2014年六年级数学上册思维训练题及答案

合集下载

六年级上册数学思维训练

六年级上册数学思维训练

选择题小明有12块糖,他给了小红3块后,还比小红多1块,原来小红有几块糖?A. 4B. 5C. 6D. 8(正确答案)一个长方形的长是宽的2倍,如果宽增加2厘米,长不变,那么新的长方形面积比原来增加了24平方厘米,原来长方形的宽是多少厘米?A. 3B. 4(正确答案)C. 5D. 6小华从家到学校,如果每分钟走60米,就会迟到5分钟;如果每分钟走90米,就会提前4分钟到达。

小华家到学校的距离是多少米?A. 900B. 1200C. 1500D. 1800(正确答案)有一堆苹果,如果按5个一堆分,最后多出3个;如果按6个一堆分,最后多出4个;如果按7个一堆分,最后多出1个。

这堆苹果至少有多少个?A. 30B. 63C. 93D. 124(正确答案)甲、乙、丙三人进行象棋比赛,每两人之间都要赛一盘。

如果甲胜了2盘,那么乙最多胜了几盘?A. 0B. 1(正确答案)C. 2D. 3一个两位数,十位数字是个位数字的2倍,如果把这个两位数的个位数字与十位数字对调,所得到的新的两位数与原来的两位数的和是66,原来的两位数是多少?A. 24B. 36C. 48(正确答案)D. 60有一根电线,第一次用去了4米,又用去余下的一半;第二次用去了5米,又用去余下的一半,最后还剩下6米。

问这根电线原来有多少米?A. 26B. 34C. 52(正确答案)D. 68小明和小华在一个400米的环形跑道上练习跑步,两人同时从同一点出发,同向而行,小明每秒跑3.5米,小华每秒跑5.5米。

经过多少秒,两人第三次相遇?A. 100B. 120C. 200(正确答案)D. 300一个正方形的内角和是360°,两个完全一样的正方形拼成一个长方形,这个长方形的内角和是()°。

A. 180B. 360(正确答案)C. 540D. 720。

2014年六年级数学思维训练:计数综合三

2014年六年级数学思维训练:计数综合三

2014年六年级数学思维训练:计数综合三一、兴趣篇1.一个楼梯共有10级台阶,规定每步可以迈一级台阶或二级台阶.走完这10级台阶,一共可以有多少种不同的走法?2.小悦买了10块巧克力,她每天最少吃一块,最多吃3块,直到吃完,共有多少种吃法?3.用1×2的小方格覆盖2×7的长方形,共有多少种不同的覆盖方法?4.如果在一个平面上画出4条直线,最多可以把平面分成几个部分?如果画20条直线,最多可以分成几个部分?5.甲、乙、丙三名同学练习传球,每人都可以把球传给另外两个人中的任意一个.先由甲发球,经过6次传球后球仍然回到了甲的手中.请问:整个传球过程共有多少种不同的可能?6.一个三位数,有相邻两个数字的和为16,那么这样的三位数共有多少个?7.由1、3、4组成的四位数的各位数字之和为9的多位数共有多少个?8.一个各位数字互不相等的五位数不含数字0,且数字和为18,这样的五位数共有多少个?9.一个十位数只含有数字l或2,且不含两个连续的数字1,一共有多少个这样的十位数?10.一个六位数由1、2、3、4、5组成,而且任意相邻两个数位的数字之差都是l,这样的六位数有多少个?二、拓展篇11.老师给冬冬布置了12篇作文,规定他每天至少写l篇,如果冬冬每天最多能写3篇,那么共有多少种写完作文的方法?12.用10个1×3的长方形纸片覆盖一个10×3的方格表,共有多少种覆盖方法?13.现有14块糖,如果阿奇每天吃奇数块糖,直到吃完,那么阿奇共有多少种吃法?14.如果在一个平面上画出8条直线,最多可以把平面分成几个部分?如果画8个圆,最多可以把平面分成几个部分?15.四个人分别穿着红、黄、绿、蓝四种颜色的球衣练习传球,每人都可以把球传给另外三个人中的任意一个.先由红衣人发球,并作为第1次传球,经过8次传球后球仍然回到红衣人手中.请问:整个传球过程共有多少种不同的可能?16.如图所示,一个圆环被分成8部分,现将每一部分染上红、黄、蓝三种颜色之一,要求相邻两部分颜色不同,共有多少种染色方法?17.圆周上有10个点A1,A2,…,A10以这些点为端点连结5条线段,要求任两条线段之问都没有公共点,共有多少种连结方式?18.在有些多位数的各位数字中,奇数的个数比偶数的个数多,例如137、36712等.请问:在1至10000中有多少个这样的多位数?19.有些自然数存在相邻的两位数字顺次为7和5,例如1975、75675等,但432579.不算在内.请问:具有这种性质的六位数有多少个?20.用1至9这9个数字组成一个没有重复数字的九位数,满足以下要求:每一位上的数字要么大于它前面的所有数字,要么小于它前面的所有数字.请问:这样的九位数共有多少个?21.一个七位数,每位都是1、2或者3,而且没有连续的两个1,这样的七位数一共有个.22.满足下面性质的四位数称为“好数”:它的个位比十位大,十位比百位大,百位比千位大,并且任意相邻两位数字的差都不超过3.例如1346、2579是好数,但1567就不是好数.请问:一共有多少个好数?三、超越篇23.一个九位数,它只由数字l、2和3组成,而且它的任意连续两位数都不等于12、21、22或31,这样的自然数有多少个?如果还要求数字1、2和3每个数字都至少出现一次,则这样的九位数有多少个?24.(1)如果在一个平面上画出8个三角形,最多可以把平面分成多少个部分?(2)如果在一个平面上画出3个四边形、2个圆、l条直线,最多可以把平面分成多少个部分?25.如图所示,阴影部分是一个圆环,4条直线最多可以把这个阴影分成多少个部分?26.用15个1×2的小纸片覆盖如图,共有多少种不同的覆盖方法?27.(2011•西安校级自主招生)对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1.如此进行直到为l时操作停止.问:经过9次操作变为1的数有多少个?28.用4种不同的颜色将如图中的圆圈分别涂色,要求有线段连结的两个相邻的圆圈必须涂不同的颜色,共有多少种涂法?(不允许旋转、翻转图)29.圆周上有15个点A1,A2,…,A15,以这些点为顶点连出5个三角形,要求任意两个三角形没有公共点,共有多少种连接方式?30.有一年级到六年级的同学各一人,排成一列领取糖果.如果一个高年级的同学站在一个低年级的同学前面,那么这个低年级的同学就会产生一次“怨言”(一个人可以有多次“怨言”).在一种排列顺序里,我们把所有“怨言”的总数叫“怨言数”.例如:六位同学按下面的顺序排列:一年级、四年级、三年级、二年级、六年级、五年级,那么这六位同学产生的“怨言”次数依次为0、0、l、2、0、l,这种排列的“怨言数”就是4.请问:有多少种“怨言数”为7的排列顺序?2014年六年级数学思维训练:计数综合三参考答案与试题解析一、兴趣篇1.一个楼梯共有10级台阶,规定每步可以迈一级台阶或二级台阶.走完这10级台阶,一共可以有多少种不同的走法?【分析】从第1级开始递推,脚落到第1级只有从地上1种走法;第二级有两种可能,从地跨过第一级或从第一级直接迈上去;登上第3级,分两类,要么从第1级迈上来,要么从第2级迈上来,所以方法数是前两级的方法和;依此类推,以后的每一级的方法数都是前两级方法的和;直到10级,每一级的方法数都求出,因此得解.【解答】解:递推:登上第1级:1种登上第2级:2种登上第3级:1+2=3种(前一步要么从第1级迈上来,要么从第2级迈上来)登上第4级:2+3=5种(前一步要么从第2级迈上来,要么从第3级迈上来)登上第5级:3+5=8种登上第6级:5+8=13种登上第7级:8+13=21种登上第8级:13+21=34种登上第9级:21+34=55种登上第10级:55+34=89种;答:一共可以有89种不同的走法.2.小悦买了10块巧克力,她每天最少吃一块,最多吃3块,直到吃完,共有多少种吃法?【分析】利用归纳法,记有n块巧克力,有m种吃法,从小数开始算起,找到规律,然后递推出大数的情况.【解答】解:设有n块糖,有m种吃法,n=1时,m=1,有1=1n=2时,m=2,有2=1+1n=3时,m=4,有4=1+2+1n=4时,m=7,有7=1+2+4n=5时,m=13,有13=2+4+7…可以发现:从第四项开始,每项的方法数等于前三项的方法和,所以,后面的方法数是:24、44、81、149、274…所以,10块巧克力,共有274种吃法.答:共有274种吃法.3.用1×2的小方格覆盖2×7的长方形,共有多少种不同的覆盖方法?【分析】本题分类计数:全部竖排1种;1个竖排有4种;3个竖排有10种;,5个横排有6种;然后加在一起,即可得解.【解答】解:1+4+10+6=21(种)答:共有21种不同的覆盖方法.4.如果在一个平面上画出4条直线,最多可以把平面分成几个部分?如果画20条直线,最多可以分成几个部分?【分析】根据直线两两相交,每三条不交于同一点,可把平面分成最多部分,根据两条直线最多分成的部分比一条直线分成部分增加2,三条直线最多分成部分比两条直线最多分成部分增加三,以此类推找出规律,可得答案.【解答】解:2条直线最多可将平面分成4个部分,如图:;三条直线最多分成可将平面分成7个部分,如图:;四条直线最多分成可将平面分成11个部分,如图:;n条直线最多分成可将平面分成2+2+3+4+…+n=+1个部分;所以画20条直线,最多可以分成+1=211个部分.答:在一个平面上画出4条直线,最多可以把平面分成11个部分;如果画20条直线,最多可以分成211个部分.5.甲、乙、丙三名同学练习传球,每人都可以把球传给另外两个人中的任意一个.先由甲发球,经过6次传球后球仍然回到了甲的手中.请问:整个传球过程共有多少种不同的可能?【分析】利用递推法,设经过n次传球回到甲手中的过程有A n种可能,n至少为2.从简单分析探讨得出答案即可.【解答】解:设经过n次传球回到甲手中的过程有A n种可能,n至少为2.A2=2,A3=2,对于A n,若第一次回到甲的手中是经过两次传球,有2种可能,此时还剩余2次,有A2种可能,总共有2A2种可能;若第一次回到甲手里是经过四次传球(不需要考虑第一次回到甲手里是经过三次传球,这样四次传球不可能回到甲的手中)有2种可能,所以A4=2A2+2=2A2+A3=6.对于A5,若第一次回到甲的手中是经过两次传球,有2种可能,此时还剩余3次,有A3种可能,总共有2A3种可能;若第一次回到甲的手中是经过三次传球有2种可能,此时还剩余2次,有2A2种可能;若第一次回到甲的手中是经过5次传球有2种可能,(不需要考虑第一次回到甲的手中是经过4次传球,这样5次传球不可能回到甲的手中)有2种可能,所以A5=2A3+2A2+2=2A3+A4=10.以此类推,可以得到A n=2A n﹣2+2A n﹣3+L+2A2+2=2A n﹣2﹣A n﹣1,A6=2A4+A5=22.即整个传球过程共有22种不同的可能.6.一个三位数,有相邻两个数字的和为16,那么这样的三位数共有多少个?【分析】由题意,相邻两个数字的和为16,可以是前两个数字和是16或后两个数字和是16,且16=7+9=8+8,据此分类枚举即可.【解答】解:因为16=7+9=8+8,所以可分前两位数是79、97、88以及后两位数是79、97、88六种情况枚举,790﹣﹣﹣﹣﹣799 10个970﹣﹣﹣﹣﹣979 10个880﹣﹣﹣﹣﹣889 10个179﹣﹣﹣979 9个﹣1个=8个(与前面重复一个为979)197﹣﹣﹣997 9个﹣1个=8个(与前面重复一个为797)188﹣﹣﹣988 9个﹣1个=8个(与前面重复一个为888)所以共有10+10+10+8+8+8=54个答:这样的三位数共有54个.7.由1、3、4组成的四位数的各位数字之和为9的多位数共有多少个?【分析】因为1+1+3+4=9,再找出由1、1、3、4组成的四位数共有多少个即可.【解答】解:1+1+3+4=9,这四位数以1开头,有6个;这四位数以3开头,有3个;这四位数以4开头,有3个;总共有6+3+3=12个.8.一个各位数字互不相等的五位数不含数字0,且数字和为18,这样的五位数共有多少个?【分析】5个不同的数和为18,则平均值是3.6;如果出现3时,这5个数可能是:1,2,3,4,8,和1,2,3,5,7;如果出现4时,这5个数可能是:1,2,4,5,6;再根据分类计数原理解答即可.【解答】解:把18分成4个不同的数之和,可能是:1,2,3,4,8,和1,2,3,5,7和1,2,4,5,6;由1,2,3,4,8组成的五位数有:5×4×3×2×1=120(个);同理可得:由1,2,3,5,7组成的五位数有120个;由1,2,4,5,6组成的五位数有120个;所以这样的五位数共有:120×3=360(个);答:这样的五位数共有360个.9.一个十位数只含有数字l或2,且不含两个连续的数字1,一共有多少个这样的十位数?【分析】每一位都有两种可能,或1或2,共10位.根据乘法原理,一共有2×2×2…×2=210个.【解答】解:每一位都有两种可能,或1或2,共10位.那就有2×2×2…×2=210个.答:共有210个这样的十位数.10.一个六位数由1、2、3、4、5组成,而且任意相邻两个数位的数字之差都是l,这样的六位数有多少个?【分析】通过分析:以1开头的和以5开头的满足六位数的数目一样,都是9个;以2开头的和以4开头的满足六位数的数目一样,都是18个;以3开头的六位数的是18个,所以共计:9×2+18×2+18=72种,据此解答即可.【解答】解:①以1开头的和以5开头的满足六位数的数目一样,都是9个;②以2开头的和以4开头的满足六位数的数目一样,都是18个;③以3开头的六位数的是18个,所以共计:9×2+18×2+18=72(种)答:这样的六位数有72个.二、拓展篇11.老师给冬冬布置了12篇作文,规定他每天至少写l篇,如果冬冬每天最多能写3篇,那么共有多少种写完作文的方法?【分析】利用递推法:对于A1,若第一天写1篇,剩余3篇,有A3种可能;若第一天写2篇,剩余2篇,有A2种可能;若第一天写3篇,剩余1篇,有A1种可能,所以A4=A3+A2+A1=7,以此类推,得出A n=A n﹣1+A n﹣2+A n﹣3,解决问题.【解答】解:设写完a篇作文的有An种方法,A1=1,A2=2,A3=4,对于A1,若第一天写1篇,剩余3篇,有A3种可能;若第一天写2篇,剩余2篇,有A2种可能;若第一天写3篇,剩余1篇,有A1种可能,所以A4=A3+A2+A1=7,以此类推,A n=A n﹣1+A n﹣2+A n﹣3,可得A12=A11+A10+A9=927.12.用10个1×3的长方形纸片覆盖一个10×3的方格表,共有多少种覆盖方法?【分析】本题采用递推法.若用1×3的小长方形去覆盖3×1的方格网,有1种方法,去覆盖3×2的方格网有2种方法,覆盖3×3的方格网会得到1+2=3种方法…依次进行求解,发现这是一个斐波那契数列,由此进行求解.【解答】解:若用1×3的小长方形去覆盖3×n的方格网,设方法数为A n,那么A1=1,A2=2当n≥3时,对于最左边的一列有两种覆盖的方法:(1)用1个1×3 的小长方形竖着覆盖,那么剩下的3(n﹣1)的方格网有An﹣1种方法;(2)用2个1×3的小长方形横着覆盖,那么剩下的3(n﹣2)的方格网有A n﹣2种方法,根据加法原理,可得:An=A n﹣1+A n﹣2.A3=1+2=3A4=2+3=5A5=3+5=8A6=5+8=13A7=8+13=21A8=13+21=34A9=21+34=55A10=34+55=89答:覆盖3×10的方格网共有89种不同方法.13.现有14块糖,如果阿奇每天吃奇数块糖,直到吃完,那么阿奇共有多少种吃法?【分析】利用归纳法,记有n块糖,有m种吃法,从小数开始算起,找到规律,然后递推出大数的情况.【解答】解:设有n块糖,有m种吃法,n=1时,m=1,有1=1n=2时,m=1,有2=1+1n=3时,m=2,有3=1+1+1=3n=4时,m=3,有4=1+1+1+1=1+3=3+1n=5时,m=5,有5=1+1+1+1+1=1+1+3=1+3+1=3+1+1=5…可以发现:从第三项开始,每项的方法数等于前两项的方法和,所以,后面的方法数是:8、13、21、34、55、89、144、233、377、…所以,14块糖,阿奇共有377种吃法.答:阿奇共有377种吃法.14.如果在一个平面上画出8条直线,最多可以把平面分成几个部分?如果画8个圆,最多可以把平面分成几个部分?【分析】(1)根据直线两两相交,每三条不交于同一点,可把平面分成最多部分;在一个平面上画出1条直线,最多可以把平面分成2部分;在一个平面上画出2条直线,平面数量增加2,最多可以把平面分成2+2=4部分;在一个平面上画出3条直线,平面数量增加3,最多可以把平面分成:4+3=7部分;…,据此求出8条直线最多可以把平面分成几个部分即可;(2)画1个圆可以把平面分成2部分;画第2个圆时与第1个圆最多新产生2个交点,平面数量多2,即2+2=4,把分成4部分;画第3个圆时,与前两个圆最多新产生4个交点,平面数量增加4,即2+2+4=8,平面被分成8部分…每多画1个圆,平面数量分别增加2、4、6、8…,据此求出画8个圆,最多可以把平面分成几个部分即可.【解答】解:根据分析,可得(1)在一个平面上画出8条直线,最多可以把平面分成:2+2+3+4+…+8==37(个);答:如果在一个平面上画出8条直线,最多可以把平面分成37个部分.(2)在一个平面上画出画8个圆,最多可以把平面分成:2+2+4+6+8+10+12+14=58(个).答:如果在一个平面上画出8个圆,最多可以把平面分成58个部分.15.四个人分别穿着红、黄、绿、蓝四种颜色的球衣练习传球,每人都可以把球传给另外三个人中的任意一个.先由红衣人发球,并作为第1次传球,经过8次传球后球仍然回到红衣人手中.请问:整个传球过程共有多少种不同的可能?【分析】设第n次传球后,球又回到红衣人手中的传球方法有a n种,可以想象前n﹣1次传球,如果每一次传球都任选其他三人中的一人进行传球,即每一次都有3种可能,由乘法原理,共有3×3×3×…×3(n﹣1个3)=3n﹣1种传球方法.这些传球方法并不都是符合要求的,它们可以分为两类:一类恰好第n﹣1次恰好传到红衣人手中,这有a n﹣1种传法,它们不符合要求,因为这样第n次无法再把球传给红衣人;另一类是第n﹣1次传球,球不在红衣人手中,第n次持球人再将球传给红衣人,有a n种传法;根据加法原理有a n=a n﹣1﹣a n﹣2,由于红衣人是发球者,一次传球后又回到红衣人手中的传球方法是不存在的,所以a1=0,利用递推a2=3﹣0=3,a3=3×3﹣3=6,a4=3×3×3﹣6=21,a5=3×3×3×3﹣21=60,a6=3×3×3×3×3﹣60=183,a7=3×3×3×3×3×3﹣183=546,a8=3×3×3×3×3×3×3﹣546=1641.说明经过8次传球后球仍然回到红衣人手中,整个传球过程共有1641种不同的可能.【解答】解:设第n次传球后,球又回到红衣人手中的传球方法有a n种,如果每一次传球都任选其他三人中的一人进行传球,即每一次都有3种可能,由乘法原理,共有3×3×3×…×3(n﹣1个3)=3n﹣1种传球方法.第n﹣1次传球,球不在红衣人手中,第n次持球人再将球传给红衣人,有a n种传法;根据加法原理有a n=a n﹣1﹣a n﹣2,可得a1=0,递推a2=3﹣0=3,a3=3×3﹣3=6,a4=3×3×3﹣6=21,a5=3×3×3×3﹣21=60,a6=3×3×3×3×3﹣60=183,a7=3×3×3×3×3×3﹣183=546,a8=3×3×3×3×3×3×3﹣546=1641.答:经过8次传球后球仍然回到红衣人手中,整个传球过程共有1641种不同的可能.16.如图所示,一个圆环被分成8部分,现将每一部分染上红、黄、蓝三种颜色之一,要求相邻两部分颜色不同,共有多少种染色方法?【分析】按照顺时针方向考虑:首先第一部分染上红、黄、蓝三种颜色之一有3种方法,则第二至七部分各有2种选择,最后一部分只有一种选择,根据乘法原理得出答案即可.【解答】解:3×2×2×2×2×2×2×1=192(种)答:共有192种染色方法.17.圆周上有10个点A1,A2,…,A10以这些点为端点连结5条线段,要求任两条线段之问都没有公共点,共有多少种连结方式?【分析】为了叙述的方便,不妨这10个点用下标数数字1、2、3、4、5…10表示,分情况探讨得出答案即可.【解答】解:(1)如图的连法:共5种1、连12,310,49,58,67,2、连23,14,510,69,78,3、连34,…4、连45,…5、连56,…以下5种与上面的重复,不考虑6、连67,…(与1重复)…10、连110,…(与5重复)(2)如图的连法:共2种1、连12,34,56,78,9102、连23,45,67,89,110 (3)如图的连法:共10种(4)如图的连法:共10种(5)如图的连法:共5种(6)图的连法:共10种合计共5+2+10+10+5+10=42种连法.18.在有些多位数的各位数字中,奇数的个数比偶数的个数多,例如137、36712等.请问:在1至10000中有多少个这样的多位数?【分析】本题可分情况进行讨论,分别求出1至10000中一位数,两位数,三位数,四位数、五位数中有多少个奇数的个数比偶数多的数,再相加即可.【解答】解:一位数中奇数的个数比偶数个数多的数:0个;两位数中奇数的个数比偶数个数多的数:5×5=25个;三位数中奇数的个数比偶数个数多的数分两种情况:①两位数是奇数一位数是偶数,这样的数有5×5×5×3﹣5×5=375﹣25=350个;②三位数是奇数,这样的数有:5×5×5=125个;四位数中奇数的个数比偶数个数多的数分两种情况:①三位数是奇数一位数是偶数,这样的数有5×5×5×5×4﹣5×5×5=2500﹣125=2375个;②四位数是奇数,这样的数有:5×5×5×5=625个;五位数即10000中没有;1至10000中有共有这样的数:25+350+125+2375+625=3500个答:1至10000中有3500个这样的数.19.有些自然数存在相邻的两位数字顺次为7和5,例如1975、75675等,但432579.不算在内.请问:具有这种性质的六位数有多少个?【分析】此题分为以下几种情况:①当75在首位时,剩余4位数字随意选;②当75不在首位时,75看作一个整体,位置有4种情况;③对于最高位的数有1﹣9共9种选择,剩余的3个数都有10种选择.求出每种情况的个数,解决问题.【解答】解:当75在首位时,剩余4位数字随意选,有10×10×10×10=10000(个),当75不在首位时,75看作一个整体,位置有4种情况(在23,34,45,56位),对于最高位的数有1﹣9共9种选择,剩余的3个数都有10种选择,一共有4×9×10×10×10=36000(个)具有这种性质的六位数有10000+36000=46000(个).20.用1至9这9个数字组成一个没有重复数字的九位数,满足以下要求:每一位上的数字要么大于它前面的所有数字,要么小于它前面的所有数字.请问:这样的九位数共有多少个?【分析】1,2有12,21都可以.3可以加两边,所以有2×2种;4继续加两边,有2×2×2种;9个数是8个2相乘.据此解答.【解答】解:1,2有12,21都可以.3可以加两边,所以有2×2种.4继续加两边,有2×2×2种.9个数是8个2相乘,即28=256种.答:这样的九位数共有256个.21.一个七位数,每位都是1、2或者3,而且没有连续的两个1,这样的七位数一共有1224个.【分析】首先从1开始分析:从没有1到最多4个1,逐一分析探讨七位数的个数,再进一步合并即可.【解答】解:当没有1时,每一个位置都有两种选择,一共有27=128个;当有1个1时,1有7个位置,而2或者3有6个位置可选,一共有×26=448个,以此类推,当有2个1时,一共有×25=480个,当有3个1时,一共有×24=160个,当有4个1时,一共有23=8个,所以这样的七位数一共有128+448+480+160+8=1224个.故答案为:1224.22.满足下面性质的四位数称为“好数”:它的个位比十位大,十位比百位大,百位比千位大,并且任意相邻两位数字的差都不超过3.例如1346、2579是好数,但1567就不是好数.请问:一共有多少个好数?【分析】此题运用枚举法解答:①百位比千位大1,十位比百位大1,个位比十位大1;②两个1、一个2;③两个2、一个1;④三个2:千位有3种取法;⑤两个1、一个3;⑥两个3、一个1;⑦三个3;⑧两个2、一个3;⑨两个3、一个2;还有一种:一个1、一个2、一个3.把这几种情况的取法求出来后相加即可.【解答】解:三个1:百位比千位大1,十位比百位大1,个位比十位大1,其实就是千位随便取,后面每个大1.这时为了保证个位≤9,千位有6种取法,所以有6个数.两个1、一个2:千位有5种取法.两个1、一个2的安排方法有3种,所以有15个数.两个2、一个1:千位有4种取法,有12个数.三个2:千位有3种取法,有3个数.两个1、一个3:4×3=12个数.两个3、一个1:2×3=6个数.三个3:0个数.两个2、一个3:2×3=6个数.两个3、一个2:1×3=3个数.一个1、一个2、一个3:3×6=18个数.总共有:6+15+12+3+12+6+6+3+18=81(个)答:一共有81个好数.三、超越篇23.一个九位数,它只由数字l、2和3组成,而且它的任意连续两位数都不等于12、21、22或31,这样的自然数有多少个?如果还要求数字1、2和3每个数字都至少出现一次,则这样的九位数有多少个?【分析】它的任意连续两位数都不等于12、21、22或31,即1后面可能是1或3,2后面只能是3,3后面可能是2或3.当九位数以2开头,232333232,不满足数字1、2和3每个数字都至少出现一次,可发现九位数以2和3开头都不符合要求,因此只能以1开头,111111132;111111323;111111332….【解答】解:它的任意连续两位数都不等于12、21、22或31,即1后面可能是1或3,2后面只能是3,3后面可能是2或3.共177个.由以上分析,如果还要求数字1、2和3每个数字都至少出现一次,只能以1开头,111111132;111111323,111111332;111113232,111113232,111113233,111113233…;因此共有:1+2+4+7+12+20+33=79(个)答:这样的自然数有177个,这样的九位数有79个.24.(1)如果在一个平面上画出8个三角形,最多可以把平面分成多少个部分?(2)如果在一个平面上画出3个四边形、2个圆、l条直线,最多可以把平面分成多少个部分?【分析】(1)一个三角形可把平面分成两部分,第2个三角形最多和第1个三角形有6个交点,平面增加了6部分,所以可把平面分成:2+6=8个部分;第3个三角形最多和前两个三角形有12个交点,平面增加了12部分,所以可把平面分成:2+6+12=20个部分;同理,第4个三角形可把平面分成:2+6+12+18=20个部分,…;所以n个三角形可把平面分成的部分数为:2+6+12+18+24+…=2+3n(n﹣1),据此解答即可.(2)3个四边形最多可以把平面分成26部分,2个圆可以把平面分成4个部分,再画一条直线,那么这条直线最多和前面的2个圆有4个交点,会多出4个部分,所以2个圆和一条直线最多把平面分成4+4=8个部分.【解答】解:(1)根据分析,可得2+3×8×(8﹣1)=2+168=170(个)答:8个三角形最多可以把平面分成170个部分.(2)3个四边形最多可以把平面分成26部分,2个圆可以把平面分成4个部分,再画一条直线,那么这条直线最多和前面的2个圆有4个交点,会多出4个部分,所以2个圆和一条直线最多把平面分成4+4=8个部分,则最多可以把平面分成:26+8=34(个).答:最多可以把平面分成34个部分.25.如图所示,阴影部分是一个圆环,4条直线最多可以把这个阴影分成多少个部分?【分析】如图,当4条直线两两相交时,最多可以把这个阴影分成13个部分,据此解答即可.【解答】解:如图,当4条直线两两相交时,最多可以把这个阴影分成13个部分.26.用15个1×2的小纸片覆盖如图,共有多少种不同的覆盖方法?【分析】总共有8行,不妨把n行的方法数记为f(n),按如图编辑数字,不妨先考虑6号方格,(1)6,7一起,则必有3,2一起,1,4一起,5,8一起,此时的方法数为f(6);(2)6,3一起,则必有7,10一起,11,14一起,15,18一起,19,22一起,23,26一起,27,30一起,29,28一起,25,24一起,21,20一起,17,16一起,13,12一起,9,8一起,剩下的1,2,4,5共2种;(3)6,5一起,同(2)一样的分析过程,只有1种;(4)6,9一起,同(3),1种;所以f(8)=f(6)+2+1+1=f(6)+4,f(8)变f(6)的时候去掉了编号前8个,同样的有f(6)=f(4)+4,f(4)=f(2)+4,f(2)=3,f(2)的时候只剩最后6个,所以f(8)=4+4+4+3=15种.【解答】解:如图:(1)6,7一起,则必有3,2一起,1,4一起,5,8一起,此时的方法数为f(6);(2)6,3一起,则必有7,10一起,11,14一起,15,18一起,19,22一起,23,26一起,27,30一起,29,28一起,25,24一起,21,20一起,17,16一起,13,12一起,9,8一起,剩下的1,2,4,5共2种;(3)6,5一起,同(2)一样的分析过程,只有1种;(4)6,9一起,同(3),1种;所以f(8)=f(6)+2+1+1=f(6)+4,f(8)变f(6)的时候去掉了编号前8个,同样的有f(6)=f(4)+4,f(4)=f(2)+4,f(2)=3,f(2)的时候只剩最后6个,所以f(8)=4+4+4+3=15种.27.(2011•西安校级自主招生)对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1.如此进行直到为l时操作停止.问:经过9次操作变为1的数有多少个?【分析】本题可以通过所给的变换规律,由易到难,确定操作可变为1的数组成斐波拉契数列,再根据所发现的规律求出经过9次操作变为l的数的个数.【解答】解:通过1次操作变为1的数有1个,即2;经过2次操作变为1的数有2个,即4、1;经过3次操作变为1的数有2个,即3、8;…;经过6次操作变为1的数有8个,即11、24、10、28、13、64、31、30;经过1、2、3、4、5…次操作变为1的数依次为1、2、3、5、8…,这即为斐波拉契数列,后面的数依次为:5+8=13,13+8=21,21+13=34,34+21=55.即经过9次操作变为1的数有55个.答:经过9次操作变为1的数有55个.28.用4种不同的颜色将如图中的圆圈分别涂色,要求有线段连结的两个相邻的圆圈必须涂不同的颜色,共有多少种涂法?(不允许旋转、翻转图)。

六年级上册30道思维训练题及答案

六年级上册30道思维训练题及答案

六年级上册30道思维训练题及答案1、两个相同的瓶子装满酒精溶液。

一个瓶中酒精与水的比2︰3,另一个瓶中酒精与水的比是3︰5,若把两瓶酒精溶液混合,混合后酒精与水的比是多少?分析与解答:因为两个瓶子相同,可以分别求出每个瓶中酒精占瓶子容积的几分之几,在求出混合后酒精和水各占容器容积的几分之几,即可求出混合后酒精与水的比。

2、某饮料店有一桶奶茶,上午售出其中的25%,下午售出30升,晚上售出剩下的10%,最后剩下的奶茶再减6升刚好半桶,问一桶奶茶共有多少升?【考点】L6:分数和百分数应用题【分析】设一桶奶茶共有a升,则晚上售出(a﹣25%a﹣30)×10%,此时剩下(a﹣25%a﹣30)×(1﹣10%),对应着50%a+6,列出方程求解。

【解答】解:设一桶奶茶共有a升(a﹣25%a﹣30)×(1﹣10%)=50%a+6(0.75a﹣30)×0.9=0.5a+60.675a﹣27=0.5a+60.175a=333、学校里买来了5个保温瓶和10个茶杯,共用了90元钱。

每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?分析与解:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。

这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。

解:每个茶杯的价钱:90÷(4×5+10)=3(元)每个保温瓶的价钱3×4=12(元)答:每个保温瓶12元,每个茶杯3元。

4、某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。

每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?分析与解:由己知条件可知道,每天用去30袋水混,同时用去30×2袋沙子才能同时用完。

但现在每天只用去40袋沙子,少用(30×2-40)袋,这样オ累计出120袋沙子。

小学六年级思维训练练习题及答案

小学六年级思维训练练习题及答案

小学六年级思维训练练习题及答案【卷一】设计目的:通过一系列思维训练练习题,培养小学六年级学生的逻辑思维、问题解决能力和创新思维,提高他们的数学素养。

题目一:编码破解请根据下面的编码规则,解码出正确的表达式,并计算出结果:编码规则:将一个整数n编码为n+5的二倍例子:编码规则:3 --> (3+5) × 2 = 168 --> (8+5) × 2 = 261. 解码:12、16、21,请分别写出对应的解码表达式和解码结果。

题目二:数学迷题将数字1~9填入下面的方格中,使得每行、每列以及每个对角线上的数字之和都相等。

请完整填写下图中的方格。

①②③④______ ______ ______ ______|||||||||||||||______ ______ ______ ______题目三:数数游戏小明正在教爷爷学数学,他告诉爷爷一个有趣的数数游戏规则:规则1:从1开始数,遇到个位数为偶数的数字时,喊“拍”;规则2:遇到个位数为奇数的数字时,喊“扣”;规则3:遇到包含数字7的数字时,喊“出局”;规则4:遇到包含数字4的数字时,喊“加倍”;规则5:遇到数字10的倍数时,喊“回到起点”。

请写下爷爷在数数过程中依次喊出的词语,直到100结束。

【卷二】答案及解析题目一:编码破解解答:(1)解码表达式:(12÷2)-5 = 1解码结果:1(2)解码表达式:(16÷2)-5 = 3解码结果:3(3)解码表达式:(21÷2)-5 = 6解码结果:6题目二:数学迷题解答:①②③④___4__ ___9__ ___5__ ___2__|||||| 1 | 6 | 8 | 3 ||||||___3__ ___7__ ___2__ ___9__|||||| 7 | 2 | 4 | 9 ||||||___2__ ___5__ ___9__ ___4__|||||| 5 | 9 | 1 | 6 ||||||___9__ ___4__ ___3__ ___7__题目三:数数游戏解答:1、2、3、拍、5、拍、出局、拍、加倍、拍、出局、拍、拍、拍、回到起点、拍、出局、拍、17、18、拍、出局、拍、拍、回到起点、拍、拍、拍、拍、拍、拍、出局、拍、出局、拍、拍、拍、30、31、拍、拍、34、拍、拍、拍、拍、拍、出局、拍、出局、拍、拍、拍、46、拍、拍、加倍、拍、拍、回到起点、拍、出局、拍、拍、拍、60、61、出局、拍、拍、拍、出局、拍、拍、拍、拍、回到起点、拍、拍、出局、拍、拍、拍、拍、拍、拍、出局、拍、拍、76、拍、出局、拍、拍、拍、出局、拍、拍、拍、拍、出局、拍、89、拍、加倍、回到起点、拍、出局、拍、出局、拍、拍、出局、拍、出局、拍、拍、拍。

六年级数学思维题15题及详细答案

六年级数学思维题15题及详细答案

六年级数学思维题15题及详细答案1. 问题:速度问题一个人骑车行驶,平均速度是20公里/小时。

如果他行驶了2.5小时,那他总共行驶了多远?答案:行驶的距离= 速度×时间= 20km/h ×2.5h = 50公里。

2. 问题:找规律1,3,6,10,15, _____ , 下一个数是多少?答案:下一个数是21,因为这个数列的规律是前一项加当前项的顺序值,如1+2=3,3+3=6,6+4=10,10+5=15。

3. 问题:几何题一个正三角形的所有边都是6厘米,那么它的周长是多少?答案:周长= 边长×3 = 6cm ×3 = 18厘米。

4. 问题:时间计算从早上7:35到下午3:20,过去了多少分钟?答案:具体时间段= 下午3:20 -早上7:35 = 7小时和45分钟= 465分钟。

5. 问题:容积计算一个长方体的长是5米,宽是4米,高是3米,计算它的体积。

答案:体积= 长×宽×高= 5m ×4m ×3m = 60立方米。

6. 问题:找不同下列数列中哪个数字不符合规律:2,4,7,9,11,13。

答案:7,因为其他数都是偶数。

7. 问题:平均值计算5个学生的年龄分别是10、11、12、10和11岁,求这个群体的平均年龄。

答案:平均年龄= (10 + 11+ 12 + 10 + 11) ÷5 = 54 ÷5 = 10.8岁。

8. 问题:百分比计算在一次测验中,一名学生答对了18题,总共有20题。

这名学生的正确率是多少?答案:正确率= 答对的题目数÷总题目数×100% = 18 ÷20 ×100% = 90%.9. 问题:比例计算一场电影的时长为120分钟,现希望将其压缩为原来的一半,压缩后的电影时长是多久?答案:压缩后的电影时长= 120分钟×0.5 = 60分钟。

六年级数学思维练习题及答案

六年级数学思维练习题及答案

六年级数学思维练习题及答案六年级数学思维练习题及答案在各个领域,我们会经常接触并使用试题,借助试题可以为主办方提供考生某方面的知识或技能状况的信息。

什么样的试题才能有效帮助到我们呢?下面是小编为大家收集的六年级数学思维练习题及答案,欢迎阅读与收藏。

六年级数学思维练习题及答案11、老师在黑板上写了13个自然数,让小王计算平均数(保留两位小数),小王计算出的答案上12.43。

老师说最后一位数字错了,其他的数字都对。

请问正确的答案应该是________。

2、老王的体重的2/5与小李体重的2/3相等。

老王的体重的3/7比小李体重的3/4轻1.5千克,则老王的体重为_______千克,小李的体重为________千克。

3、在一次考试中,某班数学得100分的有17人,语文得100的有13人,两科都得100分的有7人,两科至少有一科得100分的共有_________人;全班45人中两科都不得100的有__________人。

4、有一水果店进了6筐水果,分别装着香蕉和橘子,重量分别为8,9,16,20,22,27千克,当天只卖出一筐橘子,在剩下的五筐中香蕉的重量是橘子重量的两倍,问当天水果店进的有___________筐是香蕉。

5、如图,在半圆的边界周围有6个点A1,A2,A3,A4,A5,A6,其中A1,A2,A3在半圆的直径上,问以这6个点为端点可以组成___________个三角形。

6、有100名学生要到离学校33千米的某公园,学生的步行速度是每小时5千米,学校只有一辆能坐25人的汽车,汽车的速度是每小时55千米,为了花最短的时间到达公园,决定采用步行与乘车相结合的办法,那么最短时间为__________。

7、有48本书分给两组小朋友。

已知第二组比第一组多5人,若把书全部分给第一组,每人4本,有剩余;每人5本,书不够,又若全给第二组,每人3本,有剩余;每人4本,书不够,那么第二组有___________人。

六年级数学上册《思维题》分类整理带答案解析,提分必备

六年级数学上册《思维题》分类整理带答案解析,提分必备

六年级数学上册《思维题》分类整理带答案解析1.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款解:取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)2.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?解:甲乙丙3人8天完成:5/6-1/3=1/2甲乙丙3人每天完成:1/2÷8=1/16,甲乙丙3人4天完成:1/16×4=1/4则甲做一天后乙做2天要做:1/3-1/4=1/12那么乙一天做:[1/12-1/72×3]/2=1/48则丙一天做:1/16-1/72-1/48=1/36则余下的由丙做要:[1-5/6]÷1/36=6天答:还需要6天3.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?解:10.65*1%=0.1065(元) 10.65*2%=0.213(元)10.1065+0.213=0.3195(元)0.3195+10.65=10.9695(元)13.86*1%=0.1386(元) 13.86*2%=0.2772(元)0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元) 14.2758-10.9695=3.3063(元)答:老王卖出这种股票一共赚了3.3063元.4.仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。

六年级数学思维训练:逻辑推理二

六年级数学思维训练:逻辑推理二

2014年六年级数学思维训练:逻辑推理二一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?2.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、乙、丙、丁4名同10.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?15.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?16.五支足球队进行循环赛,即每两个队之间都要赛一场,每场比赛胜者得2分,输者得0分,平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过,问:第一名至第五名各得多少分?全部比赛共打平过几场?17.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0 分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?18.甲、乙、丙、丁、戊五个同学的各科考试成绩如表,已知:①每门功课五个人的分数恰巧分别为l、2、3、4、5;②五个人的总分互不相同,且从高到低的顺序排列是:甲、乙、丙、丁、戊;19.一次足球赛,有A、B、C、D四个队参加,每两队都赛一场,按规则,胜一场得2分,平一场得1分,负一场得0分.比赛结束后,B队得5分,A队得1分.所有场次共进了9个球,B队进球最多,共进了4个球,C队共失了3个球,D队1个球也未进,A队与C队的比赛比分是2:3.问:A队与B队的比赛比分是多少?20.A、B、C、D四个足球队进行循环比赛.赛了若干场后,A、B、C三队的比赛情况如表:问:D赛了几场?D21.九个外表完全相同的小球,重量分别是1,2,…,9.为了加以区分,它们都被贴上了数字标签,可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧=⑦,请问:⑨号小球的重量是多少?22.A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.’实际上第一名同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?三、超越篇23.在一次射击练习中,甲、乙、丙三位战士打了四发子弹,全部中靶,其中命中情况如下:(1)每人四发子弹命中的环数各不相同;(2)每人四发子弹命中的总环数均为17环;(3)乙有两发命中的环数分别与甲其中两发一样,乙另外两发命中的环数与丙其中两发一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?24.一次象棋比赛共有10位选手参加,他们分别来自甲、乙、丙3个队.每人都与其余9人比赛一盘,每盘胜者得1分,负者得0分,平局各得0.5分.结果乙队平均得分为3.6分,丙队平均得分为9分,那么甲队平均得多少分?25.A、B、C、D、E这5支足球队进行循环赛,每两队之间比赛一场.每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,从高到低依次为D、A、E、B、C又已知5支球队当中只有A没输过,只有C没赢过,而且B战胜了E.请问:战胜过C的球队有哪些?26.10名选手参加象棋比赛,每两名选手间都要比赛一次,已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等,问:前六名的分数各为多少?27.现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分,表1是一张记有比赛详细情况表格,但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入表2中.28.9个小朋友从前到后站成一列.现在将红黄蓝三种颜色的帽子各三顶分别戴在这些小朋友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下,发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数,也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子,第六个小朋友戴着黄帽子,请问:最后一个小朋友戴着什么颜色的帽子?29.有A、B、C三支球队进行比赛,每一轮比赛三个队之间各赛一场.每队胜一场得2分,平一场得1分,负一场不得分.如果三支球队共比赛了7轮,最后A胜的场数最多,B输的场数最少,C的得分最高<这些都没有并列).请问:A得了多少分?30.阿奇和8个好朋友去李老师家玩,李老师给每人发了一顶帽子,并在每个人的帽子上写了一个两位数,这9个两位数互不相同,且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A,问这9位同学:“你们知道自己帽子上的数能否被A整除吗?知道的请举手,”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了,并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?2014年六年级数学思维训练:逻辑推理二参考答案与试题解析一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?2.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?×)5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、乙、丙、丁4名同10.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?15.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?16.五支足球队进行循环赛,即每两个队之间都要赛一场,每场比赛胜者得2分,输者得0分,平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过,问:第一名至第五名各得多少分?全部比赛共打平过几场?17.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0 分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?18.甲、乙、丙、丁、戊五个同学的各科考试成绩如表,已知:①每门功课五个人的分数恰巧分别为l、2、3、4、5;②五个人的总分互不相同,且从高到低的顺序排列是:甲、乙、丙、丁、戊;19.一次足球赛,有A、B、C、D四个队参加,每两队都赛一场,按规则,胜一场得2分,平一场得1分,负一场得0分.比赛结束后,B队得5分,A队得1分.所有场次共进了9个球,B队进球最多,共进了4个球,C队共失了3个球,D队1个球也未进,A队与C队的比赛比分是2:3.问:A队与B队的比赛比分是多少?20.A、B、C、D四个足球队进行循环比赛.赛了若干场后,A、B、C三队的比赛情况如表:问:D赛了几场?D21.九个外表完全相同的小球,重量分别是1,2,…,9.为了加以区分,它们都被贴上了数字标签,可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧=⑦,请问:⑨号小球的重量是多少?22.A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.’实际上第一名同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?三、超越篇23.在一次射击练习中,甲、乙、丙三位战士打了四发子弹,全部中靶,其中命中情况如下:(1)每人四发子弹命中的环数各不相同;(2)每人四发子弹命中的总环数均为17环;(3)乙有两发命中的环数分别与甲其中两发一样,乙另外两发命中的环数与丙其中两发一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?24.一次象棋比赛共有10位选手参加,他们分别来自甲、乙、丙3个队.每人都与其余9人比赛一盘,每盘胜者得1分,负者得0分,平局各得0.5分.结果乙队平均得分为3.6分,丙队平均得分为9分,那么甲队平均得多少分?25.A、B、C、D、E这5支足球队进行循环赛,每两队之间比赛一场.每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,从高到低依次为D、A、E、B、C又已知5支球队当中只有A没输过,只有C没赢过,而且B战胜了E.请问:战胜过C的球队有哪些?26.10名选手参加象棋比赛,每两名选手间都要比赛一次,已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等,问:前六名的分数各为多少?又后四名棋手相互之间要比赛×27.现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分,表1是一张记有比赛详细情况表格,但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入表2中.28.9个小朋友从前到后站成一列.现在将红黄蓝三种颜色的帽子各三顶分别戴在这些小朋友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下,发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数,也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子,第六个小朋友戴着黄帽子,请问:最后一个小朋友戴着什么颜色的帽子?29.有A、B、C三支球队进行比赛,每一轮比赛三个队之间各赛一场.每队胜一场得2分,平一场得1分,负一场不得分.如果三支球队共比赛了7轮,最后A胜的场数最多,B输的场数最少,C的得分最高<这些都没有并列).请问:A得了多少分?30.阿奇和8个好朋友去李老师家玩,李老师给每人发了一顶帽子,并在每个人的帽子上写了一个两位数,这9个两位数互不相同,且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A,问这9位同学:“你们知道自己帽子上的数能否被A整除吗?知道的请举手,”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了,并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?。

小学六年级上册数学思维训练题及解析

小学六年级上册数学思维训练题及解析

小学六年级上册数学思维训练题及解析第1篇:小学六年级上册数学思维训练题及解析【知识视窗】:能识别求一个数的几分之几是多少的应用题的结构特征,分辨分数带单位和不带单位的区别。

【典例精析】例1、一根绳子长36米,第一次用去,第二次用去米,问还剩下多少米?【分析】:分数不带单位表示两个数量的倍数关系,带单位表示一个具体的量,因此题中所给的两个表示不同意思,不能混为一谈。

【解答】:36—36×—=36—9—=26(米)。

答:还剩下26米。

例2、一件衣服原价100元,先降价,再涨价,问衣服现在的价格是多少?【分析】:这题先降价,再涨价,看似降价和涨价一样多,实际上是不一样的。

第一次是在100元的基础上降价,第二次是在降价后的价格(90)上涨价,因此衣服的价格发生了变化。

【解答】:100×(1—)=90(元)90×(1+)=99(元)答:衣服现在的价格是99元。

例3、一篮子鸡蛋有81个,第一位顾客买走,第二位顾客买走剩下的,第三位顾客买走剩下的,第四位顾客买走剩下的,这时篮子里还剩多少个鸡蛋?【分析】:把原来篮子里的鸡蛋看作单位“1”,那么第一次买走了总数的,第二次买走了总数的,第三次买走了总数的,第四次买走了总数的,也就是说每次买走的都是总数的,共买了四次,还剩下总数的。

【解答】:(个)答:还剩下45个鸡蛋。

例4、*、乙、*、丁四人共植树60棵,*植树的棵树是其余三未完,继续阅读 >第2篇:六年级上册数学的思维训练题小学生想要学好数学,做题是最好的办法,但想要奏效,还得靠自己的积累。

多做些典型题,并记住一些题的解题方法。

以下是数学网为大家提供的小学六年级上册数学思维训练题,供大家复习时使用!【知识视窗】:能识别求一个数的几分之几是多少的应用题的结构特征,分辨分数带单位和不带单位的区别。

【典例精析】例1、一根绳子长36米,第一次用去,第二次用去米,问还剩下多少米?【分析】:分数不带单位表示两个数量的倍数关系,带单位表示一个具体的量,因此题中所给的两个表示不同意思,不能混为一谈。

小学六年级数学思维训练题(含答案)

小学六年级数学思维训练题(含答案)

小学六年级数学思维训练题
一.填空
1、有40名羽毛球运动员参加淘汰制的比赛,(即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是()场。

2.在数列1
3,1
2
,5
9
,7
12
,3
5
,11
18
……中,第25个分数是()。

3.一个长方形把平面分成两部分,那么2个长方形最多把平面分成()部分。

4.今年,祖父的年龄是小明的年龄的6倍。

几年后,祖父的年龄将是小明的年龄的5倍。

又过几年以后,祖父的年龄将是小明的年龄的4倍。

求:祖父今年是多少岁?
5.已知等式,其中□内是一个最简分数,那么□内的数是_______。

6.一项挖土方工程,如果甲队单独做,16天可以完成,乙队单独做要20天才可以完成。

现在两队同时施工,工作效率提高20%。

当工程完成时,突然遇到地下水,影响施工进度,使得每天少挖了47.25方土,结果共用了10天完成工程,问整个工程要挖多少方土?
7.在算式1×2×3×4×...×100中,那么这个乘积的末尾连续的零的个数等于________个。

二.计算
1.
2.
3.
附答案:
一.填空题
1.39 2.49/75 3. 4 4. 72岁 5.3/100 6.
1100 7. 24 8.
二.计算
1.15/16 2. 62 3. 148。

75
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

小学六年级上册数学思维训练题含答案

小学六年级上册数学思维训练题含答案

三一文库()/小学六年级〔小学六年级上册数学思维训练题含答案〕【知识视窗】:能识别求一个数的几分之几是多少的应用题的结构特征,分辨分数带单位和不带单位的区别。

【典例精析】例1、一根绳子长36米,第一次用去,第二次用去米,问还剩下多少米?【分析】:分数不带单位表示两个数量的倍数关系,带单位表示一个具体的量,因此题中所给的两个表示不同意思,不能混为一谈。

【解答】:36—36×—=36—9—=26 (米)。

答:还剩下26 米。

例2、一件衣服原价100元,先降价,再涨价,问衣服现在的价格是多少?【分析】:这题先降价,再涨价,看似降价和涨价一样多,实际上是不一样的。

第一次是在100元的基础上降价,第二次是在降价后的价格(90)上涨价,因此衣服的价格发生了变化。

【解答】:100×(1— )=90(元)90×(1+ )=99(元)答:衣服现在的价格是99元。

例3、一篮子鸡蛋有81个,第一位顾客买走,第二位顾客买走剩下的,第三位顾客买走剩下的,第四位顾客买走剩下的,这时篮子里还剩多少个鸡蛋?【分析】:把原来篮子里的鸡蛋看作单位“1”,那么第一次买走了总数的,第二次买走了总数的,第三次买走了总数的,第四次买走了总数的,也就是说每次买走的都是总数的,共买了四次,还剩下总数的。

【解答】: (个)答:还剩下45个鸡蛋。

例4、甲、乙、丙、丁四人共植树60棵,甲植树的棵树是其余三人的,乙植树是其余三人,丙植树是其余三人的,丁植树几棵?【分析】:题目中出现三次“其余三人”但“其余三人”所包含的对象不同,因此,三个单位“1”不同。

我们可以把四人的种棵树作为单位“1”,“甲植树的棵数是其余三人的”,就可理解为甲植树的棵数占1份,其余三人占2份,那么甲植树的棵数占总棵数的 = ,同理,乙植树的棵数占总棵数的 = ,丙植树的棵数占总棵数的 = ,这些过程就是所谓的转化单位“1”,使单位“1”统一为总棵数。

六年级数学思维训练题(有答案及解析)

六年级数学思维训练题(有答案及解析)

一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?2.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、乙、丙、丁4名同学的解答及甲、乙、丙3名同学得分如下表所示.丁应得分.题号学生1 2 3 4 5 6 7 8 9 1得分甲××√√××√×√√70 乙×√×√√××√√×70 丙√×××√√√×××60 丁×√×√√×√×√×10.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?15.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?16.五支足球队进行循环赛,即每两个队之间都要赛一场,每场比赛胜者得2分,输者得0分,平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过,问:第一名至第五名各得多少分?全部比赛共打平过几场?17.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0 分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?18.甲、乙、丙、丁、戊五个同学的各科考试成绩如表,已知:①每门功课五个人的分数恰巧分别为l、2、3、4、5;②五个人的总分互不相同,且从高到低的顺序排列是:甲、乙、丙、丁、戊;③丙有四门功课的分数相同.请你把表格补充完整.语文数学英语音乐美术总分田24乙丙丁 4戊 3 519.一次足球赛,有A、B、C、D四个队参加,每两队都赛一场,按规则,胜一场得2分,平一场得1分,负一场得0分.比赛结束后,B队得5分,A队得1分.所有场次共进了9个球,B队进球最多,共进了4个球,C队共失了3个球,D队1个球也未进,A队与C队的比赛比分是2:3.问:A队与B队的比赛比分是多少?20.A、B、C、D四个足球队进行循环比赛.赛了若干场后,A、B、C三队的比赛情况如表:问:D赛了几场?D赛的几场的比分各是多少?场数胜平负进球失球A 3 2 1 0 2 0B 2 1 1 0 4 3C 2 0 0 2 3 6D21.九个外表完全相同的小球,重量分别是1,2,…,9.为了加以区分,它们都被贴上了数字标签,可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧=⑦,请问:⑨号小球的重量是多少?22.A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.’实际上第一名同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?三、超越篇23.在一次射击练习中,甲、乙、丙三位战士打了四发子弹,全部中靶,其中命中情况如下:(1)每人四发子弹命中的环数各不相同;(2)每人四发子弹命中的总环数均为17环;(3)乙有两发命中的环数分别与甲其中两发一样,乙另外两发命中的环数与丙其中两发一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?24.一次象棋比赛共有10位选手参加,他们分别来自甲、乙、丙3个队.每人都与其余9人比赛一盘,每盘胜者得1分,负者得0分,平局各得0.5分.结果乙队平均得分为3.6分,丙队平均得分为9分,那么甲队平均得多少分?25.A、B、C、D、E这5支足球队进行循环赛,每两队之间比赛一场.每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,从高到低依次为D、A、E、B、C又已知5支球队当中只有A没输过,只有C没赢过,而且B战胜了E.请问:战胜过C的球队有哪些?26.10名选手参加象棋比赛,每两名选手间都要比赛一次,已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等,问:前六名的分数各为多少?27.现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分,表1是一张记有比赛详细情况表格,但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入表2中.表1场数胜负平进球失球积分A 22 0 1 0 2 3B 21 1 0 3 6 2C 12 1 2 0 1 1 表2场数胜负平进球失球积分ABC28.9个小朋友从前到后站成一列.现在将红黄蓝三种颜色的帽子各三顶分别戴在这些小朋友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下,发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数,也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子,第六个小朋友戴着黄帽子,请问:最后一个小朋友戴着什么颜色的帽子?29.有A、B、C三支球队进行比赛,每一轮比赛三个队之间各赛一场.每队胜一场得2分,平一场得1分,负一场不得分.如果三支球队共比赛了7轮,最后A胜的场数最多,B输的场数最少,C的得分最高<这些都没有并列).请问:A得了多少分?30.阿奇和8个好朋友去李老师家玩,李老师给每人发了一顶帽子,并在每个人的帽子上写了一个两位数,这9个两位数互不相同,且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A,问这9位同学:“你们知道自己帽子上的数能否被A整除吗?知道的请举手,”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了,并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?参考答案与试题解析一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?【分析】张能胜钱,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰张,或者是王;而李能胜孙,说明第一轮只会碰赵或者钱;由于都没有碰到对手,说明钱只能对上王,遇张不行,故王与钱;而李由于只能碰赵或者钱,在钱有对手的情况下只能选赵,故李与赵,最后得出张与孙.【解答】解:根据上述分析可知:张能胜钱,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰张,或者是王;李能胜孙,说明第一轮只会碰赵或者钱综上所述:第一轮比赛是张与孙,王与钱,李与赵答:第一轮比赛是张与孙,王与钱,李与赵.2.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?【分析】这道题按照常规思路似乎不太好解决,我们画个图试试,用五个点分别表示参加比赛的五个人,如果某两人已经赛过,就用线段把代表这两个人的点连接起来,因为甲已经赛了4盘,除了甲以外还有4个点,所以甲与其他4个点都有线段相连(见下图),根据图即可做出解答.【解答】解:用五个点分别表示参加比赛的五个人,如果某两人已经赛过,就用线段把代表这两个人的点连接起来,因为甲已经赛了4盘,除了甲以外还有4个点,所以甲与其他4个点都有线段相连(见左下图),因为丁只赛了1盘,所以丁只与甲有线段相连,因为乙赛了3盘,除了丁以外,乙与其他三个点都有线段相连(见右上图),因为丙赛了2盘,右上图中丙已有两条线段相连,所以丙只与甲、乙赛过,由上页右图清楚地看出,小强赛过2盘,分别与甲、乙比赛,答:小强赛过2盘,分别与甲、乙比赛.3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)【分析】据题意可知,甲原为第一名(奇数),第一次位置交换后,甲成了第二名(偶数);第二次位置交换后,甲不是第二名,成了第一名或第三名(奇数);第三次位置变化后,不管之前甲处于第一名还是第三名,这次甲肯定又成了第二名(偶数),…;所以可以知道,当甲交换了奇数次位置时,甲一定是第二名;偶数次时,甲一定不在第二名.【解答】解:据题意可知,当甲与共交换了奇数次位置时,甲一定是第二名;偶数次时,甲一定不在第二名.所以甲共交换了7次位置时,7是奇数,则甲一定是在第二名.答:比赛的结果甲是第二名.4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?【分析】(1)因为每一个选手都和其他选手进行一场比赛,属于单循环赛制中,参赛人数与比赛场数的关系为:比赛场数=×参赛人数×(人数﹣1),由此代入求得问题;【解答】解:(1)×10×(10﹣1)=45(场),答:一共要进行45场比赛.(2)45÷10=4(个)…5(场)(不相同,有余数.)答:这10名选手胜的场数不相同.(3)45可以分成1,2,3,4,5,6,7,8,9,0的数列(有五列,是整数,可以)答:这10名选手胜的场数可以两两不同.5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?【分析】(1)6支足球队进行单循环比赛,即每两队之间都比赛一场,所以一个球队赛5场,加入五场全胜,则得分最多是:3×5=15分;有一个球队5场全负,得分最少是0分.(2)出现了6场平局,得12分,一共1赛15场,剩下9场就是输或者赢了,9×3=27分,那么总分就是:12+27=39分.【解答】解:(1)每支球队赛5场,全胜得分最多:5×3=15(分)最少得分就是全输得0分:答:各队总分之和最多是15分,最少是0分.(2)6×5÷2=15(场)6×2+(15﹣6)×3=12+27=39(分)答:那么各队总分之和是39分.6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?【分析】首先总分是45分,黄队16分,红蓝共29分,又团队第一的是黄队且比赛结果没有并列名次,故只能是红队15分,蓝队14分.第一名是一位黄队队员有9分,第二名是一位蓝队队员有8分,即黄队另两名队员共有7分,蓝队另两名队员共有6分,又每名队员至少1分故第三名是一位红队队员有7分,即红队另两名队员共有8分..又相邻的名次的队员都不在同一个队故第四名的得6分的队员是黄队,此时黄队最后一名队员1分.故得5分的不是蓝队队员,不然蓝队又有一名队员1分矛盾.故得5分为红队队员,此时红队有一名是3分.故剩下的蓝队为4分和2分,刚好共6分.故得分情况如下:黄:9、6、1 蓝:8、4、2 红:7、5、3,据此解答即可.【解答】解:1.由于1到9名分数分别是9到1分,那么总共9人总分就是45分2.由于团队第一名16分,第二名只能是小于等于15,第三名小于等于14.而总分是45.所以第二,第三只能分别是15分,14分.(因为16+15+14=45,没有其他组合等于45分)因此第二名红对共得15分.3.由于单打前两名分别由黄队和蓝队的队员获得.因此红对个人得分最多的一个小于等于7分.又因为相邻名次没有同队的人员,所以红对的三人得分可能是7,5,3或者7,4,2等几种(没有列全).但是红队总分能达到15分的组合只有7+5+3=15.所以红对队员分别得了7,5,3分.答:红队队员分别得了7,5,3分.7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?【分析】由于5支足球队进行单循环赛,每两队之间进行一场比赛,则每一队都要和其它四队赛一场,即每支球队进行了4场比赛,全胜得12分,第三名得了7分,并且和第一名打平得一分,那么另三场只能是两胜一负,因各队得分都不相同,第一名平一场,如平再负一场就和第三名得分一样,如果再平一场就得8分,这都不符合题意,所以剩下三场只能胜,积3×3+1=10分,也就是胜2、4、5名,第二名只能是三胜一负,积3×3+0=9分.也就是胜3、4、5名;第三名胜4、5,负2,平1;第四名为负1、2、3,第五名也负1、2、3又因各队比分不同则4胜5积3分,第五名全负,积0分.【解答】解:由题意可知,每支球队进行了4场比赛,第三名得了7分,并且和第一名打平,那么另三场只能是两胜一负;因各队得分都不相同,第一名平一场,另三场只能胜,积3×3+1=10分,也就是胜2、4、5名;第二名只能是三胜一负,积3×3+0=9分.也就是胜3、4、5;第三名胜4、5,负2,平1;第四名为负1、2、3,第五名也负1、2、3名;又因各队比分不同则4胜5积3分,则第五名全负,积0分;即:第一名:10分,第二名:9分,第三名:7分,第四名:3分,第五名:0分.答:第一名:10分,第二名:9分,第三名:7分,第四名:3分,第五名:0分.8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?【分析】A两战两胜,C有一场平说明比赛胜负情况如下:A胜B A胜C B平C;而B C 的比分:0:0 这种情况不存在因为A共失球两个而B C共进球6个1:1 同上2:2 适合条件B另外两个球攻入A的球门3:3 不存在C共进球两个所以得出B:C 为2:2则C另外6个失球失给A,B剩下两个进球,3个失球是跟A比赛的时候故可得出结论:A胜B 3比2A胜C 6比0B平C 2比2【解答】解:总进球=总失球A进球+4+2=2+5+8A进球=9A全胜那么B与C打平又因为B比C多进2球那么B对A进的球比C对A进的球多2个又因为A只失2球那么B对A进2球C对A进0球那么B:C=2:2那么A:B=3;2答:A与B两队间的比分是3:2.9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、乙、丙、丁4名同学的解答及甲、乙、丙3名同学得分如下表所示.丁应得90分.题号学生1 2 3 4 5 6 7 8 9 1得分甲××√√××√×√√70 乙×√×√√××√√×70 丙√×××√√√×××60 丁×√×√√×√×√×【分析】观察甲与乙的答案可知,A、B有1、4、6、9这四道题答案相同,6道题答案不同.因为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;又丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错,又丙得60分,所以丙的其他题目全部答对,即2,3,5,7,8,10的答案分别是×,×、√、√、×、×.由此可知,这10道题的答案分别是:据此即能得出丁得多少分.【解答】解:由于A、B有1、4、6、9这四道题答案相同,6道题答案不同.且每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;由于丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错,又丙得60分,所以丙的其他题目全部答对,即2,3,5,7,8,10的答案分别是×,×、√、√、×、×.这10道题的答案分别是:所以丁的只的2题,扣10分,得90分.故答案为:90.10.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?【分析】通过分析可知:赵钱孙李一共订了:2+2+4+3=11份A,B,C,D一共订了:1+2+2+2=7份根据题意,周至少订了1份5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份,假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户,这与一共有5户矛盾所以周只能订1种,订E的有5户【解答】解:赵钱孙李订的份数:2+2+4+3=11份A,B,C,D订的份数:1+2+2+2=7份根据题意可知周至少订了1份所以5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份,假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户,这与一共有5户矛盾所以周只能订1种,订E的有5户答:周姓订户订有这5种报纸中的1种,报纸E在这5户人家中有5家订户.二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?【分析】从5号队员开始讨论,他和另外5个队员各赛了1场,由此得出1号只跟5号赛了1场,由此类推即可得出结果.【解答】解:因为是每2个人都要赛1盘,所以可以这样推理:①5号赛了5场,说明他与1,2,3,4,6,各赛了1场;②1号赛1场,那么1号只跟5号赛了1场;③4号赛了4场,除了跟5号赛1场,另外3场是跟2,3,6号;④那么2号此时分别和5号、4号已赛了2场;④3号赛了3场,除了和4号,5号之外,又和6号赛了1场.将上述推理过程用图表示为:答:此时6号已经赛了3场.12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.【分析】五行有‘五行相生’和‘五行相克’,‘五行相生’是互相生旺的意思,表示生成化育,‘五行相克’就是互相反驳、互相战斗、制衡.五行相生:水生木→木生火→火生土→土生金→金生水五行相克:木克土→土克水→水克火→火克金→金克木据此解答即可.【解答】解:根据五行相生:水生木→木生火→火生土→土生金→金生水五行相克:木克土→土克水→水克火→火克金→金克木得出图为:13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?【分析】因“A、B、C、D、E、F六个国家的足球队单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛”,根据已经进行的比赛场次进行推理,据此解答即可.【解答】解:第二天A不能对B,否则A对B、D对F与第三天D对F矛盾,所以应当B 对F、A对D.第三天A也不能对B,否则C对E与第二天C对E矛盾,应当B对E(不能B对C,与第四天矛盾),A对C.第四天B对C,D对E,A对F,所以第五天A对B.答:第五天与A队比赛的是B支队伍.14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?【分析】根据题意,扣除A、B、C分别赢的场次,得出A、B、C各打了几场,即可得出A 总共打了几场.【解答】解:由A队先取得10连胜,这样BC队就各输5场再由B队取得12连胜,这样AC队就各输6场最后C队取得14连胜,这样AB队就各输7场从A来看,每负一场就休息了一场,总共有10+12+14=36场比赛,A胜了10场,剩下26场是负和休息,那么A负了13场,休息了13场,赛了10+13=23场.同理,B胜了12场,剩下24场是负和休息,那么B负了12场,休息了12场,赛了12+12=24场.C胜了14场,剩下22场是负和休息,那么C负了11场,休息了11场,赛了14+11=25场.答:则A队共打了23场比赛.15.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?。

小学六年级上册数学思维训练题(含答案)

小学六年级上册数学思维训练题(含答案)

小学六年级上册数学思维训练题(含答案)小学六年级上册数学思维训练题(含答案)知识视窗:能识别求一个数的几分之几是多少的应用题的结构特征,分辨分数带单位和不带单位的区别。

典例精析例1、一根绳子长36米,第一次用去,第二次用去米,问还剩下多少米?分析:分数不带单位表示两个数量的倍数关系,带单位表示一个具体的量,因此题中所给的两个表示不同意思,不能混为一谈。

解答:36-36times; -=36-9-=26 (米)。

答:还剩下26 米。

例2、一件衣服原价100元,先降价,再涨价,问衣服现在的价格是多少?分析:这题先降价,再涨价,看似降价和涨价一样多,实际上是不一样的。

第一次是在100元的基础上降价,第二次是在降价后的价格(90)上涨价,因此衣服的价格发生了变化。

解答:100times;(1- )=90(元)90times;(1+ )=99(元)答:衣服现在的价格是99元。

分析:把原来篮子里的鸡蛋看作单位“1”,那么第一次买走了总数的,第二次买走了总数的,第三次买走了总数的,第四次买走了总数的,也就是说每次买走的都是总数的,共买了四次,还剩下总数的。

解答: (个)答:还剩下45个鸡蛋。

例4、甲、乙、丙、丁四人共植树60棵,甲植树的棵树是其余三人的,乙植树是其余三人,丙植树是其余三人的,丁植树几棵?分析:题目中出现三次“其余三人”但“其余三人”所包含的对象不同,因此,三个单位“1”不同。

我们可以把四人的种棵树作为单位“1”,“甲植树的棵数是其余三人的”,就可理解为甲植树的棵数占1份,其余三人占2份,那么甲植树的棵数占总棵数的 = ,同理,乙植树的棵数占总棵数的 = ,丙植树的棵数占总棵数的 = ,这些过程就是所谓的转化单位“1”,使单位“1”统一为总棵数。

解答:丁植树的棵数占总棵数的:1- - - =丁植树棵数是:60times; =13(棵)答:丁植树13棵。

科学的学习方法和合理的复习资料能帮助大家更好的学好数学这门课程。

六年级上册数学思维训练题+重点题(附解析)

六年级上册数学思维训练题+重点题(附解析)

六年级上册数学思维训练题+重点题(附解析)六年级数学思维训练题1、两个相同的瓶子装满酒精溶液。

一个瓶中酒精与水的比2︰3,另一个瓶中酒精与水的比是3︰5,若把两瓶酒精溶液混合,混合后酒精与水的比是多少?分析与解答:因为两个瓶子相同,可以分别求出每个瓶中酒精占瓶子容积的几分之几,在求出混合后酒精和水各占容器容积的几分之几,即可求出混合后酒精与水的比。

2、某饮料店有一桶奶茶,上午售出其中的25%,下午售出30升,晚上售出剩下的10%,最后剩下的奶茶再减6升刚好半桶,问一桶奶茶共有多少升?【考点】L6:分数和百分数应用题【分析】设一桶奶茶共有a升,则晚上售出(a﹣25%a﹣30)×10%,此时剩下(a﹣25%a﹣30)×(1﹣10%),对应着50%a+6,列出方程求解.【解答】解:设一桶奶茶共有a升(a﹣25%a﹣30)×(1﹣10%)=50%a+6(0.75a﹣30)×0.9=0.5a+60.675a﹣27=0.5a+60.175a=333、学校里买来了5个保温瓶和10个茶杯,共用了90元钱。

每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?分析与解:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。

这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。

解:每个茶杯的价钱:90÷(4×5+10)=3(元)每个保温瓶的价钱3×4=12(元)答:每个保温瓶12元,每个茶杯3元。

4、某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。

每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?分析与解:由己知条件可知道,每天用去30袋水混,同时用去30×2袋沙子才能同时用完。

但现在每天只用去40袋沙子,少用(30×2-40)袋,这样オ累计出120袋沙子。

(完整word版)2014年六年级数学思维训练:比例解应用题

(完整word版)2014年六年级数学思维训练:比例解应用题

2014年六年级数学思维训练:比例解应用题一、兴趣篇1.(2014秋•盐城校级期末)圆珠笔和铅笔的单价比是4:3,20支圆珠笔和21支铅笔共71.5元.圆珠笔的单价是多少?2.一段路程分为上坡和下坡两段,这两段的长度之比是4:3.已知阿奇在上坡时每小时走3千米,下坡时每小时走4.5千米.如果阿奇走完全程用了半小时.请问:这段路程一共有多少千米?3.加工一个零件,甲要2分钟,乙要3分钟,丙要4分钟,现有1170个零件,甲、乙、丙三人各加工几个零件,才能使得他们同时完成任务?4.有两块重量相同的铜锌合金.第一块合金中铜与锌的重量比是2:5,第二块合金中铜与锌的重量比是1:3.现在把这两块合金合铸成一块大的.求合铸所成的合金中铜与锌的重量之比.5.(2012•北京模拟)已知甲、乙、丙三个班总人数的比为3:4:2,甲班男、女生的比为5:4,丙班男、女生的比为2:1,而且三个班所有男生和所有女生的比为13:14,请问:(1)乙班男、女生人数的比是多少?(2)如果甲班男生比乙班女生少12人,那么甲、乙、丙三个班各有多少人?6.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?7.(2012•北京模拟)小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用4小时,小明去时用了多长时间?8.(2012•北京模拟)冬冬从家去学校,平时总是7:50到校,有一天他起晚了,结果晚出发了10分钟,为了不至于迟到,他将速度提高了五分之一,跑步前往学校,最后在7:55到校,请问:冬冬这天是几点出发的?9.一项工程,由若干台机器在规定时间内完成.如果增加2台机器,只需用规定时间的就可完成;如果减少2台机器,就要推迟小时才能完成.请问:(1)在规定时间内完成需几台机器?(2)由1台机器去完成这工程,需要多少小时?10.康师傅加工一批零件,加工720个之后,他的工作效率提高了20%,结果提前4天完成任务;如果康师傅从一开始就把工作效率提高12.5%,那么也可以提前4天完成任务.这批零件共有多少个?二、拓展篇11.学校组织体检,收费标准如下:老师每人3元,女生每人2元,男生每人1元,已知老师和女生的人数比为2:9,女生和男生的人数比为3:7,共收体检费945元.那么老师、女生和男生各有多少人?12.徐福记的巧克力糖每6块包成一小袋,水果糖每15块包成一大袋.现有巧克力糖和水果糖各若干袋,而且巧克力糖比水果糖多30袋.如果巧克力糖的总块数与水果糖的总块数之比为7:10,那么它们各有多少块?13.甲、乙、丙三人合买一台电视机,甲付的钱数等于乙付的钱数的2倍,也等于丙付的钱数的3倍.已知甲比丙多付了680元,请问:(1)甲、乙、丙三人所付的钱数之比是多少?(2)这台电视机售价多少钱?14.一把小刀售价3元.如果小明买了这把小刀,那么小明与小强的钱数之比是2:5;如果小强买了这把小刀,那么两人的钱数之比是8:13.小明原来有多少元钱?15.两根粗细相同、材料相同的蜡烛,长度比为29:26,燃烧50分钟后,长蜡烛与短蜡烛的长度比为11:9,那么较长的那根还能燃烧多少分钟?16.(2008•武汉校级自主招生)某俱乐部男女会员的人数之比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男女会员的人数之比是3:1,乙组中男女会员的人数之比是5:3.则丙组中男女会员人数之比是.17.某次数学竞赛设一、二、三等奖,已知:①甲、乙两校获一等奖的人数比为1:2,但它们一等奖人数占各自获奖总人数的百分数之比为2:5;②甲、乙两校获二等奖人数占两校获奖人数总和的25%,其中乙校是甲校的3.5倍;③甲校三等奖获奖人数占该校获奖人数的80%.请问:乙校获三等奖人数占该校获奖人数的百分比是多少?18.(2013•青羊区校级模拟)如果单独完成某项工作,那么甲需要24天,乙需要36天,丙需要48天.现在甲先做,乙后做,最后由丙完成.甲、乙工作的天数比为1:2,乙、丙工作天数比为3:5.问:完成这项工作共用了多少天?19.已知猫跑5步的路程与狗跑3步的路程相同,猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同,猫跑5步的时间与兔跑7步的时间相同,求猫、狗和兔的速度之比.20.(2013春•高陵县校级月考)星期天早晨,哥哥和弟弟都要到奶奶家去.弟弟先走5分,哥哥出发后25分追上弟弟.如果哥哥每分多走5米,那么出发后20分就可以追上弟弟.弟弟每分走多少米?21.一支解放军部队从驻地乘车赶往某地抗洪抢险,如果行驶1个小时后,将车速提高五分之一,就可比预定时间提前20分钟赶到;如果先按原速度行驶72千米,再将车速提高三分之一,就可比预定时间提前30分钟赶到,问:这支解放军部队一共需要行多少千米?22.一项工作由甲、乙两人合作,恰可在规定时间内完成,如果甲效率提高三分之一,则只需用规定时间的六分之五即可完成;如果乙效率降低四分之一,那么就要推迟75分钟才能完成,请问:规定时间是小时?三、超越篇23.甲、乙两人分别同时从A、B两地开始,修建一条连接A、B两地的公路,并按修路的距离分配240万元工程款.如果按原计划,甲应分得100万元.而在实际施工的时候,乙每天比原计划多修l千米,结果乙实际分得了150万元,那么乙队实际施工时,每天修多少千米?24.孙悟空有仙桃、机器猫有甜饼、米老鼠有泡泡糖,他们按下面比例互换:仙桃与甜饼为3:5,仙桃与泡泡糖为3:8,甜饼与泡泡糖为5:8.现在孙悟空共拿出39个仙桃分别与其他两位互换,机器猫共拿出甜饼90个与其他两位互换,米老鼠共拿出88个泡泡糖与其他两位互换.请问:米老鼠与孙悟空和机器猫各交换泡泡糖多少个?25.有两包糖,每包糖内装有奶糖、水果糖和巧克力糖.已知:①第一包糖的粒数是第二包糖的;②在第一包糖中,奶糖占25%,在第二包糖中,水果糖占50%;③巧克力糖在第一包糖中所占的百分比是在第二包糖中所占的百分比的两倍,当两包糖混合在一起时,巧克力糖占28%.求第一包与第二包中水果糖占所有糖的百分比.26.某工地用三种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为10:7:6,速度比为3:4:5,运送土方的路程之比为15:14:14,三种车的辆数之比为10:5:7.工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到10天后,另一半甲种车才投人工作,又干了15天才完成任务.求甲种车完成的工作量与总工作量之比.27.在一个490米长的圆形跑道上,甲、乙两人从相距50米的A、B两地,相背出发,相遇后,乙返回,甲方向不变,继续前进,甲的速度提高五分之一,乙的速度提高四分之一.当乙回到B地时,甲刚好回到A地,此时他们都按现有速度与方向前进.请问:当甲再次追上乙时,甲(从开始出发算起)一共走了米?28.将A、B两种细菌分别放在两个容器里.在光线亮时A细菌需12小时分裂完毕,B细菌需15小时分裂完毕;在光线暗时,A细菌的分裂速度要下降40%,B细菌的分裂速度反而提高10%.现在两种细菌同时开始分裂并同时分裂完毕,试问:在分裂过程中,光线暗的时间有多少小时?29.如图,A、B、C、D、E、F是六个齿轮.其中A和B相互咬合,B和C相互咬合,D 和E、E和F也都相互咬合;而C和D是同轴的两个齿轮,也就是说C和D转动的圈数始终相同.当A转了7圈时,B恰好转了5圈;当E转了8圈时,F恰好转了9圈;当C转了5圈时,B和E恰好共转了28圈.请问:(1)如果A、E转的总圈数总是和B、F转的总圈数相同,那么当A、F共转了100圈时,D转了多少圈?(注:图片只是示意图,并不代表实际齿数)(2)如果A、E的总齿数和B、F的总齿数相等,D的齿数是C的齿数的2倍,那么当A 转了210圈时,D和F分别转了多少圈?2014年六年级数学思维训练:比例解应用题参考答案与试题解析一、兴趣篇1.(2014秋•盐城校级期末)圆珠笔和铅笔的单价比是4:3,20支圆珠笔和21支铅笔共71.5元.圆珠笔的单价是多少?【分析】根据题干,设圆珠笔的单价是4x元,铅笔的单价是3x元,则根据等量关系:圆珠笔的单价×20+铅笔的单价×21=总价钱71.5,据此列出方程解决问题.【解答】解:设圆珠笔的单价是4x元,铅笔的单价是3x元,根据题意可得方程:4x×20+3x×21=71.5,80x+63x=71.5,143x=71.5,x=0.5,0.5×4=2(元),答:圆珠笔的单价是2元.2.一段路程分为上坡和下坡两段,这两段的长度之比是4:3.已知阿奇在上坡时每小时走3千米,下坡时每小时走4.5千米.如果阿奇走完全程用了半小时.请问:这段路程一共有多少千米?【分析】因为一段路程分为上坡和下坡两段,这两段的长度之比是4:3,设这段路程上坡有x千米,那么下坡为x=0.75x千米,根据路程÷速度=时间,列式为,解答即可.【解答】解:设这段路程上坡有x千米,那么下坡为x(即0.75x),6.75x×2=13.513.5x=13.5x=1下坡:1×0.75=0.75(千米)全程:1+0.75=1.75(千米)答:这段路程一共有1.75千米.3.加工一个零件,甲要2分钟,乙要3分钟,丙要4分钟,现有1170个零件,甲、乙、丙三人各加工几个零件,才能使得他们同时完成任务?【分析】把这批零件个数看作单位“1”,依据工作时间=工作总量÷工作效率,求出三人完成任务需要的时间,再根据工作总量=工作时间×工作效率即可解答.【解答】解:1170÷()=1170÷=1080(分钟)1080×=540(个)1080×=360(个)1080×=270(个)答:甲加工540个零件,乙加工360个零件,丙加工270个才能使得他们同时完成任务.4.有两块重量相同的铜锌合金.第一块合金中铜与锌的重量比是2:5,第二块合金中铜与锌的重量比是1:3.现在把这两块合金合铸成一块大的.求合铸所成的合金中铜与锌的重量之比.【分析】已知第一块合金中铜与锌的重量比是2:5,其中铜占合金重量的,锌占合金重量的;第二块合金中铜与锌的重量比是1:3.其中铜占合金重量的,锌占合金重量的,两块合铸所成的合金中铜占总重量的(),锌占总重量的(),进而求出它们的重量之比.【解答】解:():()==15:41,答:合铸所成的合金中铜与锌的重量之比是15:41.5.(2012•北京模拟)已知甲、乙、丙三个班总人数的比为3:4:2,甲班男、女生的比为5:4,丙班男、女生的比为2:1,而且三个班所有男生和所有女生的比为13:14,请问:(1)乙班男、女生人数的比是多少?(2)如果甲班男生比乙班女生少12人,那么甲、乙、丙三个班各有多少人?【分析】(1)所有男女比为13:14,13+14=27份,甲乙丙人数比为3:4:2=9:12:6,总份数也是(9+12+6)=27份,对应甲班男、女生的比为5:4,丙班男、女生的比为2:1=4:2,从而对应乙班男、女生人数的比是(13﹣5﹣4):(14﹣4﹣2);化成最简整数比即可;(2)由于甲班男、女生的比为5:4,乙班男、女生人数的比是4:8,则甲班男生和乙班女生的比为5:8,差为12人,则相差(8﹣5)份,用12÷(8﹣5)可求出1份的人数,甲乙丙人数比为9:12:6,即甲班有9份,乙班有12份,丙班有6份,然后分别求出即可.【解答】解:(1)所有男女比为13:14,13+14=27份,甲乙丙人数比为3:4:2=9:12:6,甲班男女比5:4,丙班男女比2:1=4:2,则乙班男、女比为(13﹣5﹣4):(14﹣4﹣2)=1:2;(2)乙班男、女比为(13﹣5﹣4):(14﹣4﹣2)=1:2=4:8,则甲班男生和乙班女生的比为5:8,差为12人,则相差(8﹣5)份,每份:12÷(8﹣5)=4(人)甲班:4×9=36(人);乙班:4×12=48(人);丙班:4×6=24(人);答:乙班男、女生人数的比是1:2,甲班有36人、乙班有48人、丙班有24人.6.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?【分析】根据“甲、乙两包糖的重量比是5:3”,可以求出甲包糖原来占总量的,再根据“甲乙两包糖的重量比变为7:5”,知道甲包糖后来占总重量的,由此可知两包糖重量的总和的(﹣)是10克,根据已知一个数的几分之几是多少,求这个数.用除法解答即可.【解答】解:10÷(﹣)=10÷=240(克),答:这两包糖重量的总和是240克.7.(2012•北京模拟)小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用4小时,小明去时用了多长时间?【分析】本题可列方程进行解答,设甲地到乙地为x千米,则去时用时为小时,回来是用时小时,一共用了4小时,由此等量关系可列方程.【解答】解:设甲地到乙地为x千米,则可列方程:12x=140x=11故小明去时用时:11÷5=(小时);答:小明去时用了小时.8.(2012•北京模拟)冬冬从家去学校,平时总是7:50到校,有一天他起晚了,结果晚出发了10分钟,为了不至于迟到,他将速度提高了五分之一,跑步前往学校,最后在7:55到校,请问:冬冬这天是几点出发的?【分析】原来的速度看成单位“1”,现在的速度就是1+=;原来速度与现在的速度比是5:6,总路程相同,那么它们用的时间比就是6:5;因为现在比原来少用了5分钟,则1份就是5分钟,实际用了5×5=25(分),再从7:55先前推算25分钟即可.【解答】解:1+=;原来速度与现在的速度比是5:6,总路程相同,它们用的时间比就是6:5;7时55分﹣7时50分=5分;6﹣5=1(份);1份是5分钟,所以现在用的时间就是:5×5=25(分);7时55分﹣25分=7时30分;答:冬冬这天是7时30分出发.9.一项工程,由若干台机器在规定时间内完成.如果增加2台机器,只需用规定时间的就可完成;如果减少2台机器,就要推迟小时才能完成.请问:(1)在规定时间内完成需几台机器?(2)由1台机器去完成这工程,需要多少小时?【分析】(1)根据“如果增加2台机器,只需用规定时间的就可完成”,那么1÷=,那么原有台数:2÷(﹣1)=14台,解决问题.(2)根据题意,如果增加2台机器,则只需用规定时间的就可做完,设原拥有机器x 台,规定的时间t 小时.则有tx=t(x+2),解得x=14,如果减少2台机器,那么就要推迟小时做完,则14t=(x﹣2)(t+),由此可以求出工作时间,然后根据工作效率×工作时间=工作量解答即可.【解答】解:(1)2÷(1÷﹣1)=2÷(﹣1)=2÷=14(台)答:在规定时间内完成需14台机器.(2)设原拥有机器x台,规定的时间t小时.则有tx=t(x+2)解得x=14,又14t=(x﹣2)(t+)14t=12(t+)14t=12t+814t﹣12t=8t=414×4=56(小时).答:一台机器去完成这项工程需要56小时.10.康师傅加工一批零件,加工720个之后,他的工作效率提高了20%,结果提前4天完成任务;如果康师傅从一开始就把工作效率提高12.5%,那么也可以提前4天完成任务.这批零件共有多少个?【分析】工作效率提高20%,即工效比5:6,时间比6:5,工效提高12.5%,即工效比8:9,时间比9:8,两者的时间差是一样的:6﹣5=1,9﹣8=1,即1份代表4天,所以求出原来的天数,而加工720个,剩下的按原工作效率进行,那么还需要4×6=24天,即720个用36﹣24=12天,原来1天做720÷12=60个.进而求出这批零件的个数.【解答】解:工作效率提高20%,即工效比为5:6,时间比为6:5,工效提高12.5%,即工效比为8:9,时间比9:8,两者的时间差是一样的:6﹣5=1,9﹣8=1,即1份代表4天,所以原来共有4×9=36(天),而加工720个,剩下的按原工作效率进行,还要4×6=24天,即720个用36﹣24=12天,原来1天做720÷12=60(个).这批零件共有60×36=2160(个).答:这批零件共有2160个.二、拓展篇11.学校组织体检,收费标准如下:老师每人3元,女生每人2元,男生每人1元,已知老师和女生的人数比为2:9,女生和男生的人数比为3:7,共收体检费945元.那么老师、女生和男生各有多少人?【分析】已知老师和女生的人数比为2:9,女生和男生的人数比为3:7,首先求出老师、女生、男生人数的连比,又知老师每人3元,女生每人2元,男生每人1元,共收体检费945元.那么老师、女生和男生钱数的比是3:2:1,然后根据按比例分配的方法即可求出老师、女生和男生各有多少人.【解答】解:人数的比:老师:女生:男生2:9:21钱数的比:老师:女生:男生3:2:1945÷(3×2+9×2+21×1)=945÷(6+18+21)=945÷45=21(人),老师:21×2=42(人),女生:21×9=189(人),男生:21×21=441(人),答:老师有42人、女生有189人、男生有441人.12.徐福记的巧克力糖每6块包成一小袋,水果糖每15块包成一大袋.现有巧克力糖和水果糖各若干袋,而且巧克力糖比水果糖多30袋.如果巧克力糖的总块数与水果糖的总块数之比为7:10,那么它们各有多少块?【分析】根据每袋的块数×袋数=总块数,已知巧克力糖比水果糖多30袋.巧克力糖的总块数与水果糖的总块数之比为7:10,设水果糖有x袋,据此列比例解答.【解答】解:设水果糖有x袋,6(x+30):15x=7:1015x×7=6(x+30)×10105x=60(x+30)105x=60x+180045x=1800x=40水果糖:15×40=600(块),巧克力:6×(30+40)=6×70=420(块),答:水果糖有600块、巧克力有420块.13.甲、乙、丙三人合买一台电视机,甲付的钱数等于乙付的钱数的2倍,也等于丙付的钱数的3倍.已知甲比丙多付了680元,请问:(1)甲、乙、丙三人所付的钱数之比是多少?(2)这台电视机售价多少钱?【分析】甲付的钱数等于乙付的钱数的2倍,也等于丙付的钱数的3倍.把乙付出的钱数设为x,甲付出的钱数是2x,丙付出的钱数是2x÷3,列式2x:x:(2x÷3)求出甲乙丙的比即可,已知甲比丙多付了680元,所以680等于2x﹣2x÷3,求出乙付出的钱数,进一步求出甲丙付出的钱数,然后加在一起就是总钱数.【解答】解:(1)乙付出的钱数设为x,甲付出的钱数是2x,丙付出的钱数是2x÷3甲、乙、丙三人所付的钱数之比2x:x:(2x÷3)=2:1:=6:3:2答:甲、乙、丙三人所付的钱数之比是6:3:2.(2)设乙付出的钱数设为x,甲付出的钱数是2x,丙付出的钱数是2x÷3.2x﹣2x÷3=680x=680x=680×x=510甲付出的钱数:2x=2×510=1020(元)丙付出的钱数:2x÷3=2×510÷3=340(元)510+1020+340=1870(元)答:这台电视机售价1870元.14.一把小刀售价3元.如果小明买了这把小刀,那么小明与小强的钱数之比是2:5;如果小强买了这把小刀,那么两人的钱数之比是8:13.小明原来有多少元钱?【分析】根据条件可知,小明买,小明剩下的钱是两人剩下的钱的,如果小强买,那么小明的钱是两人剩下的钱的因此用除法可求出小明剩下的钱占他自己原来的钱的几分之几;把小明原来的钱看作单位“1”,用1减去小明剩下的钱占他自己原来的钱的几分之几,就得出3元就是几分之几,3除以这个几分之几就算出答案.【解答】解法一:小明买,小明剩下的钱是两人剩下的钱的2÷(2+5)=如果小强买,那么小明的钱是两人剩下的钱的8÷(8+13)=所以小明剩下的钱占他自己原来的钱的÷=.所以小明原来的钱有3÷(1﹣)=12元.答:小明原来有12元.解法二:如果小明买,剩下(8+13)÷(2+5)×2=6份,用掉8﹣6=2份.所以小明有3÷2×8=12元.答:小明原来有12元.15.两根粗细相同、材料相同的蜡烛,长度比为29:26,燃烧50分钟后,长蜡烛与短蜡烛的长度比为11:9,那么较长的那根还能燃烧多少分钟?【分析】设每分钟燃烧x,50分钟燃烧50x,长蜡烛29a,短蜡烛26a,用原来的量减去燃烧的量就是剩下的量,表示出剩下量的比,等于11:9,由此列方程进行解答即可.【解答】解:设每分钟燃烧x,50分钟燃烧50x,长蜡烛29a,短蜡烛26a.(29a﹣50x):(26a﹣50x)=11:911×(26a﹣50x)=(29a﹣50x)×9286a﹣550x=261a﹣450x100x=25ax=0.25a长蜡烛共能燃烧29a÷(0.25a)=116(分钟)116﹣50=66(分钟)答:那么较长的那根还能燃烧66分钟.16.(2008•武汉校级自主招生)某俱乐部男女会员的人数之比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男女会员的人数之比是3:1,乙组中男女会员的人数之比是5:3.则丙组中男女会员人数之比是5:9.【分析】根据甲、乙、丙三组人数的比为10:8:7,可设甲组人数为10x,乙组人数为8x,丙组人数为7x,那么三组共有人数为25x;再根据男女会员的人数之比是3:2,可求得男会员是15x人,女会员是10x人;由甲组中男女会员的人数之比是3:1,求得甲组男会员是7.5x人,女会员是2.5x人;乙组中男女会员的人数比是5:3,求得乙组男会员是5x人,女会员是3x人,那么丙组的男会员就是15x﹣7.5x﹣5x=2.5x人,丙组的女会员就是10x﹣2.5x﹣3x=4.5x人,那么丙组男女会员人数之比是2.5x:4.5x=5:9.【解答】解:设甲组为10x人,乙组为8x人,丙组为7x人,则三组共有会员:10x+8x+7x=25x(人),俱乐部有男会员:25x×=15x(人),俱乐部有女会员:25x×=10x(人),甲组有男会员:10x×=7.5x(人),甲组有女会员:10x﹣7.5x=2.5x(人),乙组有男会员:8x×=5x(人),乙组有女会员:8x﹣5x=3x(人),丙组有男会员:15x﹣7.5x﹣5x=2.5x(人),丙组有女会员:10x﹣2.5x﹣3x=4.5x(人),则丙组中男女会员人数之比:2.5x:4.5x=5:9.答:丙组中男女会员人数之比是5:9.故答案为:5:9.17.某次数学竞赛设一、二、三等奖,已知:①甲、乙两校获一等奖的人数比为1:2,但它们一等奖人数占各自获奖总人数的百分数之比为2:5;②甲、乙两校获二等奖人数占两校获奖人数总和的25%,其中乙校是甲校的3.5倍;③甲校三等奖获奖人数占该校获奖人数的80%.请问:乙校获三等奖人数占该校获奖人数的百分比是多少?【分析】根据题干,可得(1)甲、乙两校获一等奖的人数比为1:2,但他们一等奖人数占各自获奖总人数的百分数之比为2:5,所以甲乙两校获奖总人数的比=5:4;则甲校占两校获奖总数的比等于,乙校占两校获奖总数的比等于;(2)甲、乙两校获二等奖的人数总和占两校获奖人数总和的25%,据此再根据乙校获二等奖的人数是甲校获二等奖人数的3.5倍,进行推算,即可求出甲、乙两校二等奖的人数各占该校总人数的百分数;(3)甲校获三等奖的人数占该校获奖人数的80%,占两校获奖总人数的比=×80%=,所以用甲校获奖人数减去二三等奖即可求出一等奖数,从而求出乙校一等奖人数和乙校三等奖人数占总获奖的分率,再根据甲乙两校总人数之比本题可解.【解答】解:(1)甲、乙两校获一等奖的人数比为1:2,但他们一等奖人数占各自获奖总人数的百分数之比为2:5,所以甲乙两校获奖总人数的比=5:4;则甲校占两校获奖总数的比等于,乙校占两校获奖总数的比等于;解答:(2)甲、乙两校获二等奖的人数总和占两校获奖人数总和的25%,且乙校获二等奖的人数是甲校获二等奖人数的3.5倍,所以,甲校获二等奖的人数占总数的比=(1÷4.5)×25%=;乙校获二等奖占获奖总数的25%﹣=(3)甲校获三等奖的人数占该校获奖人数的50%,占两校获奖总人数的比×80%=;所以,甲校获一等奖的人数占两校获奖总数的比=﹣﹣=,那么,乙校获一等奖的人数占两校获奖总人数的百分比=×2=则乙校获三等奖人数占两校获奖人数的百分比=1﹣﹣﹣﹣=则乙校获三等奖人数占该校获奖人数的×=25%答:乙校获三等奖的人数占该校获奖总人数的百分比是25%.18.(2013•青羊区校级模拟)如果单独完成某项工作,那么甲需要24天,乙需要36天,丙需要48天.现在甲先做,乙后做,最后由丙完成.甲、乙工作的天数比为1:2,乙、丙工作天数比为3:5.问:完成这项工作共用了多少天?【分析】由于甲、乙工作的天数比为1:2,乙、丙工作天数比为3:5,则甲:乙:丙=3:6:10,3+6+10=19,由此可知他们分别工作了全部天数的、、,则他们分别完成了全部工程的×x、×、×x,设完成这项工程共用了x天,可得方程:×x+×x+×x=1.【解答】解:甲:乙=1:2,乙:丙=3:5,则甲:乙:丙=3:6:10.设完成这项工程共用了x天,可得方程:×x+×x+×x=1.x+x+x=1,x=1,x=38.答:完成这项工作共用了38天.19.已知猫跑5步的路程与狗跑3步的路程相同,猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同,猫跑5步的时间与兔跑7步的时间相同,求猫、狗和兔的速度之比.【分析】以猫为准,猫跑一步的路程,相当于狗的的路程;相当于兔子的的路程,猫跑一步的时间为1,相当于狗一步的,相当兔子一步的;猫的速度为1,则狗的速度为÷=,兔子的速度为÷=;猫、狗和兔的速度之比为1::.【解答】解:以猫为准,猫跑一步的路程,相当于狗的的路程;相当于兔子的的路程,猫跑一步的时间为1,相当于狗一步的,相当兔子一步的.猫的速度为1,则狗的速度为÷=,兔子的速度为÷=.猫、狗和兔的速度之比为1::=1225:441:625.答:猫、狗和兔的速度之比是1225:441:625.20.(2013春•高陵县校级月考)星期天早晨,哥哥和弟弟都要到奶奶家去.弟弟先走5分,哥哥出发后25分追上弟弟.如果哥哥每分多走5米,那么出发后20分就可以追上弟弟.弟弟每分走多少米?【分析】弟弟先走五分钟,哥哥出发后25分钟追上了弟弟,则弟弟5+25=30分钟走的路程等于哥哥25分钟走的路程:哥哥的速度是弟弟的倍哥哥每分钟多走5米,那么出发后20分就可以追上弟弟,则弟弟5+20=25分钟走的路程等于哥哥20分钟走的路程:哥哥的速度是弟弟的倍,所以弟弟的速度=米/分.【解答】解:所以弟弟的速度=(米/分).答:弟弟每分走100米.21.一支解放军部队从驻地乘车赶往某地抗洪抢险,如果行驶1个小时后,将车速提高五分之一,就可比预定时间提前20分钟赶到;如果先按原速度行驶72千米,再将车速提高三分之一,就可比预定时间提前30分钟赶到,问:这支解放军部队一共需要行多少千米?。

逻辑思维小学数学题六年级

逻辑思维小学数学题六年级

逻辑思维小学数学题六年级篇一:2014年六年级数学上册思维训练题及答案平水镇中心小学2014学年第一学期六年级数学思维和实践操作测试班级_____姓名_____一、选择题。

25%1、将A组的1/5给B组,两组人数相等,原A组比B组多(B )A、1/5B、2/5C、2/3D、1/42、将平行四边形一条边上的两个端点和它对边上任意一点连接,连成的三角形的面积是平行四边形面积的( A )。

A、1/2B、1/3C、1/4D、1/53、甲、乙两人有同样多的钱(不是1元),甲用去2/5元,乙用去2/5,( A)剩下的钱多一些。

A、甲B、乙C、一样多D、无法确定4、给一个整除的除法算式中被除数乘20%,除数除以20%,商( D )A、不变B、扩大5倍C、缩小5倍D、缩小25倍。

5、一杯牛奶喝去20%后加满水搅匀,再喝去50%,这时杯中纯牛奶占杯子容量的( B )A、30%B、40%C、50%D、80%二、填空题。

25%1、给3/7 的分子加上9,要使分数大小不变,分母应(加21或扩大4倍)。

2、60的20%正好是一个数的75%,这个数是( 16 )。

3、饲养厂鸡的只数比鸭的只数多25%,那么,鸭的只数比鸡的只数少( 20 )% 。

4、小红看一本书,已看的页数与未看的页数的比是1:5,如果再看10页这时已看页数占全书总页数的25%,这本书共( 120 )页。

5、一张圆形纸片的半径是3厘米,一张正方形纸片上的边长是4厘米。

两张纸片重叠一部分放在桌面上,覆盖桌面的面积为38平方厘米。

问:两张纸片重合部分的面积是( 6.28 )。

三、计算题(能简算简算)。

20% ×+÷ ÷( — )87×1322(—)×23×35 882335四、求图中阴影部分的周长(单位:厘米)。

10%89.12五、求图中阴影部分的面积(单位:厘米)。

20%57.7618.24篇二:小学六年级数学思维训练题(含答案)小学六年级数学思维训练题一.填空1、有40名羽毛球运动员参加淘汰制的比赛,(即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是()场。

六年级数学思维训练题(有答案及解析).doc

六年级数学思维训练题(有答案及解析).doc

1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?2.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?15.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?16.五支足球队进行循环赛,即每两个队之间都要赛一场,每场比赛胜者得2分,输者得0分,平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过,问:第一名至第五名各得多少分?全部比赛共打平过几场?17.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0 分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?18.甲、乙、丙、丁、戊五个同学的各科考试成绩如表,已知:①每门功课五个人的分数恰巧分别为l、2、3、4、5;②五个人的总分互不相同,且从高到低的顺序排列是:甲、乙、丙、丁、戊;2分,平一场得1分,负一场得0分.比赛结束后,B队得5分,A队得1分.所有场次共进了9个球,B队进球最多,共进了4个球,C队共失了3个球,D队1个球也未进,A队与C队的比赛比分是2:3.问:A队与B队的比赛比分是多少?20.A、B、C、D四个足球队进行循环比赛.赛了若干场后,A、B、C三队的比赛情况如数字标签,可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧=⑦,请问:⑨号小球的重量是多少?22.A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.’实际上第一名同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?三、超越篇23.在一次射击练习中,甲、乙、丙三位战士打了四发子弹,全部中靶,其中命中情况如下:(1)每人四发子弹命中的环数各不相同;(2)每人四发子弹命中的总环数均为17环;(3)乙有两发命中的环数分别与甲其中两发一样,乙另外两发命中的环数与丙其中两发一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?24.一次象棋比赛共有10位选手参加,他们分别来自甲、乙、丙3个队.每人都与其余9人比赛一盘,每盘胜者得1分,负者得0分,平局各得0.5分.结果乙队平均得分为3.6分,丙队平均得分为9分,那么甲队平均得多少分?25.A、B、C、D、E这5支足球队进行循环赛,每两队之间比赛一场.每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,从高到低依次为D、A、E、B、C又已知5支球队当中只有A没输过,只有C没赢过,而且B战胜了E.请问:战胜过C的球队有哪些?26.10名选手参加象棋比赛,每两名选手间都要比赛一次,已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等,问:前六名的分数各为多少?27.现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分,表1是一张记有比赛详细情况表格,但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入表2中.友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下,发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数,也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子,第六个小朋友戴着黄帽子,请问:最后一个小朋友戴着什么颜色的帽子?29.有A、B、C三支球队进行比赛,每一轮比赛三个队之间各赛一场.每队胜一场得2分,平一场得1分,负一场不得分.如果三支球队共比赛了7轮,最后A胜的场数最多,B输的场数最少,C的得分最高<这些都没有并列).请问:A得了多少分?30.阿奇和8个好朋友去李老师家玩,李老师给每人发了一顶帽子,并在每个人的帽子上写了一个两位数,这9个两位数互不相同,且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A,问这9位同学:“你们知道自己帽子上的数能否被A整除吗?知道的请举手,”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了,并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?参考答案与试题解析一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?【分析】张能胜钱,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰张,或者是王;而李能胜孙,说明第一轮只会碰赵或者钱;由于都没有碰到对手,说明钱只能对上王,遇张不行,故王与钱;而李由于只能碰赵或者钱,在钱有对手的情况下只能选赵,故李与赵,最后得出张与孙.【解答】解:根据上述分析可知:张能胜钱,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰张,或者是王;李能胜孙,说明第一轮只会碰赵或者钱综上所述:第一轮比赛是张与孙,王与钱,李与赵答:第一轮比赛是张与孙,王与钱,李与赵.2.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?【分析】这道题按照常规思路似乎不太好解决,我们画个图试试,用五个点分别表示参加比赛的五个人,如果某两人已经赛过,就用线段把代表这两个人的点连接起来,因为甲已经赛了4盘,除了甲以外还有4个点,所以甲与其他4个点都有线段相连(见下图),根据图即可做出解答.【解答】解:用五个点分别表示参加比赛的五个人,如果某两人已经赛过,就用线段把代表这两个人的点连接起来,因为甲已经赛了4盘,除了甲以外还有4个点,所以甲与其他4个点都有线段相连(见左下图),因为丁只赛了1盘,所以丁只与甲有线段相连,因为乙赛了3盘,除了丁以外,乙与其他三个点都有线段相连(见右上图),因为丙赛了2盘,右上图中丙已有两条线段相连,所以丙只与甲、乙赛过,由上页右图清楚地看出,小强赛过2盘,分别与甲、乙比赛,答:小强赛过2盘,分别与甲、乙比赛.3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)【分析】据题意可知,甲原为第一名(奇数),第一次位置交换后,甲成了第二名(偶数);第二次位置交换后,甲不是第二名,成了第一名或第三名(奇数);第三次位置变化后,不管之前甲处于第一名还是第三名,这次甲肯定又成了第二名(偶数),…;所以可以知道,当甲交换了奇数次位置时,甲一定是第二名;偶数次时,甲一定不在第二名.【解答】解:据题意可知,当甲与共交换了奇数次位置时,甲一定是第二名;偶数次时,甲一定不在第二名.所以甲共交换了7次位置时,7是奇数,则甲一定是在第二名.答:比赛的结果甲是第二名.4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?【分析】(1)因为每一个选手都和其他选手进行一场比赛,属于单循环赛制中,参赛人数与比赛场数的关系为:比赛场数=×参赛人数×(人数﹣1),由此代入求得问题;【解答】解:(1)×10×(10﹣1)=45(场),答:一共要进行45场比赛.(2)45÷10=4(个)…5(场)(不相同,有余数.)答:这10名选手胜的场数不相同.(3)45可以分成1,2,3,4,5,6,7,8,9,0的数列(有五列,是整数,可以)答:这10名选手胜的场数可以两两不同.5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?【分析】(1)6支足球队进行单循环比赛,即每两队之间都比赛一场,所以一个球队赛5场,加入五场全胜,则得分最多是:3×5=15分;有一个球队5场全负,得分最少是0分.(2)出现了6场平局,得12分,一共1赛15场,剩下9场就是输或者赢了,9×3=27分,那么总分就是:12+27=39分.【解答】解:(1)每支球队赛5场,全胜得分最多:5×3=15(分)最少得分就是全输得0分:答:各队总分之和最多是15分,最少是0分.(2)6×5÷2=15(场)6×2+(15﹣6)×3=12+27=39(分)答:那么各队总分之和是39分.6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?【分析】首先总分是45分,黄队16分,红蓝共29分,又团队第一的是黄队且比赛结果没有并列名次,故只能是红队15分,蓝队14分.第一名是一位黄队队员有9分,第二名是一位蓝队队员有8分,即黄队另两名队员共有7分,蓝队另两名队员共有6分,又每名队员至少1分故第三名是一位红队队员有7分,即红队另两名队员共有8分..又相邻的名次的队员都不在同一个队故第四名的得6分的队员是黄队,此时黄队最后一名队员1分.故得5分的不是蓝队队员,不然蓝队又有一名队员1分矛盾.故得5分为红队队员,此时红队有一名是3分.故剩下的蓝队为4分和2分,刚好共6分.故得分情况如下:黄:9、6、1 蓝:8、4、2 红:7、5、3,据此解答即可.【解答】解:1.由于1到9名分数分别是9到1分,那么总共9人总分就是45分2.由于团队第一名16分,第二名只能是小于等于15,第三名小于等于14.而总分是45.所以第二,第三只能分别是15分,14分.(因为16+15+14=45,没有其他组合等于45分)因此第二名红对共得15分.3.由于单打前两名分别由黄队和蓝队的队员获得.因此红对个人得分最多的一个小于等于7分.又因为相邻名次没有同队的人员,所以红对的三人得分可能是7,5,3或者7,4,2等几种(没有列全).但是红队总分能达到15分的组合只有7+5+3=15.所以红对队员分别得了7,5,3分.答:红队队员分别得了7,5,3分.7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?【分析】由于5支足球队进行单循环赛,每两队之间进行一场比赛,则每一队都要和其它四队赛一场,即每支球队进行了4场比赛,全胜得12分,第三名得了7分,并且和第一名打平得一分,那么另三场只能是两胜一负,因各队得分都不相同,第一名平一场,如平再负一场就和第三名得分一样,如果再平一场就得8分,这都不符合题意,所以剩下三场只能胜,积3×3+1=10分,也就是胜2、4、5名,第二名只能是三胜一负,积3×3+0=9分.也就是胜3、4、5名;第三名胜4、5,负2,平1;第四名为负1、2、3,第五名也负1、2、3又因各队比分不同则4胜5积3分,第五名全负,积0分.【解答】解:由题意可知,每支球队进行了4场比赛,第三名得了7分,并且和第一名打平,那么另三场只能是两胜一负;因各队得分都不相同,第一名平一场,另三场只能胜,积3×3+1=10分,也就是胜2、4、5名;第二名只能是三胜一负,积3×3+0=9分.也就是胜3、4、5;第三名胜4、5,负2,平1;第四名为负1、2、3,第五名也负1、2、3名;又因各队比分不同则4胜5积3分,则第五名全负,积0分;即:第一名:10分,第二名:9分,第三名:7分,第四名:3分,第五名:0分.答:第一名:10分,第二名:9分,第三名:7分,第四名:3分,第五名:0分.8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?【分析】A两战两胜,C有一场平说明比赛胜负情况如下:A胜B A胜C B平C;而B C 的比分:0:0 这种情况不存在因为A共失球两个而B C共进球6个1:1 同上2:2 适合条件B另外两个球攻入A的球门3:3 不存在C共进球两个所以得出B:C 为2:2则C另外6个失球失给A,B剩下两个进球,3个失球是跟A比赛的时候故可得出结论:A胜B 3比2A胜C 6比0B平C 2比2【解答】解:总进球=总失球A进球+4+2=2+5+8A进球=9A全胜那么B与C打平又因为B比C多进2球那么B对A进的球比C对A进的球多2个又因为A只失2球那么B对A进2球C对A进0球那么B:C=2:2那么A:B=3;2答:A与B两队间的比分是3:2.9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;又丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错,又丙得60分,所以丙的其他题目全部答对,即2,3,5,7,8,10的答案分别是×,×、√、√、×、×.由此可知,这10道题的答案分别是:据此即能得出丁得多少分.【解答】解:由于A、B有1、4、6、9这四道题答案相同,6道题答案不同.且每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;由于丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错,又丙得60分,所以丙的其他题目全部答对,即2,3,5,7,8,10的答案分别是×,×、√、√、×、×.这10道题的答案分别是:所以丁的只的2题,扣10分,得90分.故答案为:90.10.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?【分析】通过分析可知:赵钱孙李一共订了:2+2+4+3=11份A,B,C,D一共订了:1+2+2+2=7份根据题意,周至少订了1份5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份,假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户,这与一共有5户矛盾所以周只能订1种,订E的有5户【解答】解:赵钱孙李订的份数:2+2+4+3=11份A,B,C,D订的份数:1+2+2+2=7份根据题意可知周至少订了1份所以5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份,假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户,这与一共有5户矛盾所以周只能订1种,订E的有5户答:周姓订户订有这5种报纸中的1种,报纸E在这5户人家中有5家订户.二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?【分析】从5号队员开始讨论,他和另外5个队员各赛了1场,由此得出1号只跟5号赛了1场,由此类推即可得出结果.【解答】解:因为是每2个人都要赛1盘,所以可以这样推理:①5号赛了5场,说明他与1,2,3,4,6,各赛了1场;②1号赛1场,那么1号只跟5号赛了1场;③4号赛了4场,除了跟5号赛1场,另外3场是跟2,3,6号;④那么2号此时分别和5号、4号已赛了2场;④3号赛了3场,除了和4号,5号之外,又和6号赛了1场.将上述推理过程用图表示为:答:此时6号已经赛了3场.12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.【分析】五行有‘五行相生’和‘五行相克’,‘五行相生’是互相生旺的意思,表示生成化育,‘五行相克’就是互相反驳、互相战斗、制衡.五行相生:水生木→木生火→火生土→土生金→金生水五行相克:木克土→土克水→水克火→火克金→金克木据此解答即可.【解答】解:根据五行相生:水生木→木生火→火生土→土生金→金生水五行相克:木克土→土克水→水克火→火克金→金克木得出图为:13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?【分析】因“A、B、C、D、E、F六个国家的足球队单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛”,根据已经进行的比赛场次进行推理,据此解答即可.【解答】解:第二天A不能对B,否则A对B、D对F与第三天D对F矛盾,所以应当B 对F、A对D.第三天A也不能对B,否则C对E与第二天C对E矛盾,应当B对E(不能B对C,与第四天矛盾),A对C.第四天B对C,D对E,A对F,所以第五天A对B.答:第五天与A队比赛的是B支队伍.14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?【分析】根据题意,扣除A、B、C分别赢的场次,得出A、B、C各打了几场,即可得出A 总共打了几场.【解答】解:由A队先取得10连胜,这样BC队就各输5场再由B队取得12连胜,这样AC队就各输6场最后C队取得14连胜,这样AB队就各输7场从A来看,每负一场就休息了一场,总共有10+12+14=36场比赛,A胜了10场,剩下26场是负和休息,那么A负了13场,休息了13场,赛了10+13=23场.同理,B胜了12场,剩下24场是负和休息,那么B负了12场,休息了12场,赛了12+12=24场.C胜了14场,剩下22场是负和休息,那么C负了11场,休息了11场,赛了14+11=25场.答:则A队共打了23场比赛.15.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?【分析】(1)四名同学总共打的场数是:4×3÷2=6场;(2)四个人最后比赛结果是平局或者胜局,所以一场会得2分,得分为:2×6=12分;(3)我们对乙丙假设进行求解,假设乙丙两胜;假设乙丙一胜一平.看看哪种情况符合题意,进而解决问题.【解答】解:(1)4×3÷2=6(场)答:一共有6场比赛.(2)6×2=12(分)答:四个人最后得分的总和是12分.(3)②不可能三胜,如果三胜肯定得第一,而不是第二名.②假设乙丙两胜,甲则三胜或两胜一平,如果甲三胜,则共有7场胜,总共才6场比赛,不可能.如果甲两胜一平,则乙丙两胜一负,现在总共有6胜,所以总共应该6负则所有比赛都是胜﹣负,没平﹣平,矛盾.所以乙丙两胜也不可能.③假设乙丙一胜一平,正好可以,乙得3分.④其它情况均不成立.答:乙得了3分.16.五支足球队进行循环赛,即每两个队之间都要赛一场,每场比赛胜者得2分,输者得0分,平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过,问:第一名至第五名各得多少分?全部比赛共打平过几场?【分析】五个足球队进行循环赛,一共进行5×(5﹣1)=20场,第一名没有平,那就是胜或负;第二名没有负过,就是胜或平;第四名没有胜过,那就是平或负;并且各队得分不同,据此写出合理的比赛结果即可解答.假设第1.2.3.4.5名分别是A.B.C.D.E,结果为:A:负B,赢CDE,得6分;B:赢A,平CDE,得5分;C:负A,平BD,赢E,得4分;D:负A,平BCE,得3分;E:负AC,平BD,得2分;综上,打平的比赛有BC,BD,BE,CD,DE,共5场.【解答】解:由分析得出:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平水镇中心小学2014学年第一学期六年级
数学思维和实践操作测试
班级_____姓名_____
一、 选择题。

25%
1、将A 组的1/5给B 组,两组人数相等,原A 组比B 组多( B )
A 、1/5
B 、2/5
C 、2/3
D 、1/4
2、将平行四边形一条边上的两个端点和它对边上任意一点连接,连成的三角形的面积是平行四边形面积的( A )。

A 、1/2
B 、1/3
C 、1/4
D 、1/5
3、甲、乙两人有同样多的钱(不是1元),甲用去2/5元,乙用去2/5,( A )剩下的钱多一些。

A 、甲
B 、乙
C 、一样多
D 、无法确定
4、给一个整除的除法算式中被除数乘20%,除数除以20%,商( D )
A 、不变
B 、扩大5倍
C 、缩小5倍
D 、缩小25倍。

5、一杯牛奶喝去20%后加满水搅匀,再喝去50%,这时杯中纯牛奶占杯子容量的( B )
A 、30%
B 、40%
C 、50%
D 、80%
二、 填空题。

25%
1、给3/7 的分子加上9,要使分数大小不变,分母应( 加21或扩大4倍 )。

2、60的20%正好是一个数的75%,这个数是( 16 )。

3、饲养厂鸡的只数比鸭的只数多25%,那么,鸭的只数比鸡的只数少( 20 )% 。

4、小红看一本书,已看的页数与未看的页数的比是1:5,如果再看10页这时已看页数占全书总页数的25%,这本书共( 120 )页。

5、一张圆形纸片的半径是3厘米,一张正方形纸片上的边长是4厘米。

两张纸片重叠一部分放在桌面上,覆盖桌面的面积为38平方厘米。

问:两张纸片重合部分的面积是( 6.28 )。

三、计算题(能简算简算)。

20% 187×41+43÷7
18 127 ÷( 23 — 14 )
87×8813 (232—35
2)×23×35
四、求图中阴影部分的周长(单位:厘米)。

10%
89.12
五、求图中阴影部分的面积(单位:厘米)。

20%
57.76 18.24。

相关文档
最新文档