第一讲(电子的粒子性与波动性)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料物理性能
祝柏林 武汉科技大学 2011.9
材料:金属材料、无机非金属材料、 高分子材料
物理性能:电、光、磁、热、声、 辐射
力学性能
课程的内容:
1.材料的电、介电、光、热、磁、弹性和 内耗性能的物理本质。
2. 物性与材料的成分、组织结构、工艺 过程的关系及变化规律。 物性随环境而变化 环境有温度、压力、电场、磁场、辐射、 化学介质、力场等
考核方式:?? 成绩组成:平时:20%,考试:80% 教材:材料物理性能, 田莳主编,北京航空航天
大学出版社,2004年11月 参考书籍:无机材料物理性能, 关振铎等编著, 清华大学出版社
第一章 固体中电子能量结构和状态
原子间的键合、晶体结构和电子能
量结构与状态决定了材料的物理性能。 键合类型:金属键、离子键、共价 键、分子键和氢键。 晶体结构复杂:有14种类型空间点 阵 (Bravais点阵)。
54v
电子枪 探测器
500
实验所证实。
Ni
电子枪
U
电子枪 探测器
K
D
探测器
B
500
54v
电子束
G
d
d
d sin k , k 1
镍单晶
Ni
从晶体表面相邻两原 子(离子)所散射出来 500 的波,如果在max方向 上光程差为,就会相 互加强,产生极大。 可以算出54eV电子束 相应波长:
频率为的光,其光子具有的能量为:
E m C h
2
式中:h = 6.6310-34J· S,为普朗克恒量。 利用光子理论成功地说明了光的发射和吸 收现象。
鉴于微观粒子光子所表现出的双重性 l924年法国物理学家德布罗意(dc Broglie)认为 “波粒二象性” 具有普遍意义,不局限于光,并 提出物质波假说:一个能量为E、动量为P的粒子, 既具有粒子性,同时也具有波动性,其波长由动量
1.1.2
电子的波动性
问题的提出: 19世纪末,人们确认光具有波动性,服从 麦克斯韦(Maxwcll)的电磁波动理论。利用 波动学说解释了光在传播中的偏振、干涉、 衍射现象,但不能解释光电效应。 1905年爱因斯坦(Einstein)依照普朗克 (Planck)的量子假设提出了光子理论,认 为光是由一种微粒—光子组成的。
原 子 间 键 合 晶 体 结 构 材 料 物理性能
固 体 的 电 子 能量结构和状态
键合、晶体结构、电子能量结构是理解和
创新一种材料的物理性能的理论基础。
其中电子的能量结构最为复杂。
思路:
电子的运动到底有什么规律和特殊性?
电子的粒子性-------霍尔效应 电子的波动性-------德布罗意波假设 电子波动性的描述-----薛定谔方程 波动的状态意味着什么----求解薛定谔方 程
3.介绍与物理性能相关的特殊材料 功能材料 4. 介绍与这些物性相关的测试技术 与分析方法
课程特点:
需具备的基础知识:大学普通物理、化 学、物理冶金、晶体学 量子力学、理论物理、固体物理 难点:第1章 固体中的电子状态
课程安排:
授课周次:5-13
总
学
时:44 ;理论学时:36,实验学时:8
假设电子受力后产生的电场为匀强电场,前后 两侧面平行,间距为h,则其场强为:
E=U/h
故电子所受静电力为:F电=E· e=(U· e)/h
电子处于稳定状态时,电场力与洛仑兹力 平衡,即: F电=f洛仑兹
将F电=E· e=(U· e)/h 及 f洛仑兹=B0· e· v两式带入, 得: E=B0· v 或:U=h· v· B0
C
与该粒子相联系的平面单色波的波长又可 表示为:
h h h p m m0
1
2
C2
上式为实物粒子的德布罗意波长计算公式 。 如果ν<<C,那么:
h m0
德布罗意关于物质波的 假设,在1927年被美国 贝尔电话实验室的戴维 森(Davisson)和革末 (Germer) 的电子衍射
效应,证实了电子的粒子性。
霍耳效应:取一块金属导体放在与它通过的电流
方向垂直的磁场中,结果发现在横跨样品的两面 产生一个与电流和磁
场垂直的电场。这种现
象称为霍耳效应。
-
+
Jx
B0
所产生的电场称为霍耳场,用霍耳系数来 表征。
-
+
B0
Jx
RH
EH J x B0
霍耳场强度
源自文库
由洛仑兹力公式知电子所受洛仑兹力为: f洛仑兹=B0· e· v
假设:金属的密度为,原子价为Z,原子摩尔质 量为M,那么电子密度为:
nZ
N0
M
N0 Z M
N0为阿伏加德罗常数
6.021023/mol。
?问题:
根据计算,如果金属中只存在自由电子一 种载流子,那么RH只能为负。但实际测量的 结果却与之相反,RH为正。实际结果说明金 属晶体中的电子一定还有其它存在状态。
依定义,在面积为ds的截面面,电流强度I 可以表示为:I=n· e· v· ds
依定义,电流强度I与电流密度Jx间的关系 可表示为: Jx=I/ds
Jx 由此,可以得出:v ne
代入 E=B0· v ,得:
B0 J x E ne
霍耳场 表达式
即霍耳场可表示为:
综合 RH
J x B0 EH ne
EH ,可以得到: J x B0
J x B0 EH 1 1 RH J x B0 J x B0 ne ne
其中:Jx为沿x方向的电流密度;
B0为磁场强度; n为电子密度。
上式说明: 霍耳系数只与金属中的自由电子有关。 霍耳效应证明金属中存在自由电子,它是 电荷的载体。RH的理论计算与实测结果对于 典型金属一致。
本章将就固体中电子能量结构和状态作 初步介绍,建立起现代固体电子能量结构 观念,包括德布罗意波、费密—狄拉克
分布函数、禁带起因、能带结构及其与
原子能级的关系,以及非晶态金属、半导 体的电子状态等。
1927年10月,第五届索尔维会议
1.1 电子的粒子性和波动性
1.1.1 电子粒子性和霍耳效应
在1879年Edwin Hall发现的金属晶体中存在霍耳
质—波动性和粒子性,即波粒二象性。
P确定,频率则由能量E确定。
h h ; p m
E mC h
2
式中:m为粒子质量。v为自由粒子运动 速度。 由上式计算的波长,称为德布罗 意波波长。
在相对论力学中运动物体的相对质量m、静止质 量m0及速度v间存在如下关系:
m
m0 1
2 2
祝柏林 武汉科技大学 2011.9
材料:金属材料、无机非金属材料、 高分子材料
物理性能:电、光、磁、热、声、 辐射
力学性能
课程的内容:
1.材料的电、介电、光、热、磁、弹性和 内耗性能的物理本质。
2. 物性与材料的成分、组织结构、工艺 过程的关系及变化规律。 物性随环境而变化 环境有温度、压力、电场、磁场、辐射、 化学介质、力场等
考核方式:?? 成绩组成:平时:20%,考试:80% 教材:材料物理性能, 田莳主编,北京航空航天
大学出版社,2004年11月 参考书籍:无机材料物理性能, 关振铎等编著, 清华大学出版社
第一章 固体中电子能量结构和状态
原子间的键合、晶体结构和电子能
量结构与状态决定了材料的物理性能。 键合类型:金属键、离子键、共价 键、分子键和氢键。 晶体结构复杂:有14种类型空间点 阵 (Bravais点阵)。
54v
电子枪 探测器
500
实验所证实。
Ni
电子枪
U
电子枪 探测器
K
D
探测器
B
500
54v
电子束
G
d
d
d sin k , k 1
镍单晶
Ni
从晶体表面相邻两原 子(离子)所散射出来 500 的波,如果在max方向 上光程差为,就会相 互加强,产生极大。 可以算出54eV电子束 相应波长:
频率为的光,其光子具有的能量为:
E m C h
2
式中:h = 6.6310-34J· S,为普朗克恒量。 利用光子理论成功地说明了光的发射和吸 收现象。
鉴于微观粒子光子所表现出的双重性 l924年法国物理学家德布罗意(dc Broglie)认为 “波粒二象性” 具有普遍意义,不局限于光,并 提出物质波假说:一个能量为E、动量为P的粒子, 既具有粒子性,同时也具有波动性,其波长由动量
1.1.2
电子的波动性
问题的提出: 19世纪末,人们确认光具有波动性,服从 麦克斯韦(Maxwcll)的电磁波动理论。利用 波动学说解释了光在传播中的偏振、干涉、 衍射现象,但不能解释光电效应。 1905年爱因斯坦(Einstein)依照普朗克 (Planck)的量子假设提出了光子理论,认 为光是由一种微粒—光子组成的。
原 子 间 键 合 晶 体 结 构 材 料 物理性能
固 体 的 电 子 能量结构和状态
键合、晶体结构、电子能量结构是理解和
创新一种材料的物理性能的理论基础。
其中电子的能量结构最为复杂。
思路:
电子的运动到底有什么规律和特殊性?
电子的粒子性-------霍尔效应 电子的波动性-------德布罗意波假设 电子波动性的描述-----薛定谔方程 波动的状态意味着什么----求解薛定谔方 程
3.介绍与物理性能相关的特殊材料 功能材料 4. 介绍与这些物性相关的测试技术 与分析方法
课程特点:
需具备的基础知识:大学普通物理、化 学、物理冶金、晶体学 量子力学、理论物理、固体物理 难点:第1章 固体中的电子状态
课程安排:
授课周次:5-13
总
学
时:44 ;理论学时:36,实验学时:8
假设电子受力后产生的电场为匀强电场,前后 两侧面平行,间距为h,则其场强为:
E=U/h
故电子所受静电力为:F电=E· e=(U· e)/h
电子处于稳定状态时,电场力与洛仑兹力 平衡,即: F电=f洛仑兹
将F电=E· e=(U· e)/h 及 f洛仑兹=B0· e· v两式带入, 得: E=B0· v 或:U=h· v· B0
C
与该粒子相联系的平面单色波的波长又可 表示为:
h h h p m m0
1
2
C2
上式为实物粒子的德布罗意波长计算公式 。 如果ν<<C,那么:
h m0
德布罗意关于物质波的 假设,在1927年被美国 贝尔电话实验室的戴维 森(Davisson)和革末 (Germer) 的电子衍射
效应,证实了电子的粒子性。
霍耳效应:取一块金属导体放在与它通过的电流
方向垂直的磁场中,结果发现在横跨样品的两面 产生一个与电流和磁
场垂直的电场。这种现
象称为霍耳效应。
-
+
Jx
B0
所产生的电场称为霍耳场,用霍耳系数来 表征。
-
+
B0
Jx
RH
EH J x B0
霍耳场强度
源自文库
由洛仑兹力公式知电子所受洛仑兹力为: f洛仑兹=B0· e· v
假设:金属的密度为,原子价为Z,原子摩尔质 量为M,那么电子密度为:
nZ
N0
M
N0 Z M
N0为阿伏加德罗常数
6.021023/mol。
?问题:
根据计算,如果金属中只存在自由电子一 种载流子,那么RH只能为负。但实际测量的 结果却与之相反,RH为正。实际结果说明金 属晶体中的电子一定还有其它存在状态。
依定义,在面积为ds的截面面,电流强度I 可以表示为:I=n· e· v· ds
依定义,电流强度I与电流密度Jx间的关系 可表示为: Jx=I/ds
Jx 由此,可以得出:v ne
代入 E=B0· v ,得:
B0 J x E ne
霍耳场 表达式
即霍耳场可表示为:
综合 RH
J x B0 EH ne
EH ,可以得到: J x B0
J x B0 EH 1 1 RH J x B0 J x B0 ne ne
其中:Jx为沿x方向的电流密度;
B0为磁场强度; n为电子密度。
上式说明: 霍耳系数只与金属中的自由电子有关。 霍耳效应证明金属中存在自由电子,它是 电荷的载体。RH的理论计算与实测结果对于 典型金属一致。
本章将就固体中电子能量结构和状态作 初步介绍,建立起现代固体电子能量结构 观念,包括德布罗意波、费密—狄拉克
分布函数、禁带起因、能带结构及其与
原子能级的关系,以及非晶态金属、半导 体的电子状态等。
1927年10月,第五届索尔维会议
1.1 电子的粒子性和波动性
1.1.1 电子粒子性和霍耳效应
在1879年Edwin Hall发现的金属晶体中存在霍耳
质—波动性和粒子性,即波粒二象性。
P确定,频率则由能量E确定。
h h ; p m
E mC h
2
式中:m为粒子质量。v为自由粒子运动 速度。 由上式计算的波长,称为德布罗 意波波长。
在相对论力学中运动物体的相对质量m、静止质 量m0及速度v间存在如下关系:
m
m0 1
2 2