柴油发动机的燃烧过程

合集下载

柴油车发电机工作原理

柴油车发电机工作原理

柴油车发电机工作原理
柴油车发电机的工作原理是通过燃烧柴油引发的爆炸来驱动发电机转子产生机械能,然后通过转子的旋转运动转化成电能。

具体来说,柴油车发动机燃烧室内的空气与喷入燃油的柴油混合后,通过压缩和点火使其燃烧产生能量。

这一过程称为内燃机的工作循环。

当柴油燃烧时,高温高压的燃气产生,推动活塞向下运动。

活塞连杆通过曲轴转动,将活塞的直线运动转化为地面上旋转的运动。

曲轴连接到发电机的转子,将机械能传递给转子。

发电机转子是由一组导体线圈和铁芯组成的。

当转子旋转时,导体线圈在磁场中运动,通过电磁感应效应产生电流。

这个电流会随着转子的旋转不断变化,并通过导线引导出来,形成交流电。

交流电经过整流装置转换为直流电后,供应给车辆的电器设备使用,同时也充电电池以供存储和后续使用。

这样,柴油车发动机通过内燃机的工作循环产生燃烧能量,再通过发电机将机械能转化为电能,为车辆提供所需的电力。

这个过程实现了柴油车的动力供应和电器设备的正常运转。

发动机原理第六章柴油机混合气形成与燃烧

发动机原理第六章柴油机混合气形成与燃烧

2.对柴油机燃烧室的要求:
① α小,但应燃烧完全及时; ② 适度的ΔP/ΔΦ和Pz值;以保证工作柔和,
平稳,可靠; ③ 排气品质好; ④ 变工况适应好;应在负荷、转速变化时,
柴油机性能稳定; ⑤ 冷起动性好; ⑥ 制造、维修方便。
3、直喷式燃烧室的空气涡流运动
空气涡流运动是加速混合气形成的 有效手段;也是保证完善燃烧的重 要条件。
3.影响喷注质量的主要因素:
喷注结构,喷油压力,气缸内空气的压力,柴油
的粘度等。
二、空气运动对混合气形成的影响
缸内空气的涡流运动能加速雾化的油滴与 周围空气的混合,促进燃烧过程的进行。
但涡流过强,会使燃烧产物与邻近的喷注重叠; 涡流过强也使进气阻力加大,充量系数下降。
三、典型燃烧室结构分析
1.燃烧室分为两大类:直喷式和分开式。 直喷式燃烧室:燃油直接喷入由活塞顶和缸盖形成的
汽油机:提高火焰传播速度。 柴油机:保证及时形成较均匀的混合气。
第一节 混合气形成与燃烧过程
一、燃烧方式--油滴扩散燃烧
柴油机是在压缩过程中活塞接近上止点时,借助喷 油设备将燃油在高压下成雾状喷入燃烧室,以便 与空气形成可燃混合气。
油滴的着火要满足两个条件: (1)混合气的温度要高于着火临界温度。 (2)混合气的浓度要适当,即混合气的浓度要在
不变)
面容比大,经济性较差,启动性差(传热和流动损失大,装电热塞)
涡流室式燃烧室
1)预燃室式燃烧室
混合气形成:空间雾化混合为主。一般采用轴针 式喷油器。
主要特点:
喷雾质量要求不高(预燃室形成强的紊流和二次喷射的燃
烧涡流形成混合气)。
ΔP/ΔΦ较小,工作柔和。 空气利用率高,α值可较小。 变工况适应性好,对转速不敏感。 NOx排放低 启动性差,面容比较大,经济性差 低速噪声(惰转噪声)大(预燃室气体速度低,油束贯穿力大,

柴油机的燃烧过程

柴油机的燃烧过程

柴油机的燃烧过程
COMBUSTION IN DIESEL ENGINE
1 滞燃期(AB 段)
从燃料喷入气缸到压力线脱离压缩压力线开始急剧升高这一段燃前准备时间。

◆ 滞燃期过长,压力升高率和最高燃烧压力高,柴油机工作粗暴。

◆ 滞燃期过短,扩散燃烧增加,易恶化柴油机性能和颗粒排放。

2 急燃期 BC 段
柴油机的预混燃烧期
在上止点附近快速进行,压力升高率大。

形成第一峰放热。

平均压力升高率不宜超过0.6 MPa/︒CA
3 缓燃期 CD 段
柴油机的扩散燃烧期
◆ 缸内温度和压力高,扩散燃烧速度快。

◆ 气缸工作容积不断增加,缸压变化缓。

◆ 缓燃期对应于放热规律曲线的第二峰。

4 后燃期 DE 段
少量柴油的后续燃烧
◆ 过浓混合气未燃烧的燃料、尾喷燃料、碳烟等的燃烧。

膨胀行程的中后期,膨胀比低,做功能力小。

◆ 增加排温和向冷却水的散热损失,使发动机的热负荷增加,经济性下降。

柴油机燃烧缸内p -Φ图 )
()(B C B C p p p ϕϕϕ--=∆∆
滞燃期速燃期缓燃期后燃期
柴油机燃烧放热规律图。

发动机原理_柴油机混合气的形成和燃烧

发动机原理_柴油机混合气的形成和燃烧

运动速度和油膜厚度。
二、分隔式燃烧室
涡流室燃烧室 • 预燃室燃烧室 涡流室容积约占整个燃烧 室压缩容积的50%-60% • 预燃室容积约占整个燃烧 • 通道的截面积约为活塞截 室压缩容积的35%-45% 面积的 1%~3.5% • 通道的截面积约为活塞截 • 涡流室燃烧过程 面积的0.3%-0.6% • 预燃室燃烧过程
机械噪声
由曲轴连杆活塞机构、配气
机构、齿轮系、喷油泵及其 它附属机构等部分的高速运 动并与其相邻零部件发生频 繁的机械撞击,激励结构振 动而产生的噪声。
燃烧噪声
因为迅速地燃烧引起燃烧室
内压力急剧变化
控制噪声与振动的措施
1)控制燃烧过程来降低燃烧噪声。 2)改进机体等有关零部件的结构,降低结构振动的振幅 和提高共振频率。 3)为减小撞击力,尽可能减小缸套与活塞之间、轴承、 传动齿轮等处的间隙。为减小惯性力应减小运动件的质量, 并在可能的情况下,适当降低活塞平均速度。 4)应用吸振减振材料制造薄板零件 5)改进消声器的结构、材料;改进空气滤清器、冷却风 扇等的设计及适当调节配气相位以降低气体动力噪声。 6)遮蔽噪声源
三、对喷射系统的要求
理想的喷油规律: 更高的喷射压力和喷油速 率以及更短的喷油持续时 间已是技术发展的一个明 显趋势。 为避免柴油机工作过于粗 暴,又希望实现“先缓后 急”的喷油规律。 在所有的工况下都希望在 喷射结束阶段能尽可能迅 速地结束喷射。
四、柴油机电控喷射系统
电控喷射系统突出优 点是控制的准确性和 响应的快速性。 系统的基本控制量: • 循环喷油量的控制 • 供油提前角控制
第二节 燃油喷射和雾化
一、供油系统和喷射过程
柴油机供油系统 喷油泵速度特性及其校正 喷射过程 供油规律和喷油规律 不正常喷射现象和喷射系统中的穴蚀 破坏

柴油机的着火过程

柴油机的着火过程

第六章柴油机的着火过程第一节燃烧化学反应动力学的基础理论一.分子运动和碰撞柴油机的着火过程是复杂的物理化学过程,化学过程是激烈的热——链化学反应,要进行化学反应,必须经过它们分子之间的相互碰撞,并且符合碰撞要求才可实现。

燃烧化学反应中分子运动和碰撞的基本理论归纳如下:A.参加化学反应的物质,分子必须相互碰撞。

B.分子的碰撞是杂乱无章的。

C.合适的方向上碰撞才有可能起化学作用。

D.运动能量超过最低能量。

E.最低能量称为活化能。

F.温度越高,化学反应速度越大。

G.压力与密度越大,碰撞频率越高,反应速度加快。

二.活化络合物理论活化络合物理论(过渡态理论)的基本内容是:进行化学反应时候,分子不仅需要相互撞击,还需要适当能量,在适当的方位上撞击,以便获得形成一个不稳定,过度的,瞬态活化络合物。

活化能E就是把初态反应物提高到络合物所需能量。

反应关系表达为:反应物——活化络合物——终产物三.键能及其在化学反应中的作用。

物质内部相邻原子间或离子间产生的相互结合或相互作用的称为化学键。

可分为离子键,共价键,和金属键等几种类型。

正负离子通过静电引力形成的化学键为离子键。

物质内部相邻原子或者原子团通过共用电子对形成的称为共价键。

由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成金属键。

物质起化学变化时,需要从外界吸收能量,达到破坏原子间或者离子间所必须吸收的能量,这种能量称为键能。

第二节着火前燃料的物理——化学过程(焰前反应)一。

着火的分类和含义按照火源性质,分为压缩自然和外源点火。

按化学反应性质分为热式着火,链式着火,和热—链式着火。

链式着火通过支链反应而自身积累活性中心并积聚能量。

按着火阶段分,有高温单阶段着火和中低温多阶段着火。

多阶段着火指历经冷焰,蓝焰到热焰的几个阶段着火。

二.着火前的物理过程必须先将反应物质(空气和烃类)能互相充分气相混合,并相互撞击,同时,需要一定的初始能量。

这就需要有进气过程,喷射过程,喷注的破碎和雾化过程,以至形成可燃混合气,并达到足够温度和压力的过程。

【学习】第五章柴油机混合气形成和燃烧

【学习】第五章柴油机混合气形成和燃烧

fp — 柱塞面积 [ mm ];
Wp — 柱塞速度 [ ml/degPA ]。
几何供油规律与喷油规律不同。
整理课件
供油规律和喷油规律
两产定者生义的差:差 异异 的: 原因:
喷燃供油始的规点可律滞压:后缩单于性位供时油间始内点喷 油喷系泵油统的持内供续产油时生量间压随较力时长波间的的传变播化 关最高系大压。喷油油管速的率弹较性低变形 油曲器喷线喷油的入规形燃律状烧:有室单一内位定的时的燃间变油内化量喷 随时间的变化关系。
整理课件
三 气流运动对混合气形成的影响
(一) 气流运动的作用
整理课件
(二) 气流运动
1、 进气涡流 使进气气流相对于气缸中心产生一个力,形成涡流。 (1) 切向气道 特点: 气道母线与气缸相切。 优点: 结构简单,气流阻力小 缺点: 涡流强度对进气口位置敏感。 (2) 螺旋气道 特点: 进气道呈螺旋型。 优点: 能产生强烈的进气涡流。 缺点: 工艺要求高,制造、调试难度较高
整理课件
50
油 束 射 程m m
(a)
10 0
油 束 射 程m m 50
(b)
2
3
3 .3
3.5 m s
整理课件
(四) 喷油规律
单位时间(或曲轴转角)的喷油量随时间(或曲轴转角) 的变化规律。
1 、喷油延迟角 喷油提前角 — 开始喷油 上止点的曲轴转角。 ’ — 上止点 停止喷油的曲轴转角。 喷油延迟角’ — 开始喷油 停止喷油的曲
整理课件
二 、喷油泵速度 特性及其校正
(一) 节流作用 1 理论上 (不存在节流) 2 实际上 (存在节流) 所以,实际供油比理
论供油时间长,供油量 大。
整理课件

柴油发动机的工作原理

柴油发动机的工作原理

柴油发动机的工作原理柴油机是以柴油作燃料的压燃式内燃机。

工作时,空气在气缸内被压缩而温度升高,定时喷入气缸的柴油自行着火燃烧,产生高温、高压的燃气,燃气膨胀推动活塞做功,将热能转变为机械功。

柴油机的工作循环由进气、压缩、喷油着火燃烧、膨胀做功和排气等过程组成。

这些过程可以由四冲程柴油机来实现,也可由二冲程柴油机来实现。

(一)四冲程柴油机(非增压)的基本工作原理用四个行程,曲轴回转两周完成一个工作循环的柴油机称四冲程柴油机。

工作时活塞作往复直线运动,曲轴作旋转运动。

活塞改变运动方向的瞬时位置称止点(死点),止点处的活塞瞬时运动速度为零。

离曲轴中心最远的止点称上止点,最近的止点称下止点。

1.进气行程活塞从上止点下行,进气阀打开。

由于活塞下行的抽吸作用,新鲜空气充入气缸。

为了能充入更多的空气,进气阀一般在上止点前提前开启,在下止点后延迟关闭,进气阀开启的延续角度约为220-250度。

2.压缩行程活塞从下止点上行,进、排气阀均关闭。

上行的活塞对缸内的空气进行压缩,使其温度和压力均不断升高。

压缩终点的压力约为3-6mpa,温度约为500-700℃,在上止点(压缩终点)附近,燃油经喷油器以雾化的状态喷入燃烧室,并在高温高压空气的作用下,开始自行发火燃烧。

3.膨胀行程活塞由上止点向下运动,进、排气阀均关闭。

在此行程的初期,燃烧仍在继续猛烈地进行,使缸内的压力和温度都急剧升高,其最大值分别可达6-9mpa,和1500-2000℃左右。

高温高压燃气膨胀推动活塞下行做功,在上止点后某一时刻,燃烧基本结束,燃气继续膨胀做功。

当活塞到达下止点前某一时刻,排气阀开启,排气过程开始。

此时,气缸内的压力约为0.2-0.5mpa, 温度600-700℃。

活塞则继续下行到下止点。

4. 排气行程活塞在曲轴带动下由下止点向上运动,排气阀继续开启着,上行的活塞将气缸内的废气强行推挤出去。

为了实现充分排气和减少排气过程中所消耗的功,排气阀不但在下止点前提前开启,而且要在排气行程结束的上止点后才关闭。

电喷柴油机工作原理

电喷柴油机工作原理

电喷柴油机工作原理
电喷柴油机是一种先进的发动机技术,主要由燃油系统、进气系统、压缩系统、燃烧系统和排气系统等部件组成。

其工作原理可以分为以下几个步骤:
1. 进气阶段:汽缸活塞向下运动,使进气门打开,燃油通过进气阀进入燃烧室。

同时,压缩空气也通过进气阀进入燃烧室,与燃油混合形成可燃混合物。

2. 压缩阶段:进气阀关闭后,活塞向上运动,将混合物压缩。

此时,在活塞上方的预燃室中,火花塞爆发火花,将燃料点燃,使压缩混合物燃烧。

3. 燃烧阶段:燃烧产生的高温高压气体推动活塞向下运动,从而释放能量。

这个过程促使引擎转动,提供机械动力。

4. 排气阶段:活塞再次向上运动,凸轮将排气门打开,废气被排出燃烧室,进入排气管。

同时,进气门再度打开,进入下一个循环。

在电喷柴油机中,电喷系统起着重要的作用。

通过一个或多个喷油器,燃油被高压电力喷射进入燃烧室。

电喷系统可以根据发动机负荷和转速的变化,智能地调节燃油喷射的时间、量和压力,以实现更高的燃油经济性和更低的排放。

通过电子控制单元(ECU)对电喷系统进行精确控制和调节,提高发动机的燃烧效率和动力输出。

总之,电喷柴油机利用喷油器将燃油喷入燃烧室,并通过压缩和点燃燃料产生能量,从而驱动发动机工作。

电喷系统的精确控制和调节,可以提高发动机的性能和效率。

汽车发动机原理第五章 柴油机混合气的形成和燃烧

汽车发动机原理第五章  柴油机混合气的形成和燃烧

到最高值。
压力升高率dp /dφ对柴油机的性能有重要的影 响, 若压力升高率过大,则柴油机工作粗暴,燃烧噪 声和温度明显升高,使氮氧化物生成量明显增加,同 时运动零部件承受较大的冲击负荷,影响其工作可靠
性和使用寿命,但由于燃烧迅速进行,柴油机的经济
性和动力性会较好,压力升高率应限制在一定的范围 之内,柴油机的平均压力升高率dp /dφ一般不应大于 0.4~0.5MPa/ (°)。
二、柴油机燃烧过程的划分阶段
柴油机的燃烧基本上是喷雾的非定常紊流扩散燃烧,
即在燃烧室所限制的狭窄空间内的高温、高压环境下, 经高压喷射的高浓度燃料喷雾在空间分配不均的状态下, 在极短的时间内进行的一种燃烧形态。柴油机的燃烧过 程是柴油机工作过示功图,根据汽缸中工质压力和温度的变化规律,
燃期内喷入的燃料, 特别是后续喷入燃料,边蒸发混合,
边以高温单阶段方式着火参与燃烧。
柴油机的最高燃烧压力pmax一般为5 ~ 9MPa,增压
柴油机有可能大于13MPa,同汽油机一样,柴油机也希
望pmax出现在上止点后10° ~15°,这样可以获得较好的 动力性和经济性,但与汽油机不同的是,C 点的位置不 仅取决于喷油提前角,也取决于着火延迟期和速燃期的 长短。
要使可燃混合气着火燃烧,必须具备如下两个条件:
(1)可燃混合气必须加热到某一临界温度以上,否则,
燃料就不能着火, 燃料不用外界能量点燃而能自行着火 的最低温度称为着火温度或自燃温度。 (2)可燃混合气中燃料与空气的比例要在着火界限范 围内才能着火燃烧,若混合气过浓,说明氧分子相对较少,
燃料分子过多,混合气过稀,表明燃料分子过少氧分子过
在示功图上更容易判断,速燃期中,累积放热率可达20%
~30%。

柴油火车头的工作原理

柴油火车头的工作原理

柴油火车头的工作原理柴油机的工作原理与汽油机类似,都是内燃机的一种。

柴油机的主要工作过程包括进气、压缩、燃烧和排气四个过程。

进气过程:柴油机通过进气门吸入空气,空气经过滤清除杂质后进入缸体。

压缩过程:柴油机的活塞在运动过程中,将进入缸体的空气压缩至较高的压力和温度。

燃烧过程:当活塞接近顶死点时,喷油器向气缸内喷射燃油,燃油与高温高压的压缩空气混合,发生自燃燃烧。

燃烧产生的高温高压气体推动活塞向下运动。

排气过程:活塞下行推出废气,同时打开排气门将燃烧产物排出缸体。

柴油机的燃烧过程是按照一定的时间先后顺序依次在各个缸内进行的,可以实现连续的工作。

柴油机的工作节奏由喷油系统和气门控制系统控制。

柴油机产生的旋转动力需要通过传动系统传递给驱动轴,进而将火车推动前进。

传动系统包括离合器、变速器和传动轴。

变速器可以根据运行状态和列车需要选择合适的档位和转向方式。

转向系统主要是通过转向齿轮通过链条或万向节来驱动轮轴进行转向。

转向系统能够实现火车头的转弯和转向,进而调整车轴与轨道之间的角度,使火车能够顺利行驶通过曲线轨道。

制动系统是为了保证列车行驶的安全性。

柴油火车头的制动系统主要包括气压制动和手动制动两种方式。

气压制动通过压缩空气驱动制动器夹紧车轮,提供制动效果。

手动制动则需要操作员手动控制刹车装置实现制动。

制动系统在列车减速和停车过程中发挥重要作用。

总结:柴油火车头工作原理是通过柴油机将燃料的化学能转化为机械能,然后通过传动系统将机械能传递给驱动轴,推动列车行驶。

同时,转向系统和制动系统的运行保证了列车的转向和安全性。

柴油火车头以其高效可靠的性能,在铁路运输中发挥着重要的作用。

四冲程柴油发动机工作原理

四冲程柴油发动机工作原理

四冲程柴油发动机工作原理
四冲程柴油发动机是一种内燃机,通过内部发生燃烧来产生动力驱动车辆。

它的工作原理可以简述为四个冲程:进气冲程、压缩冲程、燃烧冲程和排气冲程。

进气冲程:活塞在下行过程中,进气门打开,活塞从气缸顶部向下移动,气缸内形成负压,使进气门打开,燃油和空气混合物因此被吸入气缸中。

压缩冲程:活塞在上升过程中,进气门关闭,活塞向上移动,将进气混合物压缩至高压状态。

同时,柴油喷油器将一定量的柴油喷入压缩空气中。

由于压缩比较高,柴油会迅速被压燃,产生高温高压的燃烧气体。

燃烧冲程:当活塞达到最高点时,柴油已经被压燃,燃烧产生的高温高压气体迅速膨胀,推动活塞向下运动,驱动曲轴旋转。

同时,燃烧气体的高温高压也推动汽缸盖上的活塞帽向下升起,排出气缸中的废气。

排气冲程:活塞到达下行过程中的最低点时,排气门开始打开。

部分燃烧废气会因活塞的下行而被排出气缸,减小气缸内的压力。

与此同时,活塞继续上行,排气门完全打开,气缸内的剩余废气被驱除出气缸。

以上四个冲程连续循环进行,使得柴油发动机能够持续产生动力。

同时,发动机的正常运行也需要其他的辅助系统,如点火
系统、供油系统和冷却系统等。

这些系统的协同工作,保证了柴油发动机的高效运行。

柴油机的燃烧过程解读

柴油机的燃烧过程解读

③ 排气品质好;
④ 变工况适应好;应在负荷、转速变化时,
柴油机性能稳定;
⑤ 冷起动性好;
⑥ 制造、维修方便。
3、直喷式燃烧室的空气涡流运动
空气涡流运动是加速混合气形成的
有效手段;也是保证完善燃烧的重 要条件。
直喷式燃烧室产生涡流运动的方法
有种:
1)进气涡流—靠切向进气道和螺旋 进气道形成。 切向进气道:气道母线与气缸相切, 在气门前强烈收缩,使气流越来越 快进入气缸后受缸壁的约束而转向, 形成涡流。
一、燃油的喷雾
1.燃油的雾化 燃油在经喷孔 喷出时,在气 缸中被破碎成 微粒的过程。
L:射程 :锥角 喷油横截 面上燃油 分布 喷油横截面 上油粒速度 图6-5 喷注的形状
2.喷注的特征:
①喷注射程L:表示喷注贯穿深度; ②喷注锥角β:表示喷注紧密程度; ③细微度和均匀度:表示雾化程度。 细微度-油注中的平均直径 均匀度-油注中最大直径与最小直径之差
直喷式燃烧室:燃油直接喷入由活塞顶和缸盖形成的
一个统一空间。
开式燃烧室—浅坑型,如浅盆形或浅ω 形燃烧室
半开式燃烧室—深坑型,如ω 形和球形燃烧室
分开式燃烧室:由主燃室和副燃室两部分组成。
如:涡流室式燃烧室和预燃室式燃烧室
2.对柴油机燃烧室的要求:
① α 小,但应燃烧完全及时; ② 适度的Δ P/Δ Φ 和Pz值;以保证工作柔和, 平稳,可靠;
球型燃烧室
5、分开式燃烧室
1)涡流室式燃烧室
混合气形成:空间雾化混合为主。一般采用轴针 式喷油器。 主要特点: 喷雾质量要求不高。 ΔP/ΔΦ较小,工作柔和。 α值可较小,空气利用率高。 变工况适应性好,对转速不敏感。 面容比较大,经济性较差,启动性差。

船舶柴油机的工作原理

船舶柴油机的工作原理

船舶柴油机的工作原理船舶柴油机是一种热机,以柴油作为燃料,在内燃机领域广泛应用于船舶动力系统中。

它的工作原理如下:1. 燃料供给:柴油通过燃料系统供给给柴油机。

燃料系统包括燃料油箱、燃油过滤器、燃油泵、喷油器等组成。

燃油泵将柴油从燃料油箱中吸入,并通过喷油器雾化喷射到气缸内。

2. 压缩空气:柴油机采用自吸式压缩空气,也可以通过增压器增压。

在进气冲程中,活塞从上止点开始下降,汽缸内的空气同时被活塞的下部所吸入,使气缸内的压缩空气逐渐增多。

3. 燃烧过程:在压缩行程结束时,活塞靠近下止点,柴油通过喷油器喷入气缸,与压缩空气混合形成可燃混合物。

柴油的点火温度较高,无需使用火花塞点火,而是通过高温高压空气使柴油自燃。

燃烧能源在高温高压下产生,使气缸内的压力迅速升高。

4. 汽缸功率输出:在燃烧过程中,柴油的能量被转化为汽缸内的压力能、热能和运动能。

这些能量推动活塞向下运动,通过连杆传递给曲轴,进而转化为机械能。

柴油发动机可通过多个气缸并联工作,以增加功率输出。

5. 废气排放:燃烧后产生的废气通过排气门排出气缸。

废气中含有大量的氮气、二氧化碳、一氧化碳、氧化氮等有害物质,需要通过排气系统将其排到大气中。

船舶柴油机的废气排放需要遵循相应的环保标准。

6. 冷却和润滑:柴油机在工作过程中会产生大量的热量,因此需要通过冷却系统将热量散发出去,以保持柴油机的工作温度。

同时,柴油机的各个运动部件需要润滑油的润滑,以减少摩擦和磨损。

总结起来,船舶柴油机的工作原理是在压缩空气的作用下,将燃料(柴油)喷入气缸中与压缩空气混合并自燃,产生燃烧能源,驱动活塞向下运动,进而带动曲轴旋转,输出机械能。

同时,柴油机通过冷却和润滑系统保持工作温度和润滑状态,通过燃料系统供给柴油,将废气排放到大气中。

船舶柴油机因其高效、稳定、可靠的特点,被广泛应用于船舶动力系统,推动全球海上运输事业的发展。

柴油机燃烧过程分哪几个阶段

柴油机燃烧过程分哪几个阶段

柴油机燃烧过程分哪几个阶段?各阶段有什么特点?一. 进气冲程第一冲程——进气,它的任务是使气缸内充满新鲜空气。

当进气冲程开始时,活塞位于上止点,气缸内的燃烧室中还留有一些废气。

当曲轴旋转肘,连杆使活塞由上止点向下止点移动,同时,利用与曲轴相联的传动机构使进气阀打开。

随着活塞的向下运动,气缸内活塞上面的容积逐渐增大:造成气缸内的空气压力低于进气管内的压力,因此外面空气就不断地充入气缸。

进气过程中气缸内气体压力随着气缸的容积变化的情况如动画所示。

图中纵坐标表示气体压力P,横坐标表示气缸容积Vh(或活塞的冲S),这个图形称为示功图。

图中的压力曲线表示柴油机工作时,气缸内气体压力的变化规律。

从土中我们可以看出进气开始,由于存在残余废气,所以稍高于大气压力P0。

在进气过程中由于空气通过进气管和进气阀时产生流动阻力,所以进气冲程的气体压力低于大气压力,其值为0.085~0.095MPa,在整个进气过程中,气缸内气体压力大致保持不变。

当活塞向下运动接近下止点时,冲进气缸的气流仍具有很高的速度,惯性很大,为了利用气流的惯性来提高充气量,进气阀在活塞过了下止点以后才关闭。

虽然此时活塞上行,但由于气流的惯性,气体仍能充人气缸。

二. 压缩冲程第二冲程——压缩。

压缩时活塞从下止点间上止点运动,这个冲程的功用有二,一是提高空气的温度,为燃料自行发火作准备:二是为气体膨胀作功创造条件。

当活塞上行,进气阀关闭以后,气缸内的空气受到压缩,随着容积的不断细小,空气的压力和温度也就不断升高,压缩终点的压力和湿度与空气的压缩程度有关,即与压缩比有关,一般压缩终点的压力和温度为:Pc=4~8MPa,Tc=750~950K。

柴油的自燃温度约为543—563K,压缩终点的温度要比柴油自燃的温度高很多,足以保证喷入气缸的燃油自行发火燃烧。

喷入气缸的柴油,并不是立即发火的,而且经过物理化学变化之后才发火,这段时间大约有0.001~0.005秒,称为发火延迟期。

浅析柴油发动机排放物的生成机理

浅析柴油发动机排放物的生成机理

浅析柴油发动机排放物的生成机理柴油发动机是工业、运输和农业领域中常用的动力装置,但是它们也是空气污染物的重要来源之一。

柴油发动机排放物的生成机理是一个复杂的过程,涉及到燃烧、燃油成分和发动机设计等多个因素。

本文将从燃烧过程、燃油成分和排放控制方面对柴油发动机排放物的生成机理进行浅析。

1. 燃烧过程柴油发动机的排放物主要是氮氧化物(NOx)、颗粒物(PM)、一氧化碳(CO)和碳氢化合物。

这些排放物的生成机理与柴油燃烧过程密切相关。

柴油燃烧是一种复杂的化学反应过程,主要包括喷油、着火、燃烧和排气四个阶段。

喷油阶段:柴油通过喷油嘴喷入气缸内,形成一个雾状的柴油颗粒云。

这些柴油颗粒在气缸内充分混合气体,使得燃烧更加均匀。

着火阶段:柴油颗粒被压缩空气加热至自燃温度,产生着火点,点火塞或者高温压缩空气可以使得柴油在这个阶段着火。

燃烧阶段:在着火后,柴油颗粒开始燃烧,大量的热能被释放出来,将其他柴油颗粒加热着火。

在这个阶段,大量的热能使得柴油颗粒燃烧成二氧化碳和水,同时也会产生一些未完全燃烧的残余物质。

排气阶段:燃烧结束后,剩余的废气会被排出气缸,成为发动机的排放物。

2. 燃油成分燃料的成分对排放物的生成有重要影响。

柴油主要由碳、氢、氧、硫等元素组成。

其中硫是柴油中的主要杂质成分,燃烧后容易产生硫氧化物,导致大气污染。

在燃烧过程中,硫气体会与氧气反应生成二氧化硫,进而形成硫酸雾等排放物。

柴油中的氮和硫还会生成氮氧化物。

在高温燃烧条件下,空气中的氮氧化物会与燃料中的氮氧化合物发生反应,生成氮氧化物。

3. 排放控制为了减少柴油发动机排放物的产生,人们进行了大量的研究,提出了多种控制和改进措施。

其中包括优化燃油喷射系统、改进燃烧室结构、采用颗粒物捕集器和选择性催化还原系统等。

通过这些措施可以减少氮氧化物的生成,降低颗粒物的排放,并改善一氧化碳和碳氢化合物的排放。

颗粒物捕集器是一种重要的排放控制装置,可以有效减少柴油发动机产生的颗粒物排放。

6单元 柴油机的燃烧过程和燃烧规律

6单元 柴油机的燃烧过程和燃烧规律
②减小备燃期内喷入的油量(选择合适的喷油规律,先 少后多);
③控制蒸发速度(油膜蒸发缓和);
3)排气冒黑烟
缓燃期燃油被高温废气包围:高温缺氧→裂解→脱氢 →聚合形成碳烟。 一般在高负荷时发生如汽车加速,爬坡或超载。
减少冒黑烟的措施: ①增大过量空气系数α:改进进气系统ην↑,减少喷 油量降低功率使用。
单元6 柴油机混合气的形成和燃烧
课前回顾
问题一:传统汽油机与柴油机的混合气形成方式及着火方式 有什么不同?
汽油机:缸外形成混合气,点燃;柴油机:缸内喷射,压燃。
问题二:为什么传统汽油机采用缸外混合,火花塞点燃式燃 烧,柴油机采用缸内喷射,压燃式燃烧?
燃料的品性决定了混合气的形成方式及着火方式。
蒸发性:汽油>柴油; 发火性(自燃性):柴油>汽油。
1)泵-管-喷嘴系列 (1)直列柱塞泵
高压油管 燃油滤清器 停油电磁阀
回油管 润滑机油管
P7100泵 正时齿轮
4、应用吸振减振材料制造薄板零件,如油底壳、 缸盖罩等。在缸体与油底壳之间、缸盖与缸盖罩 之间采用较“软”的垫片,对振动起到阻尼使用。
5、改进消声器的结构、材料;改进空气滤清器、 冷却风扇等的设计以及适当调节配气相位,以降 低气体动力噪声。
6、遮蔽噪声源,采用对作为主要噪声源的发动机 的局部或整体加隔声罩的方法等。
6-1柴油机燃烧过程
1、混合气形成特点: 3)混合气形成不均匀 ,为了提高经济性总体过量空气系 数>1.2。导致容积利用率低,升功率低(傻大黑粗)。
傻大黑粗
高富帅???
6-1柴油机燃烧过程
2、混合气形成方式: 油膜蒸发混合,燃料大部 分顺气流方向喷到燃烧室 壁面上,形成一层油膜, 油膜受热蒸发,在旋转气 流作用下与空气相混合形 成可燃混合气。

柴油发电机工作原理

柴油发电机工作原理

柴油发电机工作原理引言概述:柴油发电机是一种常见的发电设备,通过柴油机驱动发电机产生电能。

其工作原理是将燃料燃烧产生的热能转化为机械能,再由发电机将机械能转化为电能。

下面将详细介绍柴油发电机的工作原理。

一、燃料供给系统1.1 燃油箱:柴油发电机的燃料来源于燃油箱,燃油箱通常位于发电机机组的底部,用于存储柴油。

1.2 燃油泵:燃油泵负责将燃油从燃油箱输送到发动机的燃油喷射器中,保证燃油供给充足。

1.3 燃油喷射器:燃油喷射器将高压的燃油喷入发动机的燃烧室,与空气混合后进行燃烧。

二、柴油机工作原理2.1 进气过程:柴油机通过进气门吸入空气,空气经过滤清后进入气缸。

2.2 压缩过程:活塞向上运动,将空气压缩至高温高压状态,为燃油的点火提供条件。

2.3 燃烧过程:燃油喷射器喷入燃油,燃油在高温高压状态下瞬间燃烧,产生高温高压气体推动活塞向下运动。

三、发电机工作原理3.1 机械能转换:柴油机的活塞运动带动曲轴旋转,曲轴与发电机连接,将机械能传递给发电机。

3.2 磁场产生:发电机内部的转子旋转产生磁场,通过定子线圈感应电流。

3.3 电能输出:感应电流通过导线输出,形成交流电,经过整流器转换为直流电,供给外部电路使用。

四、冷却系统4.1 水冷系统:柴油发电机通常采用水冷系统进行散热,通过水循环带走发动机产生的热量。

4.2 散热器:散热器将冷却水循环并通过风扇散热,保持发动机在适宜的工作温度。

4.3 温度控制:发电机配备温度传感器,监测发动机温度并控制冷却系统的运行,保证发动机正常工作。

五、维护保养5.1 定期更换机油:柴油发电机需要定期更换机油,保持发动机内部润滑良好。

5.2 清洁空气滤清器:定期清洁或更换空气滤清器,保证发动机进气通畅。

5.3 定期检查电路:定期检查发电机的电路连接是否良好,避免电路故障影响发电效率。

结论:柴油发电机的工作原理是一个复杂的系统工程,通过燃油供给、柴油机工作、发电机工作、冷却系统和维护保养等多个环节协同工作,最终实现电能的生产。

单缸柴油机操作原理

单缸柴油机操作原理

单缸柴油机操作原理单缸柴油机是一种重要的燃油发动机,被广泛应用于各种工业、农业以及交通运输领域。

单缸柴油机操作原理十分重要,正确的操作能够保证其效率以及寿命,下面就为大家详细介绍。

1. 压缩冲程引擎启动时,自动启动器将曲轴推入,使活塞完成一个前行冲程。

当活塞到达上止点时,它会开始进行压缩冲程。

在此阶段,进气门关闭,排气门已经关闭,汽缸中的空气被压缩到极限,同时柴油喷油器喷入柴油。

这个过程实际上是将燃料压缩到足够高的压力,以便在后续的点火过程中可燃混合物能够燃烧。

2. 燃烧冲程柴油发动机燃烧反应的开始是由喷油口喷出的燃油接触到高压空气,在高温状态下发生着燃烧反应,生成锥形火焰,这使得气体膨胀,从而把活塞向下推。

燃烧和膨胀是一个复杂的过程,但从整体上看,这就是燃油燃烧的基本原理。

3. 排气冲程在活塞向下移动时,排气门打开。

此时,废气通过排气管排出,以达到降低气缸压力的目的。

当活塞到达下止点时,排气门关闭,柴油发动机进入下一个压缩冲程。

随着曲轴的旋转,上述三个循环过程不断重复,使柴油发动机连续不断地提供动力。

总的来说,单缸柴油机操作原理涉及到压缩、燃烧和排气三个过程。

在正常使用中,操作员应定期更换机油滤芯,清洁空气过滤器和燃油过滤器,定期检查机油和冷却水的水平,定期更换全部发动机使用的机油,并根据操作手册上的指示来更换其他流体。

此外,操作员应确保使用适当的燃油,最好使用运营商推荐的燃料/油。

综上所述,单缸柴油机操作原理并不复杂,只要按照正确的步骤操作,就能够有效的提升柴油发动机的使用寿命以及效率。

简述柴油机的燃烧过程

简述柴油机的燃烧过程

简述柴油机的燃烧过程
柴油机是一种内燃机,其燃烧过程可以分为四个阶段:进气、压缩、燃烧和排气。

1. 进气阶段
在进气阶段,柴油机的活塞向下移动,吸入空气。

空气经过空气滤清器和进气道进入气缸。

同时,燃油喷嘴将燃油喷入气缸中,燃油雾化后与空气混合,形成可燃混合气。

2. 压缩阶段
在压缩阶段,活塞向上移动,将可燃混合气压缩至极高的压力和温度。

在这个过程中,燃油的分子被压缩,形成高压高温的燃油蒸气。

3. 燃烧阶段
在燃烧阶段,燃油蒸气被点火,燃烧产生高温高压的燃烧气体。

这些气体推动活塞向下运动,驱动发动机工作。

同时,燃烧产生的热能也被传递到发动机的冷却系统中,以保持发动机的工作温度。

4. 排气阶段
在排气阶段,活塞再次向上移动,将燃烧产生的废气排出气缸。

废气通过排气门排出发动机,并经过排气系统排放到大气中。

总之,柴油机的燃烧过程是一个复杂的物理过程,需要精确的控制和调整,以确保发动机的高效工作。

柴油机混合气的形成和燃烧

柴油机混合气的形成和燃烧

3.供油提前角(或喷油提前角) 供油提前角过大,喷油时气缸内温度、压力较低,着火落 后期较长,压力升高率和最大爆发压力增大,导致柴油机工作 粗暴,NOx的排放量增加。过早燃烧还会增加压缩负功,降低 柴油机的经济性和动力性。 供油提前角过小,则燃油不能在上止点附近及时燃烧,对 柴油机的经济性和动力性也不利,微粒的排放也会增加。过迟 燃烧还会使燃烧温度升高,散热损失增加。 对于每一种工况,均有一个 最佳的供油提前角,此时在 负荷及转速不变的前提下, 功率最高,有效燃油消耗率 最低。但为了兼顾降低NOx 的排放量和燃烧噪声的需要, 一般调节供油提前角略小于 最佳的供油提前角。
2. 活塞材料的影响 铸铁活塞与铝合金活塞相比其温度较高,可以 缩短着火延迟期,因此在其他条件相同时,采用铸 铁活塞的柴油机工作比较柔和。
3.喷油规律的影响 喷油规律是指单位时间(或转角)的喷 油量即喷油速度随时间(或转角)而变化 的关系。从减轻燃烧粗暴性考虑,比较理 想的喷油规律是“先缓后急”即在着火延 迟期内喷入气缸的油量不宜过多,以控制 速燃期的最高燃烧压力和平均最大压力升 高率,而着火燃烧后,应以较高的喷油速 率将燃油喷入气缸,停油应干脆迅速,喷 油延续角不宜过大,目的是使燃烧过程尽 量在上止点附近进行,以获得良好的性能。
(四) 补燃期
从最高温度点起到燃油基本烧完时为止称为补燃期。补 燃期的终点很难准确地确定,一般当放热量达到循环总放热 量的95%—99%时,可认为补燃期结束。 补燃期内燃油的燃烧可称为后燃,由于燃烧时间短促, 混合气又不太均匀,总有少量燃油拖延到膨胀过程中继续燃 烧。特别在高速、高负荷工况下,因过量空气系数小,混合 气形成和燃烧的时间更短,这种后燃现象就更为严重。 在补燃期中,由于活塞下行了相当的距离,气缸内容积 增大很多,缸内压力和温度迅速下降,故燃烧速度很慢,所 放出的热量很难有效利用,还使排气温度升高,导致散热损 失增大,对柴油机的经济性不利。此外,后燃还增加了有关 零件的热负荷。因此,应尽量缩短补燃期,减少补燃期内燃 烧的燃油量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C 主燃阶段(缓燃期)
从爆发压力出现点到最高燃烧温度出现点之间的阶段为主燃阶段。本阶段的特点是喷油已经结束,大部分的燃油在此期间燃烧,放出总热量的约80%左右,燃气温度上升到最高点。但由于活塞的下移,气缸容积增大,所以气缸内的压力变化不大。供油在这一阶段结束。
D 过后燃烧阶ቤተ መጻሕፍቲ ባይዱ
从最高燃烧温度点到燃烧结束止的阶段。在这一阶段,氧气已大量消耗,后期喷入的燃油就没有足够的氧气与之混合进行燃烧,加之活塞的进一步下移,气缸内压力和温度有较大的下降,使燃烧条件更加恶化,以致燃油燃烧不完全,出现排气冒黑烟现象,使有关零部件热负荷增加,影响柴油机经济性和使用寿命,所以应尽量减少后燃期的燃烧。
B 速燃阶段
从着火开始到气缸内出现最高压力时止的这一阶段。当少量柴油着火以后,可燃混合气的数量继续增加火焰迅速传播,燃烧速度加快,放热速率高。气缸内的压力和温度急剧升高。但压力升高过快时,会使曲柄连杆机构受到很大的冲击载荷,并伴随有尖锐的敲击声,柴油机工作粗爆,这种情况应予以限制。为使柴油机工作平稳,最大压力增长率不应超过292kPa~588kPa/1°(曲轴转角)。
柴油发动机的燃烧过程
柴油在气缸内燃烧是一个复杂的物理-化学变化过程,燃烧过程的完善程度,直接影响着柴油机的作功能力、热效率和使用期限,其燃烧过程划分为四个阶段:
A 燃烧准备阶段(滞燃期)
从燃油喷入到着火开始这一时期为燃烧准备阶段。在这一阶段,燃油需加热、蒸发、扩散并与气流混合等物理准备过程,以及分解、氧化等化学准备过程。
相关文档
最新文档