通信工程专业Code-division-multiple-access码分多址大学毕业论文外文文献翻译及原文

合集下载

通信工程专业英语词汇

通信工程专业英语词汇

通信工程专业英语词汇动态范围: Dynamic range频率偏值:Frequency offset符号率:Symbol rate码域功率:code domain power频分多址: Frequency Division Multiple Access码分多址:Code Division Multiple Access时分多址:Time Division MultipleAccess沃什码: Walsh code误码率:BitError Rate,BER帧误码率:Frame ErrorRate,FER循环冗余码:CyclicRedundancy Code,CRC时序分析: timing analyze门限:threshold非同步模式:Asynchronous Mode同步模式:Synchronous Mode邻道功率: ACPD――Adjacent Channel Power先进移动电话业务:AMPS---Advanced MobilePhoneService组织协会:ANSI---American National Standard Institute美国国家标准局BPT --- British Post andTelecommunication Standard 英国邮政与电信标准CCIR--- International RadioConsultative Committee 国际无线电咨询委员会CCITT --- International Telegraph and TelephoneConsultativeC ommittee国际/电报咨询委员会CEPT ---Conference ofEuropeanPostand Telecommunication Administrations欧洲邮电行政会议EIA---ElectronicEngineersAssociation 电子工业协会美ETSI --- European Telecommunication Standards Institute欧洲电信标准委员会FCC--- Federal CommunicationsCommission联邦通信委员会美IEC ---InternationalElectrotechnicsCommittee国际电工委员会IEE--- Institution of Electrical Engineers电气工程师协会英IEEE---Institutionof Electrical and ElectronicsEngineers, INC电气与电子工程师协会美ITU ---International Telecommunication Union 国际电信联盟联合国MPT---Ministryof Post and telecommunications邮政与电信部英TIA---TelecommunicationsIndustries Association电信工业协会美WARC --- World Administrative RadioConference世界无线电行政大会ZVEI ---Zentralverband derElectechnischen Industrie电气工业中央协会德ACP --- AdjacentChannel Power邻道功率AMPS ---AdvancedMobile Phone Institute先进移动电话业务APOC --- AdvancedPaging Operator Code先进寻呼操作码AVL--- Average Voice Level平均话音电平BSC--- Base SiteController基站控制器CDMA---CodeDivision Mulitiple Code码分多址CDPD---Cellular Digital PacketData蜂窝分组数据系统CSC --- CellSiteControllor小区控制器DCCH--- Digital Control Channel数字控制信道DECT---DigitalEnhancedCordless Telecommunications数字增强无绳电话EDACS ---Enhanced Digital AccessCommunications System加强的数字接入通信系统ERMES --- European Telecommunications Standards Institute欧洲无线电信息系统ESN ---Electronics Serial Number电子串号FDR--- FrequencyDomain Reflectometry频域反射计FLEX---FlexiblePaging System可变速寻呼系统FOCC---ForwardControl Channel前向控制信道FVC ---Forward Voice Channel前向话音信道GSC --- Golay SequentialCoding格雷码GSM---Global System for Mobile Communications全球移动通信系统IBASIC --- InstrumentBASIC仪器BASIC语言IDC --- InstantaneousDeviation Control瞬时频偏控制IMSI ---InternationalMobile Station Identify国际移动台识别号码LNA--- Low NoiseAmplifier低噪声放大器LPF/HPF --- Low/High Pass Filter低通/高通滤波器LSB/USB--- Lower/UpperSide Band下/上边带MCC --- MobileCountry Code移动业务国家号码MCS --- MobileControlStation移动控制站MIN --- Mobile IdentificationNumber移动识别码MNC ---MobileNetworkCode移动电话网号码MSC ---Mobile SwitchingCenter移动交换中心MSIN--- MobileStationIdentificationNumber移动台识别码MTSO --- Mobile Telephone SwitchingOffice移动电话交换局NMSI ---NationalMobile Station Identify国内移动台识别号码NMT--- Nordic Mobile Telephone北欧移动电话系统OTP---OneTime Programmable一次性编程PDC---Personal DigitalCellular个人数字蜂窝系统PHS---Personal Handy-Phone System个人手持电话系统PSTN --- Public Switching Telephone Network公用交换电话网RECC--- Reverse Control Channel反向控制信道RVC--- Reverse Voice Channel反向话音信道RSSI---ReceicedSignal Strength Indicator接收信号场强指示SCC ---Signalling Channel Controller信令信道控制器SCM --- Station ClassMark移动台级别标志SID---Syste Indentification Number系统识别号TACS --- TotalAccessCommunications System全选址通信系统TDMA ---TimeDivision Multiple Access时分多址UUT --- Under UnitTest被测单元VCC---Voice Channel Controller话音信道控制器VSWR --- Voltages StandingWave Ratio电压驻波比1997年,爱立信公司向ETSI(欧洲电信标准委员会)提出了EDGE的可行性研究方案,并在同年得到认可。

CDMA通信系统多址干扰分析

CDMA通信系统多址干扰分析

CDMA通信系统多址干扰分析1、题目背景CDMA(Code-Division Multiple Access),码分多址,是近年来在数字移动通信进程中出现的一种先进的无线扩频通信技术。

不同用户传输信息所用的信号不是依据频率不同或时隙不同来区分,而是用各自不同的编码序列来区分。

如果从频域或时域来观察,多个CDMA信号是互相重叠的,接收机用相关器可以在多个CDMA信号中检出其中使用预定码型的信号,其它使用不同码型的信号因为和接收机本地产生的码型不同而不能被解调。

CDMA的基本技术之一是扩频,因此这一多址技术具有很强的保密性,并早在第二次世界大战期间就在军事通信和电子对抗中予以采用,60年代以后又在军用卫星通讯中采用。

20世纪90年代第二代(2G)CDMA蜂窝移动通信系统问世,其较TDMA之优点已见端倪,在系统容量、通信质量和保密性方面均有优于TDMA之处,ITU推出的IMT-2000(3G)标准及之后批准的几个3G标准均系采用CDMA多址方式。

CDMA最早由美国高通公司推出,与GSM相同,CDMA也有2代、2.5代和3代技术。

2、国内外相关研究情况及 扩频通信技术作为抗干扰通信技术,长期以来一直为军方所用。

CDMA技术的民用化,特别是与数字蜂窝技术相结合,构成了CDMA数字蜂窝移动通信系统,对移动通信的发展产生了十分巨大和深远的影响。

由于CDMA体制具有抗人为干扰、抗窄带干扰、抗衰落、抗多径扩展,并可提供十分巨大的系统容量和便于与模拟或数字体制共存的优点,使得CDMA数字蜂窝移动系统很快成为TDMA数字蜂窝移动系统强有力的竞争对手,收到世人瞩目,成为第三代移动通信的主要技术手段。

CDMA系统的发展历程如下:在大量蜂窝移动通信工业部门的支持下,美国圣地亚哥Qualcomm公司设计、开发并试验了CDMA蜂窝网,于1991年12月做了现场试验并取得了一致好评,当时进行了5个基站、70个移动太参加组网的试验。

什么是码分多址技术

什么是码分多址技术

什么是码分多址技术(CDMA)CDMA是码分多址的英文缩写(Code Division Multiple I Access),它是在数字技术的分支——扩频通信技术上发展起来的。

CDMA是为现代移动通信网所要求的大容量、高质量、综合业务、软切换、国际漫游等要求而设计的一种移动通讯技术。

CDMA技术的原理是基于扩频技术,即将需传送的具有一定信号带宽信息数据,用一个带宽远大于信号带宽的高速伪随机码进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。

接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。

CDMA移动通信网是由扩频、多址接入、蜂窝组网和频率复用等几种技术结合而成,含有频域、时域和码域三维信号处理的一种协作,因此它具有抗干扰性好,抗多径衰落,保密安全性高,同频率可在多个小区内重复使用,容量和质量之间可做权衡取舍等属性。

这些属性使CDMA比其它系统有很大的优势。

(1) 系统容量大理论上,在使用相同频率资源的情况下,CDMA移动网比模拟网容量大20倍,实际使用中比模拟网大10倍,比GSM要大4-5倍。

(2) 系统容量的配置灵活在CDMA系统中,用户数的增加相当于背景噪声的增加,造成话音质量的下降。

但对用户数并无限制,操作者可在容量和话音质量之间折衷考虑。

另外,多小区之间可根据话务量和干扰情况自动均衡。

这一特点与CDMA的机理有关。

CDMA是一个自扰系统,所有移动用户都占用相同带宽和频率,打个比方,将带宽想像成一个大房子,所有的人将进入惟一的大房子。

如果他们使用完全不同的语言,他们就可以清楚地听到同伴的声音而只受到一些来自别人谈话的干扰。

在这里,屋里的空气可以被想像成宽带的载波,而不同的语言即被当作编码,我们可以不断地增加用户直到整个背景噪音限制住了我们。

如果能控制住用户的信号强度,在保持高质量通话的同时,我们就可以容纳更多的用户。

码分多址(CDMA)的原理

码分多址(CDMA)的原理
2、CDMA2000核心网标准演进步骤
CDMA2000网络向全IP网络演进过程采用分阶段步骤实施,演进技术体制遵循3GPP2标准。3GPP2不同于3GPP,在无线侧与核心网的标准制定方面具有相对独立性,这使得网络运营商在网络部署或者演进时有更多方案可选,也使演进平滑,节省成本。
CDMA2000核心网从传统域至全IP网络的演进大致分四个阶段,简述如下:
CDMA2000与CDMA的关系
CDMA是码分多址(Code-Division Multiple Access)技术的缩写,是近年来在数字移动通信进程中出现的一种先进的无线扩频通信技术,它能够满足市场对移动通信容 量和品质的高要求,具有频谱利用率高、话音质量好、保密性强、掉话率低、电磁辐射小、容量大、覆盖广等特点,可以大量减少投资和降低运营成本。 CDMA最早由美国高通公司推出,与GSM相同,CDMA也有2代、2.5代和3代技术。中国联通推出的CDMA属于2.5代技术。CDMA被认为是第3代移动通信技术的首选,目前的标准有WCDMA、CDMA2000、TD-SCDMA。CDMA2000是在CDMA框架下的一个技术标准。
1xEV-DO已经开始商业化运营。欧洲市场稍微早于美国市场。 2004年夏捷克移动运营商 Eurotel开始运营sinceCDMA2000 1xEV-DO网络,他们提供的上行速率大约1Mbps。这项服务每月大约花费30欧元无流量限制。如果使用这项服务,你需要购买一个大约300欧元的 Gtran GPC-6420调制解调器。
CDMA2000 1xEV第二阶段, CDMA2000 1xEV-DV (Evolution-Data and Voice发展-数据和语音), 支持下行 (向前链路 数据速率最高3.1 Mbps and 上行(反相链路)速率最高1.8 Mbps。1xEV-DV还能支持1x语音用户, 1xRTT数据用户和高速1xEV-DV 数据用户使用同一无线信道并行操作。

码分多址的工作原理

码分多址的工作原理

码分多址的工作原理码分多址(Code Division Multiple Access,CDMA)是一种用于无线通信系统中的多址技术,其工作原理是通过将不同用户之间的信息编码成不同的码序列,并使用这些码序列对信息进行调制和解调,从而实现多个用户同时共享同一个频带资源的目的。

码分多址的工作原理可以简单地描述为以下几个步骤:1. 编码:每个用户被分配一个唯一的码序列,该码序列可以是伪随机码(Pseudo-Random Code)或扩频码(Spread Spectrum Code)。

这个码序列具有低相关性和高峰值功率,以确保多个用户之间的信息可以被区分开。

2. 调制:用户的信息通过与其对应的码序列进行逐位异或操作,将信息信号与码序列进行混合。

这样做的目的是将不同用户的信息进行区分,并将其混合到同一个频带上。

3. 扩频:通过将调制后的信号与高速的扩频码相乘,将信号的频谱展宽。

扩频的作用是将信号的带宽扩大,使其能够占用更宽的频带,从而提高信号的传输容量。

4. 发送:经过编码、调制和扩频后的信号被发送到无线信道中。

在无线信道中,信号会受到多径效应、噪声和干扰等因素的影响。

5. 接收:接收端使用与发送端相同的码序列对接收到的信号进行解码和解扩频。

解码的过程是将收到的信号与码序列进行相关运算,提取出原始信息信号。

解扩频的过程是将解码后的信号与扩频码进行逐位异或操作,将信号的带宽恢复到原始的窄带。

码分多址的工作原理可以通过一个简单的比喻来理解。

假设每个用户的信息就像一本书,编码的过程就是将每本书都用不同的颜色墨水进行印刷,使得每本书都具有独特的颜色。

调制的过程就是将每本书和它对应的颜色混合在一起,形成彩色的书。

扩频的过程就是将每本彩色的书都进行放大,使得每本书的颜色展开成更宽的范围。

发送的过程就是将这些彩色的书一起放到一个大图书馆中。

接收的过程就是在图书馆中,将每本彩色的书按照颜色进行分门别类,找到每本原来的黑白书。

通信传输常用术语

通信传输常用术语

GSM全球移动通信系统ADM:Add/Drop Multiplexer分插复用器ATM:Asynchrous Transfer Mode 异步传送方式BS:Base Station基站BSC:Base Station Controller基站控制器CC:Coax cable 同轴电缆CDMA:Code Division Multiplex Access 码分多址\FDMA频分多址TDMA时分多址TDD:Time Division Dual 时分双工TDM:Time Division Multiplexing时分复用DSP:Digital signal Processing 数字信号处理FTTB:Fiber To The Building 光纤到大楼FTTC:Fiber To The Curb光纤到路边FTTH:Fiber To The Home 光纤到家庭ITU:International Telecommunications Union 国际电信联盟ITU-T:原名CCITT,是国际电信联盟的一个委员会OAM&P:Operation Administration, Maintenance and Provisioning运行、管理、维护和预置OAM:Operation, Administration and Maintenance操作、管理和维护OFA:Optical Fiber Amplifier 光纤放大器OHP:Overhead Processing开销处理OLT:Optical Line Terminal光纤线路终端ONU:Optical Network Unit 光纤网络单元OOF:Out Of Frame 帧失步RC:Radio Communication移动通信RSOH:Regenerator Section Ouerhead 再生段开销RSSI:Radio Signal Strength IndicatorRST:Regenerator Section Termination 再生段终端SC:Subscriber Connector (Optial Fiber Connector)用户连接器(光纤连接器)ST:Straight Tip 直通式光纤连接器SNK:Sighal To Noise Ratio 信噪比SOA:Semiconductor Optical Amplifier半导体光放大器SMS:SDH Management Sub -Network SDH管理子网TSI:Timeslot Interxhange时隙交换TSU:Time Switching Unit 时隙交换单元光纤通信常用专业术语SDH:同步数字传输体系ADM:分插复用器AON:有源光网络APON:无源光网络ASK:振幅键控ATPC:自动发信功率控制BA:光功率放大器ODM:光分用器SMF:单模光纤MMF:多模光纤LOF:帧丢失LOS:光信号丢失LOP:指针丢失MSOH:复用段开销MSP:复用段保护OFA:光纤放大器ONU:光网络单元OM:光复用TDM:时分复用OTDM:光时分复用WDM:波分复用OUT:光转换单元OXC:光交叉连接PON:无源光网络SOH:段开销(SDH帧结构中为了保证信息正常、灵活、有效地传送所必须附加的字节。

CDMA基本原理

CDMA基本原理
25 24 BASE_ID 9 8 PILOT_PN 0
接入信道公用长码掩码
41 33 110001111 32 ACN 28 27 PCN
ห้องสมุดไป่ตู้
18
CDMA信道结构
CDMA系统反向业务信道结构
R-TCH bits Bits/Frame 16 40 80 172 Add Frame Quality Indicator Add 8 Encoder Tail Bits Convolution al Encoder R=1/3, K=9 Symbol Repetition Factpr 28.8 ksps 8X 4X 2X 1X
——T-ADD:导频信号的Ec/Io上门限
——T-DROP:导频信号的Ec/Io下门限 ——T-TDROP:Ec/Io小于T-DROP的延时计时器
20
CDMA主要参数
• SRCH_WIN_A,SRCH_WIN_N,SRCH_WIN_R:搜索窗 口尺寸的定义(用于搜索小区的信号)。
单位:chip
——SRCH_WIN_A:用于搜索有效(激活)和侯选导频信 号 ——SRCH_WIN_N:用于搜索相邻导频信号 ——SRCH_WIN_R:用于搜索剩余导频信号 • •
• 可允许所有Walsh码在各扇区复用 • 系统规定PN码最小偏移值为64chips,可以有512个时间偏置来作 扇区识别(215 /64=512)
同一扇区内所有CDMA信道的短码相同 不同扇区内的CDMA信道的短码不同
11
CDMA的码
WALSH码:区分前向信道(64阶WALSH函数)
导频信道采用全为0的W0; 同步信道采用0、1相间的W32; 寻呼信道采用W1-W7; 业务信道采用W8-W31,W33-W63。

通信工程专业英语

通信工程专业英语

一、汉译英1、时分多址:TDMA (Time Division Multiple Address/ Time Division Multiple Access)2、通用无线分组业务:GPRSGeneral Packet Radio Service3、国际电报电话咨询委员会:CCITT4、同步数字体系:SDH Synchronous Digital Hierarchy (同步数字序列)5、跳频扩频:FHSS frequency hopping spread spectrum6、同步转移模块:STM synchronous transfer module7、综合业务数字网:ISDNIntegrated Services Digital Network8、城域网:MAN Metropolitan Area Network9、传输控制协议/互联网协议:TCP/IPTransmission Control Protocol/Internet Protocol10、服务质量:QOS Quality of Service11、中继线:trunk line12、传输速率:transmission rate13、网络管理:network management14、帧结构:frame structure15、移动手机:Mobile Phone 手机 Handset16、蜂窝交换机:(Cellular switches)(电池开关cell switch)(cell 蜂房)17、天线:Antenna18、微处理器:microprocessor19、国际漫游:International roaming20、短消息:short message21、信噪比:SNR(Signal to Noise Ratio)22、数字通信:Digital communication23、系统容量:system capacity24、蜂窝网:cell network(cellular network)(Honeycomb nets)25、越区切换:Handover26、互联网:internet27、调制解调器:modem28、频谱:spectrum29、鼠标:Mouse30、电子邮件:electronic mail E-mail31、子网:subnet32、软件无线电:software defined radios33、网络资源:network resources 八、英译汉1、mobile communication:移动通信2、Computer user:计算机用户3、Frame format:帧格式4、WLAN:wireless local area network 无线局域网络5、Communication protocol:通信协议6、Transmission quality:传输质量7、Remote terminal:远程终端8、International standard:国际标准9、GSM:全球移动通信系统Global System for Mobile Communications10、CDMA:码分多址Code Division Multiple Access11、ITU:国际电信联盟International Telecommunication Union12、PCM:pulse code modulation 脉冲编码调制13、WDM:波分复用Wavelength Division Multiplex14、FCC:联邦通信委员会Federal communications commission15、PSTN:公用电话交换网Public Switched Telephone Network16、NNI:网络节点借口Network Node Interface17、WWW:万维网World Wide Web18、VOD:视频点播Video-On-Demand19、VLR:访问位置寄存器Visitor Location Register20、MSC:移动交换中心Mobile Switching Centre21、HLR:原籍位置寄存器Home Location Register22、VLSI:超大规模集成电路Very Large Scale Integrated Circuits23、Bluetooth technology:蓝牙技术24、Matched filter:匹配滤波器25、ADSL:非对称数字用户环路Asymmetrical Digital Subscriber Loop非对称数字用户线路(Asymmetric Digital Subscriber Line)26、GPS:全球定位系统Global Position System27、ATM:异步传输模式Asynchronous Transfer Mode1、脉冲编码调制(PCM)依赖于三个独立的操作:抽样、量化和编码。

通信工程专业英语词汇(史上最全)

通信工程专业英语词汇(史上最全)

通信工程专业英语词汇来源:涛的日志动态围: Dynamic range频率偏值: Frequency offset符号率: Symbol rate码域功率: code domain power频分多址: Frequency Division Multiple Access码分多址: Code Division Multiple Access时分多址: Time Division Multiple Access沃什码: Walsh code误码率: Bit Error Rate,BER帧误码率: Frame Error Rate,FER循环冗余码:Cyclic Redundancy Code,CRC时序分析: timing analyze门限: threshold非同步模式: Asynchronous Mode同步模式: Synchronous Mode邻道功率:ACP D―― Adjacent Channel Power先进移动业务:AMPS---Advanced Mobile Phone Service组织协会:ANSI --- American National Standard Institute 美国国家标准局BPT --- British Post and Telecommunication Standard 英国邮政与电信标准CCIR --- International Radio Consultative Committee 国际无线电咨询委员会CCITT --- International Telegraph and Telephone Consultative Committee国际/电报咨询委员会CEPT --- Conference of European Post and Telecommunication Administrations欧洲邮电行政会议EIA --- Electronic Engineers Association 电子工业协会美ETSI --- European Telecommunication Standards Institute欧洲电信标准委员会FCC --- Federal Communications Commission联邦通信委员会美IEC --- International Electrotechnics Committee国际电工委员会IEE --- Institution of Electrical Engineers电气工程师协会英IEEE--- Institution of Electrical and Electronics Engineers, INC电气与电子工程师协会美ITU --- International Telecommunication Union 国际电信联盟联合国MPT --- Ministry of Post and telecommunications邮政与电信部英TIA --- Telecommunications Industries Association电信工业协会美WARC --- World Administrative Radio Conference世界无线电行政大会ZVEI --- Zentralverband der Electechnischen Industrie电气工业中央协会德ACP --- Adjacent Channel Power邻道功率AMPS --- Advanced Mobile Phone Institute先进移动业务APOC --- Advanced Paging Operator Code先进寻呼操作码AVL --- Average Voice Level平均话音电平BSC --- Base Site Controller基站控制器CDMA --- Code Division Mulitiple Code码分多址CDPD --- Cellular Digital Packet Data蜂窝分组数据系统CSC --- Cell Site Controllor小区控制器DCCH --- Digital Control Channel数字控制信道DECT --- Digital Enhanced Cordless Telecommunications数字增强无绳EDACS --- Enhanced Digital Access Communications System加强的数字接入通信系统ERMES --- European Telecommunications Standards Institute欧洲无线电信息系统ESN --- Electronics Serial Number电子串号FDR --- Frequency Domain Reflectometry频域反射计FLEX --- Flexible Paging System可变速寻呼系统FOCC --- Forward Control Channel前向控制信道FVC --- Forward Voice Channel前向话音信道GSC --- Golay Sequential Coding格雷码GSM --- Global System for Mobile Communications全球移动通信系统IBASIC --- Instrument BASIC仪器BASIC语言IDC --- Instantaneous Deviation Control瞬时频偏控制IMSI --- International Mobile Station Identify国际移动台识别LNA --- Low Noise Amplifier低噪声放大器LPF/HPF --- Low/High Pass Filter低通/高通滤波器LSB/USB --- Lower/Upper Side Band下/上边带MCC --- Mobile Country Code移动业务国家MCS --- Mobile Control Station移动控制站MIN --- Mobile Identification Number移动识别码MNC --- Mobile Network Code移动网MSC ---Mobile Switching Center移动交换中心MSIN --- Mobile Station Identification Number移动台识别码MTSO --- Mobile Telephone Switching Office移动交换局NMSI --- National Mobile Station Identify国移动台识别NMT --- Nordic Mobile Telephone北欧移动系统OTP --- One Time Programmable一次性编程PDC --- Personal Digital Cellular个人数字蜂窝系统PHS --- Personal Handy-Phone System个人手持系统PSTN --- Public Switching Telephone Network公用交换网RECC --- Reverse Control Channel反向控制信道RVC --- Reverse Voice Channel反向话音信道RSSI --- Receiced Signal Strength Indicator接收信号场强指示SCC --- Signalling Channel Controller信令信道控制器SCM --- Station Class Mark移动台级别标志SID --- Syste Indentification Number系统识别号TACS --- Total Access Communications System全选址通信系统TDMA --- Time Division Multiple Access时分多址UUT --- Under Unit Test被测单元VCC --- Voice Channel Controller话音信道控制器VSWR --- Voltages Standing Wave Ratio电压驻波比1997年,爱立信公司向ETSI(欧洲电信标准委员会)提出了EDGE的可行性研究方案,并在同年得到认可。

通信工程专业英语的-缩写

通信工程专业英语的-缩写

4B/3D(code)——4 Binary/3 ternary (code)4二进制/3三电平(码)AA/D——Analog/Digital数/模AAL-—ATM adaptation layer ATM适配层AC. ac。

-—Alternating Current 交流ACK——ACKnowledge确认ADC-—Application data center集中托管式数据应用中心-—Analog—to-Digital Converter模拟/数字转换器(模数变换器)ADPCM-—Adaptive DPCM自适应差分脉(冲编)码调制ADPCM-—Adaptive DPCM自适应差分脉冲编码调制ADSL--Asymmetric Digital Subscriber Line非对称数字用户环路ADSL—-Asymmetric Digital Subscribers Loop非对称数字用户环路AM——Amplitude Modulation 幅度调制、调幅AM——Amplitude Modulation振幅调制(调幅)AMI——Alternate Mark Inverse传号交替反转ANSI--American National Standards Institute美国国家标准学会APK -—Amplitude Phase Keying幅相键控APT--the Advanced Packaging Tool Ubuntu软件包管理系统的高级界面ARQ--Automatic Repeat reQuest自动要求重发ASCII-—American Standard Code for Information Interchange美国标准信息交换码ASIC-—Application Specific Integrated Circuit专用集成电路ASK—-Amplitude Shift Keying振幅键控AT&T--American Telephone & Telegraph美国电话电报公司ATM-—Automated Tellermachine自动取款机—-Asynchronous Transfer Mode 异步转移(传递)模式AU--Administration Unit管理单元AUG—-Administration Unit Group管理单元群BBCD--Binary Coded Decimal二十进制B-ISDN--Broadband ISDN宽带综合业务数字网BPF-—Bandpass Filter带通滤波器BRAN—-Broadband Radio Access Network宽带射频接入网BRI--Basic Rate Interface基本速率接口CCAS——Channel Associated Signaling随路信令CCITT—-Consultive Committee for International Telegraph and Telephone国际电报电话咨询委员会C—-Container容器CCS-—Common Channel Signaling共路信令CDMA——Code Division Multiple Access码分多址CDM—-Code Division Multiplexing码分复用CELP-—Code Excited Linear Prediction码激励线性预测CLP--Cell Lose Priority信元丢失优先等级CMI—-Coded Mark Inversion传号反转COR-PSK-—Correlative Phase-Shift Keying相关移相键控CPU-—Central Processing Unit中央处理器CRC-—Cyclic Redundancy Check循环冗余校验CRT —-Cathode Ray Tube 阴极射线管(显示器)——Chinese Remainder Theorem 中国剩余定理CSMA/CD--Carrier Sense Multiple Access/Collision Detection载波侦听/冲突检测DDAC——Digital Audio Compress数/模转装换器(数字模拟转换器)DAMA-—Demand Assignment Multiple Address按需分配多址DC。

CDMA是CodeDivisionMultipleAccess的缩写

CDMA是CodeDivisionMultipleAccess的缩写

CDMA是Code Division Multiple Access的缩写,被翻做码分多址。

这是现代通信技术中用来实现信道共享的一种技术。

所谓信道,可以是电磁信号的一个特定频率区域,称为频带;也可以是信号的一个特定时间片段,称为帧。

所谓信道共享,就是将同一个信道供多个用户同时使用并保证互不干扰。

信道共享可以提高信道资源的利用率。

有许多不同的技术可以用来实现信道共享。

把信道频带分割为若干更窄的互不相交的频带(称为子频带),把每个子频带分给一个用户专用(称为地址)。

这种技术被称为“频分多址”技术,英文就是FDMA (Frequency Division Multiple Access/Address)。

这是模拟载波通信、微波通信、卫星通信的基本技术,也是第一代模拟移动通信的基本技术。

类似地,可以把信道帧划分为若干不相重叠的时隙,把每个时隙分配给一个用户作为专用地址。

这就是“时分多址”,即TDMA(Time Division Multiple Access/Ad dress)。

这是数字数据通信和第二代移动通信的基本技术。

如果各个用户的地址既不是指定的信号子频带也不是时隙,而是信号的一组正交编码结构(码型),这些用户信号也可以同时在同一个信道上传输而互不干扰。

这种技术称为“码分多址”,即CDMA。

理论和实践证明,与FDMA及TD MA相比,除了其它一些优点之外,在相同的信道条件下,CDMA具有更高的信道资源利用率,因此,成为第三代移动通信信道共享的基本方式。

CDMA是码分多址的英文缩写(Code Division Muitiple Access),它是在数字技术的分支--扩频通信技术上发展起来的一种崭新而成熟的无线通信技术。

CDMA技术的原理是基于扩频技术,即将需传送的具有一定信号带宽信息数据,用一个带宽远大于信号带宽的高速伪随机码进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。

接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。

通信工程专业英语词汇

通信工程专业英语词汇

通信工程专业英语词汇动态范围: Dynamic range频率偏值: Frequency offset符号率:Symbol rate码域功率:code domain power频分多址: Frequency Division Multiple Access码分多址: Code Division Multiple Access时分多址: Time Division Multiple Access沃什码:Walsh code误码率:Bit Error Rate,BER帧误码率:Frame Error Rate,FER循环冗余码:Cyclic Redundancy Code,CRC时序分析:timing analyze门限:threshold非同步模式:Asynchronous Mode同步模式:Synchronous Mode邻道功率:ACP D―― Adjacent Channel Power先进移动电话业务:AMPS---Advanced Mobile Phone Service组织协会:ANSI --- American National Standard Institute 美国国家标准局BPT --- British Post and Telecommunication Standard 英国邮政与电信标准CCIR --- International Radio Consultative Committee 国际无线电咨询委员会CCITT --- International Telegraph and Telephone Consultative Committee国际/电报咨询委员会CEPT --- Conference of European Post and Telecommunication Administrations欧洲邮电行政会议EIA --- Electronic Engineers Association 电子工业协会美ETSI --- European Telecommunication Standards Institute欧洲电信标准委员会FCC --- Federal Communications Commission联邦通信委员会美IEC --- International Electrotechnics Committee国际电工委员会IEE --- Institution of Electrical Engineers电气工程师协会英IEEE--- Institution of Electrical and Electronics Engineers, INC电气与电子工程师协会美ITU --- International Telecommunication Union 国际电信联盟联合国MPT --- Ministry of Post and telecommunications邮政与电信部英TIA --- Telecommunications Industries Association电信工业协会美WARC --- World Administrative Radio Conference世界无线电行政大会ZVEI --- Zentralverband der Electechnischen Industrie电气工业中央协会德ACP --- Adjacent Channel Power邻道功率AMPS --- Advanced Mobile Phone Institute先进移动电话业务APOC --- Advanced Paging Operator Code先进寻呼操作码AVL --- Average Voice Level平均话音电平BSC --- Base Site Controller基站控制器CDMA --- Code Division Mulitiple Code码分多址CDPD --- Cellular Digital Packet Data蜂窝分组数据系统CSC --- Cell Site Controllor小区控制器DCCH --- Digital Control Channel数字控制信道DECT --- Digital Enhanced Cordless Telecommunications数字增强无绳电话EDACS --- Enhanced Digital Access Communications System加强的数字接入通信系统ERMES --- European Telecommunications Standards Institute欧洲无线电信息系统ESN --- Electronics Serial Number电子串号FDR --- Frequency Domain Reflectometry频域反射计FLEX --- Flexible Paging System可变速寻呼系统FOCC --- Forward Control Channel前向控制信道FVC --- Forward Voice Channel前向话音信道GSC --- Golay Sequential Coding格雷码GSM --- Global System for Mobile Communications全球移动通信系统IBASIC --- Instrument BASIC仪器BASIC语言IDC --- Instantaneous Deviation Control瞬时频偏控制IMSI --- International Mobile Station Identify国际移动台识别号码LNA --- Low Noise Amplifier低噪声放大器LPF/HPF --- Low/High Pass Filter低通/高通滤波器LSB/USB --- Lower/Upper Side Band下/上边带MCC --- Mobile Country Code移动业务国家号码MCS --- Mobile Control Station移动控制站MIN --- Mobile Identification Number移动识别码MNC --- Mobile Network Code移动电话网号码MSC ---Mobile Switching Center移动交换中心MSIN --- Mobile Station Identification Number移动台识别码MTSO --- Mobile Telephone Switching Office移动电话交换局NMSI --- National Mobile Station Identify国内移动台识别号码NMT --- Nordic Mobile Telephone北欧移动电话系统OTP --- One Time Programmable一次性编程PDC --- Personal Digital Cellular个人数字蜂窝系统PHS --- Personal Handy-Phone System个人手持电话系统PSTN --- Public Switching Telephone Network公用交换电话网RECC --- Reverse Control Channel反向控制信道RVC --- Reverse Voice Channel反向话音信道RSSI --- Receiced Signal Strength Indicator接收信号场强指示SCC --- Signalling Channel Controller信令信道控制器SCM --- Station Class Mark移动台级别标志SID --- Syste Indentification Number系统识别号TACS --- Total Access Communications System全选址通信系统TDMA --- Time Division Multiple Access时分多址UUT --- Under Unit Test被测单元VCC --- Voice Channel Controller话音信道控制器VSWR --- Voltages Standing Wave Ratio电压驻波比1997年,爱立信公司向ETSI(欧洲电信标准委员会)提出了EDGE的可行性研究方案,并在同年得到认可。

码分多址调频

码分多址调频

码分多址调频
码分多址调频(Code Division Multiple Access,CDMA)是一种无线通信技术,它采用了码分多址技术和调频技术的组合。

在CDMA中,每个用户被分配一个唯一的伪随机码(即扩频码),用于在发送和接收数据时对信号进行编码和解码。

这些唯一的扩频码使得不同用户之间的信号可以同时传输在相同的频率带宽上,而不会相互干扰。

CDMA工作的原理如下:
1.数据编码:要发送的数据通过扩频码进行编码。

扩频码是
一系列的位码,通过与发送数据进行逻辑运算,生成扩频
信号。

2.调频过程:编码后的数据信号通过调频器,将其调制到相
应的载波频率上。

每个用户通常使用不同的载波频率,以
避免干扰。

3.发送信号:经过调频的数据信号通过天线无线传输。

4.接收信号:接收端的天线接收到信号后,通过接收机进行
解调和解码。

5.解调和解码:接收机使用相同的扩频码进行解调和解码,
还原出原始数据。

CDMA具有以下优点:
•高容量:多个用户可以同时共享相同的频谱,从而增加了系统容量。

•抗干扰能力强:由于每个用户的信号是通过唯一的扩频码区分的,因此不同用户的信号可以同时传输,即使存在干扰,也可以被正确识别和解码。

•隐私性:由于每个用户都有唯一的扩频码,所以其他用户很难窃取或监听他人的通信内容。

CDMA技术在无线通信领域得到广泛应用,其中最著名的应用是CDMA2000和WCDMA等3G(第三代)移动通信标准。

CDMA技术也扩展到4G(LTE)和5G等更高速的无线通信技术中。

数据链路层技术中的码分多址与频分多址技术(七)

数据链路层技术中的码分多址与频分多址技术(七)

数据链路层技术中的码分多址与频分多址技术导言在现代通信系统中,数据链路层(Data Link Layer)起着连接物理层和网络层之间的桥梁作用。

为了实现高效的数据传输,码分多址(Code Division Multiple Access,CDMA)和频分多址(Frequency Division Multiple Access,FDMA)成为了两种常见的数据链路层技术。

本文将从原理、应用和优缺点三个方面分析这两种技术。

一、码分多址技术1. 原理码分多址技术是一种利用扩频技术将数据进行解耦的方式。

在发送端,原始数据经过特定的码型生成多个扩频码序列,然后与载波信号相乘,形成多个扩频信号。

在接收端,接收机通过将接收到的信号与相应的扩频码相乘,再进行积分运算,最终得到要传输的数据。

码分多址技术的关键是不同用户采用不同的扩频码进行编码,使得彼此之间的信号能够相互区分。

2. 应用码分多址技术被广泛应用在手机通信系统中。

通过将每个用户的信号用不同的扩频码进行编码,不同用户的数据可以通过在空间领域上进行复用,从而实现多用户同时传输数据的能力。

3. 优缺点码分多址技术具有以下优点:- 抗干扰能力强:由于每个用户采用独特的扩频码进行编码,所以即使多个用户在同一时间和频率上进行通信,也能够通过相应的解扩码过程进行区分,从而降低了干扰的可能性。

- 安全性高:由于使用了扩频码进行编码,在传输过程中用户之间的数据相互独立且难以被窃取,提高了数据的安全性。

然而,码分多址技术也存在以下缺点:- 复杂性高:码分多址技术需要在发送和接收端都进行复杂的积分运算和解扩码操作,增加了系统的复杂性和成本。

- 频谱利用率低:由于每个用户在整个频带上都占用一定的带宽资源,频谱利用率相对较低。

二、频分多址技术1. 原理频分多址技术是一种通过将频率资源进行划分来实现多用户同时传输数据的技术。

在发送端,原始数据被分成多个子信道,并分配给不同的用户进行传输。

GSM,CDMA,GPRS三种模式

GSM,CDMA,GPRS三种模式

GSM,CDMA,GPRS三种模式CDMA:Code Division Multiple Access码分多址-拥有频率利用率较高、手机功耗低等优点。

与GSM相同,CDMA也有2代、2.5代和3代技术。

中国联通将于今年下半年推出的CDMA属于2.5代技术。

CDMA被认为是第3代移动通信技术的首选,目前的标准有WCDMA、CDMA2000、TD-SCDMA。

GPRS:"General Packet Radio Services通用分组无线业务,是一种新的分组数据承载业务。

相对原来GSM的拨号方式的电路交换数据传送方式,GPRS是分组交换技术,具有“实时在线”、“按量计费”、“快捷登录”、“高速传输”、“自如切换”的优点"GSM:Global System for Mobile Communication是1992年欧洲标准化委员会统一推出的”全球移动通信系统”,它采用数字通信技术、统一的网络标准,使通信质量得以保证,并可以开发出更多的新业务供用户使用GSM/CDMA/GPRS网络与3G网络GSM时分/CDMA码分/GPRSGSM算是2G,CDMA算是2.5G,速度比GSM快,3G支持视频电话,比前两种速度快手机自诞生以来分为1G,2G,3G,4G。

GSM/CDMA属于2G制式,GPRS是解决GSM手机上网而在GSM网络叠加的一个网络,一般把GPRS归为 2.5G。

3G在国际上有四种标标准:WCDMA, TD-SCDMA, CDMA2000,WIMAX。

其中WCDMA是由GSM/GPRS演变而来,可以说WCDMA的硬件结构在总体上就是GSM、GPRS网络的叠加。

CDMA2000是由CDMA 演变而来的。

TD-SCDMA是中国提出的3G标准,其在结构上和WCDMA差不多。

WIMAX 是另一种3G标准,但在中国不允许建设WIMAX商业网络。

3G总体来说比2G手机增加了视频会话,上网速度,以及无缝漫游。

直接序列码分多址

直接序列码分多址

直接序列码分多址(Direct Sequence Code Division Multiple Access,DS-CDMA)是一种数字通信技术,常用于无线通信系统中。

其基本原理是将每个用户的信息数据通过扩频技术转换为具有独立码序列的宽带信号,同时在传输过程中使用同一频带进行传输,从而实现多用户之间的共享。

DS-CDMA中,每个用户的信息数据都被编码成一个独立的序列,称为扩频码(spreading code)。

这些扩频码是伪随机序列(Pseudo Random Sequence),在码元周期内的自相关性非常低,因此可以实现多用户之间的同步区分。

在传输时,每个用户的信息数据都会与其对应的扩频码相乘,从而实现信息数据的扩频。

在接收端,接收到的宽带信号也会与对应的扩频码相乘,然后进行积分处理,得到原始的信息数据。

由于DS-CDMA技术具有抗干扰能力强、频带利用率高等优点,因此被广泛应用于3G 和4G无线通信系统中。

码分多址系统中正交序列集设计及相关问题研究

码分多址系统中正交序列集设计及相关问题研究

码分多址系统中正交序列集设计及相关问题研究码分多址(Code Division Multiple Access,CDMA)系统是一种常见的无线通信技术,它通过使用不同的码序列将数据分散到不同的信道中,实现多用户同时传输的功能。

而正交序列集是CDMA系统中使用的一种特殊码序列集合,它具有良好的正交性质和低互相关性,能够提高系统的容量和抗干扰性。

本文将介绍码分多址系统中正交序列集的设计及相关问题研究。

首先,正交序列集的设计是码分多址系统中的核心问题之一。

在CDMA系统中,每个用户使用一个不同的码序列来标识自己的数据,并使用扩频技术将数据扩展到更宽的带宽上。

正交序列集的设计就是要保证每个用户的码序列之间具有良好的正交性,以避免互相干扰。

常用的正交序列集包括Walsh序列、Hadamard序列等。

这些序列具有正交性和低互相关性,适用于CDMA系统的应用。

研究者们通过数学方法和算法优化等手段,设计出了各种具有不同特性的正交序列集,以满足具体通信系统的需求。

其次,码分多址系统中正交序列集的性能评估也是一个重要的研究课题。

正交序列集的性能可以通过各种指标来评估,包括正交性、互相关性、功率谱和自相关性等。

正交性是指序列集内部的所有序列两两之间的内积为0,互相关性是指序列集内部的所有序列两两之间的互相关值越小越好。

功率谱是指序列集的频谱分布,要求能够有效地利用频谱资源。

自相关性是指序列与自身的相互关联程度,要求尽可能小。

研究者通过理论分析和仿真实验等手段,评估不同正交序列集的性能表现,以便选择合适的序列集应用于实际系统中。

此外,正交序列集的构造和优化也是一个研究热点。

通过合适的构造方法和优化算法,可以设计出具有更好性能的正交序列集。

例如,通过矩阵运算和线性规划等数学方法,可以构造出性能更优的Walsh序列和Hadamard序列。

通过改进遗传算法、粒子群优化算法等优化算法,可以搜索到更优的正交序列集。

这些研究不仅可以提高正交序列集的性能,还可以简化序列集的构造和优化过程,提高系统的可实现性。

移动通信的三种多址方式

移动通信的三种多址方式

移动通信的三种多址方式移动通信的三种多址方式移动通信中,为了实现多个用户使用通信资源,常常采用多址技术。

以下是移动通信中常见的三种多址方式:1. 频分多址(Frequency Division Multiple Access,FDMA)频分多址是指将一段频谱分成多个不重叠的子频带,每个用户占用一个子频带进行通信。

频分多址技术采用频率分割的方法将用户间的通信资源进行分配,每个用户会被分配到不同的频率段,实现用户间的区分。

在同一个时间段内,每个频率段只能被一个用户使用。

频分多址方式简单,但是在频率资源利用率方面相对较低。

2. 时分多址(Time Division Multiple Access,TDMA)时分多址是指将时间分成多个时隙,每个用户占用一个或多个时隙进行通信。

时分多址技术通过时间分割的方法将用户间的通信资源进行分配,每个用户在同一个频带内的不间段内进行通信。

时分多址方式在时间维度上进行用户区分,实现了通信资源的共享。

时分多址方式可以更好地适应用户通信的突发性和不均匀性,提高了频率资源的利用效率。

3. 码分多址( Division Multiple Access,CDMA)码分多址是指将用户信息进行编码,然后统一进行传输,接收端再进行解码还原用户信息。

码分多址技术通过码分的方式将用户间的通信资源进行区分,每个用户使用不同的码片序列进行通信。

码分多址方式不需要频率和时间的精确同步,能够充分利用通信资源,并具有抗干扰性能较好的特点。

码分多址方式在3G和4G移动通信中常被采用。

以上是移动通信中常见的三种多址方式:频分多址、时分多址和码分多址。

根据不同的需求和技术要求,可以选择合适的多址方式来进行通信资源的分配和利用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)外文文献翻译文献、资料中文题目:码分多址文献、资料英文题目:Code division multiple access文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期:2017.02.14外文原文Code division multiple accessCode division multiple access (CDMA) is a channel access method used by various radio communication technologies. It should not be confused with the mobile phone standards called cdmaOne, CDMA2000 (the 3G evolution of cdmaOne) and WCDMA (the 3G standard used by GSM carriers), which are often referred to as simply CDMA, and use CDMA as an underlying channel access method.One of the concepts in data communication is the idea of allowing several transmitters to send information simultaneously over a single communication channel. This allows several users to share a band of frequencies (see bandwidth). This concept is called multiple access. CDMA employs spread-spectrum technology and a special coding scheme (where each transmitter is assigned a code) to allow multiple users to be multiplexed over the same physical channel. By contrast, time division multiple access (TDMA) divides access by time, while frequency-division multiple access (FDMA) divides it by frequency. CDMA is a form of spread-spectrum signalling, since the modulated coded signal has a much higher data bandwidth than the data being communicated.Steps in CDMA ModulationEach user in a CDMA system uses a different code to modulate their signal. Choosing the codes used to modulate the signal is very important in the performance of CDMA systems. The best performance will occur when there is good separation between the signal of a desired user and the signals of other users. The separation of the signals is made by correlating the received signal with the locally generated code of the desired user. If the signal matches the desired user's code then the correlation function will be high and the system can extract that signal. If the desired user's code has nothing in common with the signal the correlation should be as close to zero aspossible (thus eliminating the signal); this is referred to as cross correlation. If the code is correlated with the signal at any time offset other than zero, the correlation should be as close to zero as possible. This is referred to as auto-correlation and is used to reject multi-path interference.In general, CDMA belongs to two basic categories: synchronous (orthogonal codes) and asynchronous (pseudorandom codes).Code division multiplexing (Synchronous CDMA)Synchronous CDMA exploits mathematical properties of orthogonality between vectors representing the data strings. For example, binary string 1011 is represented by the vector (1, 0, 1, 1). Vectors can be multiplied by taking their dot product, by summing the products of their respective components (for example, if u = (a, b) and v = (c, d), then their dot product u·v = ac + bd). If the dot product is zero, the two vectors are said to be orthogonal to each other. Some properties of the dot product aid understanding of how W-CDMA works.Each user in synchronous CDMA uses a code orthogonal to the others' codes to modulate their signal. An example of four mutually orthogonal digital signals is shown in the figure. Orthogonal codes have a cross-correlation equal to zero; in other words, they do not interfere with each other. In the case of IS-95 64 bit Walsh codes are used to encode the signal to separate different users. Since each of the 64 Walsh codes are orthogonal to one another, the signals are channelized into 64 orthogonal signals. The following example demonstrates how each user's signal can be encoded and decoded.Asynchronous CDMAWhen mobile-to-base links cannot be precisely coordinated, particularly due to the mobility of the handsets, a different approach is required. Since it is not mathematically possible to create signature sequences that are both orthogonal forarbitrarily random starting points and which make full use of the code space, unique "pseudo-random" or "pseudo-noise" (PN) sequences are used in asynchronous CDMA systems. A PN code is a binary sequence that appears random but can be reproduced in a deterministic manner by intended receivers. These PN codes are used to encode and decode a user's signal in Asynchronous CDMA in the same manner as the orthogonal codes in synchronous CDMA (shown in the example above). These PN sequences are statistically uncorrelated, and the sum of a large number of PN sequences results in multiple access interference (MAI) that is approximated by a Gaussian noise process (following the central limit theorem in statistics). Gold codes are an example of a PN suitable for this purpose, as there is low correlation between the codes. If all of the users are received with the same power level, then the variance (e.g., the noise power) of the MAI increases in direct proportion to the number of users. In other words, unlike synchronous CDMA, the signals of other users will appear as noise to the signal of interest and interfere slightly with the desired signal in proportion to number of users.All forms of CDMA use spread spectrum process gain to allow receivers to partially discriminate against unwanted signals. Signals encoded with the specified PN sequence (code) are received, while signals with different codes (or the same code but a different timing offset) appear as wideband noise reduced by the process gain.Since each user generates MAI, controlling the signal strength is an important issue with CDMA transmitters. A CDM (synchronous CDMA), TDMA, or FDMA receiver can in theory completely reject arbitrarily strong signals using different codes, time slots or frequency channels due to the orthogonality of these systems. This is not true for Asynchronous CDMA; rejection of unwanted signals is only partial. If any or all of the unwanted signals are much stronger than the desired signal, they will overwhelm it. This leads to a general requirement in any asynchronous CDMA system to approximately match the various signal power levels as seen at the receiver.In CDMA cellular, the base station uses a fast closed-loop power control scheme to tightly control each mobile's transmit power.[edit] Efficient Practical utilization of Fixed Frequency SpectrumIn theory, CDMA, TDMA and FDMA have exactly the same spectral efficiency but practically, each has its own challenges – power control in the case of CDMA, timing in the case of TDMA, and frequency generation/filtering in the case of FDMA.TDMA systems must carefully synchronize the transmission times of all the users to ensure that they are received in the correct time slot and do not cause interference. Since this cannot be perfectly controlled in a mobile environment, each time slot must have a guard-time, which reduces the probability that users will interfere, but decreases the spectral efficiency. Similarly, FDMA systems must use a guard-band between adjacent channels, due to the unpredictable doppler shift of the signal spectrum because of user mobility. The guard-bands will reduce the probability that adjacent channels will interfere, but decrease the utilization of the spectrum.Flexible Allocation of ResourcesAsynchronous CDMA offers a key advantage in the flexible allocation of resources i.e. allocation of a PN codes to active users. In the case of CDM (synchronous CDMA), TDMA, and FDMA the number of simultaneous orthogonal codes, time slots and frequency slots respectively is fixed hence the capacity in terms of number of simultaneous users is limited. There are a fixed number of orthogonal codes, time slots or frequency bands that can be allocated for CDM, TDMA, and FDMA systems, which remain underutilized due to the bursty nature of telephony and packetized data transmissions. There is no strict limit to the number of users that can be supported in an asynchronous CDMA system, only a practical limit governed by the desired bit error probability, since the SIR (Signal to Interference Ratio) varies inversely with the number of users. In a bursty traffic environment like mobile telephony, the advantage afforded by asynchronous CDMA is that the performance(bit error rate) is allowed to fluctuate randomly, with an average value determined by the number of users times the percentage of utilization. Suppose there are 2N users that only talk half of the time, then 2N users can be accommodated with the same average bit error probability as N users that talk all of the time. The key difference here is that the bit error probability for N users talking all of the time is constant, whereas it is a random quantity (with the same mean) for 2N users talking half of the time.In other words, asynchronous CDMA is ideally suited to a mobile network where large numbers of transmitters each generate a relatively small amount of traffic at irregular intervals. CDM (synchronous CDMA), TDMA, and FDMA systems cannot recover the underutilized resources inherent to bursty traffic due to the fixed number of orthogonal codes, time slots or frequency channels that can be assigned to individual transmitters. For instance, if there are N time slots in a TDMA system and 2N users that talk half of the time, then half of the time there will be more than N users needing to use more than N time slots. Furthermore, it would require significant overhead to continually allocate and deallocate the orthogonal code, time slot or frequency channel resources. By comparison, asynchronous CDMA transmitters simply send when they have something to say, and go off the air when they don't, keeping the same PN signature sequence as long as they are connected to the system.Spread-spectrum characteristics of CDMAMost modulation schemes try to minimize the bandwidth of this signal since bandwidth is a limited resource. However, spread spectrum techniques use a transmission bandwidth that is several orders of magnitude greater than the minimum required signal bandwidth. One of the initial reasons for doing this was military applications including guidance and communication systems. These systems were designed using spread spectrum because of its security and resistance to jamming. Asynchronous CDMA has some level of privacy built in because the signal is spread using a pseudo-random code; this code makes the spread spectrum signals appearrandom or have noise-like properties. A receiver cannot demodulate this transmission without knowledge of the pseudo-random sequence used to encode the data. CDMA is also resistant to jamming. A jamming signal only has a finite amount of power available to jam the signal. The jammer can either spread its energy over the entire bandwidth of the signal or jam only part of the entire signal.CDMA can also effectively reject narrow band interference. Since narrow band interference affects only a small portion of the spread spectrum signal, it can easily be removed through notch filtering without much loss of information. Convolution encoding and interleaving can be used to assist in recovering this lost data. CDMA signals are also resistant to multipath fading. Since the spread spectrum signal occupies a large bandwidth only a small portion of this will undergo fading due to multipath at any given time. Like the narrow band interference this will result in only a small loss of data and can be overcome.Another reason CDMA is resistant to multipath interference is because the delayed versions of the transmitted pseudo-random codes will have poor correlation with the original pseudo-random code, and will thus appear as another user, which is ignored at the receiver. In other words, as long as the multipath channel induces at least one chip of delay, the multipath signals will arrive at the receiver such that they are shifted in time by at least one chip from the intended signal. The correlation properties of the pseudo-random codes are such that this slight delay causes the multipath to appear uncorrelated with the intended signal, and it is thus ignored.Some CDMA devices use a rake receiver, which exploits multipath delay components to improve the performance of the system. A rake receiver combines the information from several correlators, each one tuned to a different path delay, producing a stronger version of the signal than a simple receiver with a single correlation tuned to the path delay of the strongest signal.Frequency reuse is the ability to reuse the same radio channel frequency at other cell sites within a cellular system. In the FDMA and TDMA systems frequency planning is an important consideration. The frequencies used in different cells must be planned carefully to ensure signals from different cells do not interfere with each other. In a CDMA system, the same frequency can be used in every cell, because channelization is done using the pseudo-random codes. Reusing the same frequency in every cell eliminates the need for frequency planning in a CDMA system; however, planning of the different pseudo-random sequences must be done to ensure that the received signal from one cell does not correlate with the signal from a nearby cell.Since adjacent cells use the same frequencies, CDMA systems have the ability to perform soft hand offs. Soft hand offs allow the mobile telephone to communicate simultaneously with two or more cells. The best signal quality is selected until the hand off is complete. This is different from hard hand offs utilized in other cellular systems. In a hard hand off situation, as the mobile telephone approaches a hand off, signal strength may vary abruptly. In contrast, CDMA systems use the soft hand off, which is undetectable and provides a more reliable and higher quality signal.Collaborative CDMAIn a recent study, a novel collaborative multi-user transmission and detection scheme called Collaborative CDMA[12] has been investigated for the uplink that exploits the differences between users’ fading channel signatures to increase the user capacity well beyond the spreading length in multiple access interference (MAI) limited environment. The authors show that it is possible to achieve this increase at a low complexity and high bit error rate performance in flat fading channels, which is a major research challenge for overloaded CDMA systems. In this approach, instead of using one sequence per user as in conventional CDMA, the authors group a small number of users to share the same spreading sequence and enable group spreading and despreading operations. The new collaborative multi-user receiver consists of two stages: group multi-user detection (MUD) stage to suppress the MAI between thegroups and a low complexity maximum-likelihood detection stage to recover jointly the co-spread users’ data using minimum Euclidean distance measure and users’ channel gain coefficients. In CDM signal security is high.。

相关文档
最新文档