概率教学设计 (3)

合集下载

初中数学初三数学下册《概率初步》教案、教学设计

初中数学初三数学下册《概率初步》教案、教学设计
6.适时反馈,提高效果:在教学过程中,教师应及时了解学生的学习情况,给予个性化的指导和反馈,以提高教学效果。
7.情感教育,培养品质:通过概率学习,引导学生正确看待事物的不确定性,培养他们面对挑战的勇气和信心,提高心理素质。
8.跨学科整合,拓展视野:将概率知识与实际应用相结合,如统计学、经济学等领域,拓展学生的知识视野,提高他们的综合素养。
五、作业布置
为了巩固本章节所学知识,培养学生的实践能力和创新意识,特布置以下作业:
1.请同学们结合本节课所学内容,选取一个生活中的实例,运用频率估计概率的方法,计算并分析该事件发生的可能性。要求:不少于200字的案例分析,并附上实验数据。
“请同学们思考一下,你们在生活中还遇到过哪些可以用频率估计概率的事件?请选取一个实例进行计算和分析,将实验过程和结果记录下来。”
“当我们遇到复杂的事件时,可以借助树状图和列表法来分析事件的可能性。下面我们通过一个例子来学习如何使用这两种方法。”
(三)学生小组讨论
1.学生分成小组,针对教师提出的问题进行讨论,例如:如何用频率估计概率、如何用树状图和列表法分析事件发生的可能性等。
“请同学们分组讨论一下,你们在实验中是如何用频率估计概率的?在实际问题中,如何运用树状图和列表法来分析事件的可能性?”
四、教学内容与过程
(一)导入新课
1.教师以生活中的实际例子引入新课,例如:抛硬币、掷骰子、抽奖等活动,让学生思考这些活动中存在的不确定性,以及如何用数学方法来描述这种不确定性。
“同学们,你们在生活中遇到过一些不确定的事情吗?比如抛硬币的时候,我们不确定是正面朝上还是反面朝上。那么,我们如何用数学的语言来描述这种不确定性呢?今天我们就来学习一种新的数学知识——概率。”
3.掌握树状图和列表法分析事件发生的可能性,这一部分对学生来说较为抽象,需要通过具体的实例和练习来逐步突破。

高中数学必修三概率教案

高中数学必修三概率教案

高中数学必修三概率教案
教学目标:
1. 了解概率的基本概念;
2. 掌握基本概率计算方法;
3. 能够应用概率论解决实际问题。

教学重点:
1. 概率的基本概念;
2. 概率计算方法。

教学难点:
1. 复杂事件的概率计算。

教学准备:
1. 课件、教材;
2. 题目及答案;
3. 实验材料。

教学过程:
一、导入(5分钟)
老师可以通过提问引导学生回顾概率的基本概念,如事件、样本空间等。

二、概率的基本概念(15分钟)
1. 介绍概率的基本概念和性质;
2. 讨论概率的计算方法;
3. 举例说明概率的应用。

三、概率计算方法(20分钟)
1. 介绍概率计算方法:古典概率、几何概率、条件概率等;
2. 演示如何计算简单事件的概率;
3. 练习题练习。

四、复杂事件的概率计算(20分钟)
1. 介绍复杂事件的概率计算方法;
2. 分析实际案例,解决复杂事件的概率计算问题;
3. 练习题练习。

五、实验环节(15分钟)
老师设计简单的实验活动,让学生通过实验了解概率的概念和计算方法。

六、课堂总结(5分钟)
对本节课的重点内容进行总结,并提醒学生复习和巩固。

七、课后作业
布置相关作业,巩固学生所学知识。

备注:本教案仅供参考,具体教学过程还应根据实际情况进行调整。

小学数学教案概率

小学数学教案概率

小学数学教案概率
教学内容:概率
教学目标:
1. 了解什么是概率,掌握概率的基本概念。

2. 能够通过实际情境计算概率。

3. 能够描述和解释一些具体事件发生的可能性。

教学重点:
1. 认识概率的概念。

2. 了解如何计算概率。

教学难点:
1. 理解概率的具体计算方法。

2. 应用多种情境来计算概率。

教学方法:
1. 课堂讲解
2. 小组合作
3. 情境案例分析
教学准备:
1. 板书、笔
2. 教科书
3. 练习册
教学过程:
一、导入(5分钟)
教师引导学生回顾上节课学习的内容,提出概率的概念,并通过生活中的一些事件引导学生思考。

二、讲解概率的概念(10分钟)
1. 通过示例引导学生理解概率的概念,让学生了解事件发生的可能性。

2. 解释概率的计算方法,引导学生理解概率的计算公式。

三、练习和讨论(15分钟)
1. 学生在小组中讨论并解答老师提出的实际情境问题。

2. 老师解答学生遇到的问题,帮助学生理解概率的计算方法。

四、小结(5分钟)
老师对本节课学习的重点内容进行总结,强化学生对概率的理解。

五、作业布置(5分钟)
布置练习册上相关题目作为家庭作业,巩固学生对概率的理解和应用。

教学反思:
本节课通过生活中实际情境引导学生认识概率的概念,并通过练习和讨论加深学生对概率的理解。

教师应根据学生的实际情况调整教学步骤和方式,确保学生能够掌握概率的基本知识和计算方法。

小学概率优秀数学教案

小学概率优秀数学教案

小学概率优秀数学教案教学内容:概率教学目标:学生能够了解概率的基本概念,并能够计算简单的概率问题。

教学重点:概率的基本概念和计算方法。

教学难点:计算复杂的概率问题。

教学准备:1. 教师准备PPT或教材,包括概率的相关概念和例题。

2. 单独或分组准备概率计算题目,以便让学生练习。

3. 准备手势或游戏等活动,以增加学生的参与度。

教学过程:Step 1:导入教师可以用生活中的例子引导学生了解概率的概念,例如掷骰子、抽扑克牌等,引导学生明白概率是指一种事件发生的可能性大小。

Step 2:概念讲解通过PPT或教材讲解概率的基本概念,包括事件、样本空间、基本事件、复合事件等,让学生对概率有一个清晰的认识。

Step 3:计算方法教师带领学生学习概率的计算方法,包括古典概率计算和频率概率计算,通过例题让学生掌握计算方法。

Step 4:练习教师分发练习题给学生,让学生独立或分组完成概率计算题目,巩固所学知识。

Step 5:活动教师可以设计一些手势或游戏活动,让学生通过游戏的方式加深对概率的理解,提高学生的学习兴趣。

Step 6:总结教师带领学生总结本堂课所学的知识,强调概率在生活中的应用,并鼓励学生多加练习,提高计算能力。

教学反思:本堂课的教学主要围绕概率的基本概念和计算方法展开,通过生活中的例子引导学生了解概率的概念,然后讲解概率的基本概念和计算方法,让学生掌握概率的计算方法。

最后通过练习题和活动加深学生对概率的理解。

教学效果良好,学生参与度高,能够较好地掌握概率的基本知识和计算方法。

教学建议:教师可以结合更多生活中的例子和实际问题,让学生更直观地理解概率的概念和应用,同时可以加入更有趣的活动和游戏,提高学生的学习兴趣和参与度。

同时,教师应根据学生的实际情况,设计不同难度的概率计算题目,帮助学生更好地掌握概率知识。

人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。

本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。

通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。

二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。

在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。

但概率概念较为抽象,学生理解起来可能存在一定的困难。

因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。

三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。

2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。

四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。

2.难点:概率公式的灵活运用,解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。

2.合作学习法:分组讨论,培养学生团队合作精神。

3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。

六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。

2.教学工具:多媒体课件,黑板,粉笔。

3.学生活动:提前分组,准备进行合作学习。

七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。

2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。

同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。

九年级数学概率教案 (3)

九年级数学概率教案 (3)

学校教师备课笔记情境引入学生尝试引入新课1、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是()A.B.C.D.2、口袋中一红三黑共4个小球。

⑴第一次从中取出一个小球后放回,再取同时抛一枚硬币,其中恰好有一枚正面朝上的概率是多少?同时抛二枚硬币,其中恰好有两枚正面朝上的概率是多少?(画出树形图)同时抛三枚硬币,其中恰好有三枚正面朝上的概率是多少?(画出树形图)例:甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。

从3个口袋中各随机地取出1个小球。

(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?分析:(1)画出树形图(2)列举所有等可能情况(3)所有元音字母为,所有辅音字母行的三辆汽车都经过这个十字路口时,求下列事件的概率:(1)三辆车全部继续直行。

(2)两辆车右转,一辆车左转。

(3)至少有两辆车左转。

9、在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第二次取出的数字能够整除第一次取出的数字的概率是多少?10、一个袋子中有一个红球和两个白球,它们除了颜色外都相同.任意从袋子中摸出一个球,记下球的颜色,放回袋中,搅匀后再任意摸出一个球,记下球的颜色.求摸到一红一白两球的概率.11、一个袋子中有一个红球和两个白球,它们除了颜色外都相同.任意从袋子中摸出一个球,记下球的颜教师结合上节知识,指导学生体会画出树形图列举所有可能的结果,总结并解答。

教师提问,学生思考、回答。

3.1.3用树状图或表格求概率(3)教案

3.1.3用树状图或表格求概率(3)教案

3. 1.3《用树状图或表格求概率(三)》教学设计叶邑镇初级中学赫耿学习目标:进一步经历用树状图、列表法计算随机实验的概率的过程.预习案:课前导学:1、自行阅读课本P65-67的内容;2、小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?尝试练习:如果把转盘变成如下图所示的转盘进行“配紫色”游戏.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?学习案知识点拨:小颖做法如下图,并据此求出游戏者获胜的概率为21开始红蓝蓝红蓝(红,红)(红,蓝)(蓝,红)(蓝,蓝)小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是21.你认为谁做得对?说说你的理由.(小组合作交流)指出“小颖的做法不正确,小亮的做法正确.而用列表法或者树状图求随机事件发生的概率时,应注意各种情况出现的可能性务必相同.课内训练:一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。

求两次摸到的球的颜色能配成紫色的概率.反馈案:基础训练:1、 从1、2、3、4、5、6这六个数字中,先随意抽取一个,然后从剩下的五个数中再抽取一个,则两次抽到的数字之和为偶数的概率是__________;2、甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;从两个口袋中各随机地取出1个小球。

用列表法写出所有可能的结果3、用如图所示的两个转盘进行配“紫色”游戏,其概率是多少?拓展提高:1、一个盒子中装有一个红球、一个白球。

《概率的意义》教学设计

《概率的意义》教学设计

《概率的意义》教学设计一、教学任务分析1.正确理解概率的含义。

在概率定义的基础上,从一下两个方面帮助学生正确理解概率的含义,澄清日常生活中遇到的一些错误认识:(1)试验:通过抛掷一枚质地均匀的硬币试验,解释出现正面的概率为0.5的含义,通过从袋中摸球的试验,解释中奖概率为千分之一的含义。

(2)随机性与规律性:解释每次试验结果的随机性,多次试验结果的规律性,进一步说明概率与概率之间的区别。

2.了解概率在实际问题中的应用。

(1)概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。

可以从正反两方面举例让学生进行判断。

(2)概率与决策的关系:在一次试验中,概率大的事件发生的可能性大,这种思想是“风险与决策”中经常使用的。

(3)概率与预报的关系:通过天气预报、地震预报、股票预报等实例,让那个学生了解概率在预报中的作用。

二、教学重点难点重点:概率的正确理解及其在实际中的作用。

难点:概率与频率的联系与区别,随机试验结果的随机性与规律性的关系。

三、教学基本流程回忆上节课有关概率的定义·通过试验解释概率的含义·纠正日常生活中的一些错误认识·学生举出一些生活中与概率有关的实例·介绍概率与公平性、概率与决策、概率与预报方面的实例·课堂练习、小结与课后作业四、教学情景设计注:A:问题B:问题设计意图C:师生互动(1)A:你能回忆一下随机事件发生的概率的定义吗?B:复习上节课相关知识,加深对概率定义的印象。

C:师:提出问题,引导学生回忆概率的定义。

生:回忆、叙述概率的定义。

(2)A:谁能说说投掷一枚质地均匀的硬币出现正面的概率为二分之一的含义?B:分析学生的解释,引出概率含义的正确理解。

C:师:提出问题,引导学生讨论,讲出自己的想法,肯定正确的,指出错误的地方,用试验来证明。

生:思考、讨论、提出自己的理解。

(3)A:有人说,中奖率为千分之一的彩票,买一千张一定中奖,这种理解正确吗?B:进一步强化对概率的含义的正确理解。

优质课教学设计《概率》公开课教案

优质课教学设计《概率》公开课教案

本节课是本单元中,对知识的理解和贯彻最重要的一堂课。

在高效课堂模式中,一堂课的紧凑性和教师活动的多少,决定着课堂容量的高低。

但在实际教学中,教师应尽可能少地利用讲授法进行教学,多与学生进行交流,增加学生的实际操练和练习时间,对于一堂课来讲,是至关重要的。

对于课堂环节的布置,应该力求简练,语言应用尽量通俗易懂。

对于一名教师而言,教学质量的高低,与备课的充足与否有很大关系。

而教案作为这一行为的载体,巨大作用是不言而喻的。

本节课的准备环节,就充分地说明了这个道理。

概率【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.一、情境导入,初步认识请同学讲“守株待兔”的故事.问:(1)这是个什么事件?(2)这个事件发生的可能性有多大?引入课题.【教学说明】通过熟悉的故事激起学生的学习兴趣,同时结合上节课所学,思考如何衡量一个随机事件发生的可能性的大小,从而引出课题.二、思考探究,获取新知探究试验1:从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根,回答下列问题:①抽出的号码有多少种情况?②抽到1的可能性与抽到2的可能性一样吗?它们的可能性是多少呢?【讨论结果】①抽出的号码有1、2、3、4、5等5种可能的结果.②由于纸签的形状、大小相同,又是随机抽取的,所以每个号码被抽到的可能性大小相等,抽到一个号码即5种等可能的结果之一发生,于是:1/5就表示每一个号码被抽到的可能性的大小.【教学说明】通过本试验,帮助学生理解、体会在一次试验中,可能出现的结果为有限多个,并且每种结果发生的可能性相同.试验2:投一枚骰子,向上一面的点数有多少种可能?向上一面的点数是1或3的可能性一样吗?是多少呢?【教学说明】学生通过试验,交流得出结论,感知在这个过程中,每种结果的可能性,在一次试验中,可能结果只有有限种.思考(1)概率是从数量上刻画一个随机事件发生的可能性的大小,根据上述两个试验分析讨论,你能给概率下定义吗?(2)以上两个试验有什么共同特征?【讨论结果】(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值称为随机事件A发生的概率,记作:P(A).(2)以上两个试验有两个共同特征:①一次试验中,可能出现的结果有有限多个.②一次试验中,各种结果发生的可能性相等.【教学说明】对于具有上述特点的试验,我们常从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.问:(1)根据上面的理解,你认为问题2中向上的一面为偶数的概率是多少?(2)像上述试验,可列举的有限等可能事件的概率,可以怎样表达事件的概率?【讨论结果】(1)“向上一面为偶数”这个事件包括2、4、6三种可能结果,在全部6种可能的结果中所占的比为3/6=1/2.∴P(向上一面为偶数)=1/2.(2)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n.问:(3)请同学们思考P(A)的取值范围是多少?分析:∵m≥0,n>0,∴0≤m≤n,∴0≤mn≤1,即0≤P(A)≤1.问:(4)P(A)=1,P(A)=0各表示什么事件呢?【讨论结果】当A为必然事件时,P(A)=1.当A为不可能事件时,P(A)=0.由此可知:事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0,如下图:三、典例精析,掌握新知例1掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.分析:(1)掷一个质地均匀的骰子,向上一面的点数共有几种情况?(2)点数为2时有几种可能?点数为奇数有几种可能?点数大于2且小于5有几种可能呢?【教学说明】例1是教材的例1,以此规范简单事件的概率求值的一般步骤,并在运用中进一步体会概率的意义.教师板书完整的解题过程.例2如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作向右的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.分析:①指针停止后所指向的位置是否是有限等可能性事件?为什么?②指针指向红色有几种可能?③指针指向红色或黄色是什么意思?④指针不指向红色等价于什么说法?【教学说明】教师引导学生分析问题,学生通过对问题的思考和交流,写出完整的解题过程,这个转盘问题,实际上是几何概率的模型,是通过面积的大小关系来刻画概率的. 例3 教材第133页例3.分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.问1:若例3中,小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在哪一区域比较安全?答案:一样,每个区域遇雷的概率都是1/8.问2:谁能重新设计,通过改换雷的总数,使得下一步踩在A区域合适?并计算说明. 这是开放性问题,答案不唯一,仅举一例供参考:把雷的总数由10颗改为31颗,则:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各有1颗地雷,因此踩A 区域遇雷概率是:3/8B区域中共有:9×9-8-1=72(个)小方格,其中有31-3=28(个)方格内各藏有1颗地雷,因此踩B区域的任一方格遇到地雷的概率是:28 72而328872,∴踩A区域遇雷的可能性小于踩B区域遇雷的可能性.【教学说明】这个问题对于有游戏经验的同学来说容易理解题意,若是没有经验就不是很容易理解的,教师要引导学生理解题意,进而分析问题.对于第二步应怎样走关键只要分别计算两个区域内遇雷的概率,这是学生解决这一问题的关键所在.当学生完成问题后,顺势提出后面的2个问题,从正、反两方面对题目进行变式练习.四、运用新知,深化理解1.“从一布袋中随机摸出一球恰是黑球的概率为1/3”的意思是()A.摸球三次就一定有一次摸到黑球B.摸球三次就一定有两次不能摸到黑球C.如果摸球次数很多,那么平均每摸球三次就有一次摸到黑球D.布袋中有一个黑球和两个别的颜色的球2.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0B.1/41C.2/41D.13.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为1/5,四位同学分别采用了下列装法,你认为他们中装错的是()A.口袋中装入10个小球,其中只有两个是红球B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球C.装入红球5个,白球13个,黑球2个D.装入红球7个,白球13个,黑球2个,黄球13个4.从一副未曾启封的扑克牌中取出1张红桃,2张黑桃的牌共3张,洗匀后,从这3张牌中任取1张牌,恰好是黑桃的概率是()A.1/2B.1/3C.2/3D.15.在四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰梯形,现从中随机抽取1张,是中心对称图形的概率是______.6.下列事件的概率,哪些能作为等可能性事件的概率求?哪些不能?(1)抛掷一枚图钉,钉尖朝上.(2)随意地抛一枚硬币,背面向上与正面向上.7.摸彩券100张,分别标有1,2,3,……100的号码,只有摸中的号码是7的倍数的彩券才有奖,小明随机地摸出一张,那么他中奖的概率是多少?8.从一副扑克牌中找出所有红桃的牌共13张,从这13张牌中任意抽取一张,求下列事件的概率.(1)抽到红桃5;(2)抽到花牌J、Q、K中的一张;(3)若规定花牌点为0.5,其余牌按数字记点,抽到点数大于5的可能性有多大?【教学说明】上述练习一方面从正反对照的角度深化了对有限等可能的理解,进一步明确了古典概型的使用条件;另一方面还能帮助学生熟练掌握有限等可能的随机事件概率的计算方法,教师应先让学生自主完成,再进行评讲.【答案】1.C2.C【解析】所有可能结果数是41,而每个学生被提问的可能性相等,其中有2个学生是习惯用左手写字,故习惯用左手写字的同学被选中的概率为2/41.3.C4.C5.1/2【解析】圆、矩形是中心对称图形,所以P(中心对称图形)=2/4=1/2.6.(1)不能(2)能7.7/50(提示:本题的关键是找公式P(A)=m/n中的m:从7的1倍到7的14倍,一共14个数.)8.(1)因为13张牌中只有一张红桃5,故抽到红桃5的概率为1/13;(2)13张牌中有1张J、1张Q、1张K,共3张花牌,故抽到一张花牌的概率为3/13;(3)13张牌中点数大于5的牌共有6、7、8、9、10共5张,故抽到点数大于5的牌的概率为5/13. 五、师生互动,课堂小结本堂课你学到了哪些概率知识?你有什么疑问和困惑?1.布置作业,从教材“习题25.1”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.通过抽签,用学生喜欢的扑克牌和掷骰子试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.学生在学习例2时,应注意三种颜色并非三种可能[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

3概率的进一步认识 回顾与思考 一等奖创新教案

3概率的进一步认识 回顾与思考 一等奖创新教案

3概率的进一步认识回顾与思考一等奖创新教案专题复习课《概率与统计》教学设计一.教学目标:1.知识与技能:(1)能熟练掌握平均数、众数、中位数的定义和公式。

(2)懂得频率、概率之间的关系。

(3)会用列表法、树状图法解决生活中的实际问题(4)了解等可能事件模型。

2.过程与方法:类比集合,培养学生的类比与归纳的数学思想。

3.情感态度与价值观:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,在参与探究活动中,培养学生的合作精神. 在观察发现中树立探索精神,在探索成功后体验学习乐趣。

二.教学重点与难点:教学重点:复习平均数、众数、中位数的定义和公式,懂得频率、频数、概率之间的关系。

教学难点:会用列表法、树状图法解决生活中的实际问题。

三.课时安排:1节4.教法:根据本节课的内容、教学目标和学生的实际水平等因素,在教法上,本节课我采用“开放性教学”,充分了解学生的最近发展区,精心创设问题情景,以导为主,重视多媒体的作用,充分调动学生,展示学生的思维过程,使学生能准确理解、判断和运用所学知识。

(1)立足基础知识和基本技能,掌握好典型例题,做到重点突出;(2)紧扣数学的实际背景,多采用学生日常生活中熟悉的例子来突破难点。

五. 学法:引导学生用观察、类比、归纳、推导方式来实现预定教学目标。

创设、再现知识发生的情境,让每个学生都能动手、动笔、动口、动脑、动心、动情。

从而在知识产生迁移中发现规律,进一步把知识纳入学生已有认知结构中,形成新的认知结构。

达到教育学“最近发展区”要求,并培养学生学会观察、分析、归纳、等适应客观世界的思维方法,养成良好学习习惯和思维习惯。

6、教学用具:PPT和iPad7、教学过程:活动一:合作复习:(1)在题上自由选取3-n个向度,结合本章学习的知识,自己的进行整理。

(时间:2分钟)(2)各组内讨论、补充和完善,并小组呈现。

(时间:4分钟)(3)由2-3组分享展示成果,其他组评价和补充。

03教学设计_ 10.1.2古典概型+概率的基本性质

03教学设计_ 10.1.2古典概型+概率的基本性质

10.1.2 古典概型和概率的基本性质教学设计解:将两个红球编号为1,2,三个黄球编号为3,4,5.第一次摸球时有5种等可能的结果,对应第一次摸球的每个可能结果,第二次摸球时都有4种等可能结果。

将两次摸球的结果配对,组成20种等可能结果。

用10.1-2表示。

(1)第一次摸到红球的可能结果有8种(表中第1,2行),即A={(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5)}()52208==A P 所以(2)第二次摸到红球的可能结果有8种(表中第1,2列),即B={(2,1),(3,1),(4,1),(5,1),(1,2),(3,2),(4,2),(5,2)}()52208==B P 所以(3)事件AB 包含2个可能结果,即AB={(1,2),(2,1)}()101202==AB P 所以 例4、从两名男生(记为B1和B2)、两名女生(记为G1和G2)中任意抽取两人。

(1)分别写出有放回简单随机抽样、不放回简单随机抽样和按性别等比例分层抽样的样本空间。

(2)在三种抽样方式下,分别计算抽到的两人都是男生的概率。

解:设第一次抽取的人记为x1,第二次抽取的人即为x2,则可用数组(x1,x2)表示样本点。

(1)根据相应的抽样方法可知: 有放回简单随机抽样的样本空间为 Ω1={(B1,B1),(B1,B2),(B1,G1),(B1,G2),(B2,B1),(B2,B2),(B2,G1),(B2,G2),(G1,B1),(G1,B2),(G1,G1),(G1,G2),(G2,B1),(G2,B2),(G2,G1),(G2,G2)}不放回简单随机抽样的样本空间为 Ω2={(B1,B2),(B1,G1),(B1,G2),(B2,B1),(B2,G1),⑷求摸出的两个球一红一黄的概率.解:(1)分别对红球编号为1、2、3、4、5号,对黄球编号为6、7、8号,从中任取两球,有如下等可能基本事件:共有28个等可能事件。

人教版九年级数学上册25.1.2《概率》教案

人教版九年级数学上册25.1.2《概率》教案

人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。

本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。

通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。

但是,对于概率这一抽象的概念,学生可能难以理解和接受。

因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。

三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。

2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。

3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。

四. 教学重难点1.重点:概率的定义,概率的计算方法。

2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。

2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。

3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。

六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。

2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。

七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。

如:抛一枚硬币,正面朝上的概率是1/2。

同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。

北师大版七年级数学下册教学设计(含解析):第六章概率初步3等可能事件的概率

北师大版七年级数学下册教学设计(含解析):第六章概率初步3等可能事件的概率

北师大版七年级数学下册教学设计(含解析):第六章概率初步3等可能事件的概率一. 教材分析本节课是北师大版七年级数学下册第六章概率初步的内容,主要让学生学习等可能事件的概率。

等可能事件的概率是概率论的基础概念,对于学生理解概率论的本质和应用有着重要的意义。

本节课通过简单的实例,让学生初步理解等可能事件的概率,并学会用概率公式计算等可能事件的概率。

二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,如随机事件、不可能事件等。

但学生对于等可能事件的概率可能还比较陌生,需要通过具体的实例和练习来理解和掌握。

同时,学生可能对于概率公式的推导和应用还不够熟练,需要在课堂上进行反复的练习和巩固。

三. 教学目标1.让学生理解等可能事件的概率的概念,知道等可能事件的概率的计算公式。

2.培养学生用概率的观点来分析和解决问题。

3.提高学生的数学思维能力和逻辑推理能力。

四. 教学重难点1.等可能事件的概率的概念和计算公式的理解。

2.运用概率公式解决实际问题的能力。

五. 教学方法采用问题驱动法和案例教学法,通过具体的实例和练习,引导学生理解和掌握等可能事件的概率的概念和计算方法。

同时,通过小组合作和讨论,培养学生的团队协作能力和数学思维能力。

六. 教学准备1.准备相关的实例和练习题,用于引导学生理解和应用等可能事件的概率。

2.准备课件和教学素材,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生复习概率的基本概念。

然后提出问题:如果抛两次硬币,正面朝上的概率是多少?引发学生对于等可能事件的概率的思考。

2.呈现(15分钟)呈现等可能事件的概率的定义和计算公式,并通过具体的实例进行解释和说明。

让学生理解等可能事件的概率的概念,并学会用概率公式计算等可能事件的概率。

3.操练(15分钟)让学生进行一些有关等可能事件的概率的练习题,引导学生运用概率公式进行计算和解决问题。

在学生做题的过程中,进行巡视和指导,帮助学生理解和掌握等可能事件的概率的计算方法。

人教版九年级数学上25.1.2《概率》名师教案

人教版九年级数学上25.1.2《概率》名师教案

25.1.2 概率(彭小永)一、教学目标(一)学习目标1. 了解概率的意义,渗透随机观念2. 理解概率的一些性质3. 能计算一些简单事件的概率(二)学习重点计算一些简单实际问题的概率(三)学习难点概率的意义及判断试验条件的意识.二、教学设计(一)课前设计1.预习任务(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件发生的概率,记为 P(A) .(2)一般地,如果一次试验有n个可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)= ( ) .(3)若用P(A)表示事件A发生的概率,则P(A)的范围是 .特别地,当A为必然事件时,P(A)= 1 .当A为不可能事件时,P(A)= 0 .(4)事件发生的概率越大,它的概率就越接近 1 ;反之,事件发生的概率越小,它的概率就越接近 0 .2.预习自测(1)抛掷一枚质地均匀的硬币,正确的说法是()A.正面一定朝上 B.正面朝上比反面朝上的概率大C.反面一定朝上 D.正面朝上与反面朝上的概率都是0.5【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】解:掷一枚质地均匀的硬币,正、反两面朝上的概率是一样的,均为0.5.【思路点拨】列举所有的可能性,找出符合条件的,便可算出其概率.【答案】D(2)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨 B.某市明天下雨的可能性较大C.某市明天将有75%的地区下雨 D.某市明天一定下雨【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】解:这句话只能说明该市明天下雨的可能性较大.【思路点拨】正确理解概率的定义是关键.【答案】B(3)从1、2、3、4中任取一个数作为十位上的数字,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是 .【知识点】概率【解题过程】解:由题意知,得到的两位数可能是:12、13、14、22、23、24、32、33、34、42、43、44共12种情况,其中只有12、24、33、42四个数能被3整除,所以,它的概率为41=123.【思路点拨】准确列举所有情况,便可求出符合条件的事件的概率.【答案】13.(4)从3、18、27、33是同类二次根式的概率是 . 【知识点】概率【数学思想】化归思想【解题过程】18=3227=333分别是2327、53,所以,所求的概率为34.3.【答案】3 4(二)课堂设计1.知识回顾(1)必然事件、不可能事件和随机事件的定义是什么?(2)确定事件包含哪些?(3)你能分别举一个必然事件、不可能事件和随机事件的例子吗?请试一试.2.问题探究探究一概率的定义●活动①问题重现,温故知新问题1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序,为了抽签,我们在盒中放5个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1、2、3、4、5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.(1)抽到的数字是1;(2)抽到的数字小于6 ;(3)抽到的数字是0.师问:以上三个事件分别是什么事件?你能用具体数值来刻画其发生的可能性大小吗?分别是多少呢?小军抽到1到5中每一个数字的可能性是不是一样的?学生举手抢答.【设计意图】让学生回忆必然事件、不可能事件和随机事件的定义,感受其可能性,为“概率”这一定义的引出铺路.●活动②整合旧知,探究概率的定义问题2 小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.师问:掷一次骰子,在骰子向上的一面上,可能出现哪些点数?骰子上每一个数字出现的可能性是不是同样多的?分别是多少?由学生举手抢答.归纳总结出概率的定义,如下:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).【设计意图】在学生完成了问题1的基础上,利用问题2进一步让学生明白:每个数字出现的可能性大小相等,即每个数字出现的机会是等可能性的. 与分别是问题1和问题2中各个数字出现的可能性大小,从而得出概率的定义.探究二实例解析,理解概率的定义和性质●活动①运用定义,初试身手示例掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】解:(1)∵向上一面出现的点数共有六种情况,点数2只是其中的一种,∴出现点数2的概率:P(点数为2)=1 6(2)∵向上一面出现的点数共有六种情况,其中奇数有3个,∴点数为奇数的概率:P(点数为奇数)=36=12(3)∵向上一面出现的点数共有六种情况,大于2小于5的数字有2个,∴点数大于2小于5的概率:P(大于2小于5)=26=13【思路点拨】充分运用定义,求出相关事件的概率.【答案】(1)16(2)12(3)13【设计意图】用多个实例,总结出概率的一些性质●活动②归纳小结,得出概率性质师问:由问题1和问题2,以及示例,你能得到概率的哪些性质?由学生举手抢答. 归纳总结出概率的如下性质:概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A).性质1:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果. 因为,所以,.性质2:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.性质3:P(必然事件)=1,P(不可能事件)=0.探究三利用概率的定义与性质,解决实际问题●活动①概率的基本运算师问:概率的公式是什么?它有哪些性质?例1 一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A. B. C. D.【知识点】概率【数学思想】模型思想【解题过程】解:∵5 个球中,红色的有2个∴P(摸出红球)【思路点拨】红球个数占总球数的比例即为摸到红球的概率.【答案】C练习:某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A. B. C. D.【知识点】概率【数学思想】模型思想【解题过程】解:∵1 分钟共60秒,黄灯占5秒∴P(看到黄灯)【思路点拨】用黄灯的时间5秒,除以三种信号灯一轮变换的总时间60秒,即得抬头看到黄灯的概率.【答案】A【设计意图】进一步强化概率的计算方法.●活动②利用概率公式求概率与球的个数例2 在一个不透明的袋子中装有仅有颜色不同的10个球,其中红球4个,黑球6个. (1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件A,请完成下列表格:事件A 必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率为,求m的值.【知识点】概率公式的灵活运用【数学思想】分类讨论思想,方程思想【解题过程】解:(1)若第一次将4个红球取完,则第二次摸出黑球为必然事件;若第一次取2个或3个红球,则第二次取出的球不一定是黑球,即第二次取出黑球为随机事件. 所以第一个空填数字“4”,第二个空填“2或3”.(2)由题意知,袋子内球的总数仍为10个,黑球的数量为(m+6)个,由概率的定义可得:,解得m=2.【思路点拨】准确把握必然事件与随机事件的定义是解决第(1)问的关键;第(2)问运用概率公式逆向求m的值,只要合理运用概率公式便可迎刃而解.【答案】(1)第一个空填数字“4”,第二个空填“2或3”. (2)m=2.练习:甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知2=,平均成绩=8.5环.甲射击成绩的方差S甲(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩及成绩的方差,并据此比较甲乙的射击“水平”.(方差的公式是:)【知识点】统计与概率【数学思想】数形结合思想【解题过程】解:(1)∵乙的射击总次数为12次,不少于9环的有7次,∴估计乙射击成绩不少于9环的概率为.(2)由题意得:(环),∴,∴甲的射击成绩更稳定.【思路点拨】读懂统计图中的数据,用好平均数、方差和概率的公式,便可顺利解决此题. 当平均成绩一样的时候,方差越小越稳定.【答案】(1)乙射击成绩不少于9环的概率红色为;(2)甲的射击成绩更稳定.【设计意图】用综合性试题提高学生的解题能力.●活动③与图形相关的概率计算例3 如图是一个可以自由转动的转盘,转盘分为7个大小相同的扇形,颜色分别为红、绿、黄三种颜色. 指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.【知识点】概率【数学思想】数形结合思想【解题过程】解:按颜色把7个扇形分别记为:红1、红2、红3、绿1、绿2、黄1、黄2,所有可能结果的总数为7,并且它们出现的可能性相等.(1)指针指向红色(记为事件A)的结果有3种,即红1、红2、红3,因此,P(A)=红红红绿绿黄黄(2)指针指向红色或黄色(记为事件B)的结果有5种,即红1、红2、红3、黄1、黄2,所以, P(B)=(3)指针不指向红色(记为事件C)的结果有4种,即绿1、绿2、黄1、黄2,因此,P(C)=【思路点拨】由于指针停到每块扇形的机会相同,所以只需要数出符合条件的色块数量,用它除以总的色块数,即得相应事件的概率.【答案】(1)P(红色)=;(2)P(红色或黄色)=;(3)P(不是红色)=练习:下图为计算机“扫雷”游戏的画面. 在一个99个方格的雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏一颗地雷.小王在游戏开始时随机点击一个方格,点击后出现下图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域. 数字3表示在A区域有3颗地雷.请问,下一步应该点击A区域还是B区域更安全?【知识点】概率【数学思想】数形结合思想【解题过程】解:∵A区域有8个方格,这八个方格中有3颗地雷B区域有72个方格,这72个方格中有7个地雷∴点击A区域遇到地雷的概率为,点击B区域遇到地雷的概率为,而,也就是说,点击B区域更安全.【思路点拨】分别计算两个事件的概率,再比较概率的大小即可.【答案】由于点击B区域遇到地雷的概率更小,所以选择点击B区域更好.【设计意图】进一步强化与图形相关的试题中求概率的方法.3. 课堂总结知识梳理(1)概率的定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).(2)概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A). (3)概率的性质:性质1:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果. 因为,所以,.性质2:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.性质3:P(必然事件)=1,P(不可能事件)=0.重难点归纳(1)概率的定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).(2)概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A). (3)P(必然事件)=1,P(不可能事件)=0.(三)课后作业基础型自主突破1.必然事件的概率是()A. B. C. D.【知识点】必然事件的概率【数学思想】模型思想【解题过程】必然事件指的是在一定条件下必然要发生的事件,所以它的概率为1.【思路点拨】正确理解必然事件的定义,牢记特殊事件的概率【答案】D2.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为0.5C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【知识点】概率【数学思想】分类讨论思想【解题过程】解:A 不可能事件发生的概率为0,正确;B 随机事件发生的概率不一定为0.5,如掷骰子时,各个数字朝上的概率为C 概率很小的事件指的是发生的可能性很小,但不是不发生,如买彩票中特等奖就是一个小概率事件,但仍可能发生;D 由于实验的次数较少,实验得到的结果不一定刚好与理论概率吻合,所以不一定是50次. 【思路点拨】由于受各种条件的限制,实验得到的结果往往与理论值有一定的偏差,对于具体问题要具体分析.【答案】A3.四张质地、大小相同的卡片上分别画上如图所示的图形.在看不到图形的情况下,从中任意抽取一张,则抽取的卡片是轴对称图形的概率为()A. B. C. D.【知识点】概率,轴对称图形【数学思想】分类讨论,数形结合【解题过程】解:在这四个图形中,只有等腰梯形和圆是轴对称图形,所以抽到轴对称图形的概率为【思路点拨】认清轴对称图形,数出它的个数,此题便可迎刃而解.【答案】A4.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标为1、2、3、4、5,从中随机摸出一个小球,其标号大于2的概率为()A. B. C. D.【知识点】概率【解题过程】在这5个数中,大于2的数字有3、4、5共三个数字,所以它的概率为. 【思路点拨】找出符合条件的数,将它与总数相除即可.【答案】C5.将“定理”的英语单词“theorem”中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌上,任取一张,那么取到字母e 的概率为 .【知识点】概率【解题过程】7个字母中有2个“e”,所以取到字母“e”的概率为【思路点拨】牢记概率的计算公式便可轻松得解.【答案】6. 桶里原有质地均匀,形状大小完全一样的6个红球和4个白球,小明不慎弄丢了其中的2个红球,现从桶里随机摸出一个球,摸到白球的概率是 .【知识点】概率【数学思想】模型思想【解题过程】由于桶里的球有4红4白,所以摸到白的概率为.【思路点拨】用概率的计算公式即可【答案】能力型师生共研7. 如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A. B. C. D.【知识点】概率【思想方法】数形结合C【解题过程】将六个点两两相连,可得15条线段,其中只有AC、BD、CE、DF、EA、FB这6条的长度为,所以概率为 .【思路点拨】找出符合条件的线段数量,并数出总的线段条数,再将前者与总条数相除即可. 【答案】B8. 在盒子中放有三张分别写有、、2的卡片,从中随机抽出两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A. B. C. D.【知识点】概率的计算,分式的定义【数学思想】分类讨论思想【解题过程】当或作分母时,四组数据都符合分式的定义;当分母为2时,这两组数据不符合分式的定义. 所以能组成分式的概率为.【思路点拨】分式指的是分母中含有未知数的式子. 找出所有组合中符合分式定义的式子个数,相除即可.【答案】B探究型多维突破9. 在一个不透明的围棋盒子中有颗黑棋和颗白棋,从盒子中随机取出一颗棋子,它是黑棋的概率为.(1)写出与之间的函数关系式;(2)现在往盒子中再放进10颗黑棋,这时随机取出黑色棋子的概率为,请求出和的值. 【知识点】概率【数学思想】方程思想【解题过程】解:(1)由题意得:,解得(2)由题意得:,将代入,解得,所以,.【思路点拨】用方程的思想解决问题是一种很常用的方法.【答案】(1);(2),.10.口袋中有5张完全相同的卡片,分别写有1 cm、2 cm、3 cm、4 cm、5cm,口袋外有2张卡片,分别写有 4 cm和5 cm.现随机从袋内取出一张卡片,与口袋外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,回答下列问题:(1)求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率;(3)求这三条线段能组成等腰三角形的概率.【知识点】概率,三角形三边的关系,直角三角形和等腰三角形的性质【数学思想】分类讨论思想【解题过程】解:(1)由于口袋外的两个长度分别为4 cm和5 cm,要组成三角形,则第三边的长度应满足,所以,当摸出的长度为2 cm、3 cm、4 cm、5cm时,都符合题意,其概率为;(2)由于口袋外的两个长度分别为4 cm和5 cm,袋内的5条线段中,只有3cm能与它们组成直角三角形,所以,组成直角三角形的概率为;(3)由于口袋外的两个长度分别为4 cm和5 cm,袋内的5条线段中,只有4cm与5cm能分别与它们组成等腰三角形,所以,组成等腰三角形的概率为;【思路点拨】三角形的两边之和大于第三边,两边之差小于第三边;直角三角形满足勾股定理;等腰三角形要注意验证两腰之和大于底边.【答案】(1);(2);(3) .自助餐1.掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上 B.必有5次正面朝上C.掷2次必有1次正面朝上 D.不可能10次正面朝上【知识点】概率【解题过程】由于正、反两面出现的概率相同,所以答案A是正确的. 理论概率指的是一种可能性,它不一定刚好等于实验频率,其他几个答案的描述不对.【思路点拨】准确理解概率的含义,在实验中,理论概率不一定刚好等于实验频率.【答案】A2.从长度分别为3、5、7、9的四条线段中任取三条作边,能够组成三角形的概率为()A. B. C. D.【知识点】概率的计算,三角形三边的关系【数学思想】分类讨论思想【解题过程】从3、5、7、9中任取三条作边,共有4种情况,分别是①3、5、7;②3、5、9;③3、7、9;④5、7、9. 其中只有第二组不能构成三角形. 所以构成三角形的概率为. 【思路点拨】三角形的任意两边之和大于第三边,任意两边之差小于第三边.【答案】D3.在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3个,白球 n个,若从袋中任取一球,摸出白球的概率为,则n= .【知识点】概率【数学思想】方程思想【解题过程】解:由概率的计算公式知:,解得n=9.【思路点拨】用方程的思想列式求解;或者推算出摸到红球的概率为,逆向思考,算出球的总数,减去红球的个数即得白球的个数.【答案】n=9.4.从-3、-2、-1、0、1、2这六个数中,任意抽取一个数,作为正比例函数和二次函数中m的值,恰好使得正比例函数的图象经过第二、四象限,且二次函数的图象开口向上的概率为 .【知识点】概率,正比例函数和二次函数的性质【数学思想】分类讨论思想【解题过程】解:∵正比例函数∴,只有-3不合题意∵二次函数∴,解得,只有0、1、2符合题意综上所述,在已知的六个数中,只有 0、1、2这三个数符合题意,所以,概率为.【思路点拨】当k<0时,正比例函数的图象必过二、四象限. 当时,二次函数的图象开口向上.【答案】.5.袋中有红、绿、黄三种除颜色外其余都相同的球,其中有红球4个,绿球5个,从中摸出一球是绿球的概率是.(1)袋里黄球的个数;(2)任意摸出一球为红球的概率.【知识点】概率【数学思想】模型思想,方程思想【解题过程】解:(1)设有m个黄球,则,解得m=6,所以有6个黄球;(2)P(红球)【思路点拨】牢牢抓住概率的定义即可,.【答案】(1)有6个黄球;(2)P(红球)6.在一个不透明的围棋盒子中有颗白棋,颗黑棋,它们除颜色外都一致,从盒子中随机取出一颗棋子,它是黑棋的概率为.(1)写出与之间的函数关系式;(2)现在往盒子中再放进5颗白棋和1颗黑棋,这时随机取出白色棋子的概率为,请求出和的值.【知识点】概率【数学思想】方程思想【解题过程】解:(1)由题意得:,解得(2)由题意得:,解得,所以.【思路点拨】用方程的思想解决问题是一种很常用的方法.【答案】(1);(2),.。

《概率》教学设计

《概率》教学设计

《概率》教学设计《概率》教学设计一、教材分析:1、本章的主要内容是随机事件的定义,概率的定义,计算简单事件概率的方法,主要是列举法(包括列表法和画树形图法),利用频率估计概率。

中心内容是体会随机观念和概率思想。

课题学习“键盘上字母的排列规律”。

2、本章知识结构框图:二、学情分析:学生对统计以及简单的频数、频率的计算在七年级、八年级都已学过,学生有一定的概率基础。

对抽签、抽奖学生都很感兴趣,因为这些与他们的生活息息相关。

教学设计时选取抽签、抽奖、掷正方形骰子、摸球抓阄、猜拳、投硬币等与学生贴近的素材引起了他们极大地学习热情。

对于画树形图,分支较多时学生审题有一定困难,对于列表法摸球放回与不放回容易混淆。

三、教学目标:1、知识目标(1)理解什么是必然发生的事件、不可能发生的事件,什么是随机事件;通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。

(2)通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。

(3)在具体情境中了解概率的意义,体会概率是描述不确定现象的规律的数学模型,理解概率的取值范围的意义,发展随机观念。

能够运用列举法(包括列表、画树形图)计算事件发生的概率。

(4)能够通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值,理解频率与概率的区别与联系。

2、能力目标:(1)动手能力:动手试验,在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯。

(2)归纳能力:通过试验,归纳事件发生的频率,得出列举法(包括列表、画树形图)的方法。

(3)计算能力:计算简单事件发生的概率。

3、情感目标:(1)体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。

(2)在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯;需经过大量重复的试验,让学生从中体验到科学的探究态度。

随机事件的概率教学设计

随机事件的概率教学设计

《随机事件的概率》教学设计一、教材分析(一)教材的地位和作用现实生活中存在大量不确定事件,概率正是研究不确定事件的一门学科,它在科学、工农业生产和生活中有着广泛的应用。

在初中学生已经学习了随机事件、不可能事件、必然事件的概念。

现阶段学习随机事件的概率是对初中概率内容的深入与拓展;同时,也为今后继续研究随机事件的概率问题奠定基础; 因此,它具有承前启后的作用。

(二)教学目标分析课程标准对本节内容的要求是:在具体情境中,了解随机事件发生的不确定性及其频率的稳定性,进一步了解概率的意义以及频率和概率的区别。

据此我制定如下教学目标:1.在具体情境中,了解随机事件、必然事件、不可能事件的概念,进一步了解概率的意义以及频率和概率的区别.2.经历试验、统计等数学活动,体会随机事件发生的不确定性及其频率的稳定性,培养学生合作意识和交流能力.3.在试验、统计等数学活动中,发展学生的合情推理能力,养成严谨的学习态度和科学的研究方法,体会数学知识与现实生活的联系.二、学情分析初中阶段,学生学习了用列表法或树状图计算简单随机事件的概率;高中现阶段又学习了统计的知识,有这些知识作铺垫,学生探究本节课的内容就会容易一些;同时,学生对随机事件的特性、概率的认识还比较肤浅;因此,本节课的教学重点为:了解随机事件发生的不确定性和频率的稳定性;正确理解概率的意义.高二的学生已经具备了一定的知识迁移能力、实践能力、归纳概括能力,分析问题和解决问题的能力,这些都是探究本节课的有利条件.再有,概率是研究不确定事件的一门学科,对学生来讲,研究内容、研究方法还比较陌生,学习起来有一定的困难,因此,我将本节课的教学难点确定为:理解频率与概率的关系;正确理解概率的意义.三、教法、学法分析(一)教法分析:根据本节课教学内容的特点,我主要采用试验法和探究法相结合的教学方法,并利用多媒体辅助教学。

通过问题层层递进,启发引导学生自主探索所学知识。

(二)学法分析:数学课程标准指出:数学课程要使学生积累基本的数学活动经验,丰富学生的学习方式。

北师大版数学 七年级下册 第六章 概率初步 等可能事件的概率(3)公开课教学设计 教案

北师大版数学 七年级下册 第六章 概率初步 等可能事件的概率(3)公开课教学设计 教案

第六章概率初步3等可能事件的概率(第3课时)一、教学目标:1.知识与技能:了解一类事件发生概率的计算方法,并能进行简单计算,能设计符合要求的简单概率模型。

2.过程与方法:具体情境中进一步了解概率的意义,体会概率是描述不确定现象的数学模型。

3.情感与态度:体会数学与生活实际的紧密联系,鼓励学生积极参与,培养学生学习数学的兴趣二、新课探究第一环节活动内容:用地砖及小球剪贴画演示小球在方砖上随机行走的过程,使学生初步感受小球停留在黑砖上的可能性的大小。

设计说明:使用多媒体的条件不成熟的地区,便可用这种形象的演示来代替,以期达到形象感知的效果。

若有多媒体设备,便可用动画演示,会更形象。

思考下列问题:1.小球在卧室和书房中自由地滚动,并随机停留在某块方砖上,在哪个房间里,小球停留在黑砖上的概率大?(学生:在卧室里)2.你是怎样分析的?(生:黑色方砖的块数多些)3.你觉得小球停留在黑砖上的概率大小与什么有关?这就是我们本节课要来研究的问题,自然引出课题。

第二环节自主学习,感悟问题活动内容:出示例题:假如小球在如图所示的地板上自由地滚动,并随机停留在某块方砖上,它最终停留在黑色方砖上的概率是多少?(播放录音,朗读例题)各小组讨论、交流后派代表说出自己的分析思路和答案,(选3~4个小组代表讲解)第三环节迷茫的小白兔(逐步设疑)活动内容:出示“议一议”几何概型,(20个方块,其中黑色方块5块)思考下列问题,并由小组讨论得出结论并交流。

互相补充完善,并派代表回答。

(以“题卡”形式给出题目。

)1. 题中所说“自由地滚动,并随机停留在某块方砖上”说明了什么?2.小球停留在方砖上所有可能出现的结果有几种?停留在黑砖上可能出现的结果有几种?3.小球停留在黑砖上的概率是多少?怎样计算?4.小球停留在白砖上的概率是多少?它与停留在黑砖上的概率有何关系?5.如果黑砖的面积是5平方米,整个地板的面积是20平方米,小球停留在黑砖上的概率是多少?第四环节反馈矫正,巩固练习(挑战自我,激情无限)“十运会”射箭比赛休息之余,一名工作人员发现这样的一幕 :有一只蜘蛛在箭靶上爬来爬去,最终停下来,已知两圆的半径分别是1cm 和2cm ,则P(蜘蛛停留在黄色区域内)= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:
25.1 .3列举法概率
备课人:
教学时数第2课时授课日期授课类型新课
教学目标:知识与技能:学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。

过程与方法:经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。

渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。

情感态度与价值观:通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。

教学重点:习运用列表法或树形图法计算事件的概率
教学难点:
教学难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。

教学方法:探究式
教学准备:多媒体课件
作业布置:
(1)必做题:书本P154/ 3,P155/ 4,5
(2)选做题:
①请设计一个游戏,并用列举法计算游戏者获胜的概率。

②研究性课题:通过调查学校周围道路的交通状况,为交通部门提出合理的建议等。

【设计意图】通过教学实践作业和社会实践活动,引导学生灵活运用所学知识,让学生把动脑、动口、动手三者结合起来,启发学生的创造性思维,培养协作精神和科学的态度。

板书设计
25.1 .3列举法求概率
①列表;
②通过表格计数,确定公式P(A)=
n
m
中m和n的值;
③利用公式P(A)=
n
m
计算事件的概率。

课时备案二次备案修改课后反思
教学过程:
1.创设情景,发现新知
教材是通过P151—P152的例5、例6来介绍列表法和树形图法的。

例5(教材P151):同时掷两个质地均匀的骰子,计算下列事件的概率:
(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2。

这个例题难度较大,事件可能出现的结果有36种。

若首先就拿这个例题给学生讲解,大多数学生理解起来会比较困难。

所以在这里,我将新课的引入方式改为了一个有实际背景的转盘游戏(前一课已有例2作基础)。

(1)创设情景
由于事件的随机性,我们必须考虑事件发生概率的大小。

此时我首先引导学生观看转盘动画,同学们会发现这个游戏涉及A、B两转盘,即涉及2个因素,与前一课所讲授单转盘概率问题(教材P148例2)相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏。

怎样避免这个问题呢?
实际上,可以将这个游戏分两步进行。

于是,指导学生构造表格
首先考虑转动A盘:指针可能指向1,6,8三个数字中的任意一个,可能出现的结果就会有3个。

接着考虑转动B盘:当A盘指针指向1时,B盘指针可能指向4、5、7三个数字中的任意一个,这是列举法的简单情况。

当A盘指针指向6或8时,B盘指针同样可能指向4、5、7三个数字中的任意一个。

一共会产生9种不同的结果。

【设计意图】这样既分散了难点,又激发了学生兴趣,渗透了转化的数学思想。

(4)学生独立填写表格,通过观察与计算,得出结论(5)解法:
由图知:可能的结果为:(1,4),(1,5),(1,7),(6,4),(6,5),(6,7),(8,4),(8,5),(8,7)。

共计9种。

∴P(A数较大)=
9
5
, P(B数较大)=
9
4
.
1 6 8
开始
A装置
4 5 7 4 5 7 4 5 7
B装置
∴P(A数较大)>P(B数较大)
∴选择A装置的获胜可能性较大。

应用新知,深化拓展
为了检验学生对列表法和画树形图法的掌握情况,提高应用所学知识解决问题的能力,在此我选择了教材P154课后练习作为随堂练习。

(1)经过某十字路口的汽车,它可能继续前行,也可能向左或向右,如果这三种可能性大小相同。

三辆汽车经过这个十字路口,求下列事件的概率:
①三辆车全部继续前行;
②两辆车向右转,一辆车向左转;
③至少有两辆车向左转。

[随堂练习(1)是一道与实际生活相关的交通问题,可用树形图法来解决。

]
(2)在6张卡片上分别写有1——6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?
通过解答随堂练习(2),学生会发现列出的表格和例1的表格完全一样。

不同的是:变换了实际背景,设置的问题也不一样。

这时,我提出:我们是否可以根据这个表格再编一道用列举法求概率的题目来呢?
为了进一步拓展思维,我向学生提出了这样一个问题,供学生课后思考:
在前面的引例中,转盘的游戏规则是不公平的,你能把它改成一个公平的游戏吗?
【设计意图】以上问题的提出和解决有利于学生发现数学问题的本质,做到举一反三,融会贯通。

4.归纳总结,形成能力
我将引导学生从知识、方法、情感三方面来谈一谈这节课的收获。

要求每个学生在组内交流,派小组代表发言。

【设计意图】通过这个环节,可以提高学生概括能力、表达能力,有助于学生全面地了解自己的学习过程,感受自己的成长与进步,增强自信,也为教师全面了解学生的学习状况、因材施教提供了重要依据。

相关文档
最新文档