第一章 同步发电机励磁系统概述

合集下载

同步发电机励磁控制系统

同步发电机励磁控制系统
预测控制
预测控制是一种基于模型的控制方法,能够根据系统的历史数据和当前状态预测 未来的行为,实现更精确的控制。
环保与节能要求对励磁控制系统的影响
能效要求
随着能源危机和环保意识的提高,励磁控制系统需要更加注重能效,采用更高效的电机 和节能控制策略,降低能源消耗和排放。
排放要求
励磁控制系统需要符合更严格的排放标准,采用环保型的电机和控制策略,减少对环境 的污染。
转子过电流保护装置
作用
转子过电流保护装置用于监测同 步发电机转子电流,当出现异常 过电流时,及时切断励磁电流, 防止转子烧毁。
工作原理
转子过电流保护装置通过电流传 感器实时监测转子电流,当检测 到过电流时,触发保护动作,快 速切断励磁电流。
组成
转子过电流保护装置由电流传感 器、比较电路和开关器件等部分 组成,各部分协同工作实现转子 过电流保护功能。
根据励磁调节器的控制指令,输出励 磁电流给发电机励磁绕组。
励磁控制系统的功能
电压控制
通过调节励磁电流,维 持发电机端电压在给定
水平。
无功功率调节
根据系统无功需求,调 节励磁电流以改变发电
机无功功率的输出。
增磁与减磁
通过增加或减少励磁电 流来改变发电机的输出
电压。
保护功能
在异常情况下,自动采 取措施保护发电机和励
THANKS
谢谢
Байду номын сангаас
磁系统。
02
CHAPTER
励磁控制系统的主要设备
励磁调节器
作用
励磁调节器是励磁控制系统的核 心,用于调节同步发电机的励磁 电流,以控制机组的无功输出和
电压水平。
工作原理
励磁调节器通过采集发电机电压、 电流等信号,经过运算处理后,输 出控制信号给功率整流器,以调节 励磁电流。

同步发电机励磁自动控制系统1讲课文档

同步发电机励磁自动控制系统1讲课文档

1 静态不稳定性 2 动态不稳定性 3 暂态不稳定性
功角过大而失步(滑行失步)
1974年美国学者拜金 利及金巴克主编论文
大小扰动引起的振荡失步
集《大规模电力系统
稳定性》
大扰动后发电机在第一摇摆失步
静态/动态稳定性定义及理解出现了混乱
1981年在IEEE电力系统分会的冬季会议上重新对电力系统稳定性进行定 义
North China Electric Power University
11
电力系统稳定性的定义与分类
2004年8月,IEEE发表了CIGRE第38委员会与IEEE系统动态行为委员会 联合小组制定的电力系统稳定性分类及定义
电力系统稳定性
功角稳定性 频率稳定性 电压稳定性
小干扰功角 稳定性
大干扰功角 稳定性
1 静态稳定性/小扰动稳定性
所加干扰足够小,可以用系统的线 性化方程来描述系统过渡过程
当系统受到小的干扰后,系统会达到与受干扰前相同或接近的运行状态
2 暂态稳定性/大扰动稳定性
所加的干扰使得不能用系统的线性化方程 来描述系统过渡过程
2第0112页2,/共22/82页1。
当系统遭受到干扰后,系统可以达到一个可以接受的稳定运行状态
静态稳定性——小扰动稳定性 暂态稳定性——大扰动稳定性 动态稳定性
动态稳定性 —— 电力系统受到小扰动时,考虑调节 器及元件动态,并分析它在暂态过程后能否趋于或者 接近原来稳定工况的能力。
2第1062页,2共/228/页2。1 North China Electric Power University
大干扰电压稳定性
小干扰电压稳定性
系统在大干扰后维持可接受稳态电压的能力 系统在小干扰后维持可接受稳态电压的能力

同步发电机励磁系统

同步发电机励磁系统

图中给出的三个动态指标定义如下。 ① 超调量。 在励磁系统自动调节暂态过程中发电机端电压最大值与稳态 值的差值对稳态值的百分数。 其数学表达式为
σp U G (tp ) U G () U G () 100%
tp ——发电机端电压出现最大值的时间; UG(tp) ——发电机端电压的最大值;
U G ()
——发电机端电压稳态值。
② 调节时间。
从给定信号到发电机端电压值与稳态值的偏差不大于稳态值 的2%所经历的时间。
③ 摆动次数N。
在调节时间内,发电机端电压摆动的周期数。
分析发电机励磁控制系统的动态特性,首先应求出描述系统 运动特性的数学模型,然后应用“自动控制理论”对动态特 性进行分析。
5.5
同步发电机励磁系统的动态ቤተ መጻሕፍቲ ባይዱ性
一、概述 1、同步发电机励磁系统的动态特性的概念 同步发电机励磁自动控制系统是一个反馈自动控制系统,其动 态特性是指在外部干扰信号作用下,该系统从一个稳定运行状 态变化到另一个稳定运行状态的时间响应特性。 图5.35是同步发电机在 额定转速下突然加入励 磁时发电机电压从零升 至额定值时的时间响应 曲线。

同步发电机的励磁系统基础知识讲解

同步发电机的励磁系统基础知识讲解

目前无刷励磁系统主要存在的问题是: 1、不能监视转子电流和电压; 2、不能监视转子绝缘; 3、不能监视可控硅和二极管的运行情况; 4、维修困难较大。
三、无励磁机的发电机自励系统
目的在于解决励磁机本身可靠性不高问题。
1、自并励系统
优点: 1)、简单、运行可
靠性高; 2)、基建投资少,
便于检修维护; 3)、励磁电压响应速
E
Tt
I EE R
2)、自励直流励磁机的时间常数
①、由自励直流励磁机等效电路得:
I R LEE
dI EE dt
Ue
②、根据自励直流发电机端电压的建立过程
虚线(EEL的磁化曲线)上任何一点的 励磁机电动势为:
Ue
E0
Ue E0 I EE.1
I EE
E0
kIEE
E0 —— 剩磁电势; Ue —— 励磁机工作电压。
同步发电机的励磁系统基础知识讲解
励磁电流(同步发电机的转子电流) 是电力系统中唯一的电压资源。
电力系统电压的运行质量依赖于无功 功率的分区、分级就地平衡。
一、直流励磁机系统(转子回路的直流发电机,适用于100MW及以 下汽轮发电机)
1、分为自励和他励两类 2、自励直流励磁机系统
GE —— 直流励磁机;EEL —— 励磁机的励磁绕组; rL ——发电机转子绕组。
起励电源:解决交流励磁机的磁路经过交流电枢后,剩磁不如直流励 磁机那样高,不足以可靠的起动可控硅。中频发电机(MFG)可靠工作 后,退出。
起励电源在出现全厂性停电事故的情况下,将无法起励,所以一般不从 机组母线上获取。采用永磁式付励磁机就无此弊病了。
2、自励的交流励磁机系统 1)、自励的交流励磁机系统之一

发电机励磁系统

发电机励磁系统

第二类: 自励励磁系统(利用发电机自身发出的电流励磁)
概述
基本结构
励磁系统
姓名:直流励磁机励磁系统
同步发电机励磁系统
概述
基本构
励磁系统
同步发电机励磁系统
姓名:他励静止硅整流交流励磁系统 • 优点: 容量不受限制;不受电网干扰,可靠性高;整流装置静止不动,强度要求低。 • 缺点 :碳刷维护麻烦,存在炭粉和铜末引起电机线圈污染。
值得指出的是:从原理上讲任何一台同步电机既可以作为同步发电机运行,也可以作为电动机或调相 机运行,这就是电机的可逆性原理。例如水电站的同步电机.旺水期用作发电机运行,枯水期可作为 同步调相机运行。当然同步发电机、同步电动机和同步调相机各有自己的特点,没有特殊情况不互换 使用。
概述
基本结构
励磁系统
• 同步电机的基本类型
概述
基本结构
励磁系统
同步发电机励磁系统
概述
基本结构
励磁系统
同步发电机励磁系统
姓名:他励旋转半导体整流交流励磁系统 定义:交流主励磁机的交流绕组和整流设备随同主轴旋转,发电机励磁绕组和主励磁输出绕组相对静止 • 优点 :取消了大电流集电环及碳刷装置,减少运行维护量。 • 缺点 :无法对励磁回路进行直接测量;对整流元件等的强度及可靠性要求高。
概述
基本结构
励磁系统
同步发电机励磁系统
第二类:自励励磁系统(特点:利用发电机自身发出的电流励磁,励磁绕组与电枢绕组相连接) 并励:励磁绕组与电枢绕组并联。 串励:励磁绕组与电枢绕组串联。 复励:主极铁心上装有两个励磁绕组,一个与电枢绕组并联,一个与电枢绕组串联。 优点: 结构简单、可靠性高、造价低、维护量小。 无励磁机,缩短机组轴系长度。 直接用可控硅控制转子电压,可获很快的励磁电压响应速度。 缺点: 保护配合较复杂。

同步发电机励磁系统及PSS控制

同步发电机励磁系统及PSS控制

同步发电机励磁系统及PSS控制培训资料云南德宏州电力协会武汉洪山电工科技有限公司2009年5月目录第一章:同步发电机励磁系统 (1)第一节:前 言 (1)第二节:同步发电机励磁系统分类 (2)2.1 直流励磁机励磁方式 (2)2.2 交流励磁机励磁方式 (3)2.3 静止励磁方式 (6)第三节:同步发电机励磁系统的作用 (7)3.1 控制发电机电压和无功分配 (7)3.2 提高电力系统的稳定性 (10)第二章:电力系统稳定器的原理 (13)第一节:前 言 (13)第二节:低频振荡原因分析 (15)2.1 基本关系式 (16)2.2 阻尼力矩系数和同步力矩系数的关系 (18)2.3 同步电机不同工况下模型系数的变化 (21)2.4 励磁控制系统参数对同步电机阻尼的影响 (22)2.5 同步电机运行工况对阻尼力矩系数的影响 (22)第三节:电力系统稳定器原理及参数选择 (26)3.1 基本原理 (26)3.2 电力系统稳定器参数选择 (27)第四节:对电力系统稳定器的基本要求 (28)第五节:电力系统稳定器的试验 (29)5.1 电力系统稳定器的静态试验 (29)5.2 电力系统稳定器的动态试验 (29)5.3 PSS阻尼功率振荡效果的检查试验 (30)5.4 加速功率型PSS原理和试验结果介绍 (32)第三章:国标《电力系统稳定器整定试验导则》解读及试验说明 (36)第一节:《Q/GDW 143-2006电力系统稳定器整定试验导则》解读 (36)1.1 PSS的整定试验条件 (36)1.2 PSS整定试验内容、方法、步骤 (38)1.3 试验报告 (43)第二节:中国电科院关于洪山电工的PSS测试报告 (44)2.1 概述 (46)2.2 AVR及PSS模型参数 (46)2.3 录波测量点配置 (47)2.4 试验项目及步骤 (47)2.5 结论 (54)2.6 参数设置 (54)第三节:武汉洪山电工科技有限公司其它几份PSS测试报告 (55)第一章:同步发电机励磁系统第一节:前 言根据中华人民共和国电力行业标准《DL/T191—1999大中型水轮发电机静止整流励磁系统及装置运行、检修规程》和《DL/T583-2006大中型水轮发电机静止整流励磁系统及装置技术条件》的定义:励磁系统:为同步发电机提供励磁电流的设备,包括所有调节、控制、保护单元及功率电源和灭磁装置等。

同步发电机励磁系统概述

同步发电机励磁系统概述

同步发电机励磁系统概述励磁系统是同步发电机的重要组成部分,直接影响发电机的运行特性。

励磁系统一般由两部分构成:第一部分是励磁功率单元,它向同步发电机的励磁绕组提供直流励磁电流;第二部分是励磁调节器,它根据发电机的运行状态,自动调节功率单元输出的励磁电流,以满足发电机远行的要求。

同步发电机励磁系统的任务无论在稳态运行或暂态过程中,同步发电机的运行状态在很大程度上与励磁有关。

优良的励磁系统不仅可以保证发电机运行的可靠性和稳定性,而且可以有效地提高发电机及其相联的电力系统的技术经济指标。

为此,在正常运行或事故情况下,同步发电机都需要调节励磁电流。

励磁调节应执行下列任务。

一、电压控制及无功分配在发电机正常运行工况下,励磁系统应维持发电机端电压(或升压变压器高压侧电压)在给定水平。

当发电机负荷改变而端电压随之变化时,由于励磁调节器的调节作用,励磁系统将自动地增加或减少供出的励磁电流,使发电机端电压回复到给定水平,保证有一定的调压精度。

当机组甩负荷时,通过励磁系统的调节作用,应限制机瑞电压使之不致过份升高。

另外.当几台机组并列运行时,通过励磁系统应能稳定地分配机组的无功功率。

维持电压水平和机组间稳定分损无功功率,这是励磁调节应执行的基本任务。

调节作用,应限制机瑞电压使之不致过份升高。

另外.当几台机组并列运行时,通过励磁系统应能稳定地分配机组的无功功率。

维持电压水平和机组间稳定分损无功功率,这是励磁调节应执行的基本任务。

二、提高同步发电机并列运行的稳定性电力系统可靠供电的首要要求,是使并入系统中的所有同步发电机保持同步运行。

系统在运行中随时会遭受各种扰动,这样,伴随着励磁调节,系统将由一种平衡状态企图建立新的平衡状态。

这一过渡历程的时间叫做暂态时间。

在这个时间内系统是振荡的,如果振荡逐渐衰减,在有限的时间内系统稳定到新的平衡状态,则称系统是稳定的。

电力系统稳定的主要标志是,在暂态时间未了,同步发电机维持或依复同步运行。

浅谈同步发电机励磁系统及常见故障分析

浅谈同步发电机励磁系统及常见故障分析

浅谈同步发电机励磁系统及常见故障分析同步发电机是电力系统中常用的发电设备之一,其励磁系统是保证发电机正常工作的重要部分。

励磁系统的性能良好与否直接影响着发电机的稳定性和可靠性。

对同步发电机励磁系统及常见故障分析进行深入了解和研究,对于提高发电机的运行效率和延长设备寿命具有重要意义。

一、同步发电机励磁系统同步发电机的励磁系统是通过向发电机的励磁绕组通入直流电流,产生磁场,从而激励旋转机械能转换为电能。

励磁系统通常包括励磁电源、励磁绕组、励磁调节器以及励磁系统的保护装置等部分。

1. 励磁电源:励磁电源通常采用直流发电机、整流设备和电容器等组成。

直流发电机产生励磁所需的直流电,整流设备将交流电转换为直流电,电容器用于滤波和稳压。

2. 励磁绕组:励磁绕组是由励磁电源产生的直流电流通入的部分,产生磁场激励发电机。

励磁绕组通常包括定子绕组、转子绕组和励磁极。

3. 励磁调节器:励磁调节器通过调节励磁电压和电流,控制发电机的励磁电流,从而调节发电机的输出电压和无功功率。

励磁调节器通常采用自动稳定系统(AVR)来实现。

4. 励磁系统保护装置:励磁系统保护装置包括欠励磁、过励磁、励磁断路器、电压继电器、过流继电器、励磁接地保护等,用于保护励磁系统的安全运行。

二、常见故障分析2. 励磁绕组故障:励磁绕组的故障主要包括绕组接触不良、短路、断路等。

这些故障可能导致发电机的励磁电流不稳定,影响发电机的输出电压和频率。

4. 励磁系统保护装置故障:励磁系统保护装置的故障可能导致对励磁系统的保护不足,从而使得励磁系统无法及时发现故障并进行处理。

三、故障处理方法1. 对励磁电源进行定期检查和维护,保证直流发电机、整流设备和电容器的正常运行。

2. 对励磁绕组进行定期检查和绝缘测试,确保绕组连接良好,没有短路和断路现象。

3. 对励磁调节器进行定期校准和检查,确保励磁电压和电流能够按照设定值稳定输出。

4. 对励磁系统保护装置进行定期测试和校准,确保对励磁系统的保护能够及时、准确地发挥作用。

同步发电机励磁系统

同步发电机励磁系统

同步发电机励磁系统引言同步发电机是一种将机械能转换为电能的设备,它通过励磁系统来生成磁场,使得转子能够与电网同步运行。

励磁系统在同步发电机的运行中起着至关重要的作用,它对发电机的稳定运行和输出电能的质量产生着重要影响。

本文将介绍同步发电机励磁系统的原理、常见的励磁系统类型以及其在电能发电中的作用。

一、同步发电机励磁系统的原理同步发电机的励磁系统的主要作用是在转子上产生磁场,使得转子与电网的磁场同步,从而使得发电机可以向电网输出电能。

励磁系统的原理可以通过法拉第定律来解释,该定律表明磁场的变化会产生感应电动势。

在同步发电机中,励磁系统的磁场可以通过直流电流在转子上产生。

当通过励磁绕组的电流改变时,绕组周围的磁场也会发生变化,从而在转子内感应出电动势。

这个感应电动势会引起一定的电流流动,从而通过励磁绕组将转子磁场与电网磁场同步。

二、常见的励磁系统类型1. 直流励磁系统直流励磁系统是最常见的励磁系统类型之一。

在直流励磁系统中,励磁绕组通常由一组电枢绕组和磁极绕组组成。

电枢绕组通过直流电流产生磁场,并与磁极绕组相互作用,从而产生所需的磁场分布。

直流励磁系统具有调节灵活性好、响应速度快等优点,被广泛应用于各种类型的发电机。

2. 恒功率励磁系统恒功率励磁系统是一种在同步发电机中常用的励磁系统类型。

恒功率励磁系统通过自动调节输出的励磁电流,使得同步发电机在负载变化时能够保持输出功率不变。

该励磁系统利用负载的反馈信号对励磁电流进行调整,从而实现恒功率输出。

恒功率励磁系统在电能供应系统中起到了稳定电能输出的重要作用。

3. 智能励磁系统随着电力系统的发展,智能励磁系统逐渐成为同步发电机励磁系统的研究重点。

智能励磁系统利用现代控制技术和计算机技术,可以实现对励磁电流和磁场的精确控制,从而提高同步发电机的运行效率和稳定性。

智能励磁系统具有较高的灵活性和可扩展性,能够适应不同负载和电网变化的要求。

三、同步发电机励磁系统在电能发电中的作用1. 稳定发电机输出电压和频率同步发电机励磁系统是保证电力系统稳定运行的关键之一。

励磁控制对电力系统稳定的影响

励磁控制对电力系统稳定的影响

励磁控制对电力系统稳定的影响励磁控制对电力系统稳定的影响摘要:它励可控桂励磁系统主要的优点是在发电站出口附近发生短路故障时,强励能力强,有利于提高系统的暂态稳定水平,在故障切除时间比较长、系统容量相对小的50、60年代这一优点是很突出的。

但是,随着电力系统装机容量的增大,快速保护的应用,故障切除时间的缩短,它励可控硅励磁系统的优势已不是很明显……关键词:励磁控制电力系统稳定影响第一章:励磁系统概述第一节:同步发电机励磁系统介绍它励可控硅励磁系统主要的优点是在发电站出口附近发生短路故障时,强励能力强,有利于提高系统的暂态稳定水平,在故障切除时间比较长、系统容量相对小的50、60年代这一优点是很突出的。

但是,随着电力系统装机容量的增大,快速保护的应用,故障切除时间的缩短,它励可控硅励磁系统的优势已不是很明显。

自并励可控硅励磁系统的优点是结构简单,元部件少,其励磁电源来自机端变压器,无旋转部件,运行可靠性高,维护工作量小。

且由于变压器容量的变更比交流励磁机的变更更简单、容易,因而更经济,更容易满足不同电力系统、不同电站的暂态稳定水平对励磁系统强励倍数的不同要求。

它励可控硅励磁系统的缺点是由于交流励磁机是非标准产品,难以标准化,即使是同容量的发电机,尤其是水轮发电机,由于水头、转速的不同,强励倍数的不同,交流励磁机的容量、尺寸也不同,因此,价格较自并励可控娃励磁系统贵。

另外它励可控硅励磁系统与自并励可控硅励磁系统相比较,元部件多,又有旋转部件,可靠性相对较低,运行维护量大。

自并励可控硅励磁系统的缺点是它的励磁电源来自发电机端,受发电机机端电压变化的影响。

当发电机机端电压下降时其强励能力下降,对电力系统的暂态稳定不利。

不过随着电力系统中快速保护的应用,故障切除时间的缩短,且&并励可控硅励磁系统可以通过变压器灵活地选择强励倍数,可以较好地满足电力系统暂态稳定水平的要求。

综合考虑技术和经济两方面因素,推荐在发电机组采用自并励快速励磁方式。

同步电机励磁控制

同步电机励磁控制
交流侧叠加的自复励方式 特点:有滑环,系统结构简单,可靠性高,励磁电源 受电网影响,励磁响应速度快,具有强励能力,励 磁电流不但与主机电压、电流大小有关同时还与相 位有关。
1-5同步电机现代励磁调节器
调节规律及增益使用范围 调节器是按偏差量的比例、积分、微分调节
(PID)或比例、积分调节器(PI) 增益就是比例放大倍数
1-4各种半导体励磁系统的组成和特点 一.他励励磁系统
交流励磁机带静止硅整流器励磁方式 特点:有滑环,励磁电源不受电网影响,励磁容量 大,励磁响应速度慢。
交流励磁机带静止可控硅整流器励磁方式 特点:有滑环,励磁电源不受电网影响,励磁容量 大,励磁响应速度快。
无刷励磁方式 特点:无滑环,励磁电源不受电网影响,励磁容量 大,可靠性高,环境适应性强。
现代励磁调节器(ZLT)的特点 功能完善、采用新器件、利用计算机的数字控 制、高可靠性
调节器的组成
提高继电保护装置的可靠性 合理分配并联运行同步发电机的无功输出 加速故障后电压的恢复 改变系统运行方式,提高系统运行的经济性
PEq0UCsin
X
XXdXT
直流侧并联 直流侧串联
交流侧并联 交流侧串联
1-3半导体励磁系统分类
一、他励Байду номын сангаас导体励磁系统
交流励磁机(转场式)加静止硅整流器 交流励磁机(转场式)加静止可控硅整
流器 交流励磁机(转枢式)加旋转硅整流器 交流励磁机(转枢式)加旋转可控硅整
流器
1-3半导体励磁系统分类
二、自励励磁系统
自并励励磁系统 自复励励磁系统
1.直流侧并联自复励励磁系统 2.直流侧串联自复励励磁系统 3.交流侧并联自复励励磁系统 4.交流侧并联自复励励磁系统

同步发电机励磁系统

同步发电机励磁系统

(1) 自励直流励磁机励磁系统
励磁机EX和发电机G同轴,靠剩 磁建立电压。
励磁机发出的电流,一部分(IEF) 送给发电机的励磁绕组;一部分 (IEE)经过磁场变阻器RC送给励磁 机的励磁绕组。
由于励磁机向它自己提供励磁电流,故称为自励。
I I I LL
AVR
EE IILELE——励励磁磁机机的提励供磁的电励流磁机I流的AV励R—磁自电动流励磁调节器输出的电
自动励磁调节器通过调节晶闸管的控制角改变交流励磁机的励 磁电流,来控制发电机励磁电流。
主励磁机的频率 为 100Hz,副励 磁机的频率一般为 500Hz,以组成 快速响应的励磁系 统。
励磁系统的整流电路
整流电路
三相桥式 不可控
三相桥式 半控
三相桥式 全控
励磁调节装置原理
图为600MW发电机自并励励磁系统
它的励磁电流控制由两种途径实现:
一是通过人工调节励磁机磁场电阻来改变励磁机的励磁电流IEE,从 而达到人工调整发电机励磁电流的目的,实现对发电机励磁电流的 手动调节。
二是通过自动励磁调节器对励磁机的励磁电流IAVR自动调节,从而 实现对发电机励磁电流的自动调节。
(2) 他励直流励磁机励磁系统
它与图5.10 (a)的不同之 处在于直流励磁机的励磁 电流是由另一台与发电机 同轴的副励磁机供给,故 K I
LL
EE
Z AVR
IEE—副励磁机提供的励磁电流 K—折算系数,将IAVR折算到IEE所流过的绕 组中去输出的电流
自励直流励磁机中,IEE的增加促使励磁机电压UEF增加,而IEE的增 加又依靠UEE的增加。IEE和UEE的这种关系使得励磁机的励磁时间 常数增大了。
而它励直流励磁机则不然,它没有IEE和UEE的相互依赖关系,励磁 时间常数只决定于励磁绕组的结构和参数。所以它励直流励磁机

同步发电机励磁系统介绍

同步发电机励磁系统介绍

智能控制技术的应用
要点一
智能控制算法
随着智能控制算法的发展,如模糊控制、神经网络等,励 磁系统的智能化水平得到了显著提升。这些算法可以对励 磁系统进行自适应控制,自动调整励磁电流的参数,提高 发电机的运行效率和稳定性。
要点二
应用优势
智能控制技术的应用,使得励磁系统的自适应能力和鲁棒 性得到了增强。同时,通过智能控制算法,可以实现对励 磁系统的优化控制,降低发电机的运行成本和维护成本。
系统的寿命也得到了延长。
数字化控制技术的应用
数字化控制器
随着数字信号处理器(DSP)和可编程逻辑控制器(PLC)等数字化控制技术的发, 励磁系统的控制精度和响应速度得到了显著提升。数字化控制器可以对励磁电流进行快
速、准确的调节,提高发电机的动态性能和稳定性。
应用优势
数字化控制技术的应用,使得励磁系统的控制策略更加灵活和智能化。通过数字化控制 器,可以实现对励磁系统的远程监控和故障诊断,提高励磁系统的可靠性和可维护性。
高性能永磁材料的应用
永磁材料
随着高性能永磁材料的出现,如稀土永磁材 料,励磁系统的性能得到了显著提升。这些 材料具有高磁能积和矫顽力,可以替代传统 的电磁铁,减小励磁系统的体积和重量,提 高励磁系统的效率和可靠性。
应用优势
高性能永磁材料的应用,使得励磁系统在小 型化和高效化方面取得了重要突破。同时, 由于永磁材料的耐腐蚀和抗氧化性能,励磁
励磁系统的组成
励磁电源
提供励磁电流的电源设备,通常为直流电源 或交流电源。
励磁线圈
安装在发电机转子上的线圈,用于产生励磁 磁场。
励磁控制器
用于控制励磁电流的调节器,根据发电机运 行状态和电网需求进行自动调节。

同步发电机励磁系统介绍

同步发电机励磁系统介绍

同步发电机励磁系统分类介绍1概述向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。

励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。

发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。

电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。

2直流励磁机励磁系统直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。

其中直流发电机称为直流励磁机。

直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。

直流励磁机励磁系统又可分为自励式和它励式。

自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。

采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。

目前大多数中小型同步发电机仍采用这种励磁系统。

长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。

缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。

近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在换向问题或电机的结构上都受到限制。

因此,直流励磁机励磁系统愈来愈不能满足要求。

目前,在100MW及以上发电机上很少采用。

3半导体励磁系统半导体励磁系统是把交流电经过硅元件或可控硅整流后,作为供给同步发电机励磁电流的直流电源。

同步发电机励磁系统介绍

同步发电机励磁系统介绍

可控硅整流桥采用相控方式。 对三相全控桥,当负载为感性负载时,控 制角在0o~90o之间为整流状态(产生正向电 压与正向电流);控制角在90o~150o(理论 上控制角可以达到180o考虑到实际存在换流重 叠角,以及触发脉冲有一定的宽度,所以一般 最大控制角取150o)之间为逆流状态(产生负 向电压与正向电流)。 因此当发电机负载发生变化时,通过改变 可控硅的控制角来调整励磁电流的大小,
这种励磁方式整个系统没有任何转动接触 元件。其原理图见图1-9。
FLQ ACL F CT
PT PMG kz 自动励磁 调节器
无刷励磁系统中,主励磁机(ACL)电枢 是旋转的,它发出的三相交流电经旋转的二极 管整流桥整流后直接送发电机转子回路。由于 主励磁机电枢及其硅整流器与主发电机转子都 在同一根轴上旋转,所以它们之间不需要任何 滑环及电刷等转动接触元件。无刷励磁系统中 的副励磁机(PMG)是一个永磁式中频发电 机,它与发电机同轴旋转。主励磁机的磁场绕 组是静止的,即它是一个磁极静止、电枢旋转 的交流发电机。
励磁变压器
励磁变压器为励磁系统提供励磁能源。对 于自并激励磁系统的励磁变压器,通常不设自 动开关。高压侧可加装高压熔断器,也可不加。 励磁变压器可设置过电流保护、温度保护。 容量较大的油浸励磁变压器还设置瓦斯保护。 大多小容量励磁变压器一般自己不设保护。变 压器高压侧接线必须包括在发电机的差动保护 范围之内。励磁变压器的联接组别,通常采用 Y/△组别,Y/Y—12组别通常不用。与普通配 电变压器一样,励磁变压器的短路压降为 4%~8%。
1.2励磁系统构成
它分为励磁功率单元和励磁调节器两 个主要部分: 1.励磁功率单元向同步发电机转子提供 励磁电流; 2.励磁调节器则根据输入信号和给定的 调节准则控制励磁功率单元的输出。

励磁装置原理讲解与学习题库(pdf文稿)

励磁装置原理讲解与学习题库(pdf文稿)

目录第一章 励磁系统概述1.1 励磁系统的任务1.2 励磁附加控制器1.3 葛洲坝电厂励磁系统概述第二章 MEC-31 多微机励磁控制器2.1 励磁调节器原理2.2 MEC-31多微机励磁控制器概述2.3 MEC-31励磁控制器的硬件配置2.4 MEC-31励磁控制器软件简介第三章 励磁大功率整流装置3.1 励磁大功率柜概述3.2 励磁大功率柜的技术特点3.3 励磁大功率柜过电压保护第四章 发电机灭磁及转子过电压保护4.1 发电机灭磁及转子过电压保护概述4.2 发电机灭磁的基本原理4.3 二江电厂灭磁及转子过电压保护装置4.4 大江电厂灭磁及转子过电压保护装置4.5 DM4开关配ZnO电阻灭磁系统的改进第五章 葛洲坝电厂励磁操作系统5.1 励磁操作系统概述5.2 励磁直流操作系统5.3 励磁交流电源操作系统5.4 励磁系统的操作第六章 励磁专业题库6.1 填空题6.2 选择题6.3 判断题6.4 画图题6.5 问答题主要参考资料第一章 励磁系统概述1.1 励磁系统的任务同步发电机运行时,必须在励磁绕组中通入直流电流,以便建立磁场,这个电流称为励磁电流,而供给电流的整个系统称为励磁系统。

由于励磁绕组又称发电机转子,故励磁电流也叫转子电流。

在电力系统的运行中,同步发电机是电力系统的无功功率主要来源之一,通过调节励磁电流可以改变发电机的无功功率,维持发电机端电压。

不论在系统正常运行还是故障情况下,同步发电机的直流励磁电流都需要控制,因此励磁系统是同步发电机的重要组成部分。

励磁系统的安全运行,不仅与发电机及其相联的电力系统的运行经济指标密切相关,而且与发电机及电力系统的运行稳定性密切相关。

同步发电机励磁系统的任务有以下几点:1 电压控制在同步发电机空载运行中,转子以同步转速n旋转时,励磁电流产生的主磁通Φ0切割N匝定子绕组感应出频率为f=pn/60的三相基波电势,其有效值E0同f,N, Φ0以及绕组系数k的关系:E0=4.44 fNkΦ0这样,改变励磁电流If以改变主磁通Φ0,空载电势E0值也将改变,二者的关系就是发电机的空载特性E0=f(If)或发电机的磁化特性Φ0=f(Ff)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 同步发电机励磁系统概述[ 摘 要 ] 本文阐述了同步发电机励磁系统的任务及发展,讨论了同步发电机的不同励磁方式及其特点,最后介绍了在发电机励磁控制系统的基本要求和相关技术。

[ 关键词 ] 同步发电机 励磁系统第一节 同步发电机励磁系统的任务和发展同步发电机的励磁系统一般由两部分组成。

一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称为励磁功率输出部分(或称为功率单元)。

另一部分用于在正常运行或发生事故时调节励磁电流,以满足运行的需要。

这一部分包括励磁调节器、强行励磁、强行减磁和自动灭磁等,一般称为励磁控制部分(或称为控制单元)。

不论在系统正常还是在故障情况下,同步发电机的直流励磁电流都需要控制,因此励磁系统是同步发电机的重要组成部分。

励磁系统不但与发电机及其相联的电力系统的运行经济指标密切相关,而且与发电机及其电力系统的运行稳定性能密切相关。

一.同步发电机励磁系统的任务(一)控制发电机的端电压维持发电机的端电压等于给定值是电力系统调压的主要手段之一,在负荷变化的情况下,要保证发电机的端电压为给定值则必须调节励磁。

由发电机的简化相量图(图1-1)可得:E U jI X q f f d=+ ﻩﻩ(1-1)式中:ﻩﻩE q——发电机的空载电势;U f——发电机的端电压;I f ——发电机的负荷电流比例。

图1-1 同步发电机简化向量图式(1-1)说明,在发电机空载电势E q 恒定的情况下,发电机端电压U f 会随负荷电流If 的加大而降低,为保证发电机端电压U f 恒定,必须随发电机负荷电流I f 的增加(或减小),增加(或减小)发电机的空载电势E q ,而E q 是发电机励磁电流Ifq 的函数(若不考虑饱和,Eq 和Ifq 成正比),故在发电机运行中,随着发电机负荷电流的变化,必须调节励磁电流来使发电机端电压恒定。

为了表示励磁系统维持发电机端电压恒定的能力,采用了调压精度的概念。

所谓调压精度是指在自动励磁调节器投入运行,调差单元退出,电压给定值不进行人工调整的情况下,发电机负载从零变化到视在功率额定值以及环境温度、频率、电源电压波动等在规定的范围内变化时,所引起的发电机端电压的最大变化,常用发电机额定电压的百分数表示。

一般来说,发电机在运行中引起端电压变化的主要因素是负荷电流的变化,通常用发电机调压静差率δJ来表示这种变化。

调压静差率是指自动励磁调节器的调差单元退出,电压给定值不变,负载从额定视在功率减小到零时发电机端电压的变化率,它可由下式计算:δJ f f fe U U U (%)=-⨯0100%ﻩ ﻩﻩ ﻩ ﻩ(1-2)式中: ﻩU f0——发电机空载电压;U f——发电机额定负荷时的电压;U fe ——发电机的额定电压。

通过发电机甩负荷试验可测量发电机的调压静差率,它主要取决于励磁系统的稳态开环放大系数K0,K 0越大,δJ 便越小。

(二)控制无功功率的分配当发电机并联于电力系统运行时,它输出的有功决定于从原动机输入的功率,而发电机输出的无功则和励磁电流有关。

为分析方便,假定发电机并联在无穷大母线运行,即其机端电压U f 恒定。

设发电机从原动机输入的机械功率不变,即发电机输出的有功功率P f 恒定,则有:P U I E U X f f f q f d ===cos sin ϕδ常数ﻩ ﻩﻩ ﻩ (1-3)式中: ϕ——发电机的功率因数角;δ——发电机的功率角。

U f恒定、P f 恒定即意味着I f cos ϕ和E q sin δ均为常数,在发电机相量图(图1-2)上,这表示发电机电流I f 的矢端轨迹为虚线BB ’,空载电势Eq 的矢端轨迹为虚线A A’。

当改变发电机的励磁使发电机空载电势E q 变化(如E q 由E q1 变为Eq2)时,发电机的负载电流If 跟着变化(由If1 变为I f 2),但其有功分量I a =I f c os ϕ恒定,故变化的只是无功电流I R。

所以,在无穷大母线的情况下,调节励磁将改变发电机输出的无功。

图1-2 同步发电机与无穷大母线并联运行向量图在研究并联运行发电机组间的无功分配问题时所涉及的主要概念之一是发电机机端电压调差率。

所谓发电机机端电压调差率是指在自动励磁调节器的调差单元投入,电压给定值固定,发电机功率因数为零的情况下,发电机无功负载从零变化到额定值时,用发电机额定电压百分数表示的发电机机端电压变化率δT ,通常由下式计算:δT f fr fe U U U (%)=-⨯0100% ﻩ ﻩﻩ ﻩﻩ(1-4)式中: U f0——发电机空载电压;U fr ——发电机额定无功负载时的电压;U fe ——发电机的额定电压。

发电机的端电压调差率,反映了在自动励磁调节器的作用下发电机端电压U f 随着发电机输出无功的变化。

自动励磁调节器调差单元的接法不同。

发电机端电压U f 可能随发电机输出无功电流I R 的加大而降低,即U f <U f0,这时,称发电机有正的电压调差;也可能发电机端电压Uf随发电机输出无功电流I R 的加大而升高,即U f >U f0,则称发电机有负的电压调差;若发电机端电压Uf 不随发电机输出无功电流I R 的变化而改变,即U f =U f0,则称发电机没有电压调差,即无差调节。

图1-3表示了发电机的三种调差特性。

当多台发电机机端直接并联在一起工作时,为了使并联机组间能有稳定的无功分配,这些发电机都必须有正的电压调差,且要求调差率δT =3%~5%。

若发电机是单元接线,即它们是通过升压变压器在高压母线上并联,则要求发电机有负的调差,负调差的作用是部分补偿无功电流在升压变压器上形成的压降(国外常把调差单元称为负荷补偿器),从而使电厂高压母线电压更加稳定。

有些电厂为了减小系统电压波动所引起的发电机无功的波动,常常不投入调差单元,而这对电力系统的调压,即保持系统的电压水平是不利的。

图1-3 同步发电机的三种调差特性(三)提高同步发电机并联运行的稳定性通常把电力系统的稳定性问题分为三类,即静态稳定(Steady stat e stabili ty)、暂态稳定(Transient stability )及动态稳定(D ynam ic st abi lit y)问题。

所谓静态稳定是指电力系统在受到小干扰作用时的稳定性,即受到小干扰作用后恢复原平衡状态的能力;而暂态稳定是指电力系统在受到大干扰(主要是短路)作用时的稳定性,即在大干扰作用后系统能否在新的平衡状态下稳定工作;而动态稳定是指电力系统受干扰后(包括小干扰和大干扰),在考虑了各种自动控制装置作用的情况下,长过程的稳定性问题。

励磁控制对电力系统的三类稳定的改善都有显著的作用,下面讨论励磁控制对各类稳定问题的影响。

1.励磁控制对静态稳定的影响为简化分析,设发电机工作于单机对无穷大母线系统中。

发电机F 经升压变压器SB 及输电线接到受端母线,由于受端母线为无穷大母线,它的电压幅值U和相位(设为零)都保持恒定。

图1-4表示了系统的接线图及等值电路图。

F SB图1-4若忽略发电机的凸极效应(即认为Xd =Xq )及回路电阻,则发电机输出的有功功率为:P E U X f q d =∑sin δﻩ ﻩ ﻩ (1-5)式中:ﻩ E q ——发电机空载电势;U ——无穷大母线电压;δ——E q 和U之间的相角差,常称功率角; X d∑——系统总电抗,为发电机纵轴同步电抗X d,变压器电抗XT和线路电抗X T 之和。

若发电机空载电势E q恒定,则发电机的有功功率P f 将只随功率角δ变化(见图1-5),Pf 和δ之间的这种正弦关系称为发电机的内功角特性。

图1-5 无自动电压调节器的发电机功角特性当发电机的原动机输入功率为P 0时,发电机存在着两个平衡的工作点a 和b 。

在a 点,若发电机因干扰而偏差平衡点,由于0>∆∆δP ,即角度的偏移∆δ所产生的功率偏移∆P(和∆δ)同号,会使发电机回归平蘅点,故a点是稳定的;在b 点,若发电机因干扰而偏差平衡点,由于0<∆∆δP ,即角度的偏移∆δ所产生的功率偏移∆P(和∆δ)不同号,会使发电机远离平蘅点,故b点是不稳定的。

通常将dP dt当作电力系统静态稳定的判据,当0>∆∆δP 时,系统是稳定的,反之是不稳定的。

对无自动励磁调节器的发电机来说,在δ>90°时,系统是不稳定的。

即稳定极限角为90°。

图1-6 有自动电压调节器时发电机的功角特性若发电机具有自动励磁调节器,由于调节器能自动维持发电机端电压的恒定,即能随角度δ的加大而加大空载电势,使发电机的实际运行曲线是一组内功角特性曲线上的点组成(参见图1-6),这时发电机可以运行于δ>90°的区段,通常把这一区段称为人工稳定区。

即由于采用了自动励磁调节器而将原来不稳定的工作区域变为稳定区域,从物理概念上,可以这样理解:在δ>90°的情况下,当干扰使发电机偏离了原工作点δ0,产生了角度偏移∆δ,一方面按正弦特性∆δ会产生一个负的有功增量∆P f1,(∆∆P P f f Eq cont 1=⋅⋅⨯=∂∂δδ),另一方面,∆δ加大使机端电压降低,自动励磁调节器为使机端电压恒定而加大发电机的励磁电流,使空载电势E q 产生一个增量∆E q,∆E q 又使发电机产生一个正的有功增量∆Pf2,(∆∆P P EqEq f f cont 2=⋅⋅⨯=∂∂δ),显然若∆∆P P f f 21>,因角度偏移∆δ引起的总的功率增量∆∆∆P P P f f f =+>120,即dP d fδ>0,系统变稳定了。

自动电压调节器按电压偏差调节的放大倍数越大,发电机维持端电压的能力越强,∆E q 越大,∆P f2也越大,发电机的稳定极限也就加大。

当然,对于那些离系统较近(指电气距离)的发电机来说,在系统电压突然升高时(如一条重负荷线路因事故跳闸),发电机电压会随之升高,发电机的自动励磁调节器为维持机端电压恒定,会将励磁电流减得过低,造成发电机进相以致失去静态稳定。

为防止这种情况发生,在发电机的励磁调节器中,必须装有低励限制单元。

当发电机的励磁过分降低,以致危及它的静态稳定时,低励限制动作,阻止发电机励磁的进一步降低。

2.励磁控制对电力系统动态稳定性的影响如前所述,为了提高电力系统的稳定性,希望自动励磁调节器有较大的放大系数,而这却会使系统的动态特性变坏,使系统发生振荡的可能性增加。

如何控制励磁才能使系统的动态稳定性得到提高呢?设发电机工作于单机对无穷大母线系统(见图1-4),当发电机相对于系统发生幅值不大的振荡时,有:t M ⋅∆=∆γδδsin ﻩﻩ(1-6)式中: ∆δ——对平衡点的角度偏移;∆δM ——角度振荡的偏值;γ——振荡角频率。

相关文档
最新文档