三视图的学习起着铺垫的作用,更为高中学习立体几何打下基础.基于以上分析,确定本节课的教学重点:理解正投影的概念及根据正投影的性质画简单图形的正投影.二、目标和目标解析1.目标1. 理解正投影的概念;2. 能根据正投影的性质画出简单图形的正投影.3. 学生学会关注生活中有关投影的数学问题,增强数学的应用意识.2.目标解析达成目标1)的标志是:理解正投影的概念.达成目标2)3)的标志是:会根据正投影的性质画简单图形的正投影.三、教学问题诊断分析本节课先研究线、平面图形的正投影,进而继续探究立体图形正投影。
而学生对这个知识无从下手,从研究平面图形到研究立体图形,本节内容对学生来说有一定难度,要加强与实际的联系,因此运用多媒体,制作演示动画课件等,通过学生观察,动手实践,结合已有的生活经验,将原有认知迁移到本课中来,从而画出简单立体图形的正投影.基于以上分析,本节课的教学难点是:正确画简单图形的正投影.四、教学过程设计(一)复习巩固【提问一】简述投影的概念?【提问二】投影是如何进行分类的?试举例说明?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾之前所学内容,为接下来学习正投影打好基础.(二)探究新知【问题一】观察下图,并填空1)图(1)与图(2)(3)的投影线有什么区别?2)图(2)(3)的投影线与投影面的位置关系有什么区别?师生活动:学生认真观察图片中的影子,回答问题,最后由教师给出正投影的概念:如果投射线垂直于投影面,那么这种投影称为正投影.【设计意图】通过观察图片,结合上节课所学知识,引出正投影的概念,激发学习投影的欲望,培养学生观察能力和抽象能力.【问题二】由平行投影与正投影的概念,你发现了什么?师生活动:学生认真观察图片中的影子,回答问题,教师引导与补充,得出:1)正投影是特殊的平行投影.2)平行投影分为斜投影与正投影.【设计意图】让学生理解正投影是特殊的平行投影.【探究一】如图,把一根直的细铁丝(记为线段AB) 放在三个不同位置.1) 铁丝平行于投影面;2) 铁丝倾斜于投影面;3) 铁丝垂直于投影面(铁丝不一定要与投影面有交点). 三种情形下铁丝的正投影各是什么形状?它们的大小关系呢?师生活动:教师通过多媒体展示三种情形下铁丝的正投影,学生观察结果,探讨它们大小的关系.【设计意图】通过观察图片,让学生理解三种情形下线段正投影的形状.【探究二】如图,把一块正方形卡片P(记为正方形ABCD) 放在三个不同位置.1) 卡片平行于投影面;2) 卡片倾斜于投影面;3) 卡片垂直于投影面三种情形下卡片的正投影各是什么形状?它们的大小关系呢?师生活动:教师通过多媒体展示三种情形下卡片的正投影,学生观察结果,探讨它们大小的关系.【设计意图】通过观察图片,让学生理解三种情形下平面图形正投影的形状.【问题三】简述线段正投影的投影规律?师生活动:学生尝试回答问题.【问题四】简述平面图形正投影的投影规律?师生活动:学生尝试回答问题.【设计意图】通过归纳总结,让学生理解线段正投影、平面图形正投影的投影规律.【探究三】如图,把一个正方体纸盒P(记为正方体ABCDEFGH) 放在两个不同位置.1)纸盒的一个平面ABCD平行于投影面;2)纸盒一个面ABCD倾斜于投影面P,底面ADEF垂直于投影面,并且其对角线AE垂直于投影面;观察两种情形下正方体纸盒的正投影,你发现了什么?【设计意图】通过观察图片,让学生理解两种情形下立体图形正投影的形状.【问题五】观察线段、平面图形、立体图形的正投影,由此你发现了什么?师生活动:先由学生回答问题,再由教师引导与归纳,最后得出:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同,并且物体正投影的形状、大小与它相对于投影面的位置有关.【设计意图】让学生理解立体图形正投影的形状、大小与它相对于投影面的位置有关.(三)典例分析与针对训练例1 下列说法正确的是()A.三角形的正投影一定是三角形B.长方体的正投影一定是长方形C.球的正投影一定是圆D.圆锥的正投影一定是三角形【针对训练】1. 直立在投影面上的圆锥的正投影是()A.圆B.三角形C.矩形D.正方形2. 木棒长为2.5m,则它的正投影的长一定()A.大于2.5m B.小于2.5mC.等于2.5m D.小于或等于2.5m3.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是_____(用“=、>或<”连起来)4.(2022下·广东河源·九年级校考期末)把下列物体与它们的投影连接起来.5.(2023·湖北恩施·校考模拟预测)物体正投影的形状、大小与它相对于投影面的位置有关.一个三角板的正投影不可能是()A.一条线段B.一个与原三角板全等的三角形C.一个等腰三角形D.一个小圆点6.(2022上·山西大同·九年级统考期末)如图,A1B1是线段AB在投影面P上的正投影,AB=10cm,∠A1AB=110°,则投影A1B1的长为()A.10sin70°cm B.10sin20°cmC.10tan70°cm D.10cos70°cm7. 如图所示,一条线段AB在平面Q内的正投影为A′B′,AB=4m,A′B′=2√3,则AB与A′B′的夹角为( )A.45°B.30°C.60°D.以上都不对8. 已知一纸板的形状为正方形ABCD如图所示.其边长为10厘米,AD、BC与投影面β平行,AB、CD与投影面不平行,正方形在投影面β上的正投影为A1B1C1D1.若∠ABB1=45°,求投影面A1B1C1D1的面积.(四)归纳小结1. 通过本节课的学习,你学会了哪些知识?2. 简述正投影的概念?3. 简述物体正投影的形状、大小与什么有关?(五)布置作业P92:习题29.1 第3题、第4题、第5题五、教学反思。
最新人教版九年级数学下册第29章29.1投影(第2课时)教案
29.1 投影(第 2 课时)一、内容和内容分析1.内容人教版教科书九年级《数学》下册90 页例题,三维图形在投影面上的正投影。
2.内容分析投影是生活中常有的现象,而三视图是从不一样的三个方向获得的投影。
所以,本节内容对培育学生空间观点,起着承前启后的作用。
因为空间图形是三维的,地点确实定一定从三个方素来描绘。
所以,学好本节内容是成立学平生面图形与立体图形互相转变的要点,也使学生对投影的认识从感性上涨为理性,更是为学生学习三视图做铺垫。
鉴于以上剖析,本课的教课要点是:画出简单几何体的正投影。
二、目标和目标分析1.目标能画出简单几何体的正投影。
2.目标分析达到目标的标记:依据性质正确画出简单立体图形的正投影。
经过学生猜想、察看、亲身着手实践,感觉投影现象在生活中无处不在,体验数学与生活的密切联系,激发学生主动学习数学的兴趣,增强对数学价值的认识。
三、教课识题诊疗剖析本节教课是在上节课研究线、面的正投影的相关知识基础上,持续研究立体图形的相关正投影问题。
而学生对这个知识无从下手,从研究平面图形到研究立体图形,本节内容对学生来说有必定难度,要增强与实质的联系,所以运用多媒体,制作演示动画课件等,经过学生察看,着手实践,联合已有的生活经验,将原有认知迁徙到本课中来,进而画出简单立体图形的正投影。
本节课的教课难点是:剖析并能画出立体图形每个面的正投影。
四、教课条件支持剖析本节教课要借助多媒体,利用幻灯片及学新手中的正方形、魔方,演示一维、二维、三维图形的正投影,帮助学生稳固旧知并理解新知,增强学生的空间想象能力,提升学生学习兴趣,使学生更好地认识几何体,培育学生几何直观能力,促使对知识的理解。
本课还要准备正方体模型协助教课,让学生多察看,进而正确地画出简单几何体的正投影。
五、教课过程设计1.察看图片,复习投影及相关观点问题1你能指出下边哪幅图表示的是平行投影,那幅图表示的是中心投影吗?为什么?师生活动:教师出示幻灯片,展现平行投影及中心投影的图片。
人教版九年级下册数学第二十九章投影与视图29.1投影教案设计含反思2课时
29.1 投影第1课时平行投影与中心投影1.理解平行投影和中心投影的特征;(重点)2.在投影面上画出平面图形的平行投影或中心投影.(难点)一、情境导入北京故宫中的日晷闻名世界,是我国光辉灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.本节课学习有关投影的知识.二、合作探究探究点一:平行投影【类型一】判断影子的形状下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()解析:选项A.影子平行,且较高的树的影子长度大于较低的树的影子,正确;选项B.影子的方向不相同,错误;选项C.影子的方向不相同,错误;选项D.不同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,错误.故选A.方法总结:平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】平行投影作图在某一时刻,操场上有三根测杆,如图所示,其中测杆AB的影子为BC,你能画出测杆MN的影子NP吗?若测杆XY的影子的顶端恰好落在点B处,且XY=MN,你能找出XY所在的位置吗?请将上述问题画在下面的示意图中,并简述画法.解析:过物体顶点作光线的平行线得到物体的平行投影,再根据平行投影中物体与投影面平行时的投影是全等的可找到XY的位置.解:连接AC,过点M作MP∥AC交NC于点P,则NP为MN的影子.过点B作BX∥AC,且BX=MP,过X作XY⊥NC交NC于点Y,则XY即为所求.方法总结:先根据物体投影确定光线,然后利用两个物体的顶端和各自影子的对应点的连线是一组平行线,过物体顶端作平行线与地面相交,从而确定影子.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】平行投影的相关计算李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量方法如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF 是1.6m,请你帮李航求出楼高AB.解析:过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.解:过点D 作DN ⊥AB ,垂足为N ,交EF 于M 点,∴四边形CDME 、ACDN 是矩形,∴AN =ME =CD =1.2m ,DN =AC =30m ,DM =CE =0.6m ,∴MF =EF -ME =1.6-1.2=0.4m.∵EF ∥AB ,∴△DFM ∽△DBN ,DM DN =MF BN ,即0.630=0.4BN ,∴BN =20m ,∴AB =BN +AN=20+1.2=21.2m.答:楼高为21.2m.方法总结:在同一时刻的物体高度与影长的关系:物体高度物体影长=另一物体的高度另一物体的影长.变式训练:见《学练优》本课时练习“课后巩固提升”第6题 探究点二:中心投影【类型一】 判断是否是中心投影下面属于中心投影的是( )A .太阳光下的树影B .皮影戏C .月光下房屋的影子D .海上日出解析:中心投影的光源为灯光,平行投影的光源为阳光与月光.在各选项中只有B 选项得到的投影为中心投影.故选B.方法总结:判断投影是中心投影的方法是看光线是否相交于一点,如果光线是相交于一点,那么所得到的投影就是中心投影.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】判断影长的情况晚上小亮在路灯下散步,在小亮从远处走到灯下,再远离路灯这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长解析:晚上小亮在路灯下散步,当小亮从远处走到灯下的时候,他在地上的影子由长变短,当他再远离路灯的时候,他在地上的影子由短变长.故选B.方法总结:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型三】中心投影作图如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,粗线分别表示三人的影子.请根据要求,进行作图(不写画法,但要保留作图痕迹).(1)画出图中灯泡所在的位置;(2)在图中画出小明的身高.解析:(1)利用中心投影的图形的性质连接对应点得出灯泡位置即可;(2)根据灯泡位置即可得出小明的身高.解:(1)如图所示:O即为灯泡的位置;(2)如图所示:EF即为小明的身高.方法总结:连接物体和它影子的顶端所形成的直线必定经过点光源.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型四】中心投影的相关计算如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1m ,继续往前走3米到达E 处时,测得影子EF 的长为2m ,已知王华的身高是1.5m ,求路灯A 的高度AB .解析:根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的光线三者构成的两个直角三角形相似解答.解:当王华在CG 处时,Rt △DCG ∽Rt △DBA ,即CD BD =CGAB ;当王华在EH 处时,Rt △FEH ∽Rt △FBA ,即EF BF =EH AB =CG AB ,∴CD BD =EFBF .∵CG =EH =1.5m ,CD =1m ,CE =3m ,EF=2m ,设AB =x ,BC =y ,∴1y +1=2y +5,解得y =3,经检验y =3是原方程的根.∵CDBD =CG AB ,即1.5x =14,解得x =6m.即路灯A 的高度AB =6m. 方法总结:解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.平行投影的定义及应用;2.中心投影的定义及应用.本节以自主探索、合作交流为设计主线,从皮影戏、手影、日晷等学生熟悉的生活实际出发,引入物体投影的相关概念,通过观察图片等活动,使学生认识中心投影和平行投影的区别与联系,加强主动学习数学的兴趣,体现数学的应用价值.29.1 投影第2课时正投影1.理解正投影的概念;(重点)2.归纳正投影的性质,正确画出简单平面图形的正投影.(难点)一、情境导入观察下图,这三个图分别表示同一块三角尺在阳光照射下形成的投影,其中图①与图②③的投影线有什么区别?图②③的投影线与投影面的位置关系有什么区别?二、合作探究探究点:正投影【类型一】确定正投影的形状如图所示,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()解析:依题意,光线是垂直照下的,故只有D符合.故选D.方法总结:当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形.若投影面不是平面,则投影形状要复杂得多.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】物体与其正投影的关系木棒长为1.2m,则它的正投影的长一定()A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m解析:正投影的长度与木棒的摆放角度有关,但无论怎样摆都不会超过1.2 m.故选D.方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型三】画投影面上的正投影画出下列立体图形投影线从上方射向下方的正投影.解析:第一个图投影线从上方射向下方的正投影是长方形,第二个图投影线从上方射向下方的正投影也是长方形,第三个图投影线从上方射向下方的正投影是圆且有圆心.解:如图所示:方法总结:在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点二:正投影的综合应用【类型一】正投影与勾股定理的综合一个长8cm的木棒AB,已知AB平行于投影面α,投影线垂直于α.(1)求影子A1B1的长度(如图①);(2)若将木棒绕其端点A逆时针旋转30°,求旋转后木棒的影长A2B2(如图②).解析:根据平行投影和正投影的定义解答即可.解:如图①,A1B1=AB=8cm;如图③,作AE⊥BB2于E,则四边形AA2B2E是矩形,∴A2B2=AE,△ABE是直角三角形.∵AB=8cm,∠BAE=30°,∴BE=4cm,AE==4cm,∴A2B2=4cm.方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段,可以用解直角三角形求得投影的长度.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】正投影与相似三角形的综合在长、宽都为4m,高为3m的房间正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在相对的墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,≈1.414)解析:根据题意画出图形,则AN=0.08m,AM=2m,由房间的地面为边长为4m的正方形可计算出DE的长,再根据△ABC∽△ADE利用相似三角形对应边成比例解答.解:如图,光线恰好照在墙角D、E处,AN=0.08m,AM=2m,由于房间的地面为边长为4m的正方形,则DE=4m.∵BC∥DE,∴△ABC∽△ADE,∴=,即=,∴BC≈0.23(m).答:灯罩的直径BC约为0.23m.方法总结:解决问题的关键是画出图形,根据图形相似的性质和判定解题.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.正投影的概念及性质;2.正投影的综合应用.本节课的学案设计,力求具体、生动、直观.因此,学生多以操作、观察实物模型和图片等活动为主.比如通过观察铁丝、圆柱、圆锥等图形在不同位置时的正投影特征,归纳出物体正投影的一般规律,并能根据此规律画出简单平面图形的正投影.在介绍投影概念时,借助太阳光线进行投影实例的观察,这样不仅直观而且富有真实感,能激发学生学习兴趣.。
人教版九年级下册数学29.1 正投影教案与反思
29.1 投影原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!举世不师,故道益离。
柳宗元第2课时正投影1.理解正投影的概念;(重点)2.归纳正投影的性质,正确画出简单平面图形的正投影.(难点)一、情境导入观察下图,这三个图分别表示同一块三角尺在阳光照射下形成的投影,其中图①与图②③的投影线有什么区别?图②③的投影线与投影面的位置关系有什么区别?二、合作探究探究点:正投影【类型一】确定正投影的形状如图所示,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )解析:依题意,光线是垂直照下的,故只有D符合.故选D.方法总结:当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形.若投影面不是平面,则投影形状要复杂得多.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】物体与其正投影的关系木棒长为1.2m,则它的正投影的长一定( )A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m解析:正投影的长度与木棒的摆放角度有关,但无论怎样摆都不会超过1.2 m.故选D.方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型三】画投影面上的正投影画出下列立体图形投影线从上方射向下方的正投影.解析:第一个图投影线从上方射向下方的正投影是长方形,第二个图投影线从上方射向下方的正投影也是长方形,第三个图投影线从上方射向下方的正投影是圆且有圆心.解:如图所示:方法总结:在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点二:正投影的综合应用【类型一】正投影与勾股定理的综合一个长8cm的木棒AB,已知AB平行于投影面α,投影线垂直于α.(1)求影子A1B1的长度(如图①);(2)若将木棒绕其端点A逆时针旋转30°,求旋转后木棒的影长A2B(如图②).解析:根据平行投影和正投影的定义解答即可.解:如图①,A1B1=AB=8cm;如图③,作AE⊥BB2于E,则四边形AA2B2E是矩形,∴A2B2=AE,△ABE 是直角三角形.∵AB=8cm,∠BAE=30°,∴BE=4cm,E=82-42=43cm,∴A2B2=43cm.方法结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段,可以用解直角三角形求得投影的长度.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】正投影与相似三角形的综合在长、宽都为m,高为3m的房间正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在相对的墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,2≈1.414)解析:根据题意画出图形,则AN=008m,AM=2m,由房间的地面为边长为4m的正方形可计算出DE的长,再根据△ABC∽△ADE利用相似三角形对应边成比例解答.解:如图,光线恰好照在墙角D、E处,AN=0.08m,AM=2m,由于房间的地面为边长为4m的正方形,则DE=42m.∵BC∥DE,∴△ABC∽△ADE,∴BCDE=ANAM,即BC42=0.082,∴BC≈0.23(m).答:灯罩的直径BC约为0.23m.方法总结:解决问题的关键是画出图形,根据图形相似的性质和判定解题.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.正投影的概念及性质;2.正投影的综合应用.本节课的学案设计,力求具体、生动、直观.因此,学生多以操作、观察实物模型和图片等活动为主.比如通过观察铁丝、圆柱、圆锥等图形在不同位置时的正投影特征,归纳出物体正投影的一般规律,并能根据此规律画出简单平面图形的正投影.在介绍投影概念时,借助太阳光线进行投影实例的观察,这样不仅直观而且富有真实感,能激发学生学习兴趣.【素材积累】1、黄鹂方才唱罢,摘村庄的上空,摘树林子里,摘人家的土场上,一群花喜鹊便穿戴着黑白相间的朴素裙裾而闪亮登场,然后,便一天喜气的叽叽喳喳,叽叽喳喳叫起来。
教与学 新教案九年级数学下册 29.1 正投影(第2课时)教学设计 (新版)新人教版-(新版)新人教
正投影(续表)(续表)(续表)【学习目标】(1)了解正投影的概念;(2)能根据正投影的性质画出简单的平面图形的正投影.2.学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心.【学习重难点】1.重点:理解正投影的含义,并能根据正投影的性质画出简单的平面图形的正投影.2.难点:归纳正投影的性质,正确画出简单平面图形的正投影.课前延伸【知识梳理】一、课前试验1.课前小组活动:让太阳光照射一根竹筷,在矩形的白纸上形成投影;让太阳光垂直照射白纸,改变竹筷的位置、方向,再观察其影子的变化情况.2.课前小组活动:让太阳光照射一块正方形硬纸板,在矩形的白纸上形成投影;让太阳光垂直照射白纸,改变硬纸板的位置、方向,再观察其影子的变化.二、课前自主学习1.如图29-1-35,图(1)中的投影线集中于一点,形成__中心__投影;图(2)(3)的中投影线互相平行,形成__平行__投影;图(2)中,投影线__倾斜__照射投影面;图(3)中投影线__垂直__照射投影面.图29-1-352.在平行投影中,如果投影线垂直于投影面,那么这种投影就称为__正投影__.3.如图29-1-36,把一根直的细铁丝(记为线段AB)放在三个不同位置:图29-1-36通过观察,我们可以发现:(1)当线段AB平行于投影面时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB=A1B1;(2)当线段AB倾斜于投影面时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB>A2B2;(3)当线段AB垂直于投影面时,它的正投影是__点A3(B3)__.4.如图29-1-37,把一块正方形硬纸板P(记为正方形ABCD)放在三个不同位置:图29-1-37通过观察、测量可知:(1)当纸板P平行于投影面时,P的正投影与P的__形状、大小一样__;(2)当纸板P倾斜于投影面时,P的正投影与P的__形状、大小不完全一样__;(3)当纸板P垂直于投影面时,P的正投影成为__一条线段__.自主学习记录卡课内探究一、课堂探究1(问题探究,自主学习)图29-1-38中表示一块三角尺在光线照射下形成的投影,其中图(1)与图(2)(3)的投影线有什么区别?图(2)(3)的投影线与投影面的位置关系有什么区别?图29-1-38二、课堂探究2(分组讨论,合作探究)观察思考如图29-1-39,把一根直的细铁丝(记为线段AB)放在三个不同位置:图29-1-39(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状?三、课堂探究3(分组讨论,合作探究)如图29-1-40,把一块正方形硬纸板P(记为正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面.三种情形下纸板的正投影各是什么形状?图29-1-40归纳:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小__完全相同__.四、应用举例例画出如图29-1-41摆放的正方体在投影面P上的正投影.(1)正方体的一个面ABCD平行于投影面P,如图(1);(2)正方体的一个面ABCD倾斜于投影面P,上底面ADEF垂直于投影面P,并且其对角线AE 垂直于投影面P,如图P.图29-1-41五、课堂反馈训练1.教材第92页练习题:如图29-1-42投影线的方向如箭头所示,画出圆柱体的正投影.图29-1-422.补充练习:在墙边有A,B两根木杆如图29-1-43,在太阳光照射下,已知A木杆的影子恰好不落在墙上,请你画出木杆B在墙上的那段投影,并用字母MN标明.图29-1-433.拓展提高如图29-1-44,这个几何体叫圆台,(1)若有一束平行光线从正面投向圆台,在后面的一个屏幕上得到一个影子,这个影子应该是什么图形?请画出这个图形;(2)若有一束平行光线从左边投向这个圆台,在右边的屏幕上得到一个影子,则这个影子应是什么图形?请画出这个图形;(3)若有一束光线从上向下投向这个圆台,在下面得到一个影子,则这个影子是什么图形?请画出这个图形.图29-1-44课后提升1.物体离投影面越远,所得的正投影( C)A.越大B.不变C.越小D.不一定2.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是( A)图29-1-453.如图29-1-46所示的几何体,投影线从上方射到下方的正投影为( B)图29-1-46 图29-1-474.如图29-1-48所示的几何体,当投影线从前方射到后方时,该几何体的正投影的是( D)图29-1-48 图29-1-495.画出圆在下列不同位置的正投影(画出正投影图即可).(1)圆面平行于投影面;(2)圆的一条直径垂直于投影面.6.如图29-1-50所示是圆柱与球的组合体,请把它的正投影画出来.(1)投影线由物体前方射到后方;(2)投影线由物体左方射到右方;(3)投影线由物体上方射到下方.word11 /11 图29-1-50。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
29.1 投影
第2课时 正投影
1.理解正投影的概念;(重点)
2.归纳正投影的性质,正确画出简单平面图形的正投影.(难点
)
一、情境导入
观察下图,这三个图分别表示同一块三角尺在阳光照射下形成的投影,其中图①与图②③的投影线有什么区别?图②③的投影线与投影面的位置关系有什么区别?
二、合作探究
探究点:正投影
【类型一】 确定正投影的形状
影图是(
)
解析:依题意,光线是垂直照下的,故只有D 符合.故选D.
方法总结:当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形.若投影面不是平面,则投影形状要复杂得多.
变式训练:见《学练优》本课时练习“课堂达标训练” 第2题
【类型二】 物体与其正投影的关系
木棒长为1.2m ,则它的正投影的长一定( )
A .大于1.2m
B .小于1.2m
C .等于1.2m
D .小于或等于1.2m
解析:正投影的长度与木棒的摆放角度有关,但无论怎样摆都不会超过1.2 m .故选D. 方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
【类型三】 画投影面上的正投影
解析:第一个图投影线从上方射向下方的正投影是长方形,第二个图投影线从上方射向下方的正投影也是长方形,第三个图投影线从上方射向下方的正投影是圆且有圆心.
解:如图所示:
方法总结:在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
探究点二:正投影的综合应用
【类型一】 正投影与勾股定理的综合
平行于投影面α,投影线垂直于α.
(1)求影子A 1B 1的长度(如图①);
(2)若将木棒绕其端点A 逆时针旋转30°,求旋转后木棒的影长A 2B 2(如图②).
解析:根据平行投影和正投影的定义解答即可.
解:如图①,A 1B 1=AB =8cm ;
如图③,作AE ⊥BB 2于E ,则四边形AA 2B 2E 是矩形,∴A 2B 2=AE ,△ABE 是直角三角形.∵AB =8cm ,∠BAE =30°,∴BE =4cm ,AE =82-42=43cm ,∴A 2B 2=43cm.
方法总结:当线段平行于投影面时的正投影与原线段相等,当线段不平行于投影面时的正投影小于原线段,可以用解直角三角形求得投影的长度.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题
【类型二】 正投影与相似三角形的综合
为了集中光线,加上了灯罩(如图所示).已知灯罩深AN =8cm ,灯泡离地面2m ,为了使光线恰好照在相对的墙角D 、E 处,灯罩的直径BC 应为多少?(结果保留两位小数,2≈1.414)
解析:根据题意画出图形,则AN =0.08m ,AM =2m ,由房间的地面为边长为4m 的正方形可计算出DE 的长,再根据△ABC ∽△ADE 利用相似三角形对应边成比例解答.
解:如图,光线恰好照在墙角D 、E 处,AN =0.08m ,AM =2m ,由于房间的地面为边
长为4m 的正方形,则DE =42m.∵BC ∥DE ,∴△ABC ∽△ADE ,∴BC DE =AN AM ,即BC 42
=0.082,∴BC ≈0.23(m).
答:灯罩的直径BC 约为0.23m.
方法总结:解决问题的关键是画出图形,根据图形相似的性质和判定解题.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
三、板书设计
1.正投影的概念及性质;
2.正投影的综合应用.
本节课的学案设计,力求具体、生动、直观.因此,学生多以操作、观察实物模型和图片等活动为主.比如通过观察铁丝、圆柱、圆锥等图形在不同位置时的正投影特征,归纳出物体正投影的一般规律,并能根据此规律画出简单平面图形的正投影.在介绍投影概念时,借助太阳光线进行投影实例的观察,这样不仅直观而且富有真实感,能激发学生学习兴趣.。