超声波焊接工作原理

合集下载

超声波焊接机原理是什么

超声波焊接机原理是什么

超声波焊接机原理是什么
超声波焊接是一种利用超声波振动引起的材料分子间的摩擦产生热量来实现焊接的方法。

其基本原理是通过将电能转化为超声波能,然后将超声波能转化为机械振动能,再通过焊接头传递给被焊接的材料。

具体来说,超声波焊接机中通常包含一个压头和一个换能器。

换能器将电能转化为超声波能,在超声波振动的作用下,焊接头不断地压在需要焊接的材料上。

由于焊接头的振动频率非常高(通常在20kHz以上),使焊接头在短时间内产生大量的微小振动,这种振动将会产生摩擦。

焊接头的振动能量被转移到焊接材料上,使材料表面分子不断地发生碰撞和摩擦,导致材料温度升高。

当材料温度升高到足够高时,材料变软,分子间的结合力变弱,焊接头的压力使材料表面分子之间发生扩散和交联,从而实现焊接。

总的来说,超声波焊接机利用超声波的振动引起的材料分子间的摩擦产生的热量,使材料表面温度升高,从而实现焊接。

这种焊接方法具有速度快、操作简单、能耗低等优点,在工业生产中得到广泛应用。

超声波不同焊接方式的工作原理各是什么?

超声波不同焊接方式的工作原理各是什么?

超声波不同焊接方式的工作原理各是什么?一:超声波塑料焊接工作原理机器将电能通过超声换能器转变成为超声能(即频率超出人耳听觉阈的高频机械振动能),该能量通过焊头传导到塑料工件上,以每秒上万次的超声频率及一定的振幅使塑料工件的接合面剧烈磨擦后熔化。

振动停止后维持在工件上的短暂压力使两焊件以分子链接方式凝固为一体。

一般焊接时间小于1秒钟,所得到的焊接强度可与本体相媲美。

超声波塑料焊接机可用于热塑性塑料的对焊,亦可根据客户需求更换焊头,用于铆焊、点焊、嵌入、切除等加工工艺二:旋转摩擦式塑料焊接工作原理旋转摩擦式塑料焊接机一般用来焊接两个圆形热塑性塑料工件。

焊接时,一个工件被固定在底模上,另一个工件在被固定的工件表面进行自转运动。

由于有一定的压力作用在两个工件上,工件间摩擦产生的热量可以使两个工件的接触面熔化并形成一个禁固且密闭的结合。

三:塑料热板焊接工作原理热板焊接机主要通过一个由温度控制的加热板来焊接塑料件。

焊接时,加热板置于两个塑料件之间,当工件紧贴住加热板时,塑料开始熔化。

在一段预先设置好的加热时间过去之后,工件表面的塑料将达到一定的熔化程度,此时工件向两边分开,加热板移开,随后两片工件并合在一起,当达到一定的焊接时间和焊接深度之后,整个焊接过程完成。

四:振动摩擦式塑料焊接工作原理振动焊接是摩擦焊接过程,其间被焊接的制件在压力下磨擦到一起直到生成的磨擦和剪切热量使头蚧面达到充分熔融状态。

一旦熔融膜已经形成渗入到足够深的沓接区域,相对运动停止,在压力作用下焊缝冷却并固化。

振动焊接适用几乎所有的热塑笥塑料,往复运动方向上具有允许的无约束运动焊缝的制件,中型或大型制件。

振动焊接尤其适合热塑性材料,包括无定形树脂如ABS/PC、PVC、PMMA及PES;半结晶树脂如HDPE、PA、PP、TPO。

五:塑料激光焊接工作原理激光焊接技术是借助激光束产生的热量使塑料接触面熔化,进而将热塑性片材、薄膜或模塑零部件粘结在一起的技术。

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超音波焊接机的工作原理是:是通过振荡电路振荡出高频信号由换能器转化成机械能(即频率超出人耳听觉阈的高频机械振动能),该能量通过焊头传导到塑料工件上,以每秒上几十万次的振动加上压力使塑料工件的接合面剧烈摩擦后熔化。

振动停止后维持在工件上的短暂压力使两焊件以分子链接方式凝固为一体。

一般焊接时间小于1秒钟,所得到的焊接强度可与本体相媲美。

超声波塑料焊接机可用于热塑性塑料的对焊,也用于铆焊、点焊、嵌入、切除等加工工艺。

根据产品的外观来设计模具的大小、形状。

超声波塑料焊接机由气压传动系统、控制系统、超声波发生器、换能器及工具头和机械装置等组成。

1、气动传动系统包括有:过滹器、减压阀、油雾器、换向器、节流阀、气缸等。

工作时首先由空压机驱动冲程气缸,以带动超声换能器振动系统上下移动,动力气压在中小功率的超声波焊接中气压根据焊接需要调定。

2、控制系统控制系统由时间继电器或集成电路时间定时器组成。

主要功能是:一是控制气压传动系统工作,使其焊接时在定时控制下打开气路阀门,气缸加压使焊头下降,以一定压力压住被焊物件,当焊接完后保压一段时间,然后控制系统将气路阀门换向,使焊头回升复位;二是控制超声波发生器工作时间,本系统使整个焊接过程实现自动化,操作时只启动按钮产生一个触发脉冲,便能自动地完在本次焊接全过程。

整个控制系统的顺序是:电源启动一触发控制信号气压传动系统,气缸加压焊头下降并压住焊触发超声发生器工作,发射超声并保持一定焊接时间去除超声发射继续保持一定压力时间退压,焊头回升焊接结束。

3、超声波发生器(1)功率较大的超声波塑料焊接机,发生器信号采用锁相式频率自动跟踪电路,使发生器输出的频率基本上与换能器谐振频率一致。

(2)功率在500W以上的超声波塑料焊接机所用发生器采用自激式功率振荡器,也具有一定的频率跟踪能力。

4、超声波焊接机使用的声学系统,主要是有换能器和工具头构成的。

一、打开电源无显示原因:保险丝熔断解决方法:1、检查功率管是否短路2、更换保险丝二、超声波测试无电流显示原因:1、功率管烧毁2、高压电容烧毁3、继电器控制线路部分有故障解决方法:更换相关烧毁零件三、起声波测试电流偏大、过载原因:1、焊头没锁紧或有裂纹2、若不带焊头,电流大,此换能器或二级杆老化或有裂纹二、3、功率管特性有变异或烧毁4、功率放大电路部分有故障解决方法:更换相关零件四、焊接时电流偏大、过载原因:1、气压偏高2、焊头过大,冲击电流大3、触发压力高,延迟时间长4、二级杆变比偏高解决方法:1、调低气压2、使用较大功率机型3、调低触发压力,减少延迟时间三、4、换用低倍数二级杆五、触发触发开关焊头不落原因:1、急停开关未复位2、触发开关不能同时触发或其中一个接触不良3、程序控制板有问题解决方法:1、将急停开关复位2、检测使两个触发开关能同时触发3、检测程序板排除故障,一般为IC问题六、触发触发开关后,超声时间非常长或者保压时间非常长原因:焊接时间或保压时间波段开关断路解决方法:调整波段开关触点,使之接触良好七、触发触发开关后,超声波不能触发原因:1、压力触发开关损坏2、程序板有问题解决方法:1、更换压力触发开关或小弹簧2、检测程序板排除故障,一般为IC问题四、一、超声波金属焊接机的工作原理:当超声波发生器施加功率于换能器,换能器的振动通过变幅杆得到机械振幅放大,并传到工具头;强烈的超声振动力在垂直压力作用下加到被焊物上,使两金属间产生高频摩檫。

超声焊接原理

超声焊接原理

超声焊接原理全文共四篇示例,供读者参考第一篇示例:超声焊接是一种将金属或塑料物体通过超声波振动进行连接的加工技术。

它广泛应用于汽车、电子、医疗器械等行业,具有快速、高效、环保等优点。

超声焊接的原理是利用超声波高频振动的特性,在接触面产生摩擦热,使材料局部加热并软化,然后通过施加压力将两个材料连接在一起。

超声焊接的原理主要分为以下几个步骤:第一步是能量转换。

超声振动器产生的高频振动能量通过焊头传递给工件,使其表面微震动,产生高频摩擦热。

这种高频振动使得工件分子结构产生变化,形成塑性变形,达到焊接的目的。

第二步是焊接面的预处理。

在焊接前,需要对工件表面进行清洁处理,以确保焊接面无杂质,确保焊接质量。

同时还需要对工件进行定位,使焊接面对齐,以便焊接过程中产生均匀的焊接接触压力。

第三步是焊接过程控制。

在实际焊接过程中,需要控制超声波功率、振幅、焊接时间等参数,以适应不同材料的焊接需求。

通过精确调节这些参数,可以保证焊接过程的稳定性和可靠性。

第四步是焊接质量检测。

焊接完成后,需要进行焊接质量检测,检查焊接面的牢固性和质量。

通过超声波检测仪器可以检测焊缝的密实性和质量,确保焊接的可靠性。

超声焊接原理通过超声波的高频振动产生摩擦热,实现材料的局部加热和塑性变形,最终将两个材料连接在一起。

这种焊接技术不仅可以提高工件的生产效率,还可以降低焊接的成本和能耗,是一种环保节能的焊接方法。

在未来的发展中,超声焊接技术将会得到更广泛的应用。

第二篇示例:超声焊接是一种利用超声波振动能量产生的热量来实现材料的连接的一种焊接方法。

它是一种非接触式的焊接方式,通过将超声波振动传递到焊接材料表面,产生的摩擦热能使材料表面达到熔化点,从而实现焊接。

超声焊接的原理是利用超声波在焊接头部引起的高频振动,通过摩擦热的作用使焊接材料局部升温至其熔化点,然后冷却固化形成焊接接头。

超声波传递到焊接头部后,由于头部和工件之间的相互作用,形成了频率一定的机械振动能量,这种振动能量被称为纵波。

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种常用于金属和塑料焊接的设备,它利用超声波振动将工件加热并连接在一起。

以下是超声波焊接机的工作原理的详细解释。

1. 超声波发生器:超声波焊接机的核心部件是超声波发生器。

它产生高频的电信号,并将其转换为机械振动。

2. 换能器:超声波发生器的电信号被传递到换能器上。

换能器是由压电陶瓷材料制成的,能够将电信号转换为机械振动。

换能器的振动频率通常在20kHz到70kHz之间。

3. 振动焊头:换能器产生的机械振动通过焊头传递给工件。

焊头通常由钛合金制成,具有良好的导热性和机械强度。

4. 压力系统:超声波焊接机通过压力系统将工件保持在一定的压力下。

这有助于确保焊接的质量和稳定性。

5. 聚焦角:焊头的设计通常具有特定的聚焦角度,以确保超声波能够集中在焊接区域。

聚焦角度的选择取决于工件的材料和形状。

6. 界面磨擦:焊接过程中,焊头施加在工件上的压力会产生界面磨擦。

这种磨擦会产生热量,使工件表面温度升高。

7. 塑性变形:由于焊头的振动和界面磨擦,工件表面的温度升高,材料开始软化。

在一定的压力下,工件开始发生塑性变形。

8. 熔融:随着温度的升高和塑性变形的发生,工件表面的材料开始熔融。

熔融的材料填充在焊接区域,并与另一工件表面的熔融材料相互融合。

9. 冷却固化:焊接完成后,焊接区域的温度会逐渐降低。

熔融的材料会在冷却过程中固化,形成坚固的焊接点。

超声波焊接机的工作原理基于超声波的机械振动和界面磨擦产生的热量。

它可以实现快速、高效、无污染的焊接过程,适合于各种金属和塑料材料的连接。

必能信超声波焊接机工作原理

必能信超声波焊接机工作原理

必能信超声波焊接机工作原理
超声波焊接机是一种常用的无损连接技术,其主要工作原理是利用高频超声波振动引起的热量和压力,在连接两个或更多物体时产生强大的摩擦热来融合它们。

超声波焊接机的工作原理如下:
1. 超声波振动:超声波焊接机通过发生器将电能转换为高频机械振动,将频率提高到20 kHz以上,一般为20-40 kHz。

2. 运动传递:超声波振动通过波导传递到焊接头,使其在垂直方向上产生振动。

3. 摩擦热:当两个焊接部位受到振动作用时,它们之间的接触面产生大量的摩擦热,摩擦热可以使材料表面融化并形成熔池。

4. 压力作用:超声波焊接机的压头施加一定的垂直压力,使两个焊接部位之间的熔池流动并形成结合。

焊接头的几何形状和压力的大小对焊接质量有影响。

5. 冷却:当焊接头的振动停止时,熔池会迅速冷却,形成一条新的连接线。

超声波焊接机通常用于连接塑料、金属和复合材料等物体。

它具有不需要熔剂、不锈钢等特殊情况下很好的焊接效果,而且焊接速度快,能耗低,不会污染环境等优点。

- 1 -。

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种常用于塑料焊接的设备,它利用超声波振动产生的热能来实现材料的焊接。

下面将详细介绍超声波焊接机的工作原理。

1. 超声波发生器超声波发生器是超声波焊接机的核心部件,它能将电能转换为机械振动能。

超声波发生器中的压电陶瓷片(也称为换能器)会受到电场的作用而振动,产生高频的机械振动。

2. 振动系统超声波发生器通过振动系统将机械振动传递到焊接头部。

振动系统通常由振动块、振动模具和焊接头组成。

振动块负责将超声波发生器产生的机械振动传递给振动模具,而振动模具则将振动传递给焊接头。

3. 焊接头焊接头是超声波焊接机的关键部件,它由一个或者多个焊接角或者焊接面组成。

焊接头的设计根据被焊接材料的形状和要求来确定。

当焊接头与被焊接材料接触时,超声波振动会导致材料份子之间的磨擦,从而产生热能。

4. 塑料熔融超声波振动引起的热能会使被焊接材料局部熔融。

焊接头的振动会使材料表面迅速熔化,形成一个熔融池。

熔融池内的材料会与相邻的材料发生交流和混合,从而实现材料的焊接。

5. 压力控制超声波焊接机在焊接过程中还需要施加一定的压力。

压力的作用是将熔融的材料压实,使其在冷却过程中形成坚固的焊接接头。

压力的大小需要根据被焊接材料的性质和要求进行调整。

6. 冷却焊接完成后,超声波焊接机会住手振动并保持一定的压力,使焊接接头在冷却过程中固化。

冷却时间根据被焊接材料的性质和要求来确定。

冷却完成后,焊接接头就形成为了一个坚固的连接。

超声波焊接机的工作原理可以总结为:通过超声波发生器产生的机械振动,通过振动系统传递到焊接头,使被焊接材料局部熔融并施加一定的压力,最终形成一个坚固的焊接接头。

值得注意的是,超声波焊接机适合于焊接塑料材料,特殊是对于热敏感的材料而言,它是一种理想的焊接方法。

超声波焊接机具有焊接速度快、焊接强度高、焊接效果好等优点,因此在汽车、电子、医疗器械等行业得到广泛应用。

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种常用的焊接设备,它利用超声波的振动来实现材料的焊接。

其工作原理是通过将电能转换为机械振动,然后将振动传递给焊接部件,使其发生塑性变形,从而实现焊接。

超声波焊接机主要由以下几个部分组成:超声波发生器、换能器、焊接头和控制系统。

1. 超声波发生器:超声波发生器是超声波焊接机的核心部件,它能将电能转换为高频电能,并将其输出给换能器。

超声波发生器通常由振荡电路、功率放大器和变压器组成。

2. 换能器:换能器是将超声波发生器输出的电能转换为机械振动的部件。

它由压电陶瓷材料制成,当超声波发生器输出电能时,压电陶瓷会发生压缩和膨胀,从而产生高频机械振动。

3. 焊接头:焊接头是将超声波振动传递给焊接部件的部件。

它通常由焊头和压力系统组成。

焊头是将振动传递给焊接部件的介质,它通常由钛合金或铝合金制成,具有良好的导振性能。

压力系统用于施加一定的压力,使焊接部件在振动的作用下发生塑性变形。

4. 控制系统:控制系统用于控制超声波焊接机的工作参数,包括振动频率、振幅、焊接时间等。

通过调节这些参数,可以实现不同材料的焊接。

超声波焊接机的工作过程如下:首先,将需要焊接的部件放置在焊接头之间,然后通过控制系统设置焊接参数。

接下来,超声波发生器将电能转换为高频电能,并将其输出给换能器。

换能器将电能转换为机械振动,并将振动传递给焊接头。

焊接头的振动会使焊接部件发生塑性变形,从而实现焊接。

最后,根据设定的焊接时间,控制系统会停止超声波发生器的工作,完成焊接过程。

超声波焊接机具有以下优点:1. 高效:焊接速度快,一般只需几秒钟即可完成焊接。

2. 环保:焊接过程中不需要使用焊接剂或填充材料,无需额外的化学物质,对环境友好。

3. 节能:超声波焊接机的能耗较低,不会产生大量的热量。

4. 焊接强度高:焊接接头强度高,焊接质量稳定可靠。

5. 适用范围广:适用于金属、塑料等多种材料的焊接。

总结:超声波焊接机利用超声波振动实现材料的焊接,通过超声波发生器、换能器、焊接头和控制系统的协同工作,将电能转换为机械振动,并将其传递给焊接部件,从而实现焊接。

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种常用于金属、塑料等材料焊接的设备,其工作原理是利用超声波的振动产生磨擦热,使材料表面温度升高,从而实现焊接的目的。

下面将详细介绍超声波焊接机的工作原理。

1. 超声波发生器超声波焊接机的核心部件是超声波发生器。

超声波发生器通过电能转换为机械振动,产生频率高于20kHz的超声波。

这些超声波通过振动系统传导到焊接头部,产生焊接所需的振动。

2. 振动系统振动系统由振动发生器、振动放大器和换能器组成。

振动发生器产生电信号,经过振动放大器放大后,传递给换能器。

换能器将电能转换为机械振动,通过焊接头传导到工件上,使工件表面产生磨擦热。

3. 焊接头焊接头是超声波焊接机的关键部件,它将超声波振动传导到工件上。

焊接头通常由金属材料制成,具有特定的形状和尺寸。

焊接头的形状和尺寸需根据被焊接材料的特性来设计,以获得最佳的焊接效果。

4. 工件准备在进行超声波焊接之前,需要对工件进行准备。

首先,将待焊接的工件放置在焊接头下方,确保工件与焊接头密切接触。

然后,根据焊接要求,选择合适的焊接参数,如振幅、压力、时间等。

5. 焊接过程一旦工件准备就绪,超声波焊接机就可以开始工作了。

超声波发生器产生的振动信号通过振动系统传递到焊接头上,焊接头将振动传导到工件上。

工件表面由于超声波的振动而产生磨擦热,使工件表面温度升高。

当工件表面温度达到熔点时,焊接材料开始熔化。

同时,焊接头施加的压力使熔化的焊接材料相互接触并结合在一起。

随着焊接头的振动继续传导,焊接材料逐渐冷却固化,形成坚固的焊接接头。

6. 焊接质量控制为确保焊接质量,超声波焊接机通常会配备一些质量控制装置。

例如,可以通过监测焊接过程中的振幅、压力和时间等参数来实时监控焊接质量。

如果浮现异常情况,如焊接温度不足或者焊接时间过长等,可以及时调整焊接参数,以确保焊接质量。

总结:超声波焊接机通过超声波的振动产生磨擦热,使工件表面温度升高,从而实现焊接的目的。

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机的工作原理:超声波焊接机是一种利用超声波振动产生的热能来实现材料的焊接的设备。

它主要由超声波发生器、振动系统、焊接头和控制系统组成。

1. 超声波发生器:超声波发生器是超声波焊接机的核心部件,它能够将电能转化为超声波振动能。

在超声波发生器中,电能首先被转化为高频电能,然后通过压电陶瓷换能器将电能转化为机械振动能。

2. 振动系统:振动系统由压电陶瓷换能器和振动增幅器组成。

压电陶瓷换能器接收到超声波发生器产生的机械振动能后,将其转化为超声波振动能。

振动增幅器将超声波振动能进行放大,并传递到焊接头。

3. 焊接头:焊接头是超声波焊接机焊接材料的关键部件。

它通常由焊接头块和焊接头角组成。

焊接头块负责传递超声波振动能到焊接材料上,而焊接头角则用于集中能量和控制焊接过程。

4. 控制系统:控制系统是超声波焊接机的智能化部份,它能够监测和控制焊接过程中的各项参数,以确保焊接质量。

控制系统通常包括超声波发生器控制、振动系统控制、焊接头温度控制等功能。

超声波焊接机的工作原理如下:首先,超声波发生器产生高频电能,并将其转化为机械振动能。

然后,振动系统将机械振动能传递到焊接头。

焊接头将超声波振动能传递到焊接材料上,使其产生热能。

热能可以使焊接材料的表面温度升高,从而使其软化和熔化。

当焊接材料熔化后,焊接头施加一定的压力,将焊接材料连接在一起。

最后,焊接头住手振动,焊接材料冷却固化,完成焊接过程。

超声波焊接机的工作原理基于超声波的特性,超声波具有高频、高能量和高速传播等特点。

通过利用超声波的特性,超声波焊接机能够实现高效、快速、无污染的焊接过程。

它广泛应用于塑料、金属、纺织品等领域的焊接工艺中,具有焊接速度快、焊接强度高、焊接接头美观等优点。

超声波焊接原理

超声波焊接原理

超声波焊接原理
超声波焊接是利用超声波的机械振动能量将两个物体通过牢固的结合形成一体的焊接技术。

其原理基于以下几个步骤:
1. 超声波的产生:通过超声波发生器产生高频电信号,再通过换能器将电能转换为机械振动能量。

2. 超声波的传导:超声波能量通过变幅器和共振体传导到焊接头部。

变幅器增幅电信号,使其振幅达到数十微米,共振体能够将信号传导到焊接头。

3. 介质的作用:焊接头部和物体表面之间加入一层介质,常用的有液体或者薄膜。

介质的作用是传递超声波能量并提供均匀的压力。

4. 界面振动:超声波通过介质传导到物体表面后,产生机械振动。

由于介质和物体表面的分子间力的相互作用,界面处的分子开始随着超声波振动。

5. 界面松动:随着界面分子的振动,分子之间的键开始松动,使得两个物体表面之间的间隙变大。

6. 摩擦发热:由于振动引起的分子间摩擦,界面处的温度迅速上升,松动的分子逐渐进一步松动。

7. 塑性变形:随着温度上升,物体表面的塑性材料开始软化,界面的表面变得粘性。

这使得两个物体表面更容易接触并形成
定位。

8. 冷却固化:当超声波停止传递时,焊接头部冷却并逐渐固化,使得两个物体牢固地连接在一起。

超声波焊接利用超声波的振动能量和摩擦发热将物体表面加热、软化并连接在一起。

其具有焊接速度快、能量消耗低、连接牢固可靠等优点,广泛应用于汽车、电子、医疗器械等行业。

超声焊接原理

超声焊接原理

超声焊接原理
超声焊接是一种利用超声波产生的高频振动来实现金属或塑料零件的焊接的技术。

其原理是通过将超声波能量转化成机械振动能量,使接触表面产生相对位移和摩擦热,从而实现材料的熔融和焊接。

超声焊接的原理主要包括以下几个方面:
1.超声波的产生:超声焊接机通过压电晶体或磁致伸缩材料产生高频振动,将电能转化为机械能,产生超声波。

2.超声波的传播:超声波通过焊接头(sonotrode)传播到焊接界面,焊接头的振动频率通常在20kHz至70kHz之间,可根据焊接材料的类型和厚度进行调节。

3.接触表面的摩擦:焊接头对接触表面施加振动,使接触表面产生相对位移和摩擦热。

在金属焊接中,摩擦热可以导致材料表面的塑性变形和局部的熔化;在塑料焊接中,摩擦热可以使塑料材料表面软化。

4.焊接压力的施加:在超声振动的作用下,通过施加一定的焊接压力,将材料的表面紧密接触,以促进熔融和焊接。

5.焊接质量的控制:通过控制超声振动的参数,如频率、振幅、焊接时间等,以及控制焊接压力和温度,可以实现对焊接过程和焊接质量的精确控制。

超声焊接适用于金属和塑料等材料的焊接,具有焊接速度快、无需焊接辅料、无污染等优点,广泛应用于汽车、电子、医疗器械、包装等行业中。

超声波焊接工作原理

超声波焊接工作原理

超声波焊接工作原理
超声波焊接是一种利用超声波在材料界面产生剧烈摩擦热而实现焊接的方法。

其工作原理如下:
1. 超声波发生器产生超声波:超声波是指频率高于20kHz的
机械波,通常使用频率在20kHz-60kHz之间的超声波。

2. 超声波通过换能器传递:超声波发生器会将电能转化为机械振动能,通过换能器将振动能传递到工作头部。

3. 工作头部振动:工作头部内部有一个振子,接受到换能器传递的振动能后开始振动,并将振动能传递到焊接接触面。

4. 材料剧烈摩擦热产生:当工作头部与焊接接触面接触时,因为接触面之间有些微的间隙,工作头部的振动会引起接触面的高频摩擦运动,从而产生摩擦热。

5. 材料局部软化:由于摩擦热的作用,接触面的局部区域会被加热到临界温度以上,使得材料表面局部软化,形成塑性流动层。

6. 塑性流动层的形成:当达到一定程度的软化温度时,材料表面就会形成塑性流动层,这层材料具有一定程度的流动性。

7. 熔汇与结合:在两接触面产生摩擦热的作用下,塑性流动层流向工件内部,使得两材料的表面粘接在一起,形成焊接接头。

总结来说,超声波焊接是通过超声波产生高频振动,通过振动产生的摩擦热使材料局部软化形成塑性流动层,最终实现两材料的粘接。

这种焊接方法具有快速、高效、无污染等优点,在各种行业中得到广泛应用。

超声波金属焊接原理

超声波金属焊接原理

超声波金属焊接原理
超声波金属焊接是一种利用超声波振动来实现材料固态焊接的高新技术。

其原理是通过特殊的超声波振动系统将超声波能量传递到金属工件表面,使金属表面颗粒间的原子间距减小,从而实现金属原子间的扩散和结合,最终实现金属焊接的目的。

超声波金属焊接的原理主要包括以下几个方面:
1. 超声波振动系统:超声波金属焊接是通过超声波振动系统产生的超声波能量来实现的。

超声波振动系统通常包括发生器、换能器和焊接头。

发生器产生高频电信号,通过换能器将电信号转换成机械振动,最终通过焊接头将超声波能量传递到金属工件表面。

2. 超声波传递:超声波能量通过焊接头传递到金属工件表面后,会引起金属表面颗粒的微小振动,使金属表面颗粒间的原子间距减小。

这种微小振动会引起金属表面颗粒间的原子扩散,从而实现金属原子间的结合。

3. 金属原子扩散:金属表面颗粒间的原子扩散是超声波金属焊接的关键步骤。

在超声波作用下,金属表面颗粒间的原子会发生扩散运动,相互间的结合力得到增强,最终实现金属焊接。

4. 结合效果:通过超声波金属焊接,金属原子间的扩散和结合会形成均匀、牢固的焊接接头。

超声波焊接能够实现金属焊接接头的微
观结构调控,提高焊接接头的质量和强度。

超声波金属焊接具有焊接速度快、焊接接头质量高、焊接过程无污染等优点,被广泛应用于汽车、航空航天、电子等领域。

随着科技的不断发展,超声波金属焊接技术将会得到进一步完善和推广,为金属焊接领域带来新的发展机遇和挑战。

超声波焊接原理

超声波焊接原理

超声波焊接原理超声波焊接原理通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。

又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。

当超声波停止作用后,让压力持续,有些许保压时间,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料本体强度。

超声波焊接是如何工作的?超声波焊接原理是通过超声波发生器将50/60赫兹电流转换成15、20、30或40千赫兹电能。

被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的调幅器装置传递到焊头。

焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将塑料熔化。

超声波不仅可以被用来焊接硬热塑性塑料,还可以加工织物和薄膜。

一套超声波焊接系统的主要组件包括超声波发生器,换能器/调幅器/焊头三联组,模具和机架线性振动摩擦是如何工作的?线性振动摩擦焊接利用在两个待焊工件接触面所产生的摩擦热能来使塑料熔化。

热能来自一定压力下,一个工件在另一个表面以一定的位移或振幅往复的移动。

一旦达到预期的焊接程度,振动就会停止,同时仍旧会有一定的压力施加于两个工件上,使刚刚焊接好的部分冷却、固化,从而形成紧密地结合。

轨道式振动摩擦是如何工作的?轨道式振动摩擦焊接是一种利用摩擦热能焊接的方法。

在进行轨道式振动摩擦焊接时,上部的工件以固定的速度进行轨道运动——向各个方向的圆周运动。

运动可以产生热能,使两个塑料件的焊接部分达到熔点。

一旦塑料开始熔化,运动就停止,两个工件的焊接部分将凝固并牢牢的连接在一起。

小的夹持力会导致工件产生最小程度的变形,直径在10英寸以内的工件可以用应用轨道式振动摩擦进行焊接。

应用范围超声波焊接机主要用于热塑性塑料的二次连接,相比其他传统工艺(如胶粘、电烫合或螺丝紧固等),具有生产效率高、焊接质量好、环保又节能等显著优点。

超声波焊、爆炸焊、扩散焊与冷压焊简介

超声波焊、爆炸焊、扩散焊与冷压焊简介

固相扩散焊
液相扩散焊
2)影响扩散过程和程度的主要工艺因素
(1)温度:
影响扩散焊进程的主要因素是原子的扩散,影 响原子扩散的主要因素是浓度梯队和温度。扩散焊 温度一般高于1/2金属熔化温度。 0.6~0.8Tm(Tm母材熔点)。
(2)压力:
主要影响扩散焊第二阶段。压力过低表面层塑 性变形不足。0.5~50Mpa。
一、超声波焊接
超声波焊接是利用超声波频 率(超过 16KHz)的机械振动 能量,在工件表面产生塑性变形 并在压力下破坏表面层,实现焊 接的方法。
它由震动剪切力、静压力、焊 区温升三个因素所决定。
1. 超声波焊接原理及分类
1)工作原理
既不向工件输送电流, 也不向工件引入高温热源只 是在静压力及弹性振动能的 共同作用下,将机械动能转 变成工件间摩擦功形变能和 随之而产生的温升,从而使 工件在固态下实现连接。
如金、 银、铜、铝等。 (4)耗用功率小。仅为电阻点焊的5%左右,
焊件变形小于3~5%,焊点强度及强度稳 定性平均提高约15~20%。 (5)对工件表面的清洁度要求不高。
2)缺点 金属超声波焊接需用功率随工件
厚度及硬度的提高呈指数剧增,因而 只限于丝、箔、片等薄 件的焊接。 大多数情况下只适用于搭接接头。
1)扩散焊过程的三个阶段
第一阶段
变形和交界面的形成。在温 度和压力的作用下,微观凸起部 位首先接触和变形,在变形中表 面吸附层被挤开,氧化膜被挤碎 ,凸点产生塑性变形,开始形成 金属键连接。
第二阶段
晶界迁移和微孔的消除。原 子扩散和再结晶的作用,开始形 成焊缝。 第三阶段
体积扩散,微孔和界面消失。 原子扩散向纵深发展,在界面处 达到冶金连接。
四、冷 压 焊

超声波焊接技术的原理与应用

超声波焊接技术的原理与应用

超声波焊接技术的原理与应用在现代工业生产中,焊接技术是一项至关重要的工艺。

而超声波焊接技术作为一种先进的焊接方法,凭借其独特的优势,在众多领域得到了广泛的应用。

超声波焊接技术的原理其实并不复杂。

简单来说,它是通过高频振动产生的能量来实现材料的连接。

这个过程就好像我们快速地用手搓动两个物体,摩擦会产生热量,从而使它们结合在一起。

但超声波焊接的振动频率极高,通常在 20kHz 以上,这种高频振动能够在极短的时间内产生大量的热能,并集中在焊接区域。

在超声波焊接设备中,有一个关键的部件叫做换能器。

它的作用就像是一个能量转换器,将输入的电能转化为机械振动能。

而变幅杆则负责将换能器产生的振动进行放大,并传递到焊接模具上。

焊接模具直接与被焊接的材料接触,将高频振动传递给它们。

当材料受到高频振动时,它们之间的分子会相互摩擦、碰撞,从而产生热量。

这些热量会使材料的接触面迅速熔化,形成一个焊接区域。

同时,在压力的作用下,熔化的材料会相互融合,并在冷却后形成牢固的焊接接头。

超声波焊接技术具有许多显著的优点。

首先,它的焊接速度非常快,通常只需要几秒钟就能完成一个焊接点,大大提高了生产效率。

其次,由于焊接过程中产生的热量相对较少,所以对周围材料的热影响很小,能够有效避免材料的变形和性能下降。

此外,超声波焊接不需要使用额外的焊接材料,如焊条、焊丝等,降低了成本,也减少了材料的浪费。

在汽车制造领域,超声波焊接技术被广泛应用于汽车零部件的生产。

例如,汽车内饰中的塑料件,如仪表盘、门板、座椅等,很多都是通过超声波焊接连接在一起的。

这种焊接方式不仅能够保证连接的强度和稳定性,还能使内饰件的外观更加美观。

在电子行业,超声波焊接也发挥着重要的作用。

像手机、电脑等电子产品中的电池、线路板、连接器等部件,都可以采用超声波焊接进行组装。

由于其焊接精度高,能够满足电子设备对微型化和高性能的要求。

医疗行业同样离不开超声波焊接技术。

一次性医疗器械,如注射器、输液管等,通常采用超声波焊接来保证其密封性和安全性。

超声波塑料焊接工艺

超声波塑料焊接工艺

超声波塑料焊接工艺超声波塑料焊接工艺是一种高效并且环保的塑料连接工艺,它能够将两个或多个塑料件快速地、牢固地连接在一起。

本文将详细介绍超声波塑料焊接工艺的原理、应用、优点以及局限性。

一、超声波塑料焊接工艺的原理超声波塑料焊接工艺是利用超声波产生的高频振动来摩擦、加热和融化塑料,在外力的作用下将塑料件连接在一起的技术。

具体来说,超声波发生器会将电能转化成机械能,通过换能器将超声波传递到塑料件焊点。

当超声波遇到塑料面时,会产生剪切力和热量,使塑料面快速摩擦、热化并融化,再由外力压合,使塑料接头得以牢固地连接起来。

二、超声波塑料焊接工艺的应用超声波塑料焊接工艺可以应用于各种塑料产品的制造,如汽车、电子、医疗设备等。

特别是在电子行业中,超声波塑料焊接工艺被广泛应用于连接小型电子元件,因为它可以快速而精准地进行塑料连接,连接质量高且不损坏电子元件。

此外,超声波塑料焊接工艺也可应用于食品包装行业,如酸奶杯、密封袋等。

三、超声波塑料焊接工艺的优点1.快速精准:超声波塑料焊接工艺能够在短时间内完成连接工作,且连接质量高,不产生塑料渣和其他杂质。

2.无毒环保:超声波塑料焊接工艺没有采用粘合剂或其他有害化学物质,不会对环境造成污染。

3.节能省电:超声波塑料焊接工艺没有热损失,不需要额外的加热设备或大量的电能,具有节能省电的优点。

4.设计自由度高:由于超声波可以穿透一个物体,因此可以实现复杂的连接形状和各种不同的体积大小。

四、超声波塑料焊接工艺的局限性1.对焊接材料要求高:超声波塑料焊接工艺对焊接材料有一定的要求,只有符合材料特性才能保障连接质量。

2.焊接深度受限:由于超声波的穿透能力有限,因此对于较厚的材料,超声波可能会造成局部无法接触的情况。

3.受限于材料性质:超声波的焊接效果受材料性质的影响,如硬度、粘度等,在处理不同种类的塑料时可能收到一定程度的限制。

综上所述,超声波塑料焊接工艺是一种高效、快速、精准、环保的连接工艺,被广泛应用于各种塑料产品的制造。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档