铁路通信基站的结构组成及信号保护
基站详细介绍范文
基站详细介绍范文基站是无线通信网络中的一个重要组成部分,也是实现移动通信的关键设施之一、在移动通信网络中,基站起到中转和传输信号的作用,它负责接收用户发出的信号并将其转发到目标设备或其他基站,同时也负责接收其他基站或目标设备发送过来的信号,并将其转发给用户。
因此,基站在实现移动通信的过程中起着至关重要的作用,下面将从基站的定义、功能、组成结构以及发展趋势等方面进行详细介绍。
首先,基站,也称为基础站台或基站台,是无线通信网络中的一个终端设备,主要用于接收和传输信号。
基站一般由基站设备、天线、传输系统以及电源等组成。
基站设备是基站的核心部件,它包括射频收发设备、信号处理设备、调制解调器等,用于接收和发送信号。
天线是基站与用户之间的连接媒介,它接收来自用户设备的信号并将其传输到基站设备,同时也将来自基站设备的信号传输给用户设备。
基站的传输系统主要负责数据的传输和处理,它可以通过有线或无线方式将信号传输到目标设备或其他基站。
电源为基站提供供电,保证基站能够正常运行。
其次,基站的主要功能是提供无线通信服务,实现移动通信。
首先,在通信过程中,基站可以接收用户设备发出的信号,并将其转发给目标设备或其他基站,实现用户之间的通信。
其次,基站可以接收其他基站或目标设备发送的信号,并将其转发给用户设备,实现设备之间的通信。
此外,基站还可以对信号进行增强和过滤,以提高通信质量和传输速度。
基站还可以对通信进行控制和管理,包括通信的接入控制、用户身份鉴别、通信质量监测等。
基站同时也可以提供其他增值服务,如定位服务、短信服务、移动支付等。
基站的组成结构主要包括室内设备和室外设备两部分。
室内设备主要包括基站设备、传输设备和电源设备等,一般安装在室内的机房中。
室内设备通过输电线将信号传输到室外的天线上。
室外设备主要包括天线、天线支架和塔杆等,它们安装在室外的高处,以便信号的传输和接收。
为了保证基站的正常运行和通信质量,基站还需要合理的布置和调整天线的方向和高度,以及保证稳定的电源供应。
GSM-R铁路综合数字移动通信系统
隧道和地下车站覆盖
GSM-R系统采用特殊的信号传输技术,实现了隧道 和地下车站的有效覆盖,保证了在这些区域的通信 质量。
山区和荒漠覆盖
GSM-R系统具备在山区和荒漠等复杂地形 下的覆盖能力,能够满足在这些区域的通信 需求。
兼容性好
与现有通信系统兼容
GSM-R系统与现有的公众移动通信网络兼容,如GSM、GPRS等,方便用户在铁路沿线及列车上使用 手机、上网等通信服务。
GSM-R铁路综合数字移动通信系 统
目录
• 引言 • GSM-R系统的组成 • GSM-R系统的功能 • GSM-R系统的优势 • GSM-R系统的应用场景 • GSM-R系统的未来发展
01 引言ห้องสมุดไป่ตู้
目的和背景
铁路运输是全球范围内重要的交通方 式之一,保障铁路运输的安全和效率 至关重要。
GSM-R系统是为了满足铁路运输在移 动通信方面的特殊需求而设计的,旨 在提供高效、可靠的通信服务,支持 列车控制、调度、旅客信息等多种应 用。
VS
远程监控
GSM-R系统可以用于远程监控货运列车 的运行状态和货物安全,提高运输安全性 和可靠性。
06 GSM-R系统的未来发展
5G技术在GSM-R系统中的应用
5G技术将为GSM-R系统带来更高的数据传输速率、更低的延迟和更高的可靠性,提 升铁路运输的安全性和效率。
5G技术将促进铁路移动通信系统的升级,支持更高清的视频监控、更准确的定位和 更智能的调度控制。
列车控制和调度通信
列车控制指令的传输
GSM-R系统能够传输列车控制指令,如启动、停止、加速、减速等,实现对列车的远程控制。
调度指令的传输
调度员可以通过GSM-R系统向列车发送调度指令,如调整列车运行计划、优先级调整等,确保列车的有序运行。
GSM-R系统的组成及业务功能
目前,一般高铁线路GSM-R系统所承载的分组域数据业务主要有无线车次号信息、调度命令、近路预告信息。
分组域数据业务主要针对于那些对实时性要求较低(与电路域业务相比),突发性强,有一定的数据量的业务。采用分组交换技术,可以高效传输数据和信令,只有当传输数据时才占用网络资源。优化了对网络资源和无线资源的利用,同时提高了传输的速率。无线资源中的一个频点即一个TDMA帧可分配1到8个无线接口时隙。这些时隙能为用户所共享,且上行链路和下行链路的分配是独立的。可以同时使用8个时隙进行数据传输,最高速率可达171.2kbps(理论值)。
图3-3无线资源频谱图
图3-4GSM-R频道号对应频率表
2、小区频率配置的基本原则:同一个基站的载频间隔不小于400KHz,相邻基站载频间隔不小于400KHz。
3、GSM-R系统的频率资源很紧X,既然这一段频段资源少,为什么不考虑使用更高的频段,比如1800M左右的频率(3G所使用的频率)?
无线电波频率越高,在传播过程中造成的衰落就约快,这样一个基站的覆盖X围就越小,则小区半径越小,所以频率是和小区的半径成反比的,频率高,半径小,那么一定的X围内,沿线所建基站就多,这样干扰就大。此外,高速列车要频繁的进行越区切换,其对铁路业务的影响是极大的,容易能造成通信延时以及掉话。
3系统功能1sim卡数据管理2sim卡资源管理3sim卡个人化4sim卡业务受理4系统用法1sim卡申购上报2sim卡数据下发3sim卡业务上报4持卡人信息上报sim卡数据管理sim卡个人化sim卡资源管理sim卡业务受理sim卡存库管理系统维护sim卡发卡管理接口管理数据字典管理图351sim卡管理系统示意图五gsmr数据管理系统1系统简介依据sim卡管理系统需求规x关于数据管理的有关需求定义和编号20定义的数据x围结合当前数据管理方法填报方法等有关数据管理工作的规定利用数据库技术实现对gsmr网络数据的信息化管理
(已修订)现代铁路信号中的通信技术
现代铁路信号中的通信技术第一章1.说明现代铁路信号系统的组成?(2)车地移动通信技术●目前车地移动通信技术主要有:●基于应答器的点式地对车单向传输方式(铁路、城轨);●基于轨道电路的连续式地对车单向传输方式(铁路、城轨);●基于GSM-R的连续式地-车双向传输方式(高铁);●基于Wi-Fi的连续式地-车双向传输方式(城轨CBTC);●基于38G毫米波的连续式地-车双向传输方式(高速磁浮)。
(3)车载设备通信技术●目前车载设备采用的通信技术主要有异步串行通信、现场总线、列车通信网络等三种。
(4)安全通信技术●铁路信号系统的主要目标就是是保证列车运行安全,因此铁路信号系统中的所有设备都属于安全相关设备。
(一)双绞线●双绞线是由一对相互绝缘的金属导线绞合而成。
双绞线广泛用于市话中继线、局域网和控制系统通信网中。
(二)光导纤维(光纤)●光纤在进行通信时,首先在发送端经转换系统,将电信号转换成光信号,然后经光纤送至接收端,再经转换系统,将光信号转成电信号,完成整个通信过程。
(三)无线信道● 无线信道通过电磁波在空气中传播,比较常用的有超短波和微波通信、卫星通信等,超短波信道误码率一般小于10-4,微波信道和卫星通信误码率一般小于10-6。
(必考:填空)2.说明数据通信系统的组成?● 数据通信系统是通过数据电路将分布在远地的数据终端设备与计算机系统连接起来,实现数据传输、交换、存储和处理的系统。
每秒比特(位),以bit/s 或bps 表示。
(二)误码率● 误码率是衡量通信系统线路质量的一个重要参数。
● 其定义为:二进制符号在传输系统中被传错的概率,近似等于被传错的二进制符号数与所传二进制符号总数的比值,即:传输的总比特数接收的错误比特数误码率 e P(三)信道容量● 信道容量指信道能传输信息的最大能力,用单位时间内最大可传送的比特数表示。
● 模拟信道是一种连续信道,其信道容量可以根据香农(Shannon )公式计算。
铁路信号与通信设备操作与维护作业指导书
铁路信号与通信设备操作与维护作业指导书第1章铁路信号与通信设备概述 (4)1.1 铁路信号设备简介 (4)1.2 铁路通信设备简介 (4)1.3 信号与通信设备在铁路运输中的作用 (5)第2章铁路信号设备操作 (5)2.1 信号设备操作基本要求 (5)2.1.1 操作人员资质要求 (5)2.1.2 操作前准备 (5)2.1.3 设备操作规范 (5)2.1.4 安全防护措施 (6)2.2 轨道电路操作 (6)2.2.1 轨道电路设备检查 (6)2.2.2 轨道电路操作流程 (6)2.2.3 异常处理 (6)2.3 联锁设备操作 (6)2.3.1 联锁设备检查 (6)2.3.2 联锁设备操作流程 (6)2.3.3 异常处理 (6)2.4 信号机操作 (7)2.4.1 信号机检查 (7)2.4.2 信号机操作流程 (7)2.4.3 异常处理 (7)第3章铁路通信设备操作 (7)3.1 通信设备操作基本要求 (7)3.1.1 操作前准备 (7)3.1.2 操作规程 (7)3.1.3 安全注意事项 (7)3.2 电话通信设备操作 (8)3.2.1 电话交换设备操作 (8)3.2.2 电话终端设备操作 (8)3.3 无线通信设备操作 (8)3.3.1 无线电台操作 (8)3.3.2 无线手持台操作 (8)3.4 数据通信设备操作 (8)3.4.1 调制解调器操作 (8)3.4.2 传输设备操作 (9)第4章铁路信号设备维护 (9)4.1 信号设备维护概述 (9)4.1.1 信号设备维护的意义 (9)4.1.2 信号设备维护的基本要求 (9)4.1.3 信号设备维护的主要内容 (9)4.2 轨道电路维护 (9)4.2.1 轨道电路概述 (9)4.2.2 轨道电路维护内容 (9)4.3 联锁设备维护 (9)4.3.1 联锁设备概述 (10)4.3.2 联锁设备维护内容 (10)4.4 信号机维护 (10)4.4.1 信号机概述 (10)4.4.2 信号机维护内容 (10)第5章铁路通信设备维护 (10)5.1 通信设备维护概述 (10)5.1.1 通信设备维护的目的 (10)5.1.2 通信设备维护的原则 (10)5.1.3 通信设备维护的内容 (11)5.2 电话通信设备维护 (11)5.2.1 电话交换设备维护 (11)5.2.2 电话终端设备维护 (11)5.3 无线通信设备维护 (11)5.3.1 无线基站设备维护 (11)5.3.2 无线手持台设备维护 (11)5.4 数据通信设备维护 (12)5.4.1 数据交换设备维护 (12)5.4.2 路由器设备维护 (12)5.4.3 传输设备维护 (12)第6章铁路信号与通信设备故障处理 (12)6.1 故障处理原则与方法 (12)6.1.1 故障处理原则 (12)6.1.2 故障处理方法 (12)6.2 信号设备常见故障处理 (13)6.2.1 信号机故障 (13)6.2.2 道岔故障 (13)6.3 通信设备常见故障处理 (13)6.3.1 通信线路故障 (13)6.3.2 通信设备故障 (13)6.4 故障案例分析 (13)第7章铁路信号与通信设备安全管理 (14)7.1 安全管理制度与规定 (14)7.1.1 制定完善的安全管理制度,保证铁路信号与通信设备操作与维护过程中的安全。
GSM-R铁路移动通信
GSM-R铁路移动通信1·引言1·1 目的本文档旨在提供关于GSM-R铁路移动通信系统的详细信息,包括其基本概况、设计要求和技术规范等内容。
该文档可供设计人员、技术人员和有关方面参考使用。
1·2 范围本文档涵盖了GSM-R铁路移动通信系统的各个方面,包括网络结构、通信协议、硬件设备、通信范围和性能要求等。
2·概述2·1 GSM-R铁路移动通信系统概况GSM-R铁路移动通信系统是一种专门为铁路行业设计的移动通信系统,提供语音和数据传输功能,并具备可靠性和安全性要求。
该系统基于GSM技术,并在其基础上进行了优化和改进,以满足铁路行业的特殊需求。
2·2 设计要求为了满足铁路行业的通信需求,GSM-R铁路移动通信系统需要具备以下设计要求:●可靠性:能够在各种复杂的环境条件下提供稳定的通信服务。
●安全性:确保通信数据的机密性和完整性,防止未经授权的访问。
●全网覆盖:覆盖整个铁路网络,包括车站、铁路线路和隧道等地方。
●抗干扰能力:能够有效抵御各种干扰源对通信系统的干扰。
●低时延:保证通信时延在可接受的范围内。
●多频道支持:支持同时多个频道的通信。
3·网络结构3·1 网络拓扑结构GSM-R铁路移动通信系统的网络拓扑结构包括核心网和边缘网。
核心网由核心节点、网关和数据库组成,负责集中处理和控制各个边缘网的通信。
边缘网包括车站无线局部网和线路无线局部网,用于提供与车站和线路相关的通信服务。
3·2 通信协议GSM-R铁路移动通信系统使用各种通信协议来实现不同功能。
其中,ISDN-PRI协议用于提供语音通信,GPRS和EDGE协议用于数据传输。
此外,还有一些专用的信令协议,如RSL和LAPD,用于系统内部的控制和管理。
4·硬件设备4·1 基站设备GSM-R铁路移动通信系统的基站设备负责无线信号的发射和接收,并与移动设备进行通信。
通信基站设施建设与保护工作方法
通信基站设施建设与保护工作方法
通信基站设施建设与保护工作包括基站选址、设备安装、运维管理和安全保护等方面。
以下是通信基站设施建设与保护的一般工作方法:
1. 基站选址:根据通信网络规划和覆盖需求,结合地理环境、电力供应、土地使用等
因素,选择适宜的基站选址点。
2. 设备安装:根据通信网络规划和工程设计,进行基站设备的安装、调试和验收工作,确保设备正常运行。
3. 运维管理:建立完善的基站运维管理体系,包括设备巡检、故障维修、备品备件管理、保养维护等工作,在设备的整个使用寿命周期内保持其良好的运行状态。
4. 安全保护:建立基站安全保护制度,加强对基站设施的安全防护和监控,防范盗窃、破坏和其他安全风险。
5. 外部配套建设:如基站周边环境美化、道路硬化、电力供应配套等,提高基站设施
的环境质量和使用条件。
6. 特殊情况处置:对于自然灾害、突发事件等特殊情况下的设备和基站的保护与处置,制定应急预案,及时响应和处理。
综上所述,通信基站设施建设与保护需要综合考虑选址、设备安装、运维管理和安全
保护等方面的工作,确保基站设施的正常运行和安全性。
第8章 铁路通信
8-2 通信线路
二、无线线路 无线传输是指可以在自由空间利用电磁波发送和接受信号进行 通信。地球上的大气层为大部分无线传输提供了物理通道。无线传输 所使用的频道很广。方法主要有无线电波、微波和红外线。 1、无线电波:自由空间(空气和真空)传播的频率小于 300GHz 的电磁波; 2、微波:频率在300MHz~300GHz 的电磁波;主要用于列车与 地面间的通信;
8-4 业务网
一、调度通信系统 (一)数字调度通信系统 3、区段调度通信系统 区段调度通信系统的调度业务包括列车调度、客运调度、货运 调度、机车调度、牵引供电调度和其他调度等。 区段调度通信系统分为模拟系统和数字系统,目前,模拟系统 已基本改造成数字系统。区段数字调度通信系统在GSM-R中被称为固 定用户接入交换机(FAS)系统,有枢纽主系统、车站分系统、传输通 道、网管系统等组成。
8-3 承载网
二、接入网
通过铁路通信接入网,可以将用户信息接入到相应的通信业务网络节 点,并在传输系统的支撑下,实现铁路通信相应功能。
铁路接入网系统使用光纤接入方式,包括光纤线路终端(OLT)、光网 络单元(ONU)、光分配器(ODN)和接入网网管等设备。
8-3 承载网
三、数据通信网 数据通信网是由分布在不同地理位置的数据终端设备、数据交 换设备和通信线路构成的,在网络协议的支持下,为铁路运输组织、 客货营销、经营管理等信息系统和综合视频监控、电视会议、应急通 信、GSM-R的通用无线分组业务(GPRS)、综合维护管理、旅客服务 等业务提供承载平台。 目前铁路数据通信网以IP网络为主,数据交换设备主要有调制 解调器、集线器、交换机和路由器。
GSM-R-基本介绍
在铁路无线列调作业过程中,每个调度员具有一定的管辖区域。通过利用呼叫区域 限制功能,可以限制调度员呼叫非管辖区内的移动用户。 呼叫区域限制仅适用于点对点呼叫。
eMLPP(Enhanced Multi-Level Precedence and Pre-emption)业务允许网络根据 用户的不同优先级在网络资源被占用的情况下实施不同的策略:排队和抢占,另外 还可采用不同的呼叫建立和指配过程以满足不同优先级呼叫对时延的要求。
• 2. GSM-R中CSD业务采用异步透明传输的优点?
• 异步传输保证数据业务的准确性,透明传输提高数据传输速率
• 3.BTS在设备组网方式上分为(星型组网)、(链型组网)、 (树型组网)和(环型组网)。
第26页,共27页。
GSM-R复习题
• 4.哈大高铁BTS组网方式为树型组网。(错) • 5.所有接入紧急呼叫的用户在呼叫结束后都需要AC确认。(对) • 6.哪种业务不是GSM-R典型业务( C) • A.组呼 B.功能号码呼叫 C.漫游 D.呼叫区域限制 • 7.那种GSM-R设备是沈局没有的?(D)
链型组网对串联的级数有限制,串联的节点数不要 超过5 级。
BSC
BTS
BTS
BTS
第21页,共27页。
Page 21
设备组网-树型组网
BTS 树型组网方式适用于网络结构、站点及用 户密度分布较复杂的情况,比如大面积用户与热 点地区或小面积用户交错的地区。
树型组网对串联的级数有限制,一般要求串联不 超过5 级,即树的深度不要超过5层。
GSM-R简介
铁路G网系统简介和组成
三、GSM-R系统构成图
SSS
EIR
SMSC
HLR/AuC
铁路电路域
应用系统
F
DSS1
No.7
C/D
MSC/VLR E/G
AC
Gr
IN SCP
L
SMP
SCEP TCP/IP
其他 通信网
GMSC No.7
MSC/VLR/GCR/IWF
SSP
IP
SMAP
A
DSS1
调度 交换机
BSS CBC
TRAU Ater
GSM使用对称无线信道
890 MHz
上行
下行
频率
915 MHz 935 MHz
频率
BTS 960 MHz
0
信道号
124
0
信道号
124
例如:
第48信道
双工间隔 = 45 MHz 频带宽度 = 2 x 25 MHz 信道间隔 = 200 kHz
上行:终端发送、基站接收;下行:基站发送、终端接收。 GSM系统是双工通信,需要使用1对信道,1个用来提供终端到基站的传输,1个用来提供 基站到终端的传输。每个载频提供8个全速率的时分多址(TDMA)信道。 GSM系统需占用指定频谱内的上、下行频率,即工作频段。 GSM系统中,频点之间的间隔为200KHz。上下行相差45MHz。
GSM-R数字移动通信系统
2009年4月7日
TEL:021-65161,FAX:65150 E-mail:505shibo@
一、GSM-R简介
GSM: Global System For Mobile Communications 全球移动通信系统
是无线通信技术体制之一(其它CDMA等等) 是世界上最广泛应用第二代数字移动通信标准(2G) 实现了从模拟传输到数字传输质的飞跃 在全球普遍应用,占82%的市场份额,是全球主流的无线通信技术 开放的标准、成熟的产业链、提供全球漫游服务 定位于公众移动通信的商用网络,用户多、使得建网成本大幅下降 我国GSM移动用户3.9亿(总用户数5.08亿),占总用户的77%,网络规模
GSM-R系统介绍
GSM-R系统简介
一、GSM-R系统结构 二、GSM-R系统功能 三、GSM-R系统承载的业务
GSM-R系统介绍
一、GSM-R系统结构
➢ GSM-R在通信网中的地位与作用
业务网
(固定电话网PSTN)(移动电话网GSM-R)
基础传送网
(传输:DWDM、SDH)
支撑网
(信令) (网管) (同步)
GSM-R系统介绍
SIM卡管理
各子系统网管
计费、结算、营帐
运营支持子系统
智能网设备
交换机 (MSC)
服SC务PBuilder IN
GPRS设备
服务Builder
SGSINN
GGSN
网络子系统
外部数据网
基站子系统
ADM
BB
T
ห้องสมุดไป่ตู้
R
SS
B T S
AD M
B
TRAU
S
C
ADM
ADM ADM
B
R
R
T
S
GSM-R系统组成示意图
• 互连功能单元(IWF):与固定网络的数据终端之间提 供速率和协议的转换;
• 组呼寄存器(GCR):用于存储移动用户的组ID; • 短消息服务中心(SMSC):负责向MSC传送短消息信
息; • 确认中心(AC):记录、存储铁路紧急呼叫相关信息。
GSM-R系统介绍
(2)智能网子系统
功能:是在交换子系统中引入的智能网功能实体,实现对 呼叫的智能控制。主要目的是实现操作的便捷程度和 智能程度。
传统方式
GSM-R系统介绍
• 每增加一种新业务就需要在网络中所有交换机中增加相应 的软件,新业务的引入周期较长、灵活性较低且成本很高。
铁路通信基站的结构组成及信号保护
铁路通信基站的结构组成及信号保护摘要:基站是铁路通信的主要组成部分,基站结构性能的发挥对通信系统的运行效率影响较大。
鉴于此,本文分析了铁路通信基站的结构组成及信号保护问题。
关键词:铁路通信;基站结构;组成;信号保护与一般的通信基站相比,铁路通信基站具有明显的差异性,但从通信原理角度考虑两者是一样的。
这是因为随着时间的推移,我国铁路通信基站的结构在不断变化调整,除了最核心的组成部分外,铁路基站还配备了其它辅助装置。
一、铁路通信基站的核心组成广义的基站,是基站子系统(BSS)的简称。
以GSM网络为例,包括基站收发信机(BTS)和基站控制器(BSC)。
一个基站控制器可以控制十几以至数十个基站收发信机。
而在WCDMA等系统中,类似的概念称为NodeB和RNC。
狭义的基站,即公用移动通信基站是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。
1、基站收发台。
基站收发台在基站控制器的控制下,完成基站的控制与无线信道之间的转换,实现手机通信信号的收发与移动平台之间通过空中无线传输及相关的控制功能。
收发台可对每个用户的无线信号进行解码和发送。
基站使用的天线分为发射天线和接收天线,且有全向和定向之分,一般可有下列三种配置方式:发全向、收全向方式;发全向、收定向方式;发定向、收定向方式。
从字面上我们就可以理解每种方式的不同,发全向主要负责全方位的信号发送;收全向自然就是个方位的接收信号了;定向的意思就是只朝一个固定的角度进行发送和接收。
一般情况下,频道数较少的基站(如位于郊区)常采用发全向、收全向方式,而频道数较多的基站采用发全向、收定向的方式,且基站的建立也比郊区更为密集。
2、基站控制器。
GSM系统越区时采用切换方式,即当用户到达小区边界时,手机会先与原来的基站切断联系,然后再与新的服务小区的基站建立联系,当新的服务小区繁忙时,不能提供通话信道,这时就会发生掉线现象。
我国铁路无线移动通信系统的现状
我国铁路无线移动通信系统的现状随着铁路运输的快速发展,铁路无线移动通信系统在铁路运输中发挥着越来越重要的作用。
目前,我国铁路无线移动通信系统已经形成了较为完善的体系,为铁路运输提供了更加高效、安全、便捷的通信服务。
本文将从以下几个方面介绍我国铁路无线移动通信系统的现状。
一、铁路无线移动通信系统的组成我国铁路无线移动通信系统主要由基站、交换机、基站控制器、网管等设备组成。
其中,基站是铁路无线移动通信系统的基础设施,负责无线信号的覆盖和传输;交换机负责用户之间的通信连接;基站控制器负责基站的管理和控制;网管则负责整个系统的监控和维护。
二、铁路无线移动通信系统的特点1、覆盖范围广:我国铁路线路遍布全国,为了满足旅客和工作人员的通信需求,铁路无线移动通信系统需要覆盖广泛的区域。
目前,我国铁路无线移动通信系统已经实现了对全国主要铁路干线的覆盖。
2、高速移动性:在列车高速运行的情况下,乘客和工作人员需要能够随时进行通信。
因此,铁路无线移动通信系统需要具备高速移动性,以保证通信的稳定性和实时性。
3、安全性高:铁路运输具有高度安全性的要求,因此铁路无线移动通信系统需要具备高度的安全性,保证通信过程中的数据安全和隐私保护。
4、兼容性强:我国铁路无线移动通信系统需要与其他通信系统进行兼容,以满足不同用户的需求。
例如,需要与公共移动通信网络进行互联互通,实现语音和数据的互通。
三、铁路无线移动通信系统的发展趋势1、5G技术的应用:随着5G技术的不断发展,未来我国铁路无线移动通信系统将逐渐引入5G技术,提高通信速度和稳定性,满足更高速度的列车通信需求。
2、物联网技术的应用:物联网技术可以将各种设备、物体与网络连接在一起,实现智能化管理和控制。
未来我国铁路无线移动通信系统将逐渐引入物联网技术,实现铁路设备的智能化管理和控制,提高铁路运输的效率和质量。
3、云计算技术的应用:云计算技术可以实现数据的高效处理和存储,提高数据处理的速度和效率。
铁路专用通信
2020/4/3
5
区段数字调度通信 • 站场通信 • 站间通信
主要包括 • 区间通信 • 专用通信
2020/4/3
6
1)站场通信:主要是解决站场工作人员相互 联系通信的设备。它包括车站、站场集中 电话、驼峰调车电话、货运电话、列检电 话等。
2)站间通信:是指(相邻)两车站值班员之 间进行话音联络的点对点通信业务。
2020/4/3
20
在主系统和分系统之间采用2M自愈环 的组网方式,能保证数字环的任何一处断 开都不会影响系统的正常运行,增加了系 统的安全可靠性。
2020/4/3
21
三 、无线列调
当今的无线通信系统是有线网络与无线 网络的结合体。在整个通信体系中,基站 与移动台之间是无线连接,基站与交换机 之间,交换机与交换机之间是有线连接。
2020/4/3
13
2.2 接入子系统组网结构图
2020/4/3
14
2.3 数字调度子系统组网结构图
2020/4/3
15
数调台
数调电话:是供列车调度员与其管辖区 段内所有车站值班员通话,属于有线电话。
在列车调度回线上,只允许接入与列车
运行直接有关的车站值班员、车站调度员、
机车调度员等的电话。
应急
数调
电话
电话
2020/4/3
16
数调电话的显著特点是调度员可以通 过操作台上的按键实现单呼、组呼、全呼。
单呼:对个别车站呼叫; 组呼:对成组车站呼叫; 全呼:对全部车站集中呼叫;
2020/4/3
17
2020/4/3
18
铁路站段调度所设区段数字调度机(俗 称主系统),与所管辖区段沿线各中间站 车站并由末端车站 环回,组成一个2M自愈环。
浅谈铁路通信基站维护
随着技术 的不断进 步 . 基站设备 的运行和维 护也不 断的趋于规范 满足 了时代进步 以及通信健康发展 的要求 。 设方案并结合 当地实 际情 况 . 充分各 种因素对 于施 工 的影 响 . 明确土 化和完 善化 , 3 _ 3 基站维护 的细节要求 地的所有权 . 确定合适 的用地面积 . 制定有效 的土地征用合 同。 地的问题确实是基站建设首先要关注 的问题 . 根据 预先编制的基站建 ( 2 ) 确保基站通信质量 。 为保证通信质量 , 基站应避免在无线 电干 扰集 中的地方建设 。比如说大功率雷达站附近 、 大功率无线 电发射 台
的正常 运转 . 提升 网络 水平 以及确保 列车 的通信安 全 畅通有着 至关 重要 的作 用 ( 5 ) 应急发 电设备 的维护 : 电力 的正常供应 是基站正常运行 的前 提 。因此定期维护 电力设备及相关线路也是相当重要的工作。 3 . 2基站维护 的主要措施 基站维护的主要措施包含 : ( 1 ) 定期巡检工作 : 要求每一段时期的基站巡检工作 . 都 能够及 时
3 . 3 . 1 机房环境
以及 功率 电视发射台附近等都不适合通信基站的建设 。 ( 3 ) 基站安全性 的考虑。站点的选择应综合考虑交通 、 供电、 环境 等 。
等方 面的因素 . 严禁 在易燃 易爆 、 多烟雾粉尘 的环境 附近建站。
室内温度 、 室内卫生 、 室 内杂物 、 周 围环境等方 面均要达到相关的 要求. 如 保持温度适 中 , 室 内洁净且无 其它杂 物 。 机房 周 围无 危险 品
3 . 3 . 2房屋设施
要求房屋不能漏雨 、 保持干燥 , 有问题及时要修复 : 要求保持 室内 ( 4 ) 加大宣传力度 , 消除误解 。 切实 做好通信知 识的普及 工作 。 让 翘起 、 裂痕 、 脏物 。 不能影响机房 内正 常开关 门 ; 群 众 了解 铁路通 信基站 建设 的 目的和作 用 . 知道与 铁路通 信基 站建 地 面平整光滑无破损 、 设 工作 的相关 法 律法 规 、 环保标 准 , 消 除群众 对 电磁辐 射 的恐惧 心 要求房屋墙面 门窗密闭防尘且边界完整 .透明的玻璃窗要贴反光 纸: 房屋屋顶要无杂物和积水并且屋顶下水的畅通 理。
铁路移动通信设备与维护工作内容
铁路移动通信设备与维护工作内容
铁路移动通信设备是指用于铁路通信和控制的移动通信设备,是铁路运输系统中的重要组成部分。
铁路移动通信设备主要包括以下内容:
1. 车载终端设备:指在列车上安装的移动通信设备,用于车间间、车站间和列车内的通信和控制。
2. 地面基站设备:指在车站、信号机处和区间设备上安装的移动通信设备,用于与车载终端设备进行通信和控制。
3. 信号机设备:指用于铁路信号控制的设备,主要包括信号机、道岔机和轨道电路等。
铁路移动通信设备维护工作内容主要包括以下方面:
1. 设备巡检:定期对车载终端设备、地面基站设备和信号机设备进行巡检,检查设备工作状态、连通性和安全性等。
2. 处理故障:及时处理设备故障,保证通信和控制的正常运行,以保障铁路安全。
3. 设备维护:定期对设备进行维护,包括清洁、检查和更换故障部件等,以保证设备的稳定运行和寿命。
4. 技术支持:提供设备使用技术支持和解决问题的方案,确保设备的有效使用。
5. 数据管理:管理设备的使用和保养数据,提高设备管理效率和运营效益。
以上是铁路移动通信设备与维护工作内容的基本介绍,铁路移动通信设备的维护工作是铁路安全和运行的关键保障,需要专业的技术人员进行维护和管理。
铁路通信系统
铁路通信系统铁路通信系统包括14个子系统分别为传输系统、数据通信系统、电话交换机接入系统、调度通信系统、移动通信系统、会议电视系统、应急通信系统、综合网管系统、综合视频监控系统、电源系统、时钟及时间同步系统、电源及机房环境监控系统、综合布线系统、通信线路系统。
1.传输系统简介传输系统采用基于SDH的MSTP平台构建,按干线层、接入层组网。
全线一个同步区,采用主从同步方式。
干线层传输系统主要完成各类业务汇聚、调度以及与既有通信系统的互联,为接入层传输系统提供保护通道。
干线层新设基于SDH的MSTP2.5Gb∕s传输系统,利用敷设于铁路两侧不同物理径路的2条24芯光缆中的各两芯光纤,构成链型1+1MSP传输系统。
接入层传输系统提供2Mb∕s.10M/100M通道的接入、汇聚和转接,兼顾区间应急通信的接入条件。
接入层采用基于SDH的多业务传输平台MTSP 组建SDH622Mb/s传输系统,在各车站、线路所、无线基站、信号中继站、电气化所亭、综合维修车间等节点设置ADM。
利用敷设于铁路两侧不同物理径路的2条光缆中的各两芯光纤,构成链型1+1MSP传输系统。
2.数据通信系统简介数据通信系统属于铁路数据通信网的区域网络,由核心节点、汇聚节点、接入节点组成。
核心层节点实现区域网络与骨干网络间数据的快速转发;汇聚层节点实现各数据接入点的数据流量高速汇聚与转发;接入节点负责本地数据的接入、交换。
接入节点路由器与汇聚节点路由器之间通过传输系统提供的POS155Mb/s通道、接入节点路由器之间通过MSTP系统柜提供的FE(E)互联构成环形网。
3.电话交换及接入系统本工程在XX通信站新设IOOo线程控电话交换机,并配置相应的维护终端。
接入由接入网局端设备、接入网终端设备、网管设备等组成。
4.调度通信系统调度通信系统由调度所型调度交换机、车站型调度交换机、调度台、值班台、其他各类固定终端(电话分机)、网管终端及录音仪等设备组成。
铁路通信传输网络的保护方法
铁路通信传输网络的保护方法摘要:在铁路运输中铁路通信网络占据着核心位置,因此,构建稳定可靠、畅通无阻的铁路通信网络一方面可以提高整个铁路信息化体系,另一方面它的成功运作也对铁路安全运输提供一定的保障。
基于此,本文主要对铁路通信传输网络的保护方法进行了探讨。
关键词:铁路;通信传输网络;保护;方法当前,伴随着信息时代的来临,我国现代铁路系统也在不断发展与壮大,这也必然给相关组织人员提出了更为严格的要求,他们要对铁路通信中相关的信息进行熟练掌握,还要逐渐将铁路通信系统发展为集通信、控制、指挥于一体的自动化的智能通信传输系统,从而达到铁路通信传输的一体化发展模式。
此外,该种铁路通信也有不尽人意的地方,它会使得铁路通信在传输过程的安全性降低。
所以,重视铁路通信传输安全问题是目前铁路通信发展所亟待解决的问题,不容忽视。
1 铁路通信传输网络概况铁路通信网络所涵盖的范围非常广泛,其中包含有传输网、接入网、调度通信网、GSM-R通信网、数据通信网、应急通信网等成分。
在所有的这些网络中,铁路通信传输网是其中最为核心的一个网络,也是组成其他铁路通信网络的根基点。
铁路通信传输网主要有三层结构:一是骨干层;二是中继层;三是接入层。
(1)骨干层也被称为干线传输网,它主要包含的范围是中国铁路总公司与铁路局、铁路局与铁路局之间的通信传输网络,骨干层的主要职责是将总公司与铁路局、铁路局之间的通信信息及时传送到相关部门。
(2)中继层也被称作局线传输网,它主要包含的是铁路局与较大通信站点之间的传输网络,中继层的主要职责是进行铁路局管内与较大通信站点之间的信息传送工作。
(3)接入层则是通信传输接入层的业务载体。
它的任务是将用户相关信息接入到与之相对应的通信业务网络节点,借助传输网的协助,完成音频电路等通信业务功能。
接入层也叫做区段通信,它主要是进行铁路区段中间站之间的通信网络,接入层的职责是将铁路地区、各车站等站点通信信息的接入与传送工作。
铁路通信信号传输安全问题分析
铁路通信信号传输安全问题分析摘要】随着我国社会经济的快速发展,中国铁路目前正处于“走出去”的时代背景中,随之而来的网络病毒和网络攻击层出不穷,给中国高铁信号系统信息安全带来很大挑战。
本文对铁路通信信号传输安全问题进行了详细探讨、分析,最后对铁路通信信号系统的信息安全防护提出一些建议。
【关键词】通信信号、传输、安全1 引言作为铁路核心技术之一的铁路信号系统集计算机技术、现代控制技术、通信技术于一体,是保障行车安全、提高运输效率的关键技术装备,我国铁路信号系统主要包含列车运行控制系统(CTCS,简称列控系统)、分散自律调度集中(CTC)系统、计算机联锁系统(CBI)以及相应的监测系统,其中前三个系统直接与行车相关联。
由于以往的传统铁路信号系统中的运行速度较低,所以通信信号系统并不能与信息系统相互连接,这些信息都需要借助铁路信号系统来实现远距离的快速传送,二者如果相互独立则不能满足现代铁路信号系统这一需求。
2.铁路通信信号传输技术应用2.1 SDH传输技术SDH传输方式是一种新的数字传输理念。
它可以实现网络管理的效率,实时监测,动态网络维护,不同厂商设备的互通功能,可以大大提高使用率的网络资源,降低管理成本和维护成本,实现灵活、可靠、高效的网络操作和维护,它是当今世界信息传输技术的发展应用热,光网络近年来已被广泛应用于广播电视领域,光传输方案在微波传输,卫星传输,电缆传输和许多其他的方法和优势,占有重要的地位,现已成为节目传输网的主要传输手段。
3.2 WDM传输技术WDM(或DWDM)是在光纤上同时传输不同波长信号的技术。
其主要过程是将各种波长的信号用光发射机发送后,复用在一根光纤上,在节点处再对耦合的信号进行解复用。
WDM(或DWDM)系统在信号的上下上既可以使用ADM、DXC,也可以使用全光的OADM和OXC,WDM(或DWDM)是基于光层上的复用,它和SDH 在电层上的复用有着很大的区别。
同时,通过OADM进行光信号的直接上下,无需经过O/E转换,而拥有EDFA的WDM f或DWDM)可以进行较长距离的光传输而不需要光中继。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁路通信基站的结构组成及信号保护
发表时间:2016-12-07T14:39:20.897Z 来源:《基层建设》2016年24期8月下作者:李瑞
[导读] 摘要:基站是铁路通信的主要组成部分,基站结构性能的发挥对通信系统的运行效率影响较大。
鉴于此,本文分析了铁路通信基站的结构组成及信号保护问题。
甘肃综合铁道工程承包有限公司甘肃省兰州市 730000
摘要:基站是铁路通信的主要组成部分,基站结构性能的发挥对通信系统的运行效率影响较大。
鉴于此,本文分析了铁路通信基站的结构组成及信号保护问题。
关键词:铁路通信;基站结构;组成;信号保护
与一般的通信基站相比,铁路通信基站具有明显的差异性,但从通信原理角度考虑两者是一样的。
这是因为随着时间的推移,我国铁路通信基站的结构在不断变化调整,除了最核心的组成部分外,铁路基站还配备了其它辅助装置。
一、铁路通信基站的核心组成
广义的基站,是基站子系统(BSS)的简称。
以GSM网络为例,包括基站收发信机(BTS)和基站控制器(BSC)。
一个基站控制器可以控制十几以至数十个基站收发信机。
而在WCDMA等系统中,类似的概念称为NodeB和RNC。
狭义的基站,即公用移动通信基站是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。
1、基站收发台。
基站收发台在基站控制器的控制下,完成基站的控制与无线信道之间的转换,实现手机通信信号的收发与移动平台之间通过空中无线传输及相关的控制功能。
收发台可对每个用户的无线信号进行解码和发送。
基站使用的天线分为发射天线和接收天线,且有全向和定向之分,一般可有下列三种配置方式:发全向、收全向方式;发全向、收定向方式;发定向、收定向方式。
从字面上我们就可以理解每种方式的不同,发全向主要负责全方位的信号发送;收全向自然就是个方位的接收信号了;定向的意思就是只朝一个固定的角度进行发送和接收。
一般情况下,频道数较少的基站(如位于郊区)常采用发全向、收全向方式,而频道数较多的基站采用发全向、收定向的方式,且基站的建立也比郊区更为密集。
2、基站控制器。
GSM系统越区时采用切换方式,即当用户到达小区边界时,手机会先与原来的基站切断联系,然后再与新的服务小区的基站建立联系,当新的服务小区繁忙时,不能提供通话信道,这时就会发生掉线现象。
因此,用户在使用手机通话时,应尽量避免在四角盲区使用,以减少通话掉线的机率。
控制器的核心是交换网络和公共处理器(CPR)。
公共处理器对控制器内部各模块进行控制管理,并通过X.25通信协议与操作维护中心(OMC)相连接。
交换网络将完成接口和接口之间的64kbit/s数据/话音业务信道的内部交换。
控制器通过接口设备数字中继器(DTC)与移动交换中心相连,通过接口设备终端控制器(TCU)与收发台相连,构成一个简单的通信网络。
在整个蜂窝移动通信系统中,基站子系统是移动台与移动中心连接的桥梁,其地位极其重要。
二、通信基站常见的危险形式
铁路通信基站在建造期间基本上是暴露在外,这种安装方式方便了基站接收或感应传输信号,可有效增强通信系统所发出的信号强度。
而正由于通信基站长时间与自然外界接触,一旦外在环境发生异常变动,基站的信号处理功能会受到损坏,从而导致基站装置及其传输信号面临着多种危险。
铁路通信基站在运行期间面临的危险包括:
1、雷击。
雷击是自然界最为常见的灾害,雷击所产生的电火花聚集了大量的电流,对地面物体的毁灭性相当大。
基站距离地面有一定的高度,其很容易遭到雷电的系统。
正常情况下,雷电袭击基站会立刻破坏信号接收或发送装置,导致所有结构线路的信号传输功能中断,铁路信号无法按时传送至接收者。
2、雨水。
长期间遭受雨水的打击容易淋湿基站的内外部构件,经过一段时间后造成线路、信号端口、天线等基本结构湿度过大,甚至有水滴渗入到装置内部。
这种情况会引起基站设备的瞬间性短路,因短路产生的电流过大而烧坏了通信结构的连接线路,若重新启动通信系统传输信号则基站无法正常运行。
3、老化。
一些偏远地区的基站很少得到通信人员的维护,这对于未来铁路工程大范围规划改造是不利的。
老化问题也是基站结构潜在的安全隐患,其涉及到线路、收发台等多个结构组成。
以基站天线为例,每一种天线的使用寿命均有明确的规定,而铁路基站的天线长度大、距离远,维护不当易导致线路老化。
三、铁路通信信号及防雷保护
通信信号是指通信设备接收所需信息的难易程度。
信号好表示容易接收,信号不好则表示接收困难。
现代通讯一般以电磁波的方式进行,发射电磁波的设备携带着接收方所需要的信息,有时候直接到达接收方,有时候这要经过许多的中转才能到达接收方。
铁路信号保护常用的防雷器如下:
1、网络信号防雷器。
适用范围:用于10/100/1000Mbps SWITCH、 HUB、ROUTER等网络设备的雷击和雷电电磁脉冲造成的感应过电压保护;网络机房网络交换机防护;网络机房服务器防护;网络机房其它带网络接口设备防护;24口集成防雷箱主要应用于综合网络柜、分交换机柜内多信号通道的集中防护。
2、视频信号防雷器。
视频防雷器适用范围:主要用于视频信号设备点对点的协击保护,可保护各种视频传输设备免受来自信号传输线的感应雷击和电涌电压带来的危害,对相同工作电压下的RF传输同样适用;集成式多口视频防雷箱主要应用于综合控制柜内硬盘录像机、视频切割器等控制设备的集中防护。
3、音频信号防雷器。
适用范围:主要适用于通过双绞线传输音频信号或数字载波信设备的雷电及过电压保护。
如:电话机、传真机、MODEM、交换机、ADSL、ISDN等。
性能特点:采用多级保护电路,通流容量大,残压水平低;核心元件采用国际知名品牌,性能优异;插损小,响应时间快;结构严谨,限制电压精确。
四、基站信号抗干扰保护的方法
防雷仅仅是通信基站结构保护的一项内容,为了让通信系统在铁路运输中发挥更大的作用,工程人员在设计改造方案时还应从其它方面制定信号保护方案。
笔者认为,除了自然环境对其造成的不利影响外,基站铁路通信信号还面临着各种干扰源的破坏。
因此,基站信号保护需围绕着“抗干扰”制定有效的策略。
基站传输信号过程常会遇到电磁干扰,其信号传播的强度、方向等均会受到明显的影响。
如:在电磁干扰作用下,通信信号的强度大
幅度减弱,甚至失去信号感应迹象。
更为严重的是电磁干扰是不可避免的,若铁路通信基站设置在电磁感应强烈的位置,则会强烈破坏信号传输的正常进行。
基站的信号保护首先要避免电磁干扰的不利影响,这首先要求设计人员在规划基站位置时要全面考察现场的地质状况,分析可能出现的干扰源,再通过设备或装置屏蔽电磁波,这样就能够为信号传输提供安全可靠的环境。
另外,谐波干扰也是信号保护常见的问题,其处理方式是对铁路通信系统里连接的电力设备进行改造处理,尽可能简化电力设备构造,避免电力系统产生谐波后对通信信号带来干扰。
五、结论
总之,铁路通信基站的核心组成是收发台及控制器,在对变电站进行改造时要考虑两种结构组成的实用性,通过优化结构组合的方法提高系统的传输效率。
针对通信信号面临的各种危险及干扰,必须要及时采取信号保护措施以防万一。
参考文献
[1]刘田奎.铁路通信基站的基本结构与使用功能[J].铁路计算机应用,2010,19(50):32-34.
[2]易子康.铁路高速客运专线信息系统总体框架研究[J].交通运输系统工程与信息,2011,28(50):43-45.
[3]候在平.谈完善通信系统是铁路工程改造的首要任务[J].北京交通大学,2011,30(6):22-24.。