化工原理基本知识点(整理版)_10472
化工原理 知识点
化工原理知识点
化工原理的知识点包括:
1. 热力学:热力学原理、热力学态函数、热力学过程、热力学平衡、热力学循环等。
2. 流体力学:流体性质、流体静力学、流体动力学、流体流动等。
3. 传热学:传热基本过程、传热方程、传热导数、传热换热设备、传热工艺等。
4. 反应工程学:反应平衡、反应动力学、反应器设计、催化剂、反应工艺控制等。
5. 分离工程学:物质平衡、质量传递、分离技术、萃取、吸收、蒸馏、晶体分离等。
6. 化学工程原理:流程图、物料平衡、能量平衡、动力学、热力学、传质、传热、流体力学等。
7. 设备与工艺:乙炔化工艺、氧化过程、氢化工艺、脱硫过程、脱氧过程、催化裂化等。
8. 安全与环保:化工安全、环境保护法规、废弃物处理、环境影响评估等。
9. 经济与管理:成本估算、投资分析、工艺优化、工艺设计、流程控制等。
10. 化工原理应用:化学工业应用、石油炼制、化学品生产、
材料制备、环境治理等。
以上知识点是化工原理的一些基本内容,涵盖了热力学、流体力学、传热学、反应工程学、分离工程学等方面的内容,并且包括了安全与环保、经济与管理等应用领域。
在学习化工原理
时,需要系统地掌握这些知识点,并能够将其应用于实际问题的解决。
化工原理整理知识点
第一章 流体传递现象流体受力:表面力和体积力体积力/场力/质量力:为非接触力,大小与流体的质量成正比表面力:为接触力,大小与和流体相接触的物体(包括流体本身)的表面积成正比, 流场概念:场和流场;矢量场和标量场;梯度第一节 流体静力学1-1-2 压力流体垂直作用于单位面积上的力,称为流体的静压强,又称为压力。
在静止流体中,作用于任意点不同方向上的压力在数值上均相同。
压力的单位(1) 按压力的定义,其单位为N/m 2,或Pa ;(2) 以流体柱高度表示,如用米水柱或毫米汞柱等。
标准大气压的换算关系:1atm = 1.013×105Pa =760mmHg =10.33m H 2O 压力的表示方法表压 = 绝对压力-大气压力 真空度 = 大气压力-绝对压力 1-1-3 流体静力学基本方程 静力学基本方程:压力形式 :)(2112z z g p p -+=ρ能量形式 :gz p g z p 2211+=+ρρ适用条件:在重力场中静止、连续的同种不可压缩流体。
(1)在重力场中,静止流体内部任一点的静压力与该点所在的垂直位置及流体的密度有关,而与该点所在的水平位置及容器的形状无关。
(2)在静止的、连续的同种液体内,处于同一水平面上各点的压力处处相等。
液面上方压力变化时,液体内部各点的压力也将发生相应的变化。
(3)物理意义:静力学基本方程反映了静止流体内部能量守恒与转换的关系,在同一静止流体中,处在不同位置的位能和静压能各不相同二者可以相互转换,但两项能量总和恒为常量。
应用:1. 压力及压差的测量 (1)U 形压差计:gR p p )(021ρρ-=- 若被测流体是气体,可简化为:021ρRg p p ≈-U 形压差计也可测量流体的压力,测量时将U 形管一端与被测点连接,另一端与大气相通,此时测得的是流体的表压或真空度。
(2)倒U 形压差计 ρρρRg Rg p p ≈-=-)(021(3)双液体U 管压差计)(21C A Rg p p ρρ-=- 2. 液位测量3. 液封高度的计算第二节 流体动力学1-2-1 流体的流量与流速 一、流量体积流量V S 单位时间内流经管道任意截面的流体体积, m 3/s 或m 3/h 。
化工原理知识点总结
化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。
化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。
2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。
(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。
在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。
(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。
化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。
(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。
(4)流体力学流体力学是研究流体运动规律和流体性质的科学。
在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。
这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。
二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。
因此,分析化学平衡是化工过程设计和运行中的重要内容。
2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。
热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。
3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。
热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。
三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。
化工原理知识点总结整理
化工原理知识点总结整理化工原理是化学工程学科的基础,是化工工程师必备的知识。
以下是对化工原理的知识点进行总结整理。
1.物质的组成和结构:-原子:是化学元素的最小单位,由质子、中子和电子组成。
-分子:由两个或多个原子通过化学键连接而成。
-离子:失去或获得电子的原子,具有正负电荷。
正离子失去电子,负离子获得电子。
-化学键:是原子之间的力,将原子与原子连接起来。
-分子式:用化学符号表示分子中原子的种类和数目。
-结构式:用化学符号和线条表达分子中原子的排列方式。
2.化学反应:-化学平衡:反应物与生成物的浓度达到一定比例,反应停止。
-反应速率:反应物转变为生成物的速率。
-化学平衡常数:表示反应物与生成物在化学平衡时的浓度比例。
-反应热:反应物与生成物之间的能量差异。
3.理想气体:-理想气体状态方程:PV=nRT,其中P为气体的压力,V为气体的体积,n为气体的物质量,R为气体常数,T为气体的温度。
-理想气体的性质:不受物质的吸引力和斥力影响,分子间无体积。
4.流体力学:-流体:物质形状可变的物质,包括气体和液体。
-流动:流体在空间内由高压区域到低压区域的运动。
-流速:流体运动的速度。
-流量:在单位时间内通过流体的量。
-流体的黏性:流体内部摩擦阻力。
5.物质传递:-质量传递:物质从高浓度区域向低浓度区域的传递。
-热传递:热量从高温区域向低温区域的传递。
-动量传递:力从物体上的一个部分传递到另一个部分。
6.浓度与溶液:-浓度:表示溶液中溶质的量。
-溶解度:单位质量的溶剂中可以溶解的最大量溶质。
-饱和溶液:溶质在溶剂中达到最大溶解度所得到的溶液。
7.离子交换与配位化学:-离子交换:阳离子与阳离子、阴离子与阴离子之间的置换反应。
-配位化学:原子或离子通过化学键与金属离子形成配合物。
8.化学工程设备与仪器:-塔:用于气液或液液传质和反应的设备。
-反应器:用于进行化学反应的设备。
-分离设备:用于分离物质的设备,如蒸馏塔、萃取塔等。
(完整版)化工原理知识点总结整理
一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。
2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。
3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。
4.两种流动形态:层流和湍流。
流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。
当流体层流时,其平均速度是最大流速的1/2。
5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。
6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。
孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。
其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。
转子流量计的特点——恒压差、变截面。
8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。
)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。
9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。
化工原理上 知识点总结
化工原理上知识点总结一、化工原理的基本概念1. 化工原理的概念化工原理是研究化工生产过程中的物理、化学、工程等基本原理与规律的学科,是化工工程技术的理论基础。
化工原理的研究对象是化工生产中的物质和能量转化过程,包括化工流程、反应过程、传质过程、能量转换过程等。
化工原理的研究目的是为了揭示化工过程中的相互作用规律,为化工工程技术的设计、控制和优化提供理论支持。
2. 化工原理的基本内容化工原理主要包括物质平衡、能量平衡、动量平衡、传质与反应动力学、流体力学、热力学等内容。
其中,物质平衡研究物质在化工过程中的流动分布和转化规律,能量平衡研究热量在化工过程中的转移和转化规律,动量平衡研究流动介质在化工过程中的运动规律,传质与反应动力学研究物质传输和化学反应的速率规律,流体力学研究流体运动的基本规律,热力学研究能量转换的基本规律。
3. 化工原理的应用领域化工原理是化工技术的理论基础,广泛应用于化工工程技术的设计、计算、控制、优化和改进等方面。
在化工生产中,化工原理被应用于化工过程的优化设计、生产参数的确定、生产过程的控制和调整、产品质量的改进等方面,对化工生产的安全、经济、高效具有重要意义。
二、化工过程中的物质平衡1. 物质平衡的基本概念物质平衡是研究物质在化工过程中的流动分布和转化规律的基本原理。
物质平衡的基本概念包括输入、输出、积累和转化等概念。
输入是物质进入系统的过程,输出是物质离开系统的过程,积累是系统中物质的变化过程,转化是物质在系统内发生变化的过程。
2. 物质平衡的计算方法物质平衡的计算方法包括物质平衡方程的建立和求解。
物质平衡方程是通过对系统内各环节进行物质平衡计算,建立系统物质平衡方程,求解得到系统内各环节的物质平衡量。
物质平衡的求解方法包括代数求解、图解法、矩阵法、数值积分法等。
3. 物质平衡的应用案例物质平衡在化工生产中有着广泛的应用。
例如,化工生产过程中的原料投入和产品产出量的计算、化工设备的负荷计算、化工废水、废气治理的效果评估等都需要进行物质平衡计算,以确保化工生产过程的稳定和经济效益。
化工原理知识点总结pdf
化工原理知识点总结pdf第一章:化工原理基础化工原理是化工学科的一门基础课程,主要研究化工过程的基本原理和基本规律。
本章将针对化工原理的基础知识进行总结。
1.1 化工过程基本概念化工过程是指将原材料通过化学反应、分离、精制等一系列工艺操作,转化成符合特定需求的产品的过程。
化工过程一般包括原料处理、反应、分离、精制和产品收率等环节。
1.2 热力学基础热力学是研究物质能量转化规律的科学,它主要包括热力学系统、热力学第一、二、三定律,熵增原理等内容。
在化工过程中,热力学原理对于理解和分析热力学系统的能量变化、效率提高和过程优化具有重要的意义。
1.3 物质平衡原理物质平衡是指在化工过程中,针对物质流量、组分和质量进行的平衡分析。
物质平衡原理是化工过程中不可或缺的理论基础,它体现了化工过程中原料转化成产品,各种物质在环境中传输和转化的基本规律。
1.4 动量平衡原理在流体力学和传递过程中,动量平衡原理是通过对流体流动、传输和转动的分析,确定系统内部及其与外界的动量交换关系。
动量平衡原理在化工过程中的应用十分广泛,对于管道流体、设备运转和动力传递等方面起着重要作用。
1.5 质量平衡原理质量平衡原理是指在化工过程中,对于物质的组分、浓度、流量等进行质量平衡的原理分析。
质量平衡原理是化工过程中最基本的原理之一,对于产品质量控制、环境保护和过程优化具有重要的指导意义。
1.6 界面传递原理界面传递原理是指在化工过程中,各种界面过程发生物质传递、热量传递、动量传递的基本规律。
界面传递原理的研究对于化工过程中的分离、精制、传质、传热等方面具有重要的意义。
第二章:化工反应原理化工反应原理是化工学科的重要分支之一,主要研究化工原料通过化学反应,转化成特定产品的原理和规律。
本章将总结化工反应原理的基本知识。
2.1 化学反应的基本概念化学反应是指化学物质在一定条件下,由原有的化学键断裂再组合成新的化学物质的过程。
化学反应包括各种离子反应、氧化还原反应、配位反应、配位反应、离子化合物的生成等。
化工原理基本知识点
化工原理基本知识点
化工原理基本知识点:
1. 化学反应:化学反应是物质发生转化的过程,包括原子、分子或离子的重组或重排。
化学反应的速率受到温度、浓度、触媒等因素的影响。
2. 物质的结构:物质的结构决定了其物理和化学性质。
化学物质可分为原子、分子和离子三种类型,它们以不同形式组合形成各种物质。
3. 反应平衡:在化学反应中,反应物转化为产物的速率与产物转化为反应物的速率相等时,达到了反应平衡。
反应平衡可通过平衡常数来描述。
4. 热力学基本概念:热力学研究能量转化和能量传递的规律,包括热力学第一定律(能量守恒)、热力学第二定律(熵增原理)和热力学第三定律(绝对零度原理)。
5. 流体力学基本概念:流体力学研究流体的运动规律,包括牛顿流体和非牛顿流体的流动行为、质量守恒定律和动量守恒定律。
6. 质量平衡:质量平衡是指在化工过程中,物质的进料和出料必须达到平衡。
质量平衡可用于计算物料的流动、混合和分离等过程。
7. 能量平衡:能量平衡是指在化工过程中,能量的进出要达到平衡。
能量平衡可用于计算化工过程中的热力学效率和能量损失等。
8. 流程图和装置图:流程图是反映一种化工过程的流程和参数变化的图形表示,装置图是表示化工装置的构造和组成的图形图表。
9. 反应器的类型:反应器是进行化学反应的装置,常见的反应器类型有批量反应器、连续流动反应器和半连续流动反应器等。
10. 催化剂的作用:催化剂是一种能够提高化学反应速率的物质,它通过改变反应机理或降低反应活化能来促进反应进行。
催化剂通常在反应结束后可以回收和再利用。
化工原理知识点总结详细
化工原理知识点总结详细第一章:化工原理基础知识1.1 化工原理的定义和基本概念化工原理是研究化学工程过程的基本原理、基本规律和数学模型的学科。
化工原理包括物理化学、热力学、传质与分离、反应工程等方面的知识,其中热力学和传质与分离是化工原理的两个重要组成部分。
1.2 化工原理的基本原理和基本规律化工原理涉及到许多基本原理和基本规律,其中包括质量守恒、能量守恒、热力学第一、第二定律、传热、传质、反应动力学等。
这些基本原理和基本规律是化工过程描述、分析和设计的基础。
1.3 化工原理的应用领域化工原理的应用领域非常广泛,包括化学工程、环境工程、生物工程、材料工程等方面。
化工原理在工业生产、环境保护、能源开发、新材料研发等领域都有重要的应用价值。
第二章:热力学2.1 热力学基本概念热力学是研究能量转化和能量传递规律的科学。
热力学基本概念包括系统、热平衡、热力学过程、熵等。
热力学基本原理包括能量守恒、熵增原理等。
2.2 理想气体状态方程理想气体状态方程描述了理想气体的压力、温度、体积之间的关系,可以表示为PV=nRT。
理想气体状态方程是描述气体性质的重要方程之一。
2.3 热力学循环热力学循环是指气体、水蒸汽等工质在一定压力和温度条件下发生各种物理或化学变化,最后又回到原来状态的过程。
常见的热力学循环包括卡诺循环、斯特林循环、布雷顿循环等。
2.4 热力学第一、第二定律热力学第一定律:能量守恒,能量既不能被创造也不能被毁灭,只能从一种形式转化为另一种形式。
热力学第二定律:熵增原理,自然界熵不减少的倾向。
第三章:传质与分离3.1 传质基本概念传质是指物质在不同相间传递的过程,包括扩散、对流、传热等。
传质的重要概念包括浓度、摩尔通量、传质系数等。
3.2 传质方程和传质过程传质方程描述了物质在不同相间传递的规律,传质过程包括扩散传质、对流传质等,传质方程是描述传质过程的基本数学模型。
3.3 分离技术化工生产中,常需要对混合物进行分离和纯化,分离技术包括蒸馏、结晶、游离、萃取等,这些技术都是基于传质原理。
化工原理知识点总结复习重点(完美版)(word文档物超所值)
η-Q曲线对应的最高效率点为设计点,对应的Q、H、N值称为最佳工况参数,铭牌所标出的参数就是此点的性能参数。
(会使用IS水泵特性曲线表,书P117)●离心泵的允许安装高度H g(低于此高度0.5-1m):关离心泵先关阀门,后关电机,开离心泵先关出口阀,再启动电机。
四、工作点及流量调节:●管路特性与离心泵的工作点:由两截面的伯努利方程所得全程化简。
联解既得工作点。
●离心泵的流量调节:1、改变阀门的开度(改变管路特性曲线);2、改变泵的转速(改变泵的特性曲线);减小叶轮直径也可以改变泵的特性曲线,但一般不用。
3、泵串联(压头大)或并联(流速大)●往复泵的流量调节:1、旁路调节;2、改变活塞冲程和往复次数。
为满足除尘要求,气体在降尘室内的停留时间至少等于颗粒的沉降时间,所以:性能指标:1、临界粒径d c:理论上在旋风分离器中能被完全分离下来的最小颗粒直径;2、分离效率:总效率η0;分效率ηp(粒级效率);3、分割粒径d50:d50是粒级效率恰为50%的颗粒直径;4、压力降△p:气体经过旋风分离器时,由于进气管和排气管及主体器壁所引起的摩擦阻力,流动时的局部阻力以及气体旋转运动所产生的动能损失等,造成气体的压力降。
(标准旋风)标准旋风N e=5,=8.0。
三、过滤:●过滤方式:1、饼层过滤:饼层过滤时,悬浮液置于过滤介质的一侧,固体物沉积于介质表面而形成滤饼层。
过滤介质中微细孔道的直径可能大于悬浮液中部分颗位的直径,因而,过滤之初会有一些细小颗粒穿过介质而使滤液浑浊,但是颗粒会在孔道中迅速地发生“架桥”现象(见图),使小子孔道直径的细小颗粒也能被截拦,故当滤饼开始形成,滤液即变清,此后过滤才能有效地进行。
可见,在饼层过滤中,真正发挥截拦颗粒作用的主要是滤饼层而不是过滤介质。
饼层过滤适用于处理固体含量较高的悬浮液。
深床过滤:在深床过滤中,固体颗粒并不形成滤饼,而是沉积于较厚的粒状过滤介质床层内部。
悬浮液中的颗粒尺寸小于床层孔道直径,当颗粒随流体在床层内的曲折孔道中流过时,便附在过滤介质上。
化工原理知识点总结复习重点完美版
化工原理知识点总结复习重点完美版为了更好地进行化工原理的复习和理解,以下是一份完整的知识点总结,帮助你复习和复盘学到的重要内容。
一、化学平衡1.化学反应方程式的写法2.反应物和生成物的摩尔比例3.平衡常数的定义和计算4.浓度和活度的关系5.反应速率和速率常数的定义及计算6.动态平衡和平衡移动原理7.影响平衡的因素:温度、压力、浓度二、质量平衡1.质量守恒定律2.原料消耗和产物生成的计算3.原料和产物的流量计算4.反应含量和反应度的计算5.塔的进料和出料物质的计算三、能量平衡1.能量守恒定律2.热平衡方程及其计算3.基础能量平衡方程的应用4.燃料燃烧的能量平衡计算5.固体、液体和气体的热容和焓变计算6.直接、间接测定燃烧热的方法及其原理7.燃料的完全燃烧和不完全燃烧四、流体流动1.流体的基本性质:密度、粘度、黏度、温度、压力2.流体的流动模式:层流和湍流3.流量和速度的计算4.伯努利方程及其应用5.流体在管道中的阻力和压降6.伽利略与雷诺数的关系7.流体静力学公式的应用五、气体平衡1.理想气体状态方程的计算2.弗拉索的原理及其应用3.气体的混合物和饱和汽4.气体的传递和扩散5.气体流动和气体固体反应的应用6.气体和液体的溶解度计算六、固体粒度和颗粒分离1.颗粒的基本性质:颗粒大小、形状和密度2.颗粒分布函数和粒度分析3.颗粒分离的基本过程和方法4.难磨性颗粒的碾磨过程5.颗粒的流动性和堆积性6.各种固体分离设备的工作原理和应用领域七、非均相反应工程1.反应器的分类和基本概念2.反应速率方程的推导和计算3.反应的平均摩尔体积变化和速率方程的确定方法4.反应动力学和机理的研究方法5.混合反应和连续反应的计算6.活性物质的拟合反应速率方程7.补偿反应的控制和模拟以上是化工原理的主要知识点总结,希望能够帮助你更好地进行复习和理解。
祝你取得好成绩!。
化工原理知识点总结复习重点(完美版)
第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。
表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。
此方程式只适用于静止的连通着的同一种连续的流体。
应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计微差压差计二、流体动力学● 流量质量流量 m S kg/s m S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算X 围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。
三、流体流动现象:流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。
(完整版)化工原理各章节知识点总结
(完整版)化工原理各章节知识点总结第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。
欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。
定态流动流场中各点流体的速度u 、压强p 不随时间而变化。
轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。
流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。
系统与控制体系统是采用拉格朗日法考察流体的。
控制体是采用欧拉法考察流体的。
理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。
粘性的物理本质分子间的引力和分子的热运动。
通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。
气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。
总势能流体的压强能与位能之和。
可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。
有关的称为可压缩流体,无关的称为不可压缩流体。
伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。
平均流速流体的平均流速是以体积流量相同为原则的。
动能校正因子实际动能之平均值与平均速度之动能的比值。
均匀分布同一横截面上流体速度相同。
均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度, 故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
稳定性与定态性稳定性是指系统对外界扰动的反应。
定态性是指有关运动参数随时间的变化情况。
边界层流动流体受固体壁面阻滞而造成速度梯度的区域。
(完整版)化工原理知识点总结整理
一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。
2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。
3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。
4.两种流动形态:层流和湍流。
流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。
当流体层流时,其平均速度是最大流速的1/2。
5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。
6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。
孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。
其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。
转子流量计的特点——恒压差、变截面。
8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。
)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。
9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。
化工原理知识点总结整理
化工原理知识点总结整理一、化工原理概述化工原理是指研究化学工程中的基本原理和基本规律的学科。
它是化学工程学的基础和核心课程之一,对于理解和掌握化学工程的基本理论和方法具有重要意义。
化工原理主要包括物质的结构与性质、物质的转化过程、物质的传递过程等方面的内容。
二、化工原理知识点总结1. 物质的结构与性质- 化学键:包括离子键、共价键、金属键等,是物质中原子之间相互结合的力量。
- 分子结构:分子是由原子通过化学键结合而成的,分子的结构对物质的性质有重要影响。
- 力场理论:描述分子内部原子间相互作用的理论,包括键长、键角、键能等参数。
- 物质的性质:包括物质的物理性质和化学性质,如密度、熔点、沸点、溶解度、化学反应等。
2. 物质的转化过程- 化学反应:指物质之间发生化学变化的过程,包括反应的速率、平衡常数等。
- 反应动力学:研究化学反应速率与反应条件、反应物浓度等因素之间的关系。
- 反应平衡:当反应物与生成物的浓度达到一定比例时,反应达到平衡状态,平衡常数描述了平衡状态下反应物与生成物浓度之间的关系。
3. 物质的传递过程- 质量传递:指物质在不同相之间的传递过程,如气体的扩散、液体的对流等。
- 能量传递:指物质中能量的传递过程,包括传热和传质两个方面。
- 传热:研究物质中热量的传递方式和传递速率,包括传导、对流和辐射等。
- 传质:研究物质中组分的传递方式和传递速率,包括扩散、对流和反应等。
4. 化工原理中的基本计算方法- 质量平衡:根据物质的输入和输出量来计算系统中物质的平衡情况。
- 能量平衡:根据能量的输入和输出量来计算系统中能量的平衡情况。
- 流程图:用图形的形式表示化工过程中物质和能量的流动情况,方便进行分析和计算。
5. 化工原理中的常用设备和工艺- 反应器:用于进行化学反应的设备,包括批式反应器、连续式反应器等。
- 分离设备:用于将混合物中的组分分离的设备,包括蒸馏塔、萃取塔等。
- 传质设备:用于促进物质传质的设备,包括填料塔、换热器等。
化工原理知识点总结
化工原理知识点总结1. 化工原理简介:化工原理是研究化学反应过程及其工艺条件、能量传递和物料传递等基本规律的学科,为化学工艺的设计、改进和优化提供理论基础。
2. 化学反应动力学:研究化学反应速率与反应物浓度、温度、压力等因素的关系。
常用动力学模型有零级、一级和二级反应动力学模型。
3. 热力学:研究物质在不同条件下的热力学性质,如焓、熵、自由能等。
常用的热力学模型有理想气体模型、理想溶液模型等。
4. 质量守恒:化工过程中,物料的质量总量在任何情况下都是保持不变的。
质量守恒方程可以用来描述物料在化工过程中的流动和转化。
5. 能量守恒:能量守恒是指在化工过程中能量的总量保持不变。
能量守恒方程可以用来描述能量的传递和转化。
6. 流体力学:研究流体的性质和流动规律。
常用的流体力学方程有连续性方程、动量方程和能量方程。
7. 反应器设计:根据反应动力学和热力学的知识,设计和选择适当的反应器,以实现期望的反应效果。
8. 分离工艺:将化工过程中的混合物分离成纯净的组分。
常用的分离方法包括蒸馏、萃取、吸附、结晶、膜分离等。
9. 催化剂:催化剂能够加速化学反应速率,同时不参与反应本身。
催化剂通常提供合适的活化能降低剂量。
10. 传热:研究热量在物体之间传导、对流和辐射的过程。
传热过程是化工过程中能量交换的重要方面。
11. 反应平衡:当化学反应达到一种稳定状态时,正向反应与反向反应的速率相等。
反应平衡可以根据平衡常数来描述。
12. 操作过程安全:化工过程中需要注意操作过程的安全,如避免爆炸、毒性物质的泄露等。
合理设计和控制工艺参数是保证操作过程安全的关键。
13. 环境保护:化工过程中需要注意减少对环境的污染和危害。
合理的废物处理和资源利用是环境保护的重要内容。
14. 化工装置:化工装置是指用来进行化工过程的设备和设施,例如反应器、分离设备、传热设备等。
15. 工艺流程图:用图形和符号表示化工过程的流程、设备和物料流动方式,便于理解和分析工艺过程。
(完整版)化工原理基本知识点
第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。
(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。
表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==g液体的粘度随温度升高而减小,气体粘度随温度升高而增大。
三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。
111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。
四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。
(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。
圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。
化工原理的知识点总结
化工原理的知识点总结一、物质的转化1. 化学反应原理化学反应是化工生产中最基本的过程之一,其原理是指通过物质之间的相互作用,原有物质的化学成分和结构发生变化,产生新的物质。
在化学反应中,往往会 Begingroup 产生热量、释放或者吸收气体以及溶解或析出固体物质。
常见的反应类型包括酸碱反应、氧化还原反应、置换反应、水解反应等。
2. 反应热力学反应热力学研究的是化学反应在不同途径下产生的能量变化规律。
反应热力学的主要内容包括热力学系统、热力学函数、热力学平衡、化学平衡等。
通过反应热力学的研究,可以预测化学反应的进行方向和速率,为化工生产提供重要的理论指导。
3. 反应动力学反应动力学研究的是化学反应速率随时间变化规律。
反应动力学的主要内容包括反应速率和反应速率常数的确定、反应速率方程和速率常数的推导等。
通过反应动力学的研究,可以基于反应速率的规律来设计和优化化工反应器,提高反应效率,减少能耗,降低生产成本。
二、传热传质1. 传热原理传热是指热量从高温物体传递到低温物体的过程。
传热原理主要包括热传导、对流传热和辐射传热三种方式。
热传导是指热量在固体物质内部传递的过程,对流传热是指热量通过流体介质传递的过程,而辐射传热是指热量通过辐射的方式传递的过程。
2. 传质原理传质是物质在空间内由高浓度区向低浓度区扩散的过程。
传质原理主要包括扩散、对流传质和表面传质。
扩散是指物质在固体、液体或气体中沿浓度梯度传输的现象,对流传质是指物质通过流体介质进行传送的过程,表面传质是指物质在表面上通过吸附和蒸发进行传递的过程。
三、流体力学1. 流体性质流体是一种无固定形态的物质,其主要特点包括不能承受剪切应力、易于流动和易于变形。
在化工过程中,流体的性质对设备设计和流体流动有重要影响。
流体的主要性质包括黏度、密度、表观黏度、流变性等。
2. 流体流动流体流动是指流体在管道或设备内部的运动过程。
流体的流动过程包括定常流动和非定常流动,同时还会受到雷诺数、流态、雷诺方程等因素的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体流动知识点一、 流体静力学基本方程式或 注意:1、应用条件:静止的连通着的同一种连续的流体。
2、压强的表示方法: 绝压—大气压=表压 表压常由压强表来测量;大气压—绝压=真空度 真空度常由真空表来测量。
3、压强单位的换算:1atm=760mmHg=10.33mH 2O=101.33kPa=1.033kgf/cm2=1.033at4、应用:水平管路上两点间压强差与U 型管压差计读数R 的关系:处于同一水平面的液体,维持等压面的条件必须时静止、连续和同一种液体 二、定态流动系统的连续性方程式––––物料衡算式二、 定态流动的柏努利方程式––––能量衡算式以单位质量流体(1kg 流体)为基准的伯努利方程:讨论点:1、流体的流动满足连续性假设。
)(2112z z g p p -+=ρgh p p ρ+=0gRp p A )(21ρρ-=-常数常数=====≠ρρρρuA A u A u w s A 222111,常数常数======uA A u A u V s A 2211,ρ21221221///圆形管中流动,常数d d A A u u A ===ρf h u P gZ We u P gZ ∑+++=+++2222222111ρρ2、理想流体,无外功输入时,机械能守恒式:3、可压缩流体,当Δp/p 1<20%,仍可用上式,且ρ=ρm 。
4、注意运用柏努利方程式解题时的一般步骤,截面与基准面选取的原则。
5、流体密度ρ的计算:理想气体 ρ=PM/RT混合气体混合液体上式中:x vi ––––体积分率;x wi ––––质量分率。
6、gz 、u 2/2、p/ρ三项表示流体本身具有的能量,即位能、动能和静压能。
∑h f 为流经系统的能量损失。
We 为流体在两截面间所获得的有效功,是决定流体输送设备重要参数。
输送设备有效功率Ne=We·w s ,轴功率N=Ne/η(W )7、以单位重量流体为基准的伯努利方程, 各项的单位为m : [m] 22112212g 22f P u P u Z He Z H g g gρρ+++=+++ 以单位体积流体为基准的伯努利方程,各项的单位为Pa : []22e f a f f u W gh p h p p h ρρρρρ∆=+∆++∑∆=∑而2222222111u P gZ u P gZ ++=++ρρvn n v v m x x x ρρρρ+++= 2211f e H gu g p Z H +∆+∆+∆=22ρnwn w m w m x x x ρρρρ+++= 22112212112222f u u gZ P We gZ P h ρρρρρρ+++=+++∑3、流型的比较:①质点的运动方式;②速度分布,层流:抛物线型,平均速度为最大速度的0.5倍;湍流:碰撞和混和使速度平均化。
③阻力---层流:粘度摩擦力,湍流:粘度摩擦力+湍流切应力。
四、柏努利式中的∑h f(一)流动类型:1、雷诺准数Re 及流型Re=du ρ/μ=du/ν,μ为动力粘度,单位为[Pa·S];ν=μ/ρ为运动粘度,单位[m 2/s]。
层流:Re ≤2000,湍流:Re ≥4000;2000<Re<4000为不稳定过渡区。
2、牛顿粘性定律 τ=μ(du/dy)气体的粘度随温度升高而增加,液体的粘度随温度升高而降低。
(二)流体在管流动时的阻力损失[J/kg] 1、直管阻力损失h f 宁公式(层流、湍流均适用). 层流: 哈根—泊稷叶公式。
'ff f h h h +=∑ρλf f p u d l h ∆==2223264)(d lu h R R f f e e ρμλλ===或即湍流区(非阻力平方区):高度湍流区(阻力平方区):具体的定性关系参见摩擦因数图,并定量分析h f 与u 之间的关系推广到非圆型管 注:不能用de 来计算截面积、流速等物理量。
2、局部阻力损失'f h①阻力系数法, 2'1.00.52f u h ζζζ===出口进口②当量长度法, 2'2e f l u h d λ=注意:截面取管出口外侧,对动能项及出口阻力损失项的计算有所不同。
当管径不变时,2()()2e l l u hf d λζ∑+∑=+∑ 在变径管中作稳定流动时,不同管径的管路加和, 2i ()()2i ei i i l l u hf d λζ∑+∑=+∑∑流体在水平变径管中作稳定流动,在管径缩小的地方其静压能减小。
流体在水平等径管中作稳定流动流体由于流动而有摩擦阻力损失,流体的流速沿管长不变。
流体流动时的摩擦阻力损失h f 所损失的是机械能中的静压能项。
完全湍流(阻力平方区)时,粗糙管的摩擦系数数值只取决于相对粗糙度。
),(d R f e ελ=)(d f ελ=润湿周边长流通截面积⨯===44H e r d d水由敞口恒液位的高位槽通过一管道流向压力恒定的反应器,当管道上的阀门开度减小时,水流量将减小,摩擦系数增大,管道总阻力不变。
五、管路计算I. 并联管路:1、 2、 各支路阻力损失相等。
即并联管路的特点是:(1)并联管段的压强降相等;(2)主管流量等于并联的各管段流量之和;(3)并联各管段中管子长、直径小的管段通过的流量小。
II .分支管路:1、 2、分支点处至各支管终了时的总机械能和能量损失之和相等。
六、柏努利方程式在流量测量中的运用1、毕托管用来测量管道中流体的点速度。
2、孔板流量计为定截面变压差流量计,用来测量管道中流体的流量。
随着Re 增大其孔流系数C 0先减小,后保持为定值。
3、转子流量计为定压差变截面流量计。
注意:转子流量计的校正。
测流体流量时,随流量增加孔板流量计两侧压差值将增加,若改用转子流量计,随流量增加转子两侧压差值将不变。
习 题一、填空1、边长为a 的正方形管道,其当量直径de 为 。
(a )321V V V V ++=321f f f f h h h h ∑=∑=∑=∑321V V V V ++=2、在定态流动系统中,水连续地从粗圆管流入细圆管,粗管径为细管的2倍。
则细管水的流速为粗管流速的___________倍。
(4)3、流体在圆管流动时的摩擦阻力可分为__ 和___两种。
局部阻力的计算方法有___________法和_________法。
(直管阻力,局部阻力,阻力系数,当量长度)4、在静止的同一种连续流体的部,各截面上___能与____能之和为常数。
(位,静压)5、开口U型管压差计是基于____原理的测压装置,它可以测量管路中________上的_________或__________。
(流体静力学任意截面表压强真空度)6、流体在管作湍流流动时,在紧贴管壁处速度为______,邻近管壁处存在____层,且Re值越大,则该层厚度越____。
(零,滞流(或层流)薄(或小)7、实际流体在直管流过时,各截面上的总机械能___守恒。
因实际流体流动时有_________。
(不,摩擦阻力)8、流体在一段装有若干个管件的等径直管中流过的总能量损失的通式为________,它的单位为______。
(2()()2el l uhfdλζ∑+∑=+∑,J/kg)9、定态流动时,不可压缩理想流体在管道中流过时各截面上____相等。
它们是_____________之和,每一种能量____________,但可以互相转换。
(总机械能;位能、动能和静压能、不一定相等)10、某设备的真空表读数为500mmHg,设备外环境大气压强为640mmHg,则它的绝对压强为_________Pa。
(640-500=140mmHg=140×133.32=1.866×104Pa。
)11、流体在圆形直管作滞流(层流)流动时,其速度分布呈_________形曲线,中心最大速度为平均速度的_____倍。
此时摩擦系数λ与_____无关,只随________加大而____。
(抛物线,2,ε/d,Re,减小)12、流体在圆形直管流动时,在湍流区则摩擦系数λ与__及___有关。
在完全湍流区则λ与雷诺系数的关系线趋近于_____线。
(Re,ε/d,水平)二、选择题1、判断流体流动类型的是( B )(A) Eu准数(B) Re准数(C)ε/d (D)Δpf2、流体在圆形直管作定态流动,雷诺准数Re=1500,则其摩擦系数应为( B )(A)0.032 (B) 0.0427 (C) 0.0267 (D) 无法确定3、在法定单位制中,粘度的单位为( D )(A)cp (B)p (C)g/( cm.s ) (D)Pa s4、在静止流体部各点的静压强相等的必要条件是( D )(A)同一种流体部(B)连通着的两种流体(C)同一种连续流体(D)同一水平面上,同一种连续的流体5、在一水平变径管道,细管截面A及粗管截面B与U管压差计相连,当流体流过时,U管压差计测量的是( C )(A) A、B两截面间的总能量损失(B) A、B两截面间的动能差(C) A、B两截面间的压强差(D) A、B两截面间的局部阻力5、管路由直径为Φ57×3.5mm的细管,逐渐扩大到Φ108×4mm的粗管,若流体在细管的流速为4m/s。
则在粗管的流速为( B )(A) 2m/s (B)1m/s (C) 0.5m/s (D) 0.25m/s6、气体在直径不变的圆形管道作等温定态流动,则各截面上的( D )(A)速度相等(B)体积流量相等(C)速度逐渐减小(D)质量流速相等7、湍流与滞流的本质区别是( C )(A) 湍流的流速大于滞流的 (B) 湍流的Re值大于滞流的(C) 滞流无径向脉动,湍流有径向脉动 (D) 湍流时边界层较薄8、在阻力平方区,摩擦系数λ( C )(A)为常数,与Re,ε/d 均无关(B)随Re值加大而减小(C)与Re值无关,是ε/d的函数(D)是Re值与ε/d的函数9、流体在圆形直管中作滞流流动时,其直管阻力损失与流速u的关系为(B)A、与u2成正比B、与u成正比C、与u1.75成正比D、与u0.55成正比三、判断题1、在计算突然扩大及突然缩小的局部阻力时,公式中的流速应该用小管中的流速。
(√)2、不可压缩的理想流体在管道作定态流动,若无外功加入时,则流体在任一截面上的总压头为一常数。
(√)3、流体在管道任意截面径向上各点的速度都是相同的,我们把它称为平均流速。
(×)4、在同一种连续流体,处于同一水平面上各点的压强都相等。
(×)5、某定态流动系统中,若管路上安装有若干个管件、阀门和若干台泵,则此管路就不能运用连续性方程式进行计算。
(×)6、用U管压力计测量管路中两点的压强差,其压差值只与读数R和两流体的密度差有关,而与U管的粗细、长短无关。