新版高二数学课后练习题之独立重复试验与二项分布

合集下载

高二数学独立重复试验与二项分布2

高二数学独立重复试验与二项分布2
f66永乐国际
[单选]合同终止最正常和最主要的形式是()。A.抵销B.混同C.提存D.合同的履行 [单选,A1型题]前尿道损伤尿外渗部位是()A.膀胱周围B.会阴浅袋C.会阴深袋D.阴茎部E.阴囊部 [单选]《注册消防工程师制度暂行规定》也明确把()作为注册消防工程师必须履行的义务。A.提高技能B.保守秘密C.依法执业D.公平竞争 [单选]()不属于生产物流控制的内容。A.进度控制B.制成品管理C.在制品管理D.偏差的测定和处理 [名词解释]市场营销者 [单选,A2型题,A1/A2型题]药物A的血浆蛋白结合率(fu)为0.02,恒速滴注达稳态后的血中药物浓度为2μg/ml。这时联用药物B,当A、B药都达稳态时,药物A的fu上升到0.06,其血中药物总浓度变为0.67μg/ml,已知药物A的药理效应与血中非结合型药物浓度成比例,药物A、B之间没有药理学 [判断题]相差动高频保护的基本原理是比较被保护线路两侧的短路功率方向。A.正确B.错误 [填空题]HTTP协议使用的端口是(),FTP协议使用的端口是21。 [单选]在金属罐壁作内防腐时()再刷两遍自环氧磁漆。A、开始B、中间C、最后D、开始和最后 [单选]胎儿血液循环系统哪条血管流着纯动脉血液()A.静脉导管B.脐动脉C.下腔静脉D.主动脉E.门脉 [单选]语文老师在讲述《静夜思》的时候,通过给大家播放了一些关于月亮的图片导入课程,这属于()。A.温故知新导入B.直观导入C.趣味导入D.悬念导入 [单选]无土栽培时,水基质的一大缺点是()。A、使用方便B、pH值适中C、水质较纯净D、通气条件差,含氧量不够 [多选]在台风威胁中,以下做法正确的为()。A.自航施工船舶拆卸主机进行修理B.跟踪记录、标绘、分析台风动向C.召开防台会议,部署防台工作D.备足防台期间的粮食、肉菜以及足够的淡水、燃油E.施工船舶立即拆卸锚机进行紧急修理 [单选]

n次独立重复试验与二项分布

n次独立重复试验与二项分布

二项分布及其应用1.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做______________,用符号__________来表示,其公式为P (B |A )=__________.在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A ).(2)条件概率具有的性质: ①____________;②如果B 和C 是两互斥事件,则P (B ∪C |A )=__________________________________. 2.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称_______________________. (2)若A 与B 相互独立,则P (B |A )=________, P (AB )=P (B |A )·P (A )=____________.(3)若A 与B 相互独立,则________,________,________也都相互独立. (4)若P (AB )=P (A )P (B ),则________________. 3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有______种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,事件A 发生k 次的概率为________________________(p 为事件A 发生的概率),事件A 发生的次数是一个随机变量X ,其分布列为____________,记为____________. 1.“互斥事件”与“相互独立事件”的区别与联系(1)“互斥”与“相互独立”都是描述的两个事件间的关系.(2)“互斥”强调不可能同时发生,“相互独立”强调一个事件的发生与否对另一个事件发生的概率没有影响.(3)“互斥”的两个事件可以独立,“独立”的两个事件也可以互斥. 2.条件概率条件概率通常是指在事件A 发生的条件下,事件B 发生的概率.放在总体情况下看:先求P (A ),P (AB )再求P (B |A )=P (AB )P (A ).关键是求P (A )和P (AB ).1.已知P (AB )=320,P (A )=35,则P (B |A )=________.2.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是,且是 相互独立的,则灯泡甲亮的概率为.3.(2010·福建)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.4.在4次独立重复试验中事件A 出现的概率相同,若事件A 至少发生一次的概率为6581,则事件A 在1次试验中出现的概率为________.5.(2011·广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A.12 B.35 C.23 D.34题型一 条件概率例1 抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”.(1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少? 题型二 相互独立事件的概率例2 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116.(1)求乙投球的命中率p ;(2)求甲投球2次,至少命中1次的概率;(3)若甲、乙两人各投球2次,求共命中2次的概率.设甲、乙两射手独立地射击同一目标,他们击中目标的概率分别为0.8、0.9,求:(1)两人都击中目标的概率;(2)两人中恰有1人击中目标的概率; (3)在一次射击中,目标被击中的概率; (4)两人中,至多有1人击中目标的概率. 题型三 独立重复试验与二项分布例3 某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外一次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总分数,求ξ的分布列.探究提高 (1)独立重复试验是在同样的条件下重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的. (2)二项分布满足的条件①每次试验中,事件发生的概率是相同的. ②各次试验中的事件是相互独立的.③每次试验只有两种结果:事件要么发生,要么不发生. ④随机变量是这n 次独立重复试验中事件发生的次数.为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12、13、16,现在3名工人独立地从中任选一个项目参与建设.(1)求他们选择的项目所属类别互不相同的概率;(2)(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列.方法与技巧1.古典概型中,A 发生的条件下B 发生的条件概率公式为P (B |A )=P (AB )P (A )=n (AB )n (A ),其中,在实际应用中P (B |A )=n (AB )n (A )是一种重要的求条件概率的方法. 2.运用公式P (AB )=P (A )P (B )时一定要注意公式成立的条件,只有当事件A 、B 相互独立时,公式才成立. 3.在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k(1-p )n -k,k =0,1,2,…,n ,其中p是一次试验中该事件发生的概率.实际上,C k n p k(1-p )n -k正好是二项式[(1-p )+p ]n的展开式中的第k +1项.失误与防范1.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意恰好与至多(少)的关系,灵活运用对立事件. 2.二项分布要注意确定成功概率.专项基础训练题组 一、选择题1.设随机变量X ~B ⎝⎛⎭⎫6,12,则P (X =3)等于( )A.516B.316C.58D.382.(2010·辽宁)两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰好有一个一等品的概率为 ( )A.12B.512C.14D.163.(2011·湖北)如图,用K 、A1、A2三类不同的元件连接成一个系统.当K 正常工作且 A1、A2至少有一个正常工作时,系统正常 工作.已知K 、A1、A2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为 ( ) A .0.960 B .0.864 C .0.720D .0.576二、填空题4.(2011·湖南)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子 随机地扔到该圆内,用A 表示事件“豆子 落在正方形EFGH 内”,B 表示事件 “豆子落在扇形OHE(阴影部分)内”, 则(1)P(A)=;(2)P(B|A)=.5.在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再次取到不合格品的概率为________.6.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 三、解答题7.(2011·大纲全国)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.8.(2010·江苏)某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各件产品相互独立. (1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列; (2)求生产4件甲产品所获得的利润不少于10万元的概率. B 组 专项能力提升题组 一、选择题1.一个电路如图所示,A 、B 、C 、D 、E 、F 为 6个开关,其闭合的概率都是,且是相互独立的,则灯亮的概率是 ( ) A.164 B.5564 C.18 D.1162.(2010·江西)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2.则( )A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能3.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( ) A.16625B.96625C.624625D.4625二、填空题4.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在1次试验中发生的概率p 的取值范围是________.5.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将 3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知 小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为.6.(2010·安徽)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关. 三、解答题7.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.8.投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审. (1)求投到该杂志的1篇稿件被录用的概率;(2)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.。

人教A版数学高二选修2-3课后提升训练独立重复试验与二项分布

人教A版数学高二选修2-3课后提升训练独立重复试验与二项分布

课后提升训练十四独立重复试验与二项分布(45分钟70分)一、选择题(每小题5分,共40分)1.若X~B(5,0.1),则P(X≤2)等于( )A.0.665B.0.00856C.0.91854D.0.99144【解析】选D.P(X≤2)=P(X=0)+P(X=1)+P(X=2)=·0.10×(0.9)5+·0.1×(0.9)4+·(0.1)2×(0.9)3=0.99144 2.(2017·长沙高二检测)任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( )A. B. C. D.【解析】选B.抛一枚硬币,正面朝上的概率为,则抛三枚硬币,恰有2枚朝上的概率为p=×=.3.(2017·太原检测)某电子管正品率为,次品率为,现对该批电子管进行测试,设第ξ次首次测到正品,则P(ξ=3)= ( )A.×B.×C.×D.×【解析】选C.ξ=3说明第3次测到正品,前两次测到次品,故P(ξ=3)=××=×.4.在一次反恐演习中,三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别是0.9,0.9,0.8,若至少有两枚导弹击中目标方可将其摧毁,则目标被摧毁的概率是( )A.0.998B.0.046C.0.936D.0.954【解析】选 D.方法一:(直接求解)P=0.9×0.9×0.2+0.9×0.1×0.8+0.1×0.9×0.8+0.9×0.9×0.8=0.954.方法二:(排除法)P=1-(0.9×0.1×0.2+0.1×0.9×0.2+0.1×0.1×0.8+0.1×0.1×0.2)=0.954.5.(2017·福州高二检测)甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3∶2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )A.×B.×C.×D.×【解析】选A.由题可知一局中甲赢的概率为,在5局3胜中打完四局甲获胜可知甲在前3局中胜2局且在第4局甲获胜.所以P=××=×.【补偿训练】一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于( )A. B.C. D.【解析】选B.当X=12时,表示前11次中取到9次红球,第12次取到红球,所以P(X=12)=··.6.箱中装有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( )A. B. C. D.【解题指南】当摸的两个球中有标号为4的球时,此时两球的号码之积是4的倍数,有5种情况;当摸的两个球中标号均不是4的球时,此时要使两球的号码之积是4的倍数,只有1种情况.【解析】选 B.依题意得某人能够获奖的概率为=,因此所求概率等于··=.7.(2017·济南高二检测)口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{a n},a n=如果S n为数列{a n}的前n项和,那么S7=3的概率为( )A.×()2×()5B.×()2×()5C.×()2×()5D.×()2×()5【解析】选B由S7=3知,在7次摸球中有2次摸取红球,5次摸取白球,而每次摸取红球的概率为,摸取白球的概率为,则S7=3的概率为××.8.(2017·长春高二检测)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p1和p2,则( ) A.p1=p2 B.p1<p2C.p1>p2D.以上三种情况都有可能【解析】选B.p1=1-=1-=1-,p2=1-=1-,则p1<p2.二、填空题(每小题5分,共10分)9.(2017·西安高二检测)设随机变量X的分布列为P(X=k)=,k=1,2,3,c为常数,则P(0.5<X<2.5)=__________.【解析】1=c(++)⇒c=,P(0.5<X<2.5)=P(X=1)+P(X=2)=(1+)=.答案:10.在等差数列{a n}中,a4=2,a7=-4,现从数列{a n}的前10项中随机取数,每次取出一个数,取后放回,连续抽取三次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为__________.【解析】由a4=2,a7=-4可得等差数列{a n}的通项公式为a n=10-2n(n=1,2,…,10).由题意,三次取数相当于三次独立重复试验.在每次试验中取得正数的概率为,取得负数的概率为,在三次取数中,取出的数恰好为两个正数和一个负数的概率为()2()1=.答案:【补偿训练】一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).【解析】·0.93·0.1+(0.9)4=0.9477.答案:0.9477三、解答题(每小题10分,共20分)11.在每道单项选择题给出的4个备选答案中,只有一个是正确的.若对4道选择题中的每一道都任意选定一个答案,求这4道题中:(1)恰有两道题答对的概率.(2)至少答对一道题的概率.【解析】视“选择每道题的答案”为一次试验,则这是4次独立重复试验,且每次试验中“选择正确”这一事件发生的概率为.由独立重复试验的概率计算公式得,(1)恰有两道题答对的概率为P4(2)==.(2)至少有一道题答对的概率为1-P4(0)=1-=1-=.12.9粒种子分种在3个坑内,每坑放3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑内的种子都没发芽,则这个坑需要补种,假定每个坑至多补种一次,求需要补种坑数的分布列.【解析】因为单个坑内的3位种子都不发芽的概率为(1-0.5)3=,所以单个坑不需补种的概率为1-=.3个坑都不需补种的概率为×()0×()3=;恰有1个坑需要补种的概率为×()1×()2=;恰有2个坑需要补种的概率为×()2×()1=;3个坑都需要补种的概率为×()3×()0=.所以需要补种坑数的分布列为X 0 1 2 3P【能力挑战题】实力相当的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率;(2)求按比赛规则甲获胜的概率.【解析】(1)甲、乙两队实力相当,所以每局比赛甲获胜的概率为,乙获胜的概率为.记事件A=“甲打完3局才能取胜”,记事件B=“甲打完4局才能取胜”,记事件C=“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜,所以甲打完3局取胜的概率为P(A)=×()3=.②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负,所以甲打完4局才能取胜的概率为P(B)=×()2××=.③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负,所以甲打完5局才能取胜的概率为P(C)=×()2×()2×=.(2)事件D=“按比赛规则甲获胜”,则D=A∪B∪C.因为事件A,B,C彼此互斥,所以P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=++=.故按比赛规则甲获胜的概率为.。

人教B版高中数学高二选修2-3练习 独立重复试验与二项分布

人教B版高中数学高二选修2-3练习  独立重复试验与二项分布

2.2.3 独立重复试验与二项分布一、基础过关1.已知随机变量ξ~B ⎝⎛⎭⎫6,13,则P (ξ=2)等于( )A.316B.4243C.13243D.80243 2.种植某种树苗,成活率为0.9.若种植这种树苗5棵,则恰好成活4棵的概率约为( ) A .0.33B .0.66C .0.5D .0.453.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位于点(2,3)的概率是( )A.⎝⎛⎭⎫125B .C 25×⎝⎛⎭⎫12 5C .C 35×⎝⎛⎭⎫123D .C 25×C 35×⎝⎛⎭⎫125 4.某种型号的印刷机在一小时内不需要工人照看的概率为0.8,某书业公司新进了四台这种型号的印刷机,且同时各自独立工作,则在一小时内至多有2台需要工人照看的概率为( )A .0.153 6B .0.180 8C .0.563 2D .0.972 8 5.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.4]C .(0,0.6]D .[0.6,1)二、能力提升6.某人参加一次考试,4道题中答对3道则为及格,已知他的解题正确率为0.4,则他能及格的概率约为( )A .0.18B .0.28C .0.37D .0.487.口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{a n },a n =⎩⎪⎨⎪⎧-1,第n 次摸取红球1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57×⎝⎛⎭⎫132×⎝⎛⎭⎫235B .C 27×⎝⎛⎭⎫232×⎝⎛⎭⎫135 C .C 57×⎝⎛⎭⎫132×⎝⎛⎭⎫135D .C 27×⎝⎛⎭⎫132×⎝⎛⎭⎫232 8.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为________.9.某射手射击1次,击中目标的概率为0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第三次击中目标的概率为0.9;②他恰好击中目标3次的概率为0.93×0.1;③他至少击中目标1次的概率为1-0.14.其中正确结论的序号为________.(写出所有正确结论的序号)10.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23,求:(1)甲恰好击中目标2次的概率; (2)乙至少击中目标2次的概率; (3)乙恰好比甲多击中目标2次的概率.11.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名学生选做同一道题的概率;(2)设这4名考生中选做第15题的学生数为ξ个,求ξ的分布列. 三、探究与拓展12.甲、乙两人各射击一次,击中目标的概率分别是23和34.假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响. (1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则中止其射击.问:甲恰好射击5次后,被中止射击的概率是多少?答案1.D 2.A 3.B 4.D 5.A 6.A 7.B 8.139.①③ 10.解 记甲射击3次击中目标的次数为X ,则X ~B (3,12),乙射击3次击中目标的次数为Y ,则Y ~B (3,23),所以(1)甲恰好击中目标2次的概率为P 1=C 23⎝⎛⎭⎫122×12=38.(2)乙至少击中目标2次的概率为P 2=C 23⎝⎛⎭⎫232×13+C 33⎝⎛⎭⎫233=2027.(3)设乙恰好比甲多击中目标2次为事件A ,乙恰好击中目标2次且甲恰好击中目标0次为事件B 1,乙恰好击中目标3次且甲恰好击中目标1次为事件B 2,则A =B 1∪B 2,且B 1,B 2为互斥事件. P (A )=P (B 1)+P (B 2) =C 23⎝⎛⎭⎫232·13·C 03⎝⎛⎭⎫123+ C 33⎝⎛⎭⎫233·C 13⎝⎛⎭⎫123 =118+19=16. 所以乙恰好比甲多击中目标2次的概率为16.11.解 (1)设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名学生选做同一道题的事件为“AB +A B ”,且事件A 、B 相互独立. ∴P (AB +A B )=P (A )P (B )+P (A )P (B ) =12×12+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-12 =12. (2)随机变量ξ的可能取值为0,1,2,3,4,且ξ~B ⎝⎛⎭⎫4,12. ∴P (ξ=k )=C k 4⎝⎛⎭⎫12k ⎝⎛⎭⎫1-124-k =C k 4⎝⎛⎭⎫124 (k =0,1,2,3,4). 所以变量ξ12.解 设A ={甲射击一次击中目标},B ={乙射击一次击中目标},则A 、B 相互独立,且P (A )=23,P (B )=34.(1)设C ={甲射击4次,至少有1次未击中目标}则P (C )=1-⎝⎛⎭⎫234=6581.(2)设D ={两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次},∴P (D )=C 24·⎝⎛⎭⎫232·⎝⎛⎭⎫132·C 34·⎝⎛⎭⎫343·14=18. (3)甲恰好射击5次,被中止射击,说明甲第4、5次未击中目标,第3次击中目标,第1、2两次至多一次未击中目标,故所求概率P =⎣⎡⎦⎤1-⎝⎛⎭⎫132·23·⎝⎛⎭⎫132=16243.。

高二数学 独立重复试验与二项分布练习题(2)

高二数学 独立重复试验与二项分布练习题(2)

高二数学 独立重复试验与二项分布练习题(2)1.已知随机变量ξ服从二项分布,ξ~B(6,1/3),则P(ξ=2)等于( )A.3/16;B.4/243;C.13/243;D.80/2432.设某批电子手表正品率为3/4,次品率为1/4,现对该批电子手表进行测试,设第ξ次首次测到正品,则P(ξ=3)等于( ) A.)43()41(223⨯C ;B. )41()43(223⨯C ;C. )43()41(2⨯;D. )41()43(2⨯3.10个球中有一个红球,有放回的抽取,每次取出一球,直到第n 次才取得()k k n ≤次红球的概率为( ) A .2191010n k -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭B .191010k n k -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .11191010k n k k n C ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ D .111191010k n kk n C ----⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭4.某厂生产电子元件,其产品的次品率为5%,现从一批产品中的任意连续取出2件,求次品数ξ的概率分布5.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).6.A 、B 两个试验方案在某科学试验中成功的概率相同,已知A 、B 两个方案至少一个成功的概率为0.36,(1)求两个方案均获成功的概率;(2)设试验成功的方案的个数为随机变量ξ,求ξ的分布列。

7.设ξ的分布列为p(ξ=k)=,(k=0,1,2,……,10),求:(1)a ;(2)p(ξ≤2);(3)p(9<ξ<20)。

8.一批零件中有九个合格品,三个次品,安装机器时,从这批零件中随机抽取,取出的是废品则不放回,求在第一次取到合格品之前取到废品数ξ的分布列。

9.一人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.10.出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的分布列。

最新高中数学二项分布及其应用知识点+练习

最新高中数学二项分布及其应用知识点+练习

高中数学二项分布及其应用知识点+练习二项分布及其应用要求层次重难点条件概率A 了解条件概率和两个事件相互独立的概念,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.事件的独立性A n 次独立重复试验与二项分布B(一) 知识内容条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =).(二)典例分析:【例1】 在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率是( )A .35B .23C .59D .13【例2】 某地区气象台统计,该地区下雨的概率是415,刮风的概率是215,既刮风又下雨的概率是条件概率事件的独立性独立重复实验二项分布高考要求例题精讲知识框架二项分布及其应用板块一:条件概率1,10设A=“刮风”,B=“下雨”,求()(),.P B A P A B【例3】设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20岁的这种动物能活到25岁以上的概率.【例4】把一枚硬币抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现反面”,则()_____P B A=.【例5】抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率为.【例6】设某批产品有4%是废品,而合格品中的75%是一等品,任取一件产品是一等品的概率是_____.【例7】掷两枚均匀的骰子,记A=“点数不同”,B=“至少有一个是6点”,求(|)P B A.P A B与(|)【例8】甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率?【例9】从1~100个整数中,任取一数,已知取出的—数是不大于50的数,求它是2或3的倍数的概率.【例10】袋中装有21n-个白球,2n个黑球,一次取出n个球,发现都是同一种颜色的,问这种颜色是黑色的概率是多少?【例11】 一袋中装有10个球,其中3个黑球,7个白球,先后两次从袋中各取一球(不放回)⑴已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;⑵已知第二次取出的是黑球,求第一次取出的也是黑球的概率; ⑶已知第一次取出的是黑球,求第二次取出的是白球的概率.【例12】 有两箱同类零件,第一箱内装50件,其中10件是一等品;第二箱内装30件,其中18件是一等品.现从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:⑴先取出的零件是一等品的概率;⑵在先取出的零件是一等品的条件下后取出的仍然是一等品的概率.(保留三位有效数字)【例13】 设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份,⑴求先抽到的一份是女生表的概率p .⑵己知后抽到的一份是男生表,求先抽到的是女生的概率q .(一) 知识内容事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.(二)典例分析:板块二:事件的独立性cba【例14】 判断下列各对事件是否是相互独立事件⑴容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.⑵一筐内有6个苹果和3个梨,“从中任意取出1个,取出的是苹果”与“把取出的苹果放回筐子,再从筐子中任意取出1个,取出的是梨”.⑶甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”.【例15】 从甲口袋摸出一个红球的概率是13,从乙口袋中摸出一个红球的概率是12,则23是( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有一个红球的概率D .2个球中恰好有1个红球的概率【例16】 猎人在距离100m 处射击一只野兔,其命中率为12.如果第一次射击未命中,则猎人进行第二次射击,但距离为150m ;如果第二次又未命中,则猎人进行第三次射击,但在射击瞬间距离野兔为200m .已知猎人命中率与距离的平方成反比,求猎人命中野兔的概率.【例17】 如图,开关电路中,某段时间内,开关a b c 、、开或关的概率均为12,且是相互独立的,求这段时间内灯亮的概率.【例18】 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29. 分别求甲、乙、丙三台机床各自加工的零件是一等品的概率.【例19】 椐统计,某食品企业一个月内被消费者投诉的次数为012,,的概率分别为0.4,0.5,0.1 ⑴ 求该企业在一个月内被消费者投诉不超过1次的概率;⑵假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.【例20】某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45、35、25、15,且各轮问题能否正确回答互不影响.⑴求该选手进入第四轮才被淘汰的概率;⑵求该选手至多进入第三轮考核的概率.【例21】甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.⑴求再赛2局结束这次比赛的概率;⑵求甲获得这次比赛胜利的概率.【例22】纺织厂某车间内有三台机器,这三台机器在一天内不需工人维护的概率:第一台为0.9,第二台为0.8,第三台为0.85,问一天内:⑴3台机器都要维护的概率是多少?⑵其中恰有一台要维护的概率是多少?⑶至少一台需要维护的概率是多少?【例23】为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12,13,16.现有3名工人独立地从中任选一个项目参与建设.求:⑴他们选择的项目所属类别互不相同的概率;⑵至少有1人选择的项目属于民生工程的概率.【例24】甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:⑴两个人都译出密码的概率;⑵两个人都译不出密码的概率;⑶恰有1个人译出密码的概率;⑷至多1个人译出密码的概率;⑸至少1个人译出密码的概率.【例25】从10位同学(其中6女,4男)中,随机选出3位参加测验,每位女同学能通过测验的概率均为45,每位男同学能通过测验的概率均为35,试求:⑴选出的3位同学中至少有一位男同学的概率;⑵10位同学中的女同学甲和乙及男同学丙同时被抽到,且三人中恰有二人通过测验的概率.【例26】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p,且乙投球2次均未命中的概率为116.⑴求乙投球的命中率p;⑵求甲投球2次,至少命中1次的概率;⑶若甲、乙两人各投球2次,求两人共命中2次的概率.【例27】一汽车沿一街道行驶,需要通过三个设有红绿灯的路口,每个信号灯彼此独立工作,且红绿灯信号显示时间相等.以X表示该汽车首次遇到红灯时已通过的路口个数,求X的分布列以及该汽车首次遇到红灯时至少通过两个路口的概率.【例28】甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:⑴2人都射中的概率?⑵2人中有1人射中的概率?⑶2人至少有1人射中的概率?⑷2人至多有1人射中的概率?【例29】(07福建)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:⑴甲试跳三次,第三次才成功的概率;⑵甲、乙两人在第一次试跳中至少有一人成功的概率;⑶甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.【例30】A、B两篮球队进行比赛,规定若一队胜4场则此队获胜且比赛结束(七局四胜制),A、B两队在每场比赛中获胜的概率均为12,X为比赛需要的场数,求X的分布列及比赛至少要进行6场的概率.【例31】已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲、乙分别所需化验次数的分布列以及方案甲所需化验次数不少于方案乙所需化验次数的概率.【例32】 为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P )和所需费预防措施 甲 乙 丙 丁P0.9 0.8 0.7 0.6 费用(万元)90 60 30 10 120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.【例33】 某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是a b c ,,,且三门课程考试是否及格相互之间没有影响.⑴ 分别求该应聘者用方案一和方案二时考试通过的概率;⑵ 试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)(一) 知识内容板块三:独立重复试验与二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)kk n k n nP k p p -=-(0,1,2,,)k n =.2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =. 于是得到由于表中的第二行恰好是二项展开式0()C C C C n n n n n n q p p q p q p q p q +=++++各对应项的值,所以称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记作~(,)X B n p .(二)典例分析:【例1】 某人参加一次考试,4道题中解对3道则为及格,已知他的解题正确率为0.4,则他能及格的概率为_________(保留到小数点后两位小数)【例2】 某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值表示)【例3】 接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 .(精确到0.01)【例4】 甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A .827B .6481C .49D .89【例5】 一台X 型号的自动机床在一小时内不需要人照看的概为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是( )A .0.1536B .0.1808C .0.5632D .0.9728【例6】 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.⑴求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.【例7】某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为15,若中奖,则家具城返还顾客现金200元.某顾客消费了3400元,得到3张奖券.⑴求家具城恰好返还该顾客现金200元的概率;⑵求家具城至少返还该顾客现金200元的概率.【例8】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中:⑴至少有1株成活的概率;⑵两种大树各成活1株的概率.【例9】一个口袋中装有n个红球(5n≥且*n∈N)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用n表示一次摸奖中奖的概率p;⑵若5n=,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.当n取多少时,P最大?【例10】已知随机变量ξ服从二项分布,1~(4)3Bξ,,则(2)Pξ=等于____【例11】已知随机变量ξ服从二项分布,1~(6)3Bξ,,则(2)Pξ=等于()A.316 B.4243C.13243D.80243【例12】从一批由9件正品、3件次品组成的产品中,有放回地抽取5次,每次抽一件,求恰好抽到两次次品的概率(结果保留2位有效数字).【例13】袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率为p.⑴从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.①求恰好摸5次停止的概率;②记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布.⑵若A B,两个袋子中的球数之比为1:2,将A B,中的球装在一起后,从中摸出一个红球的概率是25,求p的值.【例14】设在4次独立重复试验中,事件A发生的概率相同,若已知事件A至少发生一次的概率等于6581,求事件A在一次试验中发生的概率.【例15】我舰用鱼雷打击来犯的敌舰,至少有2枚鱼雷击中敌舰时,敌舰才被击沉.如果每枚鱼雷的命中率都是0.6,当我舰上的8个鱼雷发射器同是向敌舰各发射l枚鱼雷后,求敌舰被击沉的概率(结果保留2位有效数字).【例16】某厂生产电子元件,其产品的次品率为5%,现从一批产品中的任意连续取出2件,求次品数ξ的概率分布列及至少有一件次品的概率.【例17】某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是12.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.求:⑴该公司的资助总额为零的概率;⑵该公司的资助总额超过15万元的概率.【例18】射击运动员李强射击一次击中目标的概率是0.8,他射击3次,恰好2次击中目标的概率是多少?【例19】设飞机A有两个发动机,飞机B有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p是t的函数1tp eλ-=-,其中t为发动机启动后所经历的时间,λ为正的常数,试讨论飞机A与飞机B哪一个安全?(这里不考虑其它故障).【例20】假设飞机的每一台发动机在飞行中的故障率都是1P-,且各发动机互不影响.如果至少50%的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的P而言,四发动机飞机比二发动机飞机更安全?【例21】一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.⑴设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列;⑵设η为这名学生在首次停车前经过的路口数,求η的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.【例22】一个质地不均匀的硬币抛掷5次,正面向上恰为1次的可能性不为0,而且与正面向上恰为2次的概率相同.令既约分数ij为硬币在5次抛掷中有3次正面向上的概率,求i j+.【例23】某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)⑴5次预报中恰有2次准确的概率;⑵5次预报中至少有2次准确的概率;⑶5次预报中恰有2次准确,且其中第3次预报准确的概率;【例24】某大厦的一部电梯从底层出发后只能在第181920,,层可以停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,求至少有两位乘客在20层下的概率.【例25】10个球中有一个红球,有放回的抽取,每次取一球,求直到第n次才取得()k k n≤次红球的概率.【例26】某车间为保证设备正常工作,要配备适量的维修工.设各台设备发生的故障是相互独立的,且每台设备发生故障的概率都是0.01.试求:⑴若由一个人负责维修20台,求设备发生故障而不能及时维修的概率;⑵若由3个人共同负责维修80台设备,求设备发生故障而不能及时维修的概率,并进行比较说明哪种效率高.【例27】A B,是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为23,服用B有效的概率为12.观察3个试验组,求至少有1个甲类组的概率.(结果保留四位有效数字)【例28】已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮3次甲胜乙的概率.(保留两位有效数字)【变式】若甲、乙投篮的命中率都是0.5p=,求投篮n次甲胜乙的概率.(1n n∈N,≥)【例29】省工商局于某年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x饮料的合格率为80%,现有甲,乙,丙3人聚会,选用6瓶x饮料,并限定每人喝2瓶,求:⑴甲喝2瓶合格的x饮料的概率;⑵甲,乙,丙3人中只有1人喝2瓶不合格的x饮料的概率(精确到0.01).【例30】在一次考试中出了六道是非题,正确的记“√”号,不正确的记“×”号.若某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于4道的概率;⑶至少答对2道题的概率.【例31】 某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6.现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出3人;⑵双方各出5人;⑶双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利. 问:对系队来说,哪一种方案最有利?(一) 知识内容二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.(二)典例分析:【例32】 一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取4次,则取到新球的个数的期望值是______.【例33】 同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C .30D .40【例34】 已知~()X B n p ,,()8E X =,() 1.6D X =,则n 与p 的值分别为( ) A .10和0.8 B .20和0.4 C .10和0.2 D .100和0.8【例35】 某服务部门有n 个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p ,则该部门一天中平均需要服务的对象个数是( )A .(1)np p -B .npC .nD .(1)p p -【例36】 已知随机变量X 服从参数为60.4,的二项分布,则它的期望()E X =_______,方差()D X =_____.【例37】 已知随机变量X 服从二项分布,且() 2.4E ξ=,() 1.44D ξ=,则二项分布的参数n ,p 的值板块四:二项分布的期望与分别为__________、_________.【例38】一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是_________.(用数字作答)【例39】已知(100.8)X B,,求()E X与()D X.【例40】同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是()A.20 B.25 C.30 D.40【例41】甲、乙、丙3人投篮,投进的概率分别是121 352,,.⑴现3人各投篮1次,求3人都没有投进的概率;⑵用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望.【例42】抛掷两个骰子,当至少有一个2点或3点出现时,就说这次试验成功.⑴求一次试验中成功的概率;⑵求在4次试验中成功次数X的分布列及X的数学期望与方差.【例43】某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?【例44】某批数量较大的商品的次品率是5%,从中任意地连续取出10件,X为所含次品的个数,求()E X.【例45】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人%的选择相互之间没有影响.⑴任选1名下岗人员,求该人参加过培训的概率;⑵任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布和期望.【例46】设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布及期望.【例47】某班级有n人,设一年365天中,恰有班上的m(m n≤)个人过生日的天数为X,求X的期望值以及至少有两人过生日的天数的期望值.【例48】购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为410-.10.999⑴求一投保人在一年度内出险的概率p;⑵设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【例49】某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01).⑴恰好有两家煤矿必须整改的概率;⑵平均有多少家煤矿必须整改;⑶至少关闭一家煤矿的概率.。

人教版数学高二作业独立重复试验与二项分布

人教版数学高二作业独立重复试验与二项分布

2.2.3 独立重复试验与二项分布1.某学生通过英语听力测试的概率为13,他连续测试3次,那么其中恰有1次获得通过的概率是( )A .49B .29C .427D .2272.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )A .0B .1C .2D .33.设随机变量ξ服从二项分布ξ~B (6,12),则P (ξ≤3)等于( )A .13B .23C .14D .254.一射手对同一目标独立地射击四次,已知至少命中一次的概率为8081,则此射手每次射击命中的概率为( )A .1132B .732C .2132D .7645.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位于点(2,3)的概率是( )A .(12)5B .C 25×(12)5 C .C 35×(12)3D .C 25×C 35×(12)5 6.某处有水龙头5个,调查表明每个水龙头被打开的可能性是110,随机变量X 表示同时被打开的水龙头的个数,则P (X =3)=________.7.设随机变量ξ~B (2,p ),η~B (4,p ),若P (ξ≥1)=59,则P (η≥1)=________.8.某射手射击1次,击中目标的概率为0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第三次击中目标的概率为0.9;②他恰好击中目标3次的概率为0.93×0.1;③他至少击中目标1次的概率为1-0.14.其中正确结论的序号为________.(写出所有正确结论的序号)9.在每道单项选择题给出的4个备选答案中,只有一个是正确的.若对4道选择题中的每一道都任意选定一个答案,求这4道题中:(1)恰有两道题答对的概率; (2)至少答对一道题的概率.10.如果袋中有6个红球,4个白球,从中任取1球,记住颜色后放回,连续抽取4次,设X 为取得红球的次数.求X 的概率分布列.11.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率.(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列.参考答案1.【解析】 记“恰有1次获得通过”为事件A ,则P (A )=C 13(13)·(1-13)2=49.【答案】 A2.【解析】 C k 5(12)k ·(12)5-k =C k +15(12)k +1·(12)5-k -1,即C k 5=C k +15,k +(k +1)=5,k =2. 【答案】 C3.【解析】 P (ξ≤3)=P (ξ=0)+P (ξ=1)+P (ξ=2)+P (ξ=3)=C 06×(12)6+C 16·(12)6+C 26·(12)6+C 36·(12)6 =2132. 【答案】 C4.【解析】 设此射手射击四次命中次数为ξ,∴ξ~B (4,p ),依题意可知,P (ξ≥1)=8081,∴1-P (ξ=0)=1-C 04(1-p )4=8081, ∴(1-p )4=181,p =23.【答案】 B 5.【解析】 如图,由题可知,质点P 必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次独立重复试验向右恰好发生2次的概率.所以概率为P =C 25×(12)2×(12)3=C 25(12)5. 故选B. 【答案】 B 6.【解析】P (X =3)=C 35×(110)3(1-110)2=92104. 【答案】 921047.【解析】 P (ξ≥1)=1-P (ξ=0)=1-(1-p )2=59.即(1-p )2=49,解得p =13,故P (η≥1)=1-P (η=0)=1-(1-p )4 =1-(23)4=6581.【答案】65818.【解析】 在n 次试验中,事件每次发生的概率都相等,故①正确;②中恰好击中3次需要看哪3次击中,所以不正确;利用对立事件,③正确. 【答案】 ①③9.解 视“选择每道题的答案”为一次试验,则这是4次独立重复的试验,且每次试验中“选择正确”这一事件发生的概率为14.由独立重复试验的概率计算公式得, (1)恰有两道题答对的概率为 P 4(2)=C 24(14)2(34)2=27128. (2)法一:至少有一道题答对的概率为1-P 4(0)=1-C 04(14)0(34)4=1-81256=175256.法二:至少有一道题答对的概率为C 14(14)(34)3+C 24(14)2(34)2+C 34(14)3(34)+C 44(14)4(34)0=108256+54256+12256+1256=175256. 10.解 采用有放回的取球,每次取得红球的概率都相等,均为35,取得红球次数X 可能取的值为0,1,2,3,4.由以上分析,知随机变量X 服从二项分布, P (X =k )=C k 4(35)k ·(1-35)4-k (k =0,1,2,3,4). 随机变量X 的分布列为11.解 (1)记“1A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立, 故P (A 1)=⎝⎛⎭⎫233=827, P (A 2)=C 23⎝⎛⎭⎫232⎝⎛⎭⎫1-23×23=827,P (A 3)=C 24⎝⎛⎭⎫232⎝⎛⎭⎫1-232×12=427.所以甲队以3∶0胜利,以3∶1胜利的概率都为827,以3∶2胜利的概率为427.(2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立, 所以P (A 4)=C 24⎝⎛⎭⎫1-232⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427.由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627.又P (X =1)=P (A 3)=427,P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327,故X 的分布列为。

人教新课标版数学高二-选修2-3练习 独立重复试验与二项分布

人教新课标版数学高二-选修2-3练习 独立重复试验与二项分布

第二章 2.2 2.2.3一、选择题(每小题5分,共20分)1.任意抛掷三枚硬币,恰有2枚正面朝上的概率为( ) A.34 B.38 C.13D.14解析: 每枚硬币正面朝上的概率为12,故所求概率为C 23×⎝⎛⎭⎫122×12=38.故选B. 答案: B2.(2014·浙江省苍南中学第二学期高二期末考试)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( )A .C 1012⎝⎛⎭⎫3810⎝⎛⎭⎫582 B .C 911⎝⎛⎭⎫3810⎝⎛⎭⎫582 C .C 911⎝⎛⎭⎫589⎝⎛⎭⎫382D .C 911⎝⎛⎭⎫389⎝⎛⎭⎫582解析: 当ξ=12时,表示前11次中取到9次红球,第12次取到红球, 所以P (ξ=12)=C 911·⎝⎛⎭⎫389·⎝⎛⎭⎫582·38.故选B. 答案: B3.某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为( ) A.81125 B.54125 C.36125D.27125解析: 至少有2次击中目标包含以下情况:只有2次击中目标,此时概率为C 23×0.62×(1-0.6)=54125; 3次都击中目标,此时的概率为C 33×0.63=27125.∴至少有2次击中目标的概率为54125+27125=81125.答案: A4.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动5次后位于点(2,3)的概率为( )A.⎝⎛⎭⎫125B .C 25⎝⎛⎭⎫125 C .C 35⎝⎛⎭⎫123 D .C 25C 35⎝⎛⎭⎫125 解析: 质点每次只能向上或向右移动,且概率均为12,所以移动5次可看成做了5次独立重复试验.质点P 移动5次后位于点(2,3)的概率为C 25⎝⎛⎭⎫122⎝⎛⎭⎫123=C 25⎝⎛⎭⎫125. 答案: B二、填空题(每小题5分,共10分)5.(2014·武威高二检测)一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).解析: “4个病人服用某种新药”相当于做4次独立重复试验,“至少3人被治愈”即“3人被治愈”,“4人被治愈”两个互斥事件有一个要发生,由独立重复试验和概率的加法公式即可得,4个病人服用某种新药3人被治愈的概率为C 34·0.93·(1-0.9)=0.291 6,4个病人服用某种新药4人被治愈的概率为C 44·0.94=0.656 1. 故服用这种新药的4个病人中至少3人被治愈的概率为0.291 6+0.656 1=0.947 7. 答案: 0.947 76.下列说法正确的是________.①某同学投篮命中率为0.6,他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6); ②某福彩的中奖概率为P ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,P ); ③从装有5红5白的袋中,有放回的摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B ⎝⎛⎭⎫n ,12. 解析: ①②显然满足独立重复试验的条件,而③虽然是有放回的摸球,但随机变量X 的定义是直到摸出白球为止,也就是说前面摸出的一定是红球,最后一次是白球,不符合二项分布的定义.答案: ①②三、解答题(每小题10分,共20分)7.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率.解析: 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝⎛⎭⎫13i ⎝⎛⎭⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率为 P (A 2)=C 24⎝⎛⎭⎫132⎝⎛⎭⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝⎛⎭⎫133×23+C 44⎝⎛⎭⎫134=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.8.某一中学生心理咨询中心的服务电话接通率为34,某班3名同学商定明天分别就同一问题通过电话询问该咨询中心,且每人只拨打一次.(1)求他们三人中恰有1人成功咨询的概率; (2)求他们三人中成功咨询的人数ξ的分布列.解析: 每位同学拨打一次电话可看作一次试验,三位同学每人拨打一次可看作3次独立重复试验,接通咨询中心的服务电话可视为咨询成功.故每位同学成功咨询的概率都是34.(1)三人中恰有1人成功咨询的概率为: P =C 13×34×⎝⎛⎭⎫1-342=964. (2)由题意知,成功咨询的人数ξ是一随机变量,且ξ~B ⎝⎛⎭⎫3,34. 则P (ξ=k )=C k 3⎝⎛⎭⎫34k ⎝⎛⎭⎫143-k ,k =0,1,2,3. 因此ξ的分布列为:(10分)“三个臭皮匠,顶个诸葛亮”是在中国民间流传很广的一句谚语.我们也可以从概率的角度来分析一下它的正确性.刘备帐下以诸葛亮为首的智囊团共有9名谋士(不包括诸葛亮).假定对某事进行决策时,根据经验每名谋士对事情作出正确判断的概率为0.7,诸葛亮对事情作出正确判断的概率为0.9.现为某事可行与否而单独征求每名谋士的意见,并按多数人的意见作出决策,求作出正确决策的概率,并判断一下这句谚语是否有道理.解析:根据题意,设9名谋士中对事情作出正确判断的人数为X,由于是单独征求意见,相互之间没有影响,故X~B(9,0.7),按照多数人的判断作出正确决策就是事件{X|X≥5}.这个概率是P(X≥5)=C590.75(1-0.7)4+C690.76(1-0.7)3+C790.77(1-0.7)2+C890.78(1-0.7)1+C990.79(1-0.7)0≈0.901 2,0.901 2>0.9,所以,“三个臭皮匠,顶个诸葛亮”这种说法是有一定道理的.。

独立重复试验与二项分布习题课

独立重复试验与二项分布习题课

实际应用
例2
学校游园活动有这样一个项目:甲箱子里装3个白球 2个黑球,乙箱子里装2个白球2个黑球,从这两个箱 子里分别摸出1个球,如果它们都是白球则获胜。 有人认为,两个箱子里装的白球比黑球多,所以 获奖的概率大于0.5。你认为呢?
例3
某批n件产品的次品率为2%,现从中任意地依次抽出3件 进行检验。问: (1)当n=500,5000,50000时,分别以放回和不放回
的方式抽取,恰好抽到一件次品的概率各是多少? (2)根据(1),你对超几何分布与二项分布的关系有何认识?
实际应用
例4
甲、乙两选手比赛,假设每局比赛甲胜的概率为0.6, 乙胜的概率为0.4,那么采用3局2胜制还是采用5局3胜 制对甲更有利?你对局制长短的设置有何认识?
人教版选修2-3第二章
独立重复试验与二项分布
课堂练习
1.将一枚硬币连续抛掷5次,则正面向上的次数X的分布为( )
A. X~B ( 5,0.5 )
B. X~B (0.5,5 )
C. X~B ( 2,0.5 )
D. X~B ( 5,1 )
2.随机变量X~B ( 3, 0.6 ) , P ( X=1 ) =( )
3、两点分布是二项分布的特殊情况
例1:
(1)生产一种产品共需5道工序,其中1~5道工序的生产合格率 分别为96%,99%,98%,97%,96%。现从成品中任 意抽取1件,抽到合格品的概率是多少?
(2)将一枚硬币连续抛掷5次,求正面向上的次数X的分布列。
(3)若某射手每次射击击中目标的概率是0.9,每次射击的结果 相互独立,那么在他连续4次的射击中, ① 第1次未击中目标,但后3次都击中目标的概率是多少? ② 在已知第1次未击中目标的情况下,后3次都击中目标的 概率是多少?

人教新课标版数学高二-2015人教数学(B版)选修2-3练习 独立重复试验与二项分布

人教新课标版数学高二-2015人教数学(B版)选修2-3练习 独立重复试验与二项分布

第二章 2.2 第3课时一、选择题1.独立重复试验应满足的条件是( ) ①每次试验之间是相互独立的 ②每次试验只有发生与不发生两种结果 ③每次试验中发生的机会是均等的 ④每次试验发生的事件是互斥的 A .①② B .②③ C .①②③ D .①②④[答案] C2.设在一次试验中事件A 出现的概率为p ,在n 次独立重复试验中事件A 出现k 次的概率为p k ,则( )A .p 1+p 2+…+p n =1B .p 0+p 1+p 2+…+p n =1C .p 0+p 1+p 2+…+p n =0D .p 1+p 2+…+p n -1=1 [答案] B[解析] 由题意可知ξ~B (n ,p ),由分布列的性质可知∑k =0np k =1.3.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第ξ次首次测到正品,则P (ξ=3)=( )A .C 23⎝⎛⎭⎫142×34B .C 23⎝⎛⎭⎫342×14C.⎝⎛⎭⎫142×34 D .⎝⎛⎭⎫342×14[答案] C4.已知随机变量ξ~B ⎝⎛⎭⎫6,13,则P (ξ≥2)=( ) A.16143 B .471729C.473729 D .1243[答案] C[解析] P (ξ≥2)=1-P (ξ≤1)=1-(P 6(0)+P 6(1))=1-⎣⎡⎦⎤C 06⎝⎛⎭⎫130⎝⎛⎭⎫236+C 16⎝⎛⎭⎫13⎝⎛⎭⎫235=473729.故选C.5.在4次重复试验中事件A 出现的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中出现的概率为( )A.13 B .25C.56 D .34[答案] A[解析] P (ξ≥1)=1-P 4(0)=1-C 04·P 0·(1-P )4=1-(1-P )4=6581,∴P =13.故选A. 6.对同一目标独立地进行四次射击,至少命中一次的概率为8081,则此射手的命中率为( )A.13 B .23C.14 D .15[答案] B[解析] 设此射手的命中率为P ,则此射手对同一目标独立地进行四次射击,一次都没有命中的概率为(1-P )4,由题意得(1-P )4=1-8081=181,∴1-P =13,∴P =23.7.电灯泡使用时数在1 000小时以上的概率为0.2.则三个灯泡在1 000小时以后最多有一个坏了的概率是( )A .0.401B .0.104C .0.410D .0.014[答案] B[解析] P =P 3(0)+P 3(1)=(0.2)3+C 130.8×(0.2)2=0.104.故选B.二、填空题8.下列说法正确的是________.①某同学投篮命中率为0.6,他10次投篮中命中的次数ξ是一个随机变量,且ξ~B (10,0.6);②某福彩的中奖概率为P ,某人一次买了8张,中奖张数ξ是一个随机变量,且ξ~B (8,p );③从装有5红5白的袋中,有放回的摸球,直到摸出白球为止,则摸球次数ξ是随机变量,且ξ~B ⎝⎛⎭⎫n ,12. [答案] ①②[解析] ①、②显然满足独立重复试验的条件,而③虽然是有放回的摸球,但随机变量ξ的定义是直到摸出白球为止,也就是说前面摸出的一定是红球,最后一次是白球,不符合二项分布的定义.9.下列例子中随机变量ξ服从二项分布的有________.①随机变量ξ表示重复抛掷一枚骰子n 次中出现点数是3的倍数的次数; ②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;③有一批产品共有N 件,其中M 件为次品,采用有放回抽取方法,ξ表示n 次抽取中出现次品的件数(M <N );④有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,ξ表示n 次抽取中出现次品的件数.[答案] ①③[解析] 对于①,设事件A 为“抛掷一枚骰子出现的点数是3的倍数”,P (A )=13.而在n 次独立重复试验中事件A 恰好发生了k 次(k =0、1、2、……、n )的概率P (ξ=k )=C k n ×⎝⎛⎭⎫13k×⎝⎛⎭⎫23n -k ,符合二项分布的定义,即有ξ~B (n ,13). 对于②,ξ的取值是1、2、3、……、P (ξ=k )=0.9×0.1k -1(k =1、2、3、……n ),显然不符合二项分布的定义,因此ξ不服从二项分布.③和④的区别是:③是“有放回”抽取,而④是“无放回”抽取,显然④中n 次试验是不独立的,因此ξ不服从二项分布,对于③有ξ~B ⎝⎛⎭⎫n ,MN . 故应填①③. 三、解答题10.(2014·乌鲁木齐诊断)某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若这两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率均为0.5,复审能通过的概率为0.3,各专家评审的结果相互独立.(1)求某应聘人员被录用的概率;(2)若4人应聘,设X 为被录用的人数,试求随机变量X 的分布列.[解析] 设“两位专家都同意通过”为事件A ,“只有一位专家同意通过”为事件B ,“通过复审”为事件C .(1)设“某应聘人员被录用”为事件D ,则D =A +BC , ∵P (A )=12×12=14,P (B )=2×12×(1-12)=12,P (C )=310,∴P (D )=P (A +BC )=P (A )+P (B )P (C )=25.(2)根据题意,X =0,1,2,3,4,A i 表示“应聘的4人中恰有i 人被录用”(i =0,1,2,3,4), ∵P (A 0)=C 04×(35)4=81625, P (A 1)=C 14×25×(35)3=216625, P (A 2)=C 24×(25)2×(35)2=216625, P (A 3)=C 34×(25)3×35=96625, P (A 4)=C 44×(25)4×(35)0=16625. ∴X 的分布列为X 0 1 2 3 4 P8162521662521662596625 16625一、选择题1.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.4]C .[0.6,1)D .(0,0.6][答案] A[解析] 由条件知P (ξ=1)≤P (ξ=2),∴C 14p (1-p )3≤C 24p 2(1-p )2,∴2(1-p )≤3p ,∴p ≥0.4,又0≤p <1,∴0.4≤p <1.2.口袋里放有大小相同的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n }:a n =⎩⎪⎨⎪⎧-1 第n 次摸取红球,1 第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57×⎝⎛⎭⎫132×⎝⎛⎭⎫235B .C 27×⎝⎛⎭⎫232×⎝⎛⎭⎫135C .C 57×⎝⎛⎭⎫132×⎝⎛⎭⎫135 D .C 27×⎝⎛⎭⎫132×⎝⎛⎭⎫232 [答案] B[解析] 由S 7=3知,在7次摸球中有2次摸取红球,5次摸取白球,而每次摸取红球的概率为23,摸取白球的概率为13,则S 7=3的概率为C 27×⎝⎛⎭⎫232×⎝⎛⎭⎫135,故选B. 3.100件产品中有3件不合格产品,每次取一件,有放回地抽取三次,则恰有1件不合格产品的概率约为( )A .0.03B .0.33C .0.67D .0.085[答案] D[解析] P (X =1)=C 13(0.03)1×(0.97)2≈0.085.故选D.二、填空题4.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).[答案] 0.9477[解析] C 34·0.93·0.1+(0.9)4=0.9477. 5.如果ξ~B (20,p ),当p =12且P (ξ=k )取得最大值时,k =________.[答案] 10[解析] 当p =12时,P (ξ=k )=C k 20⎝⎛⎭⎫12k ·⎝⎛⎭⎫1220-k =⎝⎛⎭⎫1220·C k20,显然当k =10时,P (ξ=k )取得最大值.三、解答题6.某人射击5次,每次中靶的概率为0.9,求他至少有2次中靶的概率.[解析] 设某人射击5次中靶ξ次,依题意可知ξ~B (5,0.9), 故所求事件的概率P =P (ξ=2)+P (ξ=3)+P (ξ=4)+P (ξ=5) =1-P (ξ=0)-P (ξ=1)=1-C 050.90×0.15-C 150.9×0.14=0.99954.即该人至少有2次中靶的概率为0.99954.7.某大厦的一部电梯从底层出发后只能在第18、19、20层可以停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用ξ表示这5位乘客在第20层下电梯的人数,求随机变量ξ的分布列.[解析] 考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验. 即ξ=B ⎝⎛⎭⎫5,13.即有P (ξ=k )=C k 5⎝⎛⎭⎫13k ⎝⎛⎭⎫235-k, k =0、1、2、3、4、5. 从而ξ的分布列为8.和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率. [解析] (1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110·p =4950.解得p =15.(2)设“系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D ,那么P (D )=C 23110·(1-110)2+(1-110)3 =9721000=243250.答:系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率为243250.。

独立重复试验与二项分布概率作业练习含答案解析高二数学北京海淀

独立重复试验与二项分布概率作业练习含答案解析高二数学北京海淀

课时提升作业十一独立重复试验与二项分布一、选择题(每小题5分,共25分)1.已知随机变量X服从二项分布X~B,则P(X=2)= ( )A. B. C. D.【解析】选D.P(X=2)=×=.2.(2018·威海高二检测)在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为( ) A. B. C. D.【解析】选C.设事件A每次试验发生的概率为p,则1-(1-p)3=,解得p=,故事件A发生一次的概率为××=.3.在一次反恐演习中,三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别是0.9,0.9,0.8,若至少有两枚导弹击中目标方可将其摧毁,则目标被摧毁的概率是( )A.0.998B.0.046C.0.936D.0.954【解析】选D.P=0.9×0.9×0.2+0.9×0.1×0.8+0.1×0.9×0.8+0.9×0.9×0.8=0.954.4.某人参加一次考试,4道题中答对3道题则为及格,已知他的解题正确率为0.4,则他能及格的概率为( )A. B. C. D.【解析】选B.他答对3道题的概率为·0.43·(1-0.4)=0.153 6,他答对4道题的概率为0.44=0.025 6,故他能及格的概率为0.153 6+0.025 6=0.179 2=.5.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n}:a n=如果S n为数列{a n}的前n项和,那么S7=3的概率为( )A.·B.·C.·D.·【解题指南】由数列{a n}的定义,S7=a1+a2+…+a7和S7=3知7次摸球中有2次摸取红球,5次摸取白球.【解析】选B.由S7=3知在7次摸球中有2次摸取红球,5次摸取白球,而每次摸取红球的概率为,摸取白球的概率为,则S7=3的概率为·.二、填空题(每小题5分,共15分)6.将一枚硬币连续抛掷5次,则正面向上的次数X的分布为__________. 【解析】由题意得,在5次独立重复试验中事件“正面向上”发生的次数为X,每次试验中事件“正面向上”发生的概率是0.5,所以X~B(5,0.5).答案:X~B(5,0.5)7.每次试验的成功率为p(0<p<1),重复进行10次试验,其中前7次都未成功,后3次都成功的概率为__________.【解析】由题意得,重复进行10次试验,其中前7次都未成功,后3次都成功的概率为p3(1-p)7.答案:p3(1-p)78.下列例子中随机变量ξ服从二项分布的有__________.①随机变量ξ表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,ξ表示n 次抽取中出现次品的件数(M<N);④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,ξ表示n 次抽取中出现次品的件数.【解析】对于①,设事件A为“抛掷一枚骰子出现的点数是3的倍数”,P(A)= .而在n次独立重复试验中事件A恰好发生了k次(k=0,1,2,…,n)的概率P(ξ=k)=××,符合二项分布的定义,即有ξ~B.对于②,ξ的取值是1,2,3,…,P(ξ=k)=0.9×0.1k-1(k=1,2,3,…),显然不符合二项分布的定义,因此ξ不服从二项分布.③和④的区别是:③是“有放回”抽取,而④是“无放回”抽取,显然④中n 次试验是不独立的,因此ξ不服从二项分布,对于③有ξ~B.故应填①③.答案:①③三、解答题(每小题10分,共20分)9.某校举行综合知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有6次答题的机会,选手累计答对4题或答错3题即终止其初赛的比赛.答对4题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题连续两次答错的概率为(已知甲回答每道题的正确率相同,并且相互之间没有影响).(1)求选手甲回答一个问题的正确率.(2)求选手甲可以进入决赛的概率.【解析】(1)设选手甲回答一个问题的正确率为p1,则(1-p1)2=,故选手甲回答一个问题的正确率p1=.(2)选手甲答了4道题进入决赛的概率为=,选手甲答了5道题进入决赛的概率为=;选手甲答了6道题进入决赛的概率为=;故选手甲可进入决赛的概率p=++=.【补偿训练】(2018·武威高二检测)某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响,已知射手射击了5次,求:(1)其中只在第一、三、五次击中目标的概率.(2)其中恰有3次击中目标的概率.【解析】(1)该射手射击了5次,其中只在第一、三、五次击中目标,是在确定的情况下击中目标3次,也即在第二、四次没有击中目标,所以只有一种情况,又各次射击的结果互不影响,故所求概率为P1=××××=.(2)该射手射击了5次,其中恰有3次击中目标,符合独立重复试验概率模型,故所求概率为P2=·=.10.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”“中立”“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率.(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.【解析】(1)该公司决定对该项目投资的概率为P=·+=.(2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:“同意”票张数“中立”票张数“反对”票张数事件A 0 0 3事件B 1 0 2事件C 1 1 1事件D 0 1 2 P(A)==,P(B)==,P(C)==,P(D)==,因为A,B,C,D互斥,所以P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=.。

高二数学独立重复实验与二项式分布

高二数学独立重复实验与二项式分布


3
C. 1 ( )
3 5
D. C3 ( ) ( ) C3 ( ) ( )
2 2 1 1
3 5
2 5
3 5
2 5
2
2、某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为
1 ,求在第 3
n 次才击中目标的概率.
1 3、某车间的 5 台机床在 1 小时内需要工人照管的概率都是 ,求 1 小时内 5 台机床中至 4 少 2 2 台需要工人照管的概率是多少?(结果保留两个有效数字) 4、某人对一目标进行射击,每次命中率都是 0.25 ,若使至少命中 1 次的概率不小于 0.75 ,至少应射击几次? 5、十层电梯从低层到顶层停不少于 3 次的概率是多少?停几次概率最大? 6、一批玉米种子,其发芽率是 0.8 .(1)问每穴至少种几粒,才能保证每穴至少有一 粒发芽的概率大于 98% ? (2) 若每穴种 3 粒, 求恰好两粒发芽的概率. ( lg 2 0.3010 )
问题二、某同学玩射击气球游戏,若每次射击击破气球 的概率为 0.7 , 每次射击结果互不影响, 现有气球 3 个, 恰好击破 2 个的概率是多少?设击破气球的个数为
X , X 的分布列怎样?
问题二、 某同学玩射击气球游戏,若每次射击击破气球的概率为 0.7 , 每次 射击结果互不影响,现有气球 3 个, 恰好击破 2 个的概率是多少?设击破 气球的个数为 X , X 的分布列怎样?
四、运用规律,解决问题: 例一、某射手每次射击击中目标的概率是 0.8 ,求这名射手在 10 次射击中, ①恰好 8 次击中的概率;②至少 8 次击中的概率(结果保留两个有效数字) ; ③第 8 次击中的概率;④前 8 次击中的概率.

高中数学选修2-3n次独立重复试验和二项分布精选题目(附答案)

高中数学选修2-3n次独立重复试验和二项分布精选题目(附答案)

高中数学选修2-3n次独立重复试验和二项分布精选题目(附答案)(1)n次独立重复试验一般地,在相同条件下重复做的n次试验称为n次独立重复试验.(2)二项分布一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.一、n次独立重复试验1.某气象站天气预报的准确率为80%,计算:(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.解:(1)记预报一次准确为事件A,则P(A)=0.8.5次预报相当于5次独立重复试验,2次准确的概率为C25×0.82×0.23=0.051 2≈0.05,因此5次预报中恰有2次准确的概率约为0.05.(2)“5次预报中至少有2次准确”的对立事件是“5次预报全部不准确或只有1次准确”,其概率为C05×0.25+C15×0.8×0.24=0.006 72.∴所求概率为1-0.006 72=0.993 28≈0.99.(3)说明第1,2,4,5次中恰有1次准确.∴所求概率为C14×0.8×0.23×0.8=0.020 48≈0.02.故5次预报中恰有2次准确,且其中第3次预报准确的概率约为0.02.注:(1)运用n次独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n次独立重复试验,若不符合条件,则不能应用公式求解.(2)解决实际问题时往往需要把所求概率的事件分拆为若干个事件,而每个事件均为独立重复试验.2.已知两名射击运动员的射击水平:甲击中目标靶的概率是0.7,乙击中目标靶的概率是0.6.若让甲、乙两人各自向目标靶射击3次,则(1)甲恰好击中目标2次的概率是________;(2)两名运动员都恰好击中目标2次的概率是________.(结果保留两位有效数字)解析:由题意,甲向目标靶射击1次,击中目标靶的概率为0.7,乙向目标靶射击1次,击中目标靶的概率为0.6,两人射击均服从二项分布.(1)甲向目标靶射击3次,恰好击中2次的概率是C 23×0.72×(1-0.7)≈0.44. (2)甲、乙两人各向目标靶射击3次,恰好都击中2次的概率是[C 23×0.72×(1-0.7)]×[C 23×0.62×(1-0.6)]≈0.19.答案:(1)0.44 (2)0.193.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( )A .C 1012⎝⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582 B .C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582C .C 911⎝ ⎛⎭⎪⎫589⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫582 解析:选B 当ξ=12时,表示前11次中取到9次红球,第12次取到红球,所以P (ξ=12)=C 911·⎝ ⎛⎭⎪⎫389·⎝ ⎛⎭⎪⎫582·38=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582. 4.箱中装有标号分别为1,2,3,4,5,6的六个球(除标号外完全相同),从箱中一次摸出两个球,记下号码并放回,如果两球的号码之积是4的倍数,则获奖.现有4人参与摸球,恰好有3人获奖的概率是( )A.16625B.4625 C.624625 D.96625解析:选D 依题意得获奖的概率为1+5C 26=25(注:当摸出的两个球中有标号为4的球时,两球的号码之积是4的倍数,有5种情况;当摸出的两个球中没有标号为4的球时,要使两球的号码之积是4的倍数,只有1种情况,即摸出的两个球的标号为2,6),因此所求概率为C 34×⎝ ⎛⎭⎪⎫253×⎝ ⎛⎭⎪⎫1-25=96625.故选D.5.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为35,若40分为最低分数线,则该学生被选中的概率是( )A .C 45×⎝ ⎛⎭⎪⎫354×25 B .C 55×⎝ ⎛⎭⎪⎫355C .C 45×⎝⎛⎭⎪⎫354×25+C 55×⎝ ⎛⎭⎪⎫355D .1-C 35×⎝⎛⎭⎪⎫353×⎝ ⎛⎭⎪⎫252解析:选C 该学生被选中包括“该学生做对4道题”和“该学生做对5道题”两种情形.故所求概率为C 45×⎝ ⎛⎭⎪⎫354×25+C 55×⎝ ⎛⎭⎪⎫355. 6.在等差数列{a n }中,a 4=2,a 7=-4.现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________.(用数字作答)解析:由已知可求通项公式为a n =10-2n (n =1,2,3,…),其中a 1,a 2,a 3,a 4为正数,a 5=0,a 6,a 7,a 8,a 9,a 10为负数,∴从中取一个数为正数的概率为410=25,取得负数的概率为12.三次取数相当于三次独立重复试验.∴取出的数恰为两个正数和一个负数的概率为C 23×⎝ ⎛⎭⎪⎫252×⎝ ⎛⎭⎪⎫121=625. 答案:625二、二项分布1.加工某种零件需经过三道工序.设第一、二、三道工序的合格率分别为910,89,78,且各道工序互不影响,(1)加工一个零件是否是独立重复事件?求该零件的合格率;(2)从该种零件中任取3件,恰好取到X 件合格品,X 是否服从二项分布? (3)在(2)的条件下,求恰好取到1件合格品的概率.解:(1)加工一个零件需经过三道工序,各道工序互不影响,它们是独立的,但三道工序的合格率不同,因此不是独立重复试验.由事件的独立性知,该种零件的合格率P =910×89×78=710.(2)从该种零件中任取3件,相当于3次独立重复试验,恰好取到X 件合格品,即随机变量X 的取值是取到合格品的事件发生的次数,因此X 服从二项分布.(3)由二项分布的概率公式得,恰好取到1件合格品的概率P (X =1)=C 13×710×⎝ ⎛⎭⎪⎫3102=0.189. 注:利用二项分布来解决实际问题的关键是在实际问题中建立二项分布的模型,也就是看它是否是n 次独立重复试验,随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.2.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的考生人数为X ,求X 的分布列.解:(1)设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名考生选做同一道题的事件为“AB ∪A B ”,且事件A ,B 相互独立.所以P (AB ∪A B )=P (A )P (B )+P (A )P (B )=12×12+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-12=12.(2)随机变量X 的可能取值为0,1,2,3,4.且X ~B ⎝ ⎛⎭⎪⎫4,12.所以P (X =k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k =C k 4⎝ ⎛⎭⎪⎫124(k =0,1,2,3,4). 所以变量X 的分布列为3.某学生在上学路上要经过4个路口,假设在各个路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间至多是4 min 的概率. 解: (1)第三个路口首次遇到红灯,表示前2个路口是绿灯,第3个路口是红灯.(2)中事件指这名学生在上学路上最多遇到2次红灯.(1)设“这名学生在上学路上到第三个路口时首次遇到红灯”为事件A .因为事件A 等价于事件“这名学生在第一个和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为P (A )=⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-13×13=427.(2)设“这名学生在上学路上因遇到红灯停留的总时间至多是4 min ”为事件B ,“这名学生在上学路上遇到k 次红灯”为事件B k (k =0,1,2,3,4).由题意得P (B 0)=⎝ ⎛⎭⎪⎫234=1681,P (B 1)=C 14×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫233=3281, P (B 2)=C 24×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫232=2481. 所以事件B 的概率为P (B )=P (B 0)+P (B 1)+P (B 2)=89. 注:(1)二项分布的简单应用是求n 次独立重复试验中事件A 恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n ,p →写出二项分布的分布列→将k 值代入求解概率.(2)二项分布求解随机变量涉及“至少”“至多”问题的取值概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.4.某公司安装了3台报警器,它们彼此独立工作,且发生险情时每台报警器报警的概率均为0.9,求发生险情时,下列事件的概率.(1)3台都未报警;(2)恰有1台报警;(3)恰有2台报警;(4)3台都报警;(5)至少有2台报警;(6)至少有1台报警.解:令X为发生险情时3台报警器报警的台数,那么X~B(3,0.9),则X的分布列为P(X=k)=C k30.9k(1-0.9)3-k(k=0,1,2,3).(1)3台都未报警的概率P(X=0)=C03×0.90×0.13=0.001;(2)恰有1台报警的概率P(X=1)=C13×0.91×0.12=0.027;(3)恰有2台报警的概率P(X=2)=C23×0.92×0.1=0.243;(4)3台都报警的概率P(X=3)=C33×0.93×0.10=0.729;(5)至少有2台报警的概率P(X≥2)=P(X=2)+P(X=3)=0.243+0.729=0.972;(6)至少有1台报警的概率P(X≥1)=1-P(X=0)=1-0.001=0.999.5.下列随机变量X不服从二项分布的是()A.投掷一枚均匀的骰子5次,X表示点数为6出现的次数B.某射手射中目标的概率为p,设每次射击是相互独立的,X为从开始射击到击中目标所需要的射击次数C.实力相等的甲、乙两选手进行了5局乒乓球比赛,X表示甲获胜的次数D.某星期内,每次下载某网站数据被病毒感染的概率为0.3,X表示下载n 次数据电脑被病毒感染的次数解析:选B选项A,试验出现的结果只有两种:点数为6和点数不为6,且点数为6的概率在每一次试验中都为16,每一次试验都是独立的,故随机变量X服从二项分布;选项B,虽然随机变量在每一次试验中的结果只有两种,每一次试验事件相互独立且概率不发生变化,但随机变量的取值不确定,故随机变量X不服从二项分布;选项C,甲、乙的获胜率相等,进行5次比赛,相当于进行了5次独立重复试验,故X服从二项分布;选项D,由二项分布的定义,可知被感染次数X ~B (n,0.3).6.将一枚硬币连掷7次,如果出现k 次正面向上的概率等于出现k +1次正面向上的概率,那么k 的值为( )A .0B .1C .2D .3解析:选D 由题意,知C k 7⎝⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫127-k =C k +17⎝ ⎛⎭⎪⎫12k +1·⎝ ⎛⎭⎪⎫127-k -1,∴C k 7=C k +17,∴k +(k +1)=7,∴k =3.7.从学校乘汽车到火车站的途中有三个交通灯,假设在各个交通灯遇到红灯的事件为相互独立的,并且概率都是25,设ξ为途中遇到红灯的次数,求随机变量ξ的分布列.解:由题意ξ~B ⎝ ⎛⎭⎪⎫3,25,则P (ξ=0)=C 03⎝ ⎛⎭⎪⎫250⎝ ⎛⎭⎪⎫353=27125, P (ξ=1)=C 13⎝ ⎛⎭⎪⎫251⎝ ⎛⎭⎪⎫352=54125, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫351=36125, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫253=8125. 所以随机变量ξ的分布列为8.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.4]C .(0,0.6]D .[0.6,1)解析:选A 由题意,知C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,所以0.4≤p <1,故选A.9.设随机变量ξ~B (2,p ),η~B (4,p ),若P (ξ≥1)=59,则P (η≥2)的值为( )A.3281B.1127C.6581D.1681解析:选B 因为随机变量ξ~B (2,p ) ,所以P (ξ≥1)=1-P (ξ=0)=1-(1-p )2=59,解得p =13,所以η~B ⎝ ⎛⎭⎪⎫4,13.则P (η≥2)=1-P (η=0)-P (η=1)=1-⎝ ⎛⎭⎪⎫1-134-C 14⎝ ⎛⎭⎪⎫1-133·⎝ ⎛⎭⎪⎫131=1127.故选B. 10.如图,一个圆形游戏转盘被分成6个均匀的扇形区域,用力旋转转盘,转盘停止转动时,箭头A 所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A 指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每位家庭派一名儿童和一位成年人先后分别转动一次游戏转盘,得分情况记为(a ,b )(假设儿童和成年人的得分互不影响,且每个家庭只能参加一次活动).若规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.(1)求某个家庭获奖的概率;(2)若共有5个家庭参加家庭抽奖活动,记获奖的家庭数为X ,求X 的分布列.解:(1)某个家庭在游戏中获奖记为事件A ,则符合获奖条件的得分包括(5,3),(5,5),(3,5),共3种情况,∴P (A )=13×13+13×13+13×13=13. ∴某个家庭获奖的概率为13.(2)由(1)知每个家庭获奖的概率都是13,5个家庭参加游戏相当于5次独立重复试验.∴X ~B ⎝ ⎛⎭⎪⎫5,13.∴P (X =0)=C 05×⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫235=32243, P (X =1)=C 15×⎝⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫234=80243, P (X =2)=C 25×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=80243,P (X =3)=C 35×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫232=40243,P (X =4)=C 45×⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243,P (X =5)=C 55×⎝ ⎛⎭⎪⎫135×⎝ ⎛⎭⎪⎫230=1243.∴X 的分布列为1.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有1位同学能通过测试的概率为( )A .(1-p )nB .1-p nC .p nD .1-(1-p )n解析:选D 所有同学都不能通过测试的概率为(1-p )n ,则至少有1位同学能通过测试的概率为1-(1-p )n .2.计算机程序每运行一次都随机出现一个五位的二进制数A =a 1a 2a 3a 4a 5,其中A 的各位数中,a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23.记X =a 1+a 2+a 3+a 4+a 5,当程序运行一次时,则X =3的概率为( )A.6581B.2527C.827D.79解析:选C 已知a 1=1,要使X =3,只需后四位数中出现2个1和2个0,∴P (X =3)=C 24×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132=827.3.已知某班有6个值日小组,每个值日小组中有6名同学,并且每个小组中男生的人数相等,现从每个小组中各抽一名同学参加托球跑比赛,若抽出的6人中至少有1名男生的概率为728729,则该班的男生人数为( )A .24B .18C .12D .6解析:选A 设每个小组抽一名同学为男生的概率为p ,则由已知得1-(1-p )6=728729,即(1-p )6=1729,解得p =23,所以每个小组有6×23=4名男生,该班共有4×6=24名男生.4.箱子里有5个黄球,4个白球,每次随机取出1个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概率为( )A.35×14B.⎝ ⎛⎭⎪⎫593×49C .C 14×⎝ ⎛⎭⎪⎫593×49 D .C 14×⎝ ⎛⎭⎪⎫493×59解析:选B 取球次数X 是一个随机变量,X =4表明前3次取出的球都是黄球,第4次取出白球.这4次取球,取得黄球的概率相等,且每次取球是相互独立的,所以这是独立重复试验.设A 表示“取出的1个球是白球”,则P (A )=C 14C 19=49,P (A -)=1-49=59,故P (X =4)=P (A -A -A -A )=[P (A -)]3·P (A )=⎝ ⎛⎭⎪⎫593×49.5.一只蚂蚁位于数轴x =0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位长度,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为________.解析:由题意知,3秒内蚂蚁向左移动一个单位长度,向右移动两个单位长度,所以蚂蚁在x =1处的概率为C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫131=49. 答案:496.如果X ~B ⎝ ⎛⎭⎪⎫20,13,Y ~B ⎝ ⎛⎭⎪⎫20,23,那么当X ,Y 变化时,下面关于P (X =x k )=P (Y =y k )成立的(x k ,y k )的个数为________.解析:根据二项分布的特点可知,(x k ,y k )分别为(0,20),(1,19),(2,18),…,(20,0),共21个.答案:217.某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列.解:(1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110p =4950,解得p =15.(2)由题意,ξ的可能取值为0,1,2,3.P (ξ=0)=C 03⎝ ⎛⎭⎪⎫1103=11 000, P (ξ=1)=C 13⎝ ⎛⎭⎪⎫1-1101⎝ ⎛⎭⎪⎫1102=271 000, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫1-1102⎝ ⎛⎭⎪⎫1101=2431 000, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫1-1103⎝ ⎛⎭⎪⎫1100=7291 000,所以随机变量ξ的概率分布列为8.甲、乙两人各射击一次,击中目标的概率分别是23和34.假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则中止其射击.问:甲恰好射击5次后,被中止射击的概率是多少?解:设A ={甲射击一次击中目标},B ={乙射击一次击中目标},则A ,B相互独立,且P (A )=23,P (B )=34.(1)设C ={甲射击4次,至少有1次未击中目标},则P (C )=1-⎝ ⎛⎭⎪⎫234=6581. (2)设D ={两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次},∴P (D )=C 24·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫132·C 34·⎝ ⎛⎭⎪⎫343·14=18. (3)甲恰好射击5次,被中止射击,说明甲第4,5次未击中目标,第3次击中目标,第1,2两次至多一次未击中目标,故所求概率P =⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫132×23×⎝ ⎛⎭⎪⎫132=16243.。

高二人数学选修练习课件独立重复试验与二项分布

高二人数学选修练习课件独立重复试验与二项分布

拓展延伸:其他相关概率分布简介
超几何分布
正态分布
与二项分布类似,但每次试验后总体 中的元素会被抽取出来并不再放回, 适用于有限总体中的抽样问题。
在大量独立随机变量的和或平均值的 分布中经常出现,具有广泛的应用背 景,如质量控制、社会调查等领域。
泊松分布
适用于描述单位时间内随机事件发生 的次数,当事件发生的概率很小且事 件之间相互独立时,泊松分布是二项 分布的极限情况。
期望和方差计算
01
二项分布的方差计算公式为
02
$$D(X) = npq$$
03
其中,$n$为试验次数,$p$为每次试验成功的概率,$q=1-p$为每次试验失 败的概率。方差表示在大量重复试验中,事件A发生的次数与期望的偏离程度 。
03
独立重复试验与二项分布关系
两者联系及区别
联系
独立重复试验是二项分布的基础 ,当试验满足独立、重复及固定 概率等条件时,其分布即为二项 分布。
高二人数学选修练习课件独立 重复试验与二项分布
汇报人:XX
20XX-01-14

CONTENCT

• 独立重复试验基本概念 • 二项分布定义与性质 • 独立重复试验与二项分布关系 • 求解独立重复试验和二项分布问题
方法 • 案例分析:生活中独立重复试验和
二项分布现象 • 总结回顾与拓展延伸
01
独立重复试验基本概念
选举预测与决策分析
在选举过程中,选民的投票行为往往受到多种因素的影响。通过进行独立重复试 验来模拟不同选民的投票选择,并利用二项分布来分析选举结果的概率和不确定 性,可以为政治决策和选举预测提供科学依据。
06
总结回顾与拓展延伸
关键知识点总结回顾

高二数学《独立重复试验与二项分布》课时练习

高二数学《独立重复试验与二项分布》课时练习

2.2.3 独立重复试验与二项分布一、选择题1.(2020·辽宁省辽师大附中高二月考)下列命题正确的个数是( ) ①某同学投篮的命中率为0.6,他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6);②某福彩中奖概率为p ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,p );③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B ⎝ ⎛⎭⎪⎫n ,12A .0个B .1个C .2个D .3个解析:①某同学投篮的命中率为0.6,该同学投篮10次,是一个独立重复试验,所以他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6),所以该命题正确;②某福彩中奖概率为p ,某人一次买了8张,相当于买了8次,每次中奖的概率都为p ,相当于做了8次独立重复试验,中奖张数X 是一个随机变量,且X ~B (8,p ),所以该命题正确;③从装有5个红球、5个白球的袋中,由于它是有放回地摸球,直到摸出白球为止,所以它不是一个独立重复性试验,因为当X =1时,概率为12,当X =2时,概率为12×12=14,当X =3时,概率为12×12×12=18,依次类推,即每次试验摸到白球的概率不相等,所以它不是独立重复性试验,所以该命题错误.故选C. 答案:C2.某同学通过英语听力测试的概率为12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值是( )A .3B .4C .5D .6解析:选B 由题意得,1-C 0n⎝ ⎛⎭⎪⎫120⎝ ⎛⎭⎪⎫1-12n >0.9,即⎝ ⎛⎭⎪⎫12n<0.1,∴n ≥4.故选B.3.设随机变量ξ~B ⎝ ⎛⎭⎪⎫6,12,则P (ξ≤3)等于( )A.1132 B .732 C.2132D .764解析:P (ξ≤3)=P (ξ=0)+P (ξ=1)+P (ξ=2)+P (ξ=3)=C 06⎝ ⎛⎭⎪⎫126+C 16⎝ ⎛⎭⎪⎫126+C 26⎝ ⎛⎭⎪⎫126+C 36⎝ ⎛⎭⎪⎫126=2132.答案:C4.(2020·陕西省咸阳市实验中学高二月考)若随机变量ξ~B ⎝ ⎛⎭⎪⎫5,13,则P (ξ=k )最大时,k 的值为( )A .1或2B .2或3C .3或4D .5解析:随机变量ξ~B ⎝ ⎛⎭⎪⎫5,13,即试验5次,每次成功概率为13;所以P (ξ=0)=⎝ ⎛⎭⎪⎫235=32243,P (ξ=1)=C 15⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫234=80243, P (ξ=2)=C 25⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫233=80243, P (ξ=3)=C 35⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫232=40243,P (ξ=4)=C 45⎝ ⎛⎭⎪⎫134⎝ ⎛⎭⎪⎫23=10243, P (ξ=5)=⎝ ⎛⎭⎪⎫135=1243,所以P (ξ=k )最大时,k 的值为1或2.故选A. 答案:A5.(多选)(2020·山东省济宁一中高二期中)如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列命题成立的是( )A .这5个家庭均有小汽车的概率为2431 024B .这5个家庭中,恰有三个家庭拥有小汽车的概率为2764 C .这5个家庭平均有3.75个家庭拥有小汽车D .这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为81128 解析:由题得,小汽车的普及率为34,A .这5个家庭均有小汽车的概率为⎝ ⎛⎭⎪⎫345=2431 024,所以该命题是真命题;B .这5个家庭中,恰有三个家庭拥有小汽车的概率为C 35⎝ ⎛⎭⎪⎫343⎝ ⎛⎭⎪⎫142=135512,所以该命题是假命题;C .这5个家庭平均有3.75个家庭拥有小汽车,是真命题;D .这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为C 45⎝ ⎛⎭⎪⎫344⎝ ⎛⎭⎪⎫14+⎝ ⎛⎭⎪⎫345=81128,所以该命题是真命题.故选A 、C 、D. 答案:ACD 二、填空题6.一只蚂蚁位于数轴x =0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为________.解析:由题意知,3秒内蚂蚁向左移动一个单位,向右移动两个单位,所以蚂蚁在x =1处的概率为C 23×232×131=49. 答案:497.设X ~B (4,p ),且P (X =2)=827,那么一次试验成功的概率p 等于________.解析:P (X =2)=C 24p 2(1-p )2=827,即[p (1-p )]2=481. ∴p (1-p )=29. 解得p =13或p =23. 答案:13或238.某一批花生种子,如果每粒发芽的概率为45,那么播下3粒这样的种子恰有2粒发芽的概率是________.解析:依题意,恰有2粒种子发芽的概率P =C 23×⎝⎛⎭⎪⎫452× ⎝ ⎛⎭⎪⎫1-45=48125. 答案:48125 三、解答题9.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率.解:依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4), 则P (A i )=C i 4×13i ×234-i .(1)这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24×132×232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34×133×23+C 44×134=19.所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19. 10.某射手每次射击击中目标的概率是23,且各次射击的结果互不影响. (1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列.解:(1)设X 为射手在5次射击中击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23,在5次射击中,恰有2次击中目标的概率P (X =2)=C 25×⎝⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-233=40243. (2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881. (3)由题意可知,ξ的所有可能取值为0,1,2,3,6,P (ξ=0)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫133=127; P (ξ=1)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=23×⎝ ⎛⎭⎪⎫132+13×23×13+⎝ ⎛⎭⎪⎫132×23=29;P (ξ=2)=P (A 1A 2A 3)=23×13×23=427; P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232×13+13×⎝ ⎛⎭⎪⎫232=827;P (ξ=6)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫233=827.所以ξ的分布列是:。

人教版数学高二A版选修2-3独立重复试验与二项分布

人教版数学高二A版选修2-3独立重复试验与二项分布

课后训练一、选择题1.某学生通过英语听力测试的概率为13,他连续测试3次,那么其中恰有1次获得通过的概率是()A.49B.29C.427D.2272.袋子里装有5张卡片,用1,2,3,4,5编号,从中抽取3次,每次抽出一张且抽后放回,则3次中恰有2次抽得奇数编号的卡片的概率为()A.0.234 B.0.432 C.0.5 D.0.023.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3∶2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为()A.32332C55⎛⎫⨯⨯⎪⎝⎭B.22332C53⎛⎫⨯⨯⎪⎝⎭C.33432C55⎛⎫⨯⨯⎪⎝⎭D.33421C33⎛⎫⨯⨯⎪⎝⎭4.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生2次的概率,则事件A在一次试验中发生的概率的取值范围是()A.(0,0.4) B.(0,0.6]C.[0.4,1) D.[0.6,1)5.若随机变量ξ~B15,3⎛⎫⎪⎝⎭,则P(ξ=k)最大时,k的值为()A.5 B.1或2C.2或3 D.3或46.某射手有5发子弹,射击一次,命中的概率为0.9,如果命中就停止射击,否则一直到子弹用尽,则所用子弹数X的分布列为()A.B.C.D.二、填空题7.若血色素化验的准确率为p,则在10次化验中,有两次不准的概率为__________.8.在等差数列{a n}中,a4=2,a7=-4.现从{a n}的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为__________.(用数字作答)三、解答题9.某校的有关研究性学习小组进行一种验证性试验,已知该种试验每次成功的概率为12.(1)求他们做了5次这种试验至少有2次成功的概率;(2)如果在若干次试验中,累计有两次成功就停止试验,求该小组做了5次试验就停止试验的概率.10.甲、乙两人各射击一次击中目标的概率分别是23和34,假设两人射击是否击中目标相互之间没有影响,每次射击是否击中目标相互之间也没有影响.(1)求甲射击4次,至少1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则停止射击,问:乙恰好射击5次后被终止射击的概率是多少?参考答案1答案:A 解析:记“恰有1次获得通过”为事件A ,则P (A )=213114C 1339⎛⎫⎛⎫⨯⨯-=⎪ ⎪⎝⎭⎝⎭. 2答案:B 解析:有放回地抽取,可看作独立重复试验,取得奇数编号的概率为P =35,3次中恰有2次抽取得奇数编号的卡片的概率为22333C 155⎛⎫⎛⎫⨯⨯- ⎪ ⎪⎝⎭⎝⎭=0.432.3答案:A 解析:由题意知第4局甲胜,前3局中甲胜2局,∴第4局甲才胜的概率为23223332332C C 55555⎛⎫⎛⎫⨯⨯⨯=⨯⨯ ⎪ ⎪⎝⎭⎝⎭.4答案:C 解析:根据题意,14C p (1-p )3≤24C p 2(1-p )2,解得p ≥0.4.∵0<p <1,∴0.4≤p <1.5答案:B 解析:依题意P (ξ=k )=5C k×13k ⎛⎫ ⎪⎝⎭×523k-⎛⎫⎪⎝⎭,k =0,1,2,3,4,5.可以求得P (ξ=0)=32243,P (ξ=1)=80243,P (ξ=2)=80243,P (ξ=3)=40243,P (ξ=4)=10243,P (ξ=5)=1243. 故当k =2或1时P (ξ=k )最大.6答案:A 解析:X 的取值有1,2,3,4,5. 当X =1时,即第一枪就命中,故P (X =1)=0.9;当X =2时,即第一枪未中,第二枪命中,故P (X =2)=0.1×0.9=0.09; 同理,P (X =3)=0.12×0.9=0.009; P (X =4)=0.13×0.9=0.000 9; P (X =5)=0.14=0.000 1. 则所用子弹数X 的分布列为7答案:45(1-p )2p 8 解析:由题意知,血色素化验的准确率为p ,则不准确的概率为1-p ,由独立重复试验的概率公式得210C (1-p )2p 8=45(1-p )2p 8.8答案:625解析:由已知可求通项公式为a n =10-2n (n =1,2,3,…),其中a 1,a 2,a 3,a 4为正数,a 5=0,a 6,a 7,a 8,a 9,a 10为负数,∴从中取一个数为正数的概率为42105=,取得负数的概率为12.三次取数相当于三次独立重复试验.∴取出的数恰为两个正数和一个负数的概率为2123216C 5225⎛⎫⎛⎫⋅⋅=⎪⎪⎝⎭⎝⎭. 9答案:解:设5次试验中,只成功一次为事件A ,一次都不成功为事件B ,至少2次成功为事件C ,则P (C )=1-P (A +B )=1-P (A )-P (B )=55105511131C C 2216⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭. 所以5次试验至少2次成功的概率为1316. 答案:该小组做了5次试验,所以前4次有且只有一次成功,且第5次成功.设该事件为D ,则P (D )=414111C 228⎛⎫⨯= ⎪⎝⎭.所以做了5次试验就停止的概率为18.10答案:解:设“甲、乙两人各射击一次击中目标分别记为A ,B ”,则P (A )=23,P (B )=34. (1)甲射击4次,全击中目标的概率为44C P 4(A )[1-P (A )]0=423⎛⎫ ⎪⎝⎭=1681. 所以甲射击4次至少1次未击中目标的概率为166518181-=. 答案:甲、乙各射击4次,甲恰好击中2次的概率为24C P 2(A )·[1-P (A )]2=6×223⎛⎫ ⎪⎝⎭×213⎛⎫ ⎪⎝⎭=827. 乙恰好击中3次的概率为34C P 3(B )·[1-P (B )]1=2764. 故所求的概率为827127648⨯=.答案:乙射击5次后,中止射击,第3次击中,第4,5次不中,而第1、2次至少1次击中目标,所以终止的概率为322323313131454444441024⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯+⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.。

独立重复试验与二项分布

独立重复试验与二项分布
高二数学 选修2-3
2.2.3独立重复试验 与二项分布
创设情景 1、投掷一枚相同的硬币5次,每次正面向上 的概率为0.5。 2、某同学玩射击气球游戏,每次射击击破气球 的概率为0.7,现有气球10个,射击10次。 3、口袋内装有5个白球、3个黑球,放回地抽 取5个球,抽出黑球的个数。 问题 上面这些试验有什么共同的特点? ①包含了n个相同的试验: 5次、10次、5次 ②每次试验相互独立; ③每次试验只有两种可能的结果:“成功”或“失 败”; ④每次出现“成功”的概率相同为p ,“失败“的 概率也相同,为1-p;
例1.某射手每次射击击中目标的概率为0.8, 求这名射手在10次射击中, (1)恰有8次击中目标的概率. (2)至少有8次击中目标的概率. (结果保留两个有效数字) 变式:要保证击中目标的概率大于0.99, 至少应射击多少次?
高考题再现
某厂生产电子元件,其产品的次品率为 5%, 现从一批产品中任意的连续取出2件,求取出 的次品数ξ的概率分布列。
思考
类似地,连续掷3次图钉,设出现针尖 向上的次数为X,求X的分布列.
一般地,在n次独立重复试验中,设事件 A发生的次数为X,在每次试验中事件A发生 的概率是p,那么在n次独立重复试验中,事 件A恰好发生k次的概率是
P( X k ) C p (1 p)
k n k
nk
) (其中k=0,1,2,…,n, 此时称随机变量X服从二项分布 记:X~B (n ,p) 并称p为成功概率 于是得到随机变量X的概率分布如下:
情境创设:
“三个臭皮匠能顶一个诸葛亮”吗? 刘备帐下以诸葛亮为首的智囊团共有3名谋 士(不包括诸葛亮),假定对某事进行决策时,每 名谋士贡献正确意见的概率为0.7,诸葛亮贡献 正确意见的概率为0.9.现为此事可行与否而分 别征求智囊团每名谋士的意见,并按智囊团中过 半数人的意见作出决策,这样作出正确决策的概 率与诸葛亮作出正确决策的概率谁大?

人教新课标A版高二数学《选修2-3》2.2.3 独立重复试验与二项分布

人教新课标A版高二数学《选修2-3》2.2.3 独立重复试验与二项分布

P( X 8) C 0.8 (1 0.8)
8 10 8
108
0.30
(2)在10次射击中,至少有8次击中目标的概率为:
P( X 8) P( X 8) P( X 9) P( X 10)
C 0.8 (1 0.8)
8 10 8 10 8
基本概念
一般地,在相同条件下,重复做的n次试验称为n次独立重复试验.
P( A 1A 2
An ) P( A1 ) P( A2 )
P( An )
独立重复试验的特点: (1)每次试验只有两种结果,要么发生,要么不发生; (2)任何一次试验中,A事件发生的概率相同,即相互独立,互不影响试验
的结果.
判断下列试验是不是独立重复试验
个白球.
注:独立重复试验的实际原型是有放回的抽样试验

问题探究
投掷一枚图钉,设针尖向上的概率为p, 则针尖向下的概率为q=1-p.
问题1:连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少? 答:共有以下三种情况
(1)上 下 下
(2)下 上 下
(3)下 下 上
问题探究 问题2:连续掷一枚图钉3次,出现2次针尖向上的概率是多少?
解:由题意
2 ξ~B3,5,则 55 5
02033 P(ξ=0)=C3 =
5 5
27 , 125
1232 P(ξ=1)=C3 = 323 P(ξ=3)=C3 =
54 36 2223 , P ( ξ = 2) = C , 3 = 125 5 5 125 所以随机变量 ξ 的分布列为:
问题3:连续掷一枚图钉3次,出现3次针尖向上的概率是多少?
问题4:连续掷一枚图钉n次,出现k次针尖向上的概率是多少? 答:

高二数学独立重复试验与二项分布2

高二数学独立重复试验与二项分布2
E站https:///
[单选,A2型题,A1/A2型题]关于心前区疼痛最常见的原因,正确的是()。A.各型心绞痛、急性心肌梗死B.急性心包炎C.急性主动脉夹层动脉瘤D.心血管神经症E.肋间神经损伤 [单选]社会主义道德和资本主义道德的根本区别在于()A.所有制B.政治思想C.技术水平D.社会信仰 [单选]义务消防队建立后应定期对义务消防人员进行消防实操训练及消防常识的培训,每()还应进行一到两次的消防实战演习。A.周B.月C.季度D.年 [单选,A1型题]桂枝促发汗作用是通过()A.抑制汗腺导管对钠离子重吸收B.兴奋汗腺&alpha;受体,使汗腺分泌增加C.通过兴奋中枢神经系统有关部位而发汗D.扩张血管,促进血液流向体表E.增加机体产热 [单选]物业管理对公共秩序的作用是()。A.保障、保证业主的人身和财产安全B.提供协助性管理服务,属于安全防范性质C.与公安机关共同行使治安管理职能D.业主人身、财产的安全保管保险 [单选,A1型题]下列哪种中药外用可攻毒杀虫、蚀疮祛腐,内服可截痰平喘、截疟()A.蛇床子B.信石C.轻粉D.硫黄E.雄黄 [问答题,简答题]ST型缓冲器的组成? [单选,A1型题]身热汗多烦渴,体倦少气,脉虚数者宜选用()A.六一散B.竹叶石膏汤C.清暑益气汤D.桂苓甘露饮E.生脉散 [单选,B1型题]急性心包炎、心包积液常表现为()A.吸气性呼吸困难B.呼气性呼吸困难C.混合性呼吸困难D.呼吸节律不规则E.端坐呼吸 [单选]当组数等于2时,对于同一资料,方差分析结果与f检验结果()A.['完全等价且F=tB.完全等价且C.完全等价且D.方差分析结果更准确E.t检验结果更准确 [多选]下面对于“如何服从上司”说法正确的是?()A、服从、汇报B、补台、挡驾C、尽职、贪功D、尊重、参谋 [单选]在拟定沿岸航线选择转向物标时,应尽量避免选择下列哪种物标()。A.立标B.平坦的岬角C.浮标D.B+C [单选]周围型肺癌长大阻塞支气管腔时,X线检查可出现()A.全肺不张B.肺叶不张C.气管明显移位D.气管分叉角度增大E.节段性肺炎或肺不张 [单选]印刷业经营者在印刷经营活动中发现违法犯罪行为,应当及时向()或者出版行政部门报告。A.工商行政部门B.公安部门C.文化行政部门D.党委宣传部门 [问答题,简答题]什么叫大体积砼? [单选]承包人的某些索赔要求,虽然在工程项目的合同条款中没有专门的文字依据。但可以根据该合同某些条款的含义,推论出承包人有索赔权,这种索赔被称为()。A.合同中的明示索赔B.综合索赔C.合同中的默示索赔D.双向索赔 [问答题,案例分析题]背景材料: [单选]承包方在承包期内将部分或全部承包土地的经营权,以一定条件转移给本集体经济组织成员以外的他人经营农业,原承包方与发包方的承包关系不变,承租人向承包方交纳土地租金,被称为()。A.转包B.转让C.出租D.互换 [多选]心房颤动患者合并下列哪些情况需要服用华法林()A.肥厚梗阻型心肌病B.脑卒中史C.二尖瓣狭窄D.下肢动脉栓塞E.合并高血压、糖尿病 [填空题]用于()与()、()的数据主要来源于探矿钻孔的(),钻孔一般按照一定的网度布置在一些叫()的直线上。 [单选,A1型题]构成传染病流行过程的三个基本条件是()A.微生物,宿主,媒介B.传染源,传播途径,易感人群C.病原体,环境,宿主D.病原体数量,致病力,定位E.病原体,人体,他们所处的环境 [填空题]照明电器通常用()作额定值。 [单选]采用定额计价编制标底时,可使用的定额是()。A.设计定额B.施工定额C.结算定额D.概算定额 [问答题,简答题]激发学习动机的技术。 [单选]某公司在业务活动中形成了大量信息,适合采用()分类法进行分类。A.时间B.地区C.字母D.问题 [单选,A1型题]继发性肺结核的主要播散方式是经()A.支气管B.淋巴道C.血道D.消化道E.体腔 [判断题]ANA无器官和种属特异性。()A.正确B.错误 [单选,A2型题,A1/A2型题]妊娠期甲亢,下列何种检查不能采用().A.TSH检测B.FT3、FT4检测C.TSAb检测D.甲状腺131I摄取率E.TPO-Ab检测 [单选]患儿男,8个月,6个月时出现表情呆滞、烦躁、智力发育明显落后,血清苯丙氨酸60mg/L,诊断为苯丙酮尿症。对于该患儿的饮食护理,理想的糖类、蛋白质、脂肪的比例为()A.20∶30∶50B.30∶20∶50C.40∶15∶35D.60∶15∶25E.70∶10∶30 [单选,A2型题,A1/A2型题]下列治法中除哪项外,均属祛邪为主的范畴?()A.泄卫透表法B.清解气热法C.和解表里法D.祛湿清热法E.开窍息风法 [多选]下列关于行政事业单位会计的说法正确的是()。A.行政事业单位固定资产不计提折旧B.行政事业单位核算其行政事业活动时采用的是收付实现制C.行政事业单位需要编制收入支出表D.行政事业单位不需要编制资产负债表E.行政事业单位核算其行政事业活动时采用的是权责发生制 [问答题,简答题]负责身体运动协调的是? [单选]钻取的芯样在试验前哪些尺寸可不作测量()A、平均直径B、可见骨料的最大粒径C、芯样高度D、芯样垂直度 [填空题]灵感是一切创造性劳动中普遍存在的现象,周恩来用______________,______________八个字对灵感产生过程作了科学的概括。 [单选]关于液压调速器的下述叙述中,错误的是()。A.具有广阔的调速范围B.稳定性好,调节精度与灵敏度高C.它利用飞重离心力直接拉动油量调节机构D.广泛用于大中型柴油机 [单选]抵押权的实现方式不包括()。A、拍卖B、变卖C、折价D、在债务履行期届满前,抵押权人与抵押人约定债务人不履行到期债务时抵押财产归债权人所有 [单选]当飞机绕重心有一个低头的角加速度时,位于飞机重心之前的主起落架的过载()。A.小于飞机重心处的过载B.大于飞机重心处的过载C.与飞机重心处的过载无关D.等于飞机重心处的过载 [单选]下列卵巢粘液性囊腺瘤声像图特点,哪一项是错误A.肿瘤体积较大B.囊腔内有较多的分隔C.囊内有细小点状回声D.少数有乳头状生长E.囊腔内无分隔 [单选]关于利用网络计划中工作自由时差的说法,正确的是()。A.不会影响紧后工作,也不会影响总工期B.不会影响紧后工作,但会影响总工期C.会影响紧后工作,但不会影响总工期D.会影响紧后工作,也会影响总工期 [单选]在乳腺癌全野切线源皮距照射定位时,下列哪项描述是错误的()A.放好内外切线野的铅丝,向内切野方向转动机架50度左右,将内切野的内缘放在铅丝处B.升降床并左右移床至源皮距100cmC.透视并转动机架同时调节治疗床使两根铅丝与射野中心重叠并切肺1.5~2cmD.用虚线画上内切线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学课后练习题之独立重复试验
与二项分布
高二数学课后练习题之独立重复试验与二项分布
一、选择题
1.某一试验中事件A发生的概率为p,则在n次这样的试验中,A发生k次的概率为()
A.1-pk
B.(1-p)kpn-k
C.(1-p)k
D.Ckn(1-p)kpn-k
[答案] D
[解析] 在n次独立重复试验中,事件A恰发生k次,符合二项分布,而P(A)=p,则P(A)=1-p,故P(X=k)=Ckn(1-p)kpn-k,故答案选D.
2.在4次独立重复试验中,事件A发生的概率相同,若事件A至少发生1次的概率为6581,则事件A在1次试验中发生的概率为()
A.13
B.25
C.56
D.34
[答案] A
[解析] 事件A在一次试验中发生的概率为p,由题意得1-C04p0(1-p)4=6581,所以1-p=23,p=13,故答案选A.
3.流星穿过大气层落在地面上的概率为0.002,流星数为10的流星群穿过大气层有4个落在地面上的概率为()
A.3.3210-5
B.3.3210-9
C.6.6410-5
D.6.6410-9
[答案] B
[解析] 相当于1个流星独立重复10次,其中落在地面上的有4次的概率P=C4100.0024(1-0.002)63.3210-9,应选B.
4.已知随机变量X服从二项分布,X~B6,13,则P(X=2)等于()
A.316
B.4243
C.13243
D.80243
[答案] D
[解析] 已知X~B6,13,P(X=k)=Cknpk(1-p)n-k,当X=2,n=6,p=13时有P(X=2)=C261321-136-2=C26132234=80243.
5.某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是()
A.16625
B.96625
C.192625
D.256625
[答案] B
[解析] P=C24452152=96625.
6.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第次首次测到正品,则P(=3)=()
A.C2314234
B.C2334214
C.14234
D.34214
[答案] C
7.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响.则他恰好击中目标3次的概率为()
A.0.930.1
B.0.93
C.C340.930.1
D.1-0.13
[答案] C
[解析] 由独立重复试验公式可知选C.
8.(新版保定高二期末)位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P移动五次后位于点(2,3)的概率是()
A.(12)5
B.C25(12)5
C.C35(12)3
D.C25C35(12)5
[答案] B
[解析] 由于质点每次移动一个单位,移动的方向向上或向右,移动五次后位于点(2,3),所以质点P必须向右移动二次,向上移动三次,故其概率为C35(12)3(12)2=C35(12)5=C25(12)5.
二、填空题
9.已知随机变量X~B(5,13),则P(X4)=________.
[答案] 11243
10.下列例子中随机变量服从二项分布的有________.
①随机变量表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;
②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数
③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,表示n次抽取中出现次品的件数(M
④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,表示n次抽取中出现次品的件数.
[答案] ①③
[解析] 对于①,设事件A为抛掷一枚骰子出现的点数是3的倍数,
P(A)=13.而在n次独立重复试验中事件A恰好发生了k次(k=0,1,2,,n)的概率P(=k)=Ckn13k23n-k,符合二项分布的定义,即有~B(n,13).
对于②,的取值是1,2,3,,P(=k)=0.90.1k-1(k=1,2,3,n),显然不
符合二项分布的定义,因此不服从二项分布.
③和④的区别是:③是有放回抽取,而④是无放回抽取,显然④中n
次试验是不独立的,因此不服从二项分布,对于③有~Bn,MN.
故应填①③.
11.(新版湖北文,13)一个病人服用某种新药后被治愈的概率为0.9,
则服用这种新药的4个病人中至少3人被治愈的概率为________(用数
字作答).
[答案] 0.9477
[解析] 本题主要考查二项分布.
C340.930.1+(0.9)4=0.9477.
12.如果X~B(20,p),当p=12且P(X=k)取得最大值时,k=________.
[答案] 10
[解析] 当p=12时,P(X=k)=Ck新版k1220-k
=1220Ck20,显然当k=10时,P(X=k)取得最大值.
三、解答题
13.在一次测试中,甲、乙两人独立解出一道数学题的概率相同,已知该题被甲或乙解出的概率是0.36,写出解出该题人数X的分布列.
[解析] 设甲、乙独立解出该题的概率为x,由题意1-(1-x)2=0.36,解得x=0.2.
所以解出该题人数X的分布列为
X 0 1 2
P 0.64 0.32 0.04
14.已知某种疗法的治愈率是90%,在对10位病人采用这种疗法后,正好有90%被治愈的概率是多少?(精确到0.01)
[解析] 10位病人中被治愈的人数X服从二项分布,即X~B(10,0.9),故有9人被治愈的概率为P(X=9)=C9100.990.110.39.
15.9粒种子分种在3个坑中,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用X表示补种的`费用,写出X的分布列.
[解析] 因为一个坑内的3粒种子都不发芽的概率为(1-0.5)3=18,所以一个坑不需要补种的概率为1-18=78.
3个坑都不需要补种的概率为
C031807830.670,
恰有1个坑需要补种的概率为
C131817820.287,
恰有2个坑需要补种的概率为
C231827810.041,
3个坑都需要补种的概率为
C331837800.002.
补种费用X的分布列为
X 0 10 20 30
P 0.670 0.287 0.041 0.002
16.(新版全国Ⅰ理,18)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.
(1)求投到该杂志的1篇稿件被录用的概率;
(2)记X表示投到该杂志的4篇稿件中被录用的篇数,求X的分布列.
[分析] 本题主要考查等可能性事件、互斥事件、独立事件、相互独立试验、分布列、数学期望等知识,以及运用概率知识解决实际问题的能力,考查分类与整合思想、化归与转化思想.(1)稿件被录用这一事件转化为事件稿件能通过两位初审专家的评审和事件稿件能通过复审专家的评审的和事件,利用加法公式求解.(2)X服从二项分布,结合公式求解即可.
[解析] (1)记A表示事件:稿件能通过两位初审专家的评审;
B表示事件:稿件恰能通过一位初审专家的评审;
C表示事件:稿件能通过复审专家的评审;
D表示事件:稿件被录用.
则D=A+BC,
而P(A)=0.50.5=0.25,P(B)=20.50.5=0.5,P(C)=0.3
故P(D)=P(A+BC)=P(A)+P(B)P(C)=0.25+0.50.3=0.4.
(2)随机变量X服从二项分布,即X~B(4,0.4),
X的可能取值为0,1,2,3,4,且P(X=0)=(1-0.4)4=0.1296
P(X=1)=C140.4(1-0.4)3=0.3456
P(X=2)=C240.42(1-0.4)2=0.3456 P(X=3)=C340.43(1-0.4)=0.1536。

相关文档
最新文档