活性炭吸附池工艺设计的探讨
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性炭吸附池工艺设计的探讨
更新时间:2009-11-11 15:50 来源:作者: 阅读:920 网友评论0条
摘要:本文结合水厂活性炭吸附池工艺设计的调整过程,探讨了当前活性炭吸附池工艺设计中普遍关注的问题,包括池型、滤层结构、冲洗方式及冲洗水源等,同时简要介绍了目前我国活性炭吸附池的应用情况。
关键词:活性炭吸附池设计
1 水厂活性炭吸附池工艺设计概况
水厂扩(改)建工程于1999年开始方案设计,2003年被确定为国家“863”课题“南方地区安全饮用水保障技术”的示范工程(以下简称示范工程),水厂扩建工程规模20万m3/d,改建工程规模32万m 3/d,其中常规净化构筑物按新增20万m3/d规模设计,预处理、深度处理、污泥处理按新建52万m3/d规模设计。工程于2003年8月开工建设,目前正在建设中。示范工程以东深引水和东部供水两大水源系统为水源。东深引水水源受到生活性有机污染,氨氮、亚硝酸盐、生化需氧量(BOD5)、耗氧量(KMnO4法)、溶解氧等项目超标。虽然东深引水工程经沙湾生物硝化预处理后,主要控制指标氨氮去除效果良好,实测值可基本符合《生活饮用水水源水质标准》二级水源水质标准,但去除效果不稳定,实测氨氮值和总磷值时有超标。而且即使硝化后,N、P等营养物质仍残留水中,为藻类等水生植物的繁殖提供了条件。示范工程出水水质执行《城市供水行业2000年技术进步发展规划》第一类水司的88项指标,同时课题要求下列指标达到:出厂水浊度低于0.1NTU;高锰酸盐指数低于2mg/L;氨氮低于0.5mg/L。常规净化工艺难以满足原水水质不断恶化、水源微污染日益严重同时出水水质日趋严格的要求。国内外大量的研究试验和工程实践证明,采用臭氧-活性炭深度处理工艺可以有效地去除水的色、嗅、味,降解有机物,灭活细菌和病原微生物,对消毒副产物及其前体物具有很好的去除效果,对内分泌干扰物及其前体物具有一定的控制作用,可明显降低水的致突变活性,并提高水的生物稳定性,使饮用水水质得到极大改善,因此示范工程确定采用臭氧-活性炭吸附深度处理工艺。
由于方案设计时,尚无正式颁布的活性炭吸附池设计的国家级或行业规范,可借鉴的同类型工程也很少,因此主要参照北京市第九水厂活性炭吸附池的型式、反冲洗水力特性并结合水厂新建、扩建系统竖向及平面布置进行设计。
活性炭吸附池按32万m3/d和20万m3/d规模分为两个系统,并与臭氧接触池、臭氧制备间组合布置为集团式构筑物。
活性炭吸附池采用重力式、恒水位、恒速过滤,双排布置,利用新建滤池滤后水重力反冲洗。采用小阻力配水系统。
采用直径为 1.5mm,长2~3 mm的柱状炭,干容重0.495t/m3 ,吸水饱和后的密度为1.28t/m3。
初步设计主要工艺参数见表1。
随着863课题研究的深入和认识水平的不断提高,示范工程在炭池形式、滤料组成、反冲洗方式以及冲洗水源等方面均做了较大幅度的调整,这一调整既顺应了供水行业对深度处理的客观需求,也反映了人们对炭吸附池设计的认识过程。
2 活性炭吸附池工艺设计的调整要点
2.1 池型
我国已建或在建水厂活性炭吸附池以普通快滤池为基本池型,多采用降流形式,在对进出水阀门及控制方式、滤层及承托层组成、冲洗及冲洗排水方式以及配水系统不断改进的基础上,形成虹吸滤池、V型滤池和翻板滤池等多种池型。见表2。
表2 国内部分水厂活性炭吸附池池型
活性炭吸附池选型应根据处理规模、构筑物的衔接方式等因素、结合工程地形条件等,通过技术经济比较后确定。
虹吸滤池的进水、出水采用虹吸管代替阀门,变水位等速过滤,滤池运行由水力自动控制,可利用自身出水重力反冲洗,不需要冲洗水泵、鼓风机等设备。适用于水量2~10m3/d的中型水厂。
V型滤池采用均质深滤层、恒水位、恒滤速过滤,具有气、水反冲洗和表面扫洗,冲洗效果好,运行稳妥可*,适用于大、中型水厂,单池面积可达150m2以上。目前已在我国很多水厂的砂滤池中使用,但用于活性炭吸附池的建成实例较少。
示范工程炭池原设计综合V型滤池的进出水阀门组形式及控制方式,均质深滤层、恒水位、恒滤速过滤等特点,但配水采用短柄滤头小阻力系统,只有水冲洗,没有气冲。池内设置中央进水渠和U型进水支渠(槽),兼进水配水和冲洗排水集水功能。
翻板滤池具有均质深滤层、恒水位、恒滤速过滤的特点,来水经进水堰均匀进入滤池,滤后水经横向的集水管、纵向垂直管列组汇入集水槽至出水管。滤池采用气冲、气水冲、水冲三个阶段冲洗(水冲洗强度可达15~16L/m2·s),冲洗废水通过位于炭层上方的排水舌阀(板)排出,由于排水舌阀的内侧底高于滤料层0.15~0.20m,而且排水阀板是在反冲洗结束,滤料沉降20s后再逐步开启,从而滤料流失的几率较小。因此翻板滤池具有冲洗强度大,滤料冲洗干净且不易流失的特点,弥补了活性炭滤料轻易流失的不足。根据建设单位意见,施工图设计阶段将炭吸附池改为翻板滤池。
目前欧洲各国有300多家水厂采用翻板滤池,我国仅在昆明市自来水公司第七水厂(掌鸠河水厂)的砂滤池采用翻板滤池,该滤池现已竣工,目前尚未通水。
以上几种活性炭池型在技术上均可行,设计可根据具体情况选用不同的池型。
2.2 滤层结构
与我国目前大多数建成使用的炭池相同,示范工程在最初设计时也是采用单层活性炭结构。但在试验研究发现,对于去除水中可生物降解有机物、氨氮和亚硝酸盐氮,以及提高水的生物稳定性等都是主要依*生物活性炭工艺来完成。而在运行过程中,脱落的生物膜影响出水水质,甚至出现浊度和细菌总数比砂滤池上升的情况。由于生物活性炭工艺在发挥生物作用和去除浊度方面往往难以兼顾,因此,研究石英砂垫层对生物活性炭工艺的补充与屏障作用具有重要的意义。
采用活性炭下铺设石英砂垫层的办法简易可行,在欧洲也有实际应用。深圳水司对此进行了试验研究,在厚度2.0m的柱状活性炭下部铺设粒径范围为0.8~1.2mm,厚度为300mm的石英砂。结果表明,经过石英砂垫层,活性炭出水浊度降低幅度多在0.02NTU左右;对生物活性炭池反冲洗前后细菌总数的分析比较发现,反冲洗前(连续运行三周),石英砂垫层对水中细菌的截留作用减弱,冲洗后,可恢复对水中细菌的部分截留作用;在加氯量1.25mg/L 条件下,活性炭出水和砂垫层出水的余氯值基本相近,经加氯消毒,细菌总数均为未检出。因此认为在生物活性炭底部加石英砂垫层对保障活性炭出水浊度有积极的作用,并对生物活性炭处理微生物的安全性具有屏障作用。
参照这一试验结果,正在建设的梅林水厂活性炭吸附池设计采用2.0m炭层下铺设0.3m石英砂的滤层结构。示范工程也拟将炭层厚度改为2.1m,接触时间相应调整为13.3min(新建)和8.4min(扩建),并增加粒径范围为0.6~1.0mm、厚度为0.3m的石英砂垫层。
在接触时间和吸附池过滤面积一定的情况下,炭层下增加石英砂垫层会增加池深和水头损失。在同一冲洗强度下,由于二者的比重及滤层级配不同,膨胀率不同,冲洗后会出现一定程度的滤层混掺。因此,应通过进一步的技术经济比较以及必要的试验,确定合理的池深及适当的反冲洗强度。
2.3 冲洗方式及冲洗水源
在活性炭深度处理工艺中,炭池反冲洗的效果直接影响炭池的运行。生物活性炭滤池运行一定时间后,活性炭吸附能力降低,老化的生物膜脱落,颗粒物在炭粒表面和滤床中的进一步截留,均影响生物活性炭滤池的出水水质,应及时进行合理有效的反冲洗。