高二数学导学先锋答案

合集下载

人教A版高二数学必修五导学案及答案全套高二数学必修五导学案:课程整合《数列求和》第1课时

人教A版高二数学必修五导学案及答案全套高二数学必修五导学案:课程整合《数列求和》第1课时

第二章数列课程整合1数列乞降共两课时** 学习目标 **1.掌握数列乞降的方法;2.能依照和式的特点采纳相应的方法乞降.** 要点精讲 **1.公式法:等差、等比数列乞降公式;nk2 12 22 32 n 2 1n( n 1)(2n 1) ,公式:k 1 6n2 k3 13 23 n 31n( n 1) 等。

k 122.错位相减法:若a n 是等差数列,b n是等比数列,则求数列a n b n的前 n 项和 S n,常用错位相减法。

3.裂项相消法:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项。

4.分组乞降法:把一个数列分成几个可以直接乞降的数列。

5.并项乞降法:特点是数列的前后两项和或差可以组成一个我们熟悉的数列形式6.倒序相加法:近似于等差数列前 n 项和公式的推导方法.** 模范解析 **例 1.乞降:S 1 (1 q) (1 q q2 ) (1 q q2 q n ) .n例 2.( 1)已知数列a n 满足 a n1,求 S n。

n n 1( n 1 n)( 2)已知数列 a 的通项公式 a1 ,求 S 。

n2n n 2n n( 3)已知数列 a 的通项公式 a4n2 ,求 S 。

n n (2n 1)(2n 1) n( 4)乞降:S n 11 1 1。

1 2 1 2 3 1 2 3 n例 3 .( 1)乞降:1 2 2 33 4(1)n nS n( 2)乞降: S 1 3 57 9( 1)n (2n1)n( 3)已知函数对所有 x R , f (x)f (1 x) 1 。

新 课 标第一 网乞降: Sf (0) f ( 1 ) f ( 2 )f (n2 )f (n 1) f (1) 。

n n nn例 4.在等差数列 { a n } 中 ,首项 a 11,数列 { b n } 满足 b n(1) a n ,且 b 1b 2 b 3 1 。

264( 1)求数列 { a n } 的通项公式;( 2)求证: a 1b 1 a 2b 2a nb n 2 。

高中数学课课精练导学先锋必修一(110-160)

高中数学课课精练导学先锋必修一(110-160)

单元测试一、填空题(每小题4分,共40分) 1.化简:()3121133214(0.1)a b---⎛⎫⋅= ⎪⎝⎭⋅⋅________.2.化简21151********33a b a b a b ⎛⎫⎛⎫⎛⎫-÷ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭的结果是________.3.计算:91log 2lg2lg503-++=________.4.若log 2a m =,log 3a n =,则2m n a +=________.5.已知lg 6a =,lg15b =,试用a 、b 表示lg 48=________.6.若lg lg(4)2lg(3)x y x y +=-,则x y -的值是________.7.如果11251111log log 33a +=,那么3a =________.8.若227x y A ==,且112x y+=,则A 的值是________. 9.方程()()22log 972log 31x x +=++的解为________. 10.若正实数a 、b 、c 均不为1,满足x y z a b c ==,且1110x y z++=,则abc 的值为________. 二、选择题(每小题4分,共16分) 11.下列各式中成立的一项是( )A.7177n n m m ⎛⎫= ⎪⎝⎭34()x y +D.12.若102(32)(2)x x --+-有意义,则x 的取值范围是( )A.2,3⎡⎫+∞⎪⎢⎣⎭B.2,3⎛⎫+∞ ⎪⎝⎭C.2,2(2,)3⎡⎫⋃+∞⎪⎢⎣⎭D.2,2(2,)3⎛⎫⋃+∞ ⎪⎝⎭13.若2log (2)log log a a a M N M N -=+,则的值为( )A.14B.4C.1D.4或114.若221x y +=,0x >,0y >,且log (1)a x m +=,1log 1a n x=-,则log a y 等于( ) A.m n +B.m n -C.1()2m n +D.1()2m n - 三、解答题(15、16、17题每题5分,18题8分,19题9分,共32分) 15.已知17a a -+=,求下列各式的值: (1)33221122a a a a----;(2)1122a a-+;(3)22(1)a a a -->.16.设a 、b 、c 为正数,且满足222a b c +=,若4log 11b c a +⎛⎫+= ⎪⎝⎭,82log ()3a b c +-=,求a 、b 、c 的值.17.设1x >,1y >,且2log 2log 30x y y x -+=,求224T x y =-的最小值. 18.已知不等式21212log 9log 902x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的解集为M ,求当修正处x M ∈时,函数22log log 28x x y ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭的最大值和最小值.19.已知2lg lg lg lg [lg()]0lg lg lg lg x y x y x y x y x y++-++=⋅,求2log ()xy 的值. 四、能力拓展题(本题12分) 20.设x 、y 、z 均为正数,且346x y z ==. (1)试求x 、y 、z 之间的关系;(2)求使2x py =成立,且与p 最近的正整数(即求与p 的差的绝对值最小的正整数); (3)试比较3x 、4y 、6z 的大小.第4章 幂函数、指数函数与对数函数4.1 幂函数第1课时 幂函数的定义与图像一、填空题1.若一个函数为幂函数,又是二次函数,则该函数的表达式为________.2.若一个函数为幂函数,又是反比例函数,则该函数的表达式为________.3.若一个幂函数的图像过点(27,3),则该函数的表达式为________.4.下列所给出的函数中,是幂函数的是________(填序号). ①3y x =-;②3y x -=;③32y x =;④31y x =-5.若11,1,,32α⎧⎫∈-⎨⎬⎩⎭,则使函数a y x =的定义域为R 且图像关于原点成中心对称的所有a 的值为________________.二、选择题6.若幂函数a y x =的图像经过点⎛ ⎝⎭,则当4x =时的函数值为( ) A.16B.2C.116D.127.函数43y x =的图像是( )8.下列命题中正确的是( )A.当0a =时,函数y x α=的图像是一条直线B.幂函数的图像都经过(0,0)和(1,1)点C.幂函数32y x -=的定义域为[0,)+∞D.幂函数的图像不可能出现在第四象限 三、解答题9.已知函数()22211mm y m m x --=--是幂函数,求m 的值.10.已知函数()2221m m y m m x --=+,当m 取什么值时,这个函数是:(1)正比例函数;(2)反比例函数;(3)在第一象限内它的图像是上升曲线?11.已知幂函数223()mm y x m --=∈Z 的图像与x 轴、y 轴都无交点,且关于y 轴对称,试确定函数的表达式.四、能力拓展题12.请把相应的幂函数图像代号填入表格.①23y x =;②2y x -=;③12y x =;④1y x -=; ⑤13y x =;⑥43y x =;⑦12y x -=;⑧53y x =.第2课时 幂函数的性质一、填空题 1.若幂函数223()mm y x m --=∈Z 的图像与x 轴、y 轴无交点,且图像关于原点成中心对称,则m 的值为________.2.若一个幂函数的图像过点4(3,27),则该函数的表达式为________.3.若幂函数249aa y x --=的图像关于y 轴对称,且在(0,)+∞上是严格减函数,则正整数a的值是________.4.直接比较下列组中两个值的大小:(1)6110.6________6110.7;(2)53(0.88)________53(0.89). 5.若幂函数()22231mm y m m x --=--在(0,)x ∈+∞时为严格减函数,则(0,)x ∈+∞________.二、选择题6.下列函数中在区间(0,3)上是严格增函数的是( )A.1y x =B.12y x =C.13xy ⎛⎫= ⎪⎝⎭D.2215y x x =--7.下列幂函数中,其图像关于y 轴对称且过点(0,0)、(1,1)的是( ) A.12y x =B.4y x =C.2y x -=D.13y x =8.若幂函数m y x =与n y x =在第一象限内的图像如图所示,则( ) A.101n m -<<<< B.1n <-,01m << C.10n -<<,1m > D.1n <-,1m > 三、解答题9.已知幂函数()2732351t t y t t x+-=-+的图像关于y 轴对称,且在(0,)+∞上为严格增函数,求函数的表达式.10.已知1133(1)(32)a a --+>-,求实数a 的取值范围.11.已知一个幂函数的图像经过点127,3⎛⎫ ⎪⎝⎭.(1)求该函数的表达式; (2)判断该函数的单调性. 四、能力拓展题 12.(1)求函数11x y x -=+的单调区间和对称中心; (2)求函数(0)x ay a b x b+=>>+的单调区间和对称中心;若此函数是由某个幂函数平移得到,求a 、b 满足的条件.4.2 指数函数第1课时 指数函数的定义与图像一、填空题 1.函数132xy -=的定义域是________.2.若函数()233x y a a a =-+是指数函数,则a 的值为________.3.若函数2x y a -=(0a >,且2x y a -=),则该函数的图像恒过的定点坐标是________.4.若10.225x >,则实数x 的取值范围是________. 5.若函数()21xy a =-是严格减函数,则a 的取值范围是________. 二、选择题6.下列各式中,错误的是( ) A.0.80.733> B.0.40.60.50.5>C.0.10.10.750.75-<D. 1.6 1.4>7.函数1x y a =+(0a >且1a ≠)的图像必经过点( ) A.(0,1) B.(1,0)C.(2,1)D.(0,2)8.函数11312x y =+-的图像( ) A.关于原点成中心对称 B.关于y 轴对称C.既关于原点成中心对称又关于y 轴对称D.既不关于原点成中心对称也不关于y 轴对称 三、解答题9.下列函数中哪些是指数函数,哪些是幂函数,哪些既不是指数函数也不是幂函数?(1)πx y =; (2)2y x =; (3)y =(4)y =(5)22x y =;(6)2x y =-.10.比较下列各组数中两个数的大小. (1) 2.61.2和 2.611.2;(2) 2.10.8-和 2.10.7-; (3)0.40.3和0.30.4.11.求函数()120.58xy -=-的定义域.四、能力拓展题12.已知函数23x y a -=(0a >,且1a ≠). (1)求该函数的图像恒过的定点坐标; (2)指出该函数的单调性(不必证明).第2课时 指数函数的性质一、填空题1.若函数(0,1)x y a a a =>≠的图像过点(-1,2),则a =________.2.若函数12(0,1)x y a a a -=+>≠的图像恒过定点,则该定点坐标是________.3.若函数1xy a a ⎛⎫=- ⎪⎝⎭在R 上是严格减函数,则实数a 的取值范围是________.4.若某地现有绿地2100km ,计划每年按1%的速度扩大绿地,则三年后该地的绿地为________2km .5.若定义运算()*()a ab a b b a b ⎧=⎨>⎩,则函数1*2x y =的函数值的取值集合为________.二、选择题6.若0x >,函数()28xy a =-的值恒大于1,则实数a 的取值范围为( )A.(-2,2)B.(,2)(2,)-∞-⋃+∞C.(3,3)-D.(,3)(3,)-∞-⋃+∞7.若某工厂去年12月份的产值是去年元月份产值的m 倍,则该厂去年产值的月平均增长率为( )A.mB.12m C.121m - D.111m -8.右图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:t y a =,有以下叙述:①这个指数函数的底数是2;②第5个月时,浮萍的面积就会超过230m ; ③浮萍从24m 蔓延到212m 需要经过1.5个月; ④浮萍每个月增加的面积都相等. 其中正确的是( ) A.①②③ B.①②③④C.②③④D.①②三、解答题9.已知函数21x b y a +=+(0a >且1a ≠,b 为实数)的图像恒过定点(1,2),求b 的值.10.某地区脑卒中发病人数呈上升趋势.经统计分析,从2010年到2019年的10年间每两年上升2%,2018年和2019年共发病815人.如果按照这个比例下去,从2020年到2023年有多少人发病?11.已知函数221xxay+=+的图像关于原点对称.(1)求a的值;(2)判断函数的单调性(不需证明).四、能力拓展题12.若函数22313x mxy+-⎛⎫= ⎪⎝⎭在区间(1,1)-上是严格减函数,求实数m的取值范围.第3课时 指数函数的图像与性质一、填空题1.若函数()23xy a =-在0x <上的值恒大于1,则实数a 的取值范围是________.2.若函数(0,1)x y a a a =>≠在区间[1,2]上的最大值比最小值大2a,则实数a 的值是________.3.方程||22x x +=的实根的个数为________.4.若函数141x y a =++的图像关于原点成中心对称,则实数a 的值为________. 5.若函数212x y a=-+(a 是常数),当1a =时,则函数的值域为________. 二、选择题6.若函数1221,0,0x x y x x -⎧-⎪=⎨⎪>⎩,当0x x =时函数值0x x =,则0x 的取值范围是( )A.(1,1)-B.(1,)-+∞C.(,2)(0,)-∞-⋃+∞D.(,1)(1,)-∞-⋃+∞7.若函数y =ax -(b +1)(0a >,1a ≠)的图像经过第一、三、四象限,则一定有( ) A.1a >且0b >B.01a <<且0b <C.01a <<且0b >D.1a >且1b >8.若函数42x x y a a =-⋅+在(0,)x ∈+∞的图像恒在x 轴上方,则实数a 的取值范围是( )A.3aB.2a >C.04a <<D.4a <三、解答题9.已知[0,2]x ∈,求函数124325x x y -=-⋅+的最值.10.求函数2222xx y -++=的定义域和值域.11.已知对任意的x ∈R ,不等式22241122x mx m xx-+++⎛⎫> ⎪⎝⎭恒成立,求实数m 的取值范围.四、能力拓展题12.已知函数11124x xy a ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭.(1)当1a=时,求函数在(,0)-∞上的值域;(2)若对任意[0,)y成立,求实数a的取值范围.x∈+∞,总有||3延伸阅读(9)——指数爆炸在延伸阅读(8)中,我们领略了两位伟人的数学故事.事实上,教科书第86页的引例,可以做更一般的探索.一张纸对折一次,厚度变成原来的2倍;对折第二次,变为原来的2的2次方倍,即4倍;依次类推,假设纸的厚度为0.1mm ,则对折24次以后,高度超过1km ;对折39次高度达55000km ,超过地球赤道长度;对折42次高度达44万km ,超过地球至月球的距离;对折51次高度达22亿km ,超过地球至太阳的距离;对折82次高度为51113光年,超过银河系半径的长度.不过,这只是一个不符合实际的数学理论推理数字.那么在现实生活中,一张纸究竟能折多少次呢?如果纸为正方形,边长为a ,厚度为h ,当折叠一次的时候,折叠边长不变,厚度为2h ,折叠两次的时候,折叠边长为原边长的二分之一,厚度变为4h ,就这样折叠下去,可以推出一个公式:当折叠次数n 为偶数次时,折叠边长为0.512n ,厚度为2h ,当满足221log 13n h ⎛⎫>- ⎪⎝⎭时无法折叠.根据一般的纸张的状况,厚度大约为0.1mm ,边长为1m 时,根据上述公式,可以得出8.1918n >时无法折叠,这意味着对于厚度大约为0.1mm ,边长为1m 的正方形纸,只能折叠8次但折叠8次,人类是很难办到的,只能依靠机器.所以,一张纸最多能对折多少次,实际是一个变数,它取决于纸张的实际厚度与大小.在现实生活中,一张普通的A4纸,一般人可以折到6次,厉害的人可以折到7次,你能计算此时纸的厚度吗?杰米是百万富翁.一天,他碰到上一件奇怪的事一个叫韦伯的人对他说:“我想和你订个合同,我将在整整一个月(31天)中每天给你1万元,而你第一天只需给我1分钱,以后你每天给我的钱是前一天的2倍.”杰米答应了,合同开始生效,杰米欣喜若狂.第一天他支出1分钱,收入10万元;第二天,他支出2分钱收入10万元;到了第10天,杰米共得100万元,而总共才付出5元1角2分;到了第20天,米共得200万元,而韦伯才得5千元多.杰米想:要是合同订二、三个月该多好!可从21天起,情况发生了转变:第21天杰米支出1万多,收入10万.到第28天,杰米支出134万多,收入10万结果,杰米在一个月(31天)内得到310万元的同时,共付给韦伯2100多万元!杰米破产了.最后,我们看细胞分裂:细菌个数每次增倍所需的时间是1小时,也就是说,如果设0时刻存在的细菌数量为1,则1小时后的细菌数量为2,于是一天(24h )后的细菌数量是24.这串巨大的数字恰恰说明了指数增长的速度有多快,它还表明,我们需要小216777216心数学公式是否完全契合现实:1600万左右的细菌其实仍然很少(即使1万亿个细菌也才只有1g重),这个答案可能是精确的.但是,如果我们用公式计算6天后的细菌数量,我们得到的细菌质量将是地球质量的3700多倍;计算一周后的细菌数量,其质量将超过100000个太阳的质量.事实上,在几天内不断繁殖的细菌就能耗尽现有的所有食物,空间也越来越拥挤,没有足够的资源供细菌继续这样裂变,到最后细菌停止生长.由此可见,世界未覆灭于细菌王国,人类何其幸运!这就是指数爆炸!每周一练一、填空题1.若一个函数既是幂函数又是反比例函数,则该函数的表达式为________.2.方程210x x --=解的个数是________个.3.比较大小:(1)351.2________351. 3;(2)23(0.71)--________230.72-; (3)0.80.7________0.70.8.4.已知函数21x y =-,若函数在0x 的函数值都小于1,则0x 的取值范围是________.5.函数13x y a -=+恒过定点________.6.函数113xy ⎛⎫=- ⎪⎝⎭,[1,2]x ∈-的值域为________.7.将函数231x y =-图像向上平移1个单位再向右平移1个单位,可得函数________的图像.8.若不等式23155xx x +-⎛⎫< ⎪⎝⎭成立,则实数x 的取值范围是________. 9.若0x <时,()21xa -的值总是小于1,则实数a 的取值范围是________.10.若直线3y a =与函数11x y a +=-(0a >且1a ≠)的图像有两个公共点,则实数a 的取值范围是________________.二、选择题11.若指数函数(2)x y a =-在x ∈R 上是严格减函数,则a 的取值范围是( ) A .2a >B.3a <C.23a <<D.3a >12.若1a >,10b -<<,则函数x y a b =+的图像一定经过( ) A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限D.第一、二、四象限13.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( )A.6B.8C. D.14.函数||2x y =的大致图像是( )三、解答题15.求下列函数的值域:(1)23113x y -⎛⎫= ⎪⎝⎭;(2)421x x y =++. 16.已知幂函数223()mm y x m --=∈Z 的图像与x 、y 轴都无交点,且关于y 轴对称,求m 的值,并画出它的草图.17.已知定义域为R 的函数122x x by a+-+=+的图像关于原点成中心对称.求实数a 、b 的值.18.已知函数x y a b =+(0a >且1a ≠)的定义域和值域都是修正处[1,0]-,求a b +的值.19.已知函数3131x x y -=+.(1)求函数的值域;(2)判断函数在(,)-∞+∞上的单调性(无需证明). 四、能力拓展题 20.已知幂函数2232()p p y x p -++=∈Z 在R 上的图像关于y 轴对称,并在(0,)+∞为严格增函数(1)求p 的值,并写出此函数的表达式; (2)设函数232212p p y xqx q -++=-++,在(1)的条件下,问是否存在实数q ,使得此函数在区间[0,2]上有最小值为2-?若存在,求出q 的值;若不存在,说明理由.4.3 对数函数第1课时 对数函数的定义和图像一、填空题 1.函数()lg 821x y x -=-的定义域是________.2.若对数函数的图像过点(4,2)-,则此函数的表达式为________.3.若(1)log (1)k k +-有意义,则实数k 的取值范围是________.4.若函数2log (01)3xa y a ⎛⎫=<< ⎪⎝⎭在R 上是严格减函数,则实数a 的取值范围是________.5.若函数()22log 3y ax x a =++的定义域是R ,则a 的取值范围是________. 二、选择题6.若01a <<,则函数log (5)a y x =+的图像不经过( ) A.第一象限 B.第二象限 C.第三象限D.第四象限7.已知函数1log a y x =和2(2)y k x =-的图像如图所示,则不等式120y y 的解集是( )A.(1,2]B.[1,2)C.(1,2)D.[1,2]8.如果log 2log 20m n <<,m 、n 为不等于1的正数,那么下列关系式中成立的是( ) A.1n m << B.1m n << C.1m n <<D.1n m <<三、解答题9.(1)当3log (72)0x ->时,求实数x 的取值范围; (2)当13log (72)0x ->时,求实数x 的取值范围;(3)当3log (72)x x -恒取正值时,求实数x 的取值范围. 10.求函数()24log 32y x x =+-的最大值及相应x 的取值. 11.求下列函数的定义域:(1)12log y =(2)y ;(3)()log (0,1)x a y a a a a =->≠. 四、能力拓展题12.试求函数)2log 26y x x =++的定义域和值域.第2课时 对数函数的性质一、填空题 1.若4log 15x<,则x 的取值范围为________.2.函数y 的定义域是________.3.若集合{}|2,x A y y x ==∈R ,{|lg(3)}B x y x ==-,则A B ⋂=________.4.若函数log (0,1)a y x a a =>≠在区间[,2]a a 上的最大值是最小值的3倍,则a =________.5.使2log ()1x x -<+成立的x 的取值范围是________. 二、选择题6.与函数y x =为同一函数的是( )A.log x y x x =B.yC.log (0,1)a x y a a a =>≠D.log (0,1)x a y a a a =>≠7.方程()ln 9310x x +-=的根为( ) A.1B.2-C.0D.0,1或2-8.若221log 01a a a+<+,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.(1,)+∞C.1,12⎛⎫ ⎪⎝⎭D.10,2⎛⎫⎪⎝⎭三、解答题9.设函数11log 3x y =+,22log 2x y =,其中0x >且22log 2x y =,试比较1y 与2y 的大小. 10.已知函数25lg (2)(2)4y k x k x ⎡⎤=++++⎢⎥⎣⎦的定义域为R ,求实数k 的取值范围.11.已知函数2lg 11y x ⎛⎫=-⎪+⎝⎭. (1)求此函数的定义域;(2)若函数值都大于等于1-,求实数x 的取值范围. 四、能力拓展题12.已知函数()log 1(0,1)x a y a a a =->≠.(1)求函数的定义域;(2)判断函数的单调性.复习与小结(1)一、填空题1.若0a >,1a ≠,则函数()23log 1a y x =++的图像恒过定点________. 2.函数32y x -=的定义域是________.3.若函数22313x mx y -+⎛⎫= ⎪⎝⎭在区间(2,2)-上是严格减函数,则实数m 的取值范围是________.4.若函数142x x y m +=-⋅,存在实数0x ,0x x =和0x x =-的函数值相反,则实数m 的取值范围是________.5.若函数1231,(0),(0)x x y x x -⎧-⎪=⎨⎪>⎩在区间[1,]m -上的最大值是2,则m 的取值范围是________________.二、选择题6.若集合{}2|10A x x =->,{}2|log 0B x x =>,则A B ⋂等于( ) A.{|}1x x > B.{|0}x x > C.{1|}x x <-D.11{|x x x <->或7.已知函数()2231m m y m m x +-=--是幂函数,且(0,)x ∈+∞时,若此函数是严格减函数,则m 的值为( )A.1-B.2C.1-或2D.38.若函数()23log 21y mx x =-+的值域为R ,则实数m 的取值范围是( ) A.(0,1) B.[0,1] C.[1,)+∞ D.(,1)-∞三、解答题 9.已知函数223()mm y x m -++=∈Z 的图像关于y 轴对称,且3x =的函数值小于5x =的函数值,求m 的值,并确定该函数的表达式.10.求下列函数的定义域.(1)log (3)log (3)a a y x x =-++(0a >,且1a ≠);(2)()2log 164x y =-.11.已知函数10101010x xx xy ---=+. (1)求函数的定义域; (2)求函数的值域. 四、能力拓展题12.已知函数()9log 91()x y kx k =++∈R 的图像关于y 轴对称. (1)求k 的值;(2)若此函数的图像在直线12y x b =+上方,求实数b 的取值范围.复习与小结(2)一、填空题1.若指数函数(12)x y a x =的最大值与最小值之和等于6,则2.若点(3,27)在幂函数(2)a y t x =-的图像上,则t a +=3.某食品的保鲜时间y (单位:h )与储存温度x (单位:℃)满足函数关系kx by e +=( 2.718e =…为自然对数的底数,k 、b 为常数).若该食品在0℃的保鲜时间设计192h ,在22℃的保鲜时间是48h ,则该食品在33℃的保鲜时间是________h.4.若函数()2lg 2y x ax =-+在区间(1,2)是严格减函数,则实数a 的取值集合是________.5.函数21(0,1)2x y x a a a =-->≠.若[1,1]x ∈-时,函数值均小于0,则实数a 的取值范围是________.二、选择题6.若0a >,0b >,且1ab =,1a ≠,则函数x y a =与函数log b y x =-在同一坐标系中的图像可能是( )7.设|1|3x y =-,c b a <<,若函数在x c =的函数值大于函数在x a =的函数值,函数在x a =的函数值大于x b =的函数值,则下列关系式中一定成立的是( )A.33c b >B.33b a >C.332c a +>D.332c a +<8.给出下列4个结论:①函数(0,1)x y a a a =>≠与函数log (0,1)x a y a a a =>≠的定义域相同 ②函数3(0)x y k k =⋅>(k 为常数)图像可由3x y =的图像平移得到③函数11(0)221x y x =+≠-的图像关于原点成中心对称且11212xy x ⎛⎫=+ ⎪-⎝⎭的图像关于y 轴对称④若幂函数a y x =的图像关于原点成中心对称,则a y x =是定义域上的严格增函数 则以上4个结论中正确结论的个数( ) A.1个 B.2个 C.3个 D.4个三、解答题9.求函数21144log 2log 5y x x =-+,[2,4]x ∈的最值.10.解不等式:1133(3)(12)a a ---<+.11.已知函数x y b a =⋅(其中a 、b 为常量,且0a >,1a ≠)的图像经过点(1,6)(3,24)A B 、.(1)求该函数的表达式;(2)若不等式110xxm a b ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭在(,1]x ∈-∞上恒成立,求实数m 的取值范围.四、能力拓展题12.(1)关于x 的方程1936(5)0x x k k k +⋅-⋅+-=在[0,2]上有唯一解,求实数k 的取值范围;(2)已知关于x 的方程()2113(1)31(3)30x x x m m ++++---⋅=有两个不同的实数根,求实数m 的取值范围.单元测试一、填空题(每小题4分,共40分)1.若点⎝⎭在一个幂函数图像上,则这个幂函数的表达式是________.2.函数1lg 3y x ⎛⎫=- ⎪⎝⎭的定义域是________.3.若函数(1)x y m =+在R 上是严格增函数,则实数m 的取值范围是________.4.若函数141x y a =+-的图像关于原点成中心对称,则实数a 的值为________. 5.若252222x x +-=,则()2lg 1x +=________.6.若实数x 满足不等式()222log 2log (4)x x x ->+,则实数x 的取值范围是________. 7.若函数()2lg 223y x ax a =-++的值域是R ,则实数a 的取值范围是________. 8.若直线y a =与函数21x y =-∣的图像有两个公共点,则a 的取值范围是________. 9.无论a 为何值,函数(1)22x ay a =--恒过一定点,这个定点的坐标是________. 10.若函数0(3)4,0x a x y a x a x ⎧<=⎨-+⎩在(,)x ∈-∞+∞上严格单调递减,则实数a 的取值范围是________.二、选择题(每小题4分,共16分) 11.函数22log (1)y x x =+的值域为( ) A.(2,)+∞B.(,2)-∞C.[2,)+∞D.[3,)+∞12.方程1lg(2)2xx ⎛⎫+= ⎪⎝⎭解的情况为( )A.两个正根B.一个正根一个负根C.一个正根D.无实数根13.不等式11log (21)log (1)a a x x --->-成立的充要条件是( ) A.0x > B.0x >且2a > C.1x >且1a >D.x >1且2a >14.若函数()22log 217y x x =-+的值域为[,)m +∞,当正数a 、b 修正处满2132m a b a b+=++时,则74a b +的最小值为( ) A.94B.1D.2三、解答题(15、16、17题每题5分,18题8分,19题9分,共32分) 15.已知m ∈Z ,函数28mmy x -=的图像关于原点对称,且与x 轴、y 轴均无交点,求m的值.16.求121x y =-的值域. 17.银行一年定期储蓄年利率为2.25%,若存款到期不取继续留存于银行,银行自动将本金及80%的利息(20%交纳利息税)转存一年定期储蓄.某人于年初存入银行5万元.(1)至少存几年,才可以得到大于2500元的利息?(2)若此人改为按三年定期储蓄存入银行5万元(三年定期储蓄的年利率为3.24%),三年后一次取出全部本息(利息按20%交税),问按哪一种方式能获得更多的利息?利息差是多少?(保留2位小数)18.已知关于x 的方程9(4)340x x a ++⋅+=有实数解,求实数a 的取值范围.19.已知x 满足222log 5log 60x x -+,求函数2124log log 2x y x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的最大值和最小值. 四、能力拓展题(本题12分)20.已知函数3log ()y ax b =+的图像过点(2,1)A 和(5,2)B . (1)求此函数的表达式;(2)已知函数31log 2y t x ⎛⎫=+ ⎪-⎝⎭,若两个函数图像在区间[1,2)上有公共点,求t 的最小值.延伸阅读(10)——对数的故事教科书P75课后阅读《对数简史》,为我们展示了对数发展的脉络,而形成对数的数学思想,蕴含在对数的故事中.对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是16世纪末到17世纪初的苏格兰数学家——约翰·纳皮尔(John Napier,1550-1617).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,浪费了若干年甚至毕生的宝贵时间.纳皮尔是一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在纳皮尔那个时代,“指数”这个概念尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的.那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?乘法转化为加法:在那个时代,计算多位数之间的乘积,是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:(1)0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、…(2)1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、…这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的指数对应的幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现.比如,计算32512⨯的值,就可以先查第一行的对应数字:32对应于5,512对应于9;然后再把第一行中的对应数字相加:5914+=;再查第一行中的14,对应于第二行中的16384,所以有:3251216384⨯=.纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了,这种“化乘除为加减”,达到简化计算的思路,不正是对数运算的明显特征吗?经过多年探索,纳皮尔于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了这项发明,并解释了这项发明的特点.改良与完善:该书的发表引起了另一位数学家亨利·布里格斯(Henry Briggs,1561—1630)的极大兴趣.1616年,他去拜访纳皮尔,建议将对数改良到以10为基底的对数表以方便使用,这就是后来常用对数了.约翰·纳皮尔本人也考虑过这个问题,遗憾的是,不久后(1617年春天)他便去世了.于是,布里格斯竭尽毕生精力完成了改良工作,以10为底列出一个很详细的对数表.第三位发现者:瑞士工程师兼钟表匠茱斯特·比尔吉(Joost Burg i,1552—1632)曾担任著名天文学家约翰尼斯·开普勒(Johannes Kepler,1571—1630)的助手,因此常接触到复杂的天文计算,也产生了化简数值计算的强烈愿望.他早于纳皮尔创建了一种对数体系,但由于某些原因,直至1620年才在布拉格匿名发表.所以在对数体系发明这件事上,世人大多只记住了纳皮尔而鲜少提及比尔吉.因此,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣.恩格斯在《自然辩证法》中,曾把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分称为17世纪的三大数学发明.法国数学家、天文学家拉普拉斯(Pierre Simon Laplace,1749—1827)曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”广泛运用:利用对数这个工具,天文学家们就能够轻松地进行繁琐的大数相乘的运算,天文研究突飞猛进.连伽利略都说:“给我空间、时间及对数,我就可以创造一个宇宙.”除此之外,对数在经济学、统计学、生物学、化学等领域均得到广泛的应用.对数的发明和应用给了我们一个启示,数学理论的发展可以极大程度地推动社会生产、科学技术的进步.所以别再说学数学无用了——学好数学用处大大的!第5章 函数的概念性质及应用5.1 函数第1课时 函数一、填空题 1.函数1|2|1y x =+-的定义域是________.2.函数y =________.3.函数1(2)2y x x x =+>-的值域是________. 4.函数2121x x y -=+的值域是________.5.若(1)f x +的定义域为[1,2],则()2log f x 的定义域是________. 二、选择题6.函数y =的定义域为( )A.(,1]-∞B.(,2]-∞C.1,2⎛⎫-∞- ⎪⎝⎭D.11,,122⎛⎫⎛⎤-∞-⋃- ⎪ ⎥⎝⎭⎝⎦7.下列四组函数中,同组的两个函数是相同函数的是( )A.()f x x =,2()g x =B.()f x x =,()g xC.()f x ()g x =D.21()1x f x x -=+,()1g x x =-8.下列四组函数中,同组的两个函数是相同函数的是( )A.()||f x x =,2()g x = B.()f x x =,11()g x x -⎛⎫= ⎪⎝⎭C.()f x x =,log ()a x g x a =D.()2ln ||f x x =,2()ln g x x =三、解答题9.求函数y =.10.求函数()222log 32y x ax a =-+的定义域.11.已知函数22()1x f x x =+,求:(1)1()f a f a ⎛⎫+ ⎪⎝⎭;(2)11(1)(2)(3)23f f f f f ⎛⎫⎛⎫++++⎪ ⎪⎝⎭⎝⎭; (3)111(1)(2)(99)(100)23100f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.四、能力拓展题12.设函数()f x 的定义域为[0,1].(1)求函数()(21)F x f x =-的定义域;(2)设0a >,求函数()()()G x f x a f x a =++-的定义域.第2课时函数的表示方法一、填空题1.若函数2()1f x x=+,则[(1)]f f=________;[()]f f x=________.2.若21,0()2,0x xf xx x⎧+=⎨>⎩,则满足()10f x=的x=________.3.若1)2(1)f x x=-,则()f x=________.4.若()f x是一次函数,满足3(1)2(1)217f x f x x+--=+,则()f x=________.5.若13()24f x f xx⎛⎫+=⎪⎝⎭,则()f x=________.二、选择题6.下列四个图像中,不是函数图像的是()7.函数1yx a=+(常数0a<)的图像所经过的象限是()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限8.若x〈〉表示比x大且最接近x的整数,则函数y x=〈〉的图像与y x=的图像交点个数是()A.0B.无数个C.1D.不确定三、解答题9.在同一平面直角坐标系中作出函数||y x=与|2|y x=-的图像..10.已知函数2(1) ()|1|x xf xx-=-;(1)作出该函数的图像;(2)写出该函数的值域.11.已知函数2()f x ax bx c=++,2()f x ax bx c=++,且(1)()1f x f x x+=++,试求()f x 的表达式.四、能力拓展题12.如图,已知动点P从边长为1的正方形ABCD顶点A开始沿边界绕一圈,若用x表示点P从A出发后的行程,y表示P A的长.求y关于x的函数解析式.5.2 函数的基本性质第1课时 函数的奇偶性(1)一、填空题1.函数311()4f x x x ⎛⎫=+ ⎪⎝⎭的奇偶性是________.2.函数()31()4f x x x =+,[2,2)x ∈-的奇偶性是________. 3.函数42()f x x x =-的奇偶性是________;函数3()h x x x =-的奇偶性是________. 4.若函数(1)()()x x a f x x++=为奇函数,则a =________.5.若函数()f x 是R 的奇函数,则(1)(0)(1)f f f -++=________. 二、选择题6.函数(||1)(||3)y x x x =-的奇偶性是( ) A.奇函数 B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数7.若()f x 是定义在R 上的函数,则函数()()()F x f x f x =--在R 上一定是( ) A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数8.已知()y f x =是定义在R 上的奇函数,(2)0f =,若对任意x ∈R ,都有(4)()(4)f x f x f +=+成立,则(2022)f 的值为( )A.2022B.2020C.2018D.0三、解答题9.求证:函数2()2||f x x x =-+是偶函数. 10判断下列函数的奇偶性.(1)()f x =(2)11()312xg x x ⎛⎫=+ ⎪-⎝⎭. 11.已知()f x 是奇函数,()g x 是偶函数,且2()()231f x g x x x +=-+,求()f x 、()g x 的解析式.四、能力拓展题12.已知定义在R上的函数()f xy f x f y=+.f x满足()()()(1)求证:(1)(1)0=-=;f f(2)求证:()f x为偶函数第2课时 函数的奇偶性(2)一、填空题1.函数||y x =的图像关于对称________,函数的奇偶性是________.2.若()f x 在[-5,5]上是奇函数,且(3)(1)f f <,则(3)f -与(1)f -的大小关系是________.3.函数()f x ________.4.函数(1),0()(1),0x x x f x x x x -⎧=⎨-+<⎩的奇偶性是________.5.若函数20192021()8bf x x a x x=+⋅--,(2)10f -=,则(2)f =________. 二、选择题6.“(0)0f =”是“()f x 是定义在R 上的奇函数”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件D.既非充分又非必要条件7.下列命题中正确的是( ) A.奇函数的图像一定过原点 B.21(44)y x x =+-<是偶函数 C.|1||1|y x x =-++是偶函数D.21x x y x -=-是奇函数8.已知函数()f x 是偶函数,当0x >时,()(1)f x x x =-;当()(1)f x x x =-时,()f x 等于( )A.(1)x x -+B.(1)x x +C.(1)x x -D.(1)x x --三、解答题9.判断下列函数的奇偶性: (1)(1)()1x x f x x +=+;(2)()f x10.设()f x 是定义在R 上的奇函数,当0x <时,()2(1)f x x x =+. 求:(1)当0x >时,()f x 的解析式;。

江苏省2020年高二数学第10讲 常见函数的导数 分层作业答案

江苏省2020年高二数学第10讲 常见函数的导数 分层作业答案

2月20日 高二数学分层作业答案1.D 解析:∵f'(x)=(√x 3)'=(x 13)'=13·x -23=3√x 23,∴f'(-1)=13.2.解析:设切点为(x 0,y 0),则由y'=1x ,得1x 0=k, 又y 0=kx 0,y 0=ln x 0,从而联立解得y 0=1,x 0=e,k=1e .3.解析:∵y'=-1x 2,令-1x 2=-4,得x=±12, ∴P 的坐标为(12,2)或(-12,-2). 答案:C4.C [依题意得,f ′(x)=-asin x ,g ′(x)=2x +b ,于是有f ′(0)=g ′(0),即-asin 0=2×0+b ,则b =0,又m =f(0)=g(0),即m =a =1,因此a +b =1.]5.①②【解析】由常见函数的导数公式,易知①②正确,③④错误.③中,④中y=3x +a(a 为常数). 6.【答案】(2,1)【解析】f ′(x)=-.∵曲线在点P 处的切线的倾斜角为135°, ∴-=-tan135°=-1.∴x 3=8.∴x =2.当x =2时f(2)=1.∴P 点坐标为(2,1).7.解析:曲线y=x n+1(n ∈N *)在点(1,1)处的切线斜率k=y'|x=1=(n+1)×1n=n+1,则在点(1,1)处的切线方程为y-1=(n+1)(x-1),令y=0,得x n =n n+1,所以log 2x 1+log 2x 2+log 2x 3=log 212+log 223+log 234=log 2(12×23×34)=log 214=-2.8.16871 15(2)4ln4(3)(4)8ln3 (5)sin(6)0(7)sin(8)0xy x y y x yx y x y y x y--''''=-===''''=-==-=()9.【答案】【解析】试题分析:设P(x0,y0),求导数可得直线l1的斜率k=,由垂直关系可得直线l2的斜率为-2,,分别可得直线的方程,可得Q和K的坐标,由两点间的距离公式可得.试题解析:如图,设P(x0,y0),则k l1=f′(x0)=,∵直线l1与l2垂直,则k l2=-2,∴直线l2的方程为y-y0=-2 (x-x0),∵点P(x0,y0)在曲线y=上,∴y0=.在直线l2的方程中令y=0,则-=-2 (x-x0).∴x=+x0,即x Q=+x0.又x K=x0,∴|KQ|=x Q-x K=+x0-x0=.10.【答案】(1)3x-y-2=0;(2)3x-y-2=0试题解析:y′=3x2.(1)当x=1时,y′=3,即在点P(1,1)处的切线的斜率为3,∴切线方程为y-1=3(x-1),即3x-y-2=0.(2)设切点坐标为(x 0,y 0),则过点P 的切线的斜率为3x , 由直线的点斜式,得切线方程y -x =3x (x -x 0), 即3x x -y -2x =0.∵P(1,0)在切线上,∴3x -2x =0.解之得x 0=0或x 0=.11.【解析】()()(0)a f x g x x x ''==>,由已知得ln ,,a x a x== 解得2,2e a x e ==, ∴ 两条直线交点的坐标为2(,)e e ,切线的斜率为21()2k f e e '==, ∴ 切线的方程为21()2y e x e e-=-。

人教A版高二数学必修五第二章 数列 导学案(含答案,精排版) 2.4 等比数列

人教A版高二数学必修五第二章 数列 导学案(含答案,精排版)  2.4  等比数列

§2.4 等比数列制作:_____________审核:______________班级: .组名: . 姓名: .时间:年月日【本卷要求】:1.动脑思考2.每个点都要达标,达标的标准是能够“独立做出来”,不达标你的努力就体现不出来3.听懂是骗人的,看懂是骗人的,做出来才是自己的4.该记的记,该理解的理解,该练习的练习,该总结的总结,勿懈怠!5.明确在学习什么东西,对其中的概念、定律等要追根溯源,弄清来龙去脉才能理解透彻、应用灵活6.先会后熟:一种题型先模仿、思考,弄懂了,再多做几道同类型的,总结出这种题型的做法,直到条件反射7.每做完一道题都要总结该题涉及的知识点和方法8.做完本卷,总结该章节的知识结构,以及常见题型及做法9.独立限时满分作答10.多做多思,孰能生巧,熟到条件反射,这样一是能见到更多的出题方式,二是能提高做题速度11.循环复习12.步骤规范,书写整洁【一分钟德育】高中学生学习方法常规在学习过程中,掌握科学的学习方法,是提高学习成绩的重要条件。

以下我分别从预习、上课、作业、复习、考试、课外学习等六个方面,谈一下学习方法的常规问题。

应当说明的是,我这里所谈的是各科学习的一般规律,不涉及具体学科。

一、预习。

预习一般是指在老师讲课以前,自己先独立地阅读新课内容,做到初步理解,做好上课的准备。

所以,预习就是自学。

预习要做到下列四点:1、通览教材,初步理解教材的基本内容和思路。

2、预习时如发现与新课相联系的旧知识掌握得不好,则查阅和补习旧知识,给学习新知识打好牢固的基础。

3、在阅读新教材过程中,要注意发现自己难以掌握和理解的地方,以便在听课时特别注意。

4、做好预习笔记。

预习的结果要认真记在预习笔记上,预习笔记一般应记载教材的主要内容、自己没有弄懂需要在听课着重解决的问题、所查阅的旧知识等。

二、上课。

课堂教学是教学过程中最基本的环节,不言而喻,上课也应是同学们学好功课、掌握知识、发展能力的决定性一环。

高二数学利用导数研究函数的单调性试题答案及解析

高二数学利用导数研究函数的单调性试题答案及解析

高二数学利用导数研究函数的单调性试题答案及解析1.如图是y=f(x)的导函数的图象,现有四种说法:(1)f(x)在(-3,1)上是增函数;(2)x=-1是f(x)的极小值点;(3)f(x)在(2,4)上是减函数,在(-1,2)上是增函数;(4)x=2是f(x)的极小值点;以上正确的序号为________.【答案】(2)(3)【解析】如图,(1)f(x)在(-3,1)上导函数值既有正有有负所以不是是增函数,故错误;(2)在x=-1左右两侧先减后增所以是f(x)的极小值点;(3)f(x)在(2,4)上导函数为负所以是减函数,在(-1,2)上导函数为正所以是增函数;(4)在x=2左右两侧先增后减所以是f(x)的极大值点所以错误.【考点】导函数的应用.2.已知(1)如果函数的单调递减区间为,求函数的解析式;(2)对一切的,恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)三个二次间的关系,其实质是抓住二次函数的图像与横坐标的交点、二次不等式解集的端点值、二次方程的根是同一个问题.解决与之相关的问题时,可利用函数与方程的思想、化归的思想将问题转化,结合二次函数的图象来解决;(2)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到;(3)(3)对于恒成立的问题,常用到两个结论:(1)(2)试题解析:解:(1)由题意的解集是即的两根分别是.将或代入方程得..……4分(2)由题意:在上恒成立即可得设,则令,得(舍)当时,;当时,当时,取得最大值, =-2.的取值范围是.【考点】(1)利用函数的单调性求函数解析式;(2)利用导数解决横成立的问题.3.已知函数f(x)=ax2+bln x在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.【答案】(1);(2)减区间(0,1),增区间(1,+∞)【解析】(1)由函数f(x)=ax2+bln x在x=1处有极值可知,解得;(2)由(1)可知,其定义域是(0,+∞),由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).试题解析:(1)又函数f(x)=ax2+bln x在x=1处有极值,所以解得.(2)由(1)可知,其定义域是(0,+∞)由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).【考点】1.导数与极值;2.导数与单调性4.已知函数,().(1)若x=3是的极值点,求在[1,a]上的最小值和最大值;(2)若在时是增函数,求实数a的取值范围.【答案】(1);.(2).【解析】(1)由已知可得,从而求得;再利用函数的导数求得在[1,4]上的最值.(2)由在时是增函数,可得在恒成立;再利用分离参数法将恒成立转化为函数的最值问题加以解决.试题解析:(1),由题意得,则,当单调递减,当单调递增,;.(2),由题意得,在恒成立,即在恒成立,而所以,.【考点】1.函数的极值与最值;2.函数的单调性;3.不等式的恒成立.5.设函数(其中).(1)当时,求函数的单调区间;(2)当时,求函数在上的最大值.【答案】(1)函数的递减区间为,递增区间为,;(2)【解析】(1)由,利用导数的符号判断函数的单调性和求单调区间;(2)试题解析:解:(1)当时,,令,得,当变化时,的变化如下表:单调递增极大值单调递减极小值单调递增右表可知,函数的递减区间为,递增区间为,.(2),令,得,, 令,则,所以在上递增, 所以,从而,所以所以当时,;当时,;所以令,则,令,则在上递减,而所以存在使得,且当时,当时,所以在上单调递增,在上单调递减.因为,所以在上恒成立,当且仅当时取得“=”.综上,函数在上的最大值.【考点】1、导数在研究函数性质中的综合应用;2、等价转化的思想.6.已知函数,(为常数,为自然对数的底).(1)当时,求;(2)若在时取得极小值,试确定的取值范围;(3)在(2)的条件下,设由的极大值构成的函数为,将换元为,试判断曲线是否能与直线(为确定的常数)相切,并说明理由.【答案】(1);(2)的取值范围是;(3)曲线不能与直线相切,证明详见解析.【解析】(1)当时,根据函数的求导法则求出导函数,进而可求出;(2)先根据函数的求导法则求出导函数,进而分、、三种情况进行讨论,确定哪一种情况才符合在时取得极小值,进而可确定的取值范围;(3)根据(2)确定函数的极大值为,进而得出,该曲线能否与直线相切,就看方程有没有解,进而转化为求函数的最值问题,利用函数的导数与最值的关系进行求解判断即可.试题解析:(1)当时,,所以(2)因为令,得或当,即时,恒成立此时在区间上单调递减,没有极小值;当,即时,若,则,若,则所以是函数的极小值点当,即时,若,则.若,则此时是函数的极大值点综上所述,使函数在时取得极小值的的取值范围是(3)由(2)知当,且时,因此是的极大值点,极大值为所以.令则恒成立,即在区间上是增函数所以当时,,即恒有又直线的斜率为所以曲线不能与直线相切.【考点】1.函数的求导法则;2.函数的极值与导数;3.函数的单调性与导数;4.函数的最值与导数.7.已知函数在上单调递增,则实数的取值范围是.【答案】【解析】由题意知:;即:恒成立;设令,解得:,时,为减函数,时,为增函数,故的最大值为:,即:【考点】利用导数函数解决函数的单调性和最值问题.8.函数的的单调递减区间是。

高二数学函数的极值与导数(一)学案答案

高二数学函数的极值与导数(一)学案答案

函数的极值与导数学案答案【课前预习】4.B 5.B 6.D 【范例延展】例题1. 解 f ′(x )=3x 2-6x -9.解方程3x 2-6x -9=0,得x 1=-1,x 2=3. ↗↘↗当x =3时,f (x )有极小值f (3)=-22. 跟踪训练1(1)解 函数f (x )=3x +3ln x 的定义域为(0,+∞),f ′(x )=-3x 2+3x =3(x -1)x 2.令f ↗(2)函数f (x )的定义域为R . f ′(x )=2x e -x -x 2e -x =x (2-x )e -x . 令f ′(x )=0,得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:当x =2时,函数有极大值,且极大值为f (2)=4e -2. 例2解 f ′(x )=[[[x 2+(a +2)x -2a 2+4a]]e x . 令f ′(x )=0,解得x =-2a 或x =a -2, 由a ≠23知-2a ≠a -2.分以下两种情况讨论: ①若a >23,则-2a <a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(-∞,-2a ),(a -2,+∞)上是增函数,在(-2a ,a -2)上是减函数,函数f (x )在x =-2a 处取得极大值f (-2a ),且f (-2a )=3a e -2a,函数f (x )在x =a -2处取得极小值f (a-2),且f (a -2)=(4-3a )e a -2. ②若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(-∞,a -2),(-2a ,+∞)上是增函数,在(a -2,-2a )上是减函数,函数f (x )在x =a -2处取得极大值f (a -2),且f (a -2)=(4-3a )e a -2,函数f (x )在x =-2a 处取得极小值f (-2a ),且f (-2a )=3a e-2a.反思与感悟 讨论参数应从f ′(x )=0的两根x 1,x 2相等与否入手进行. 跟踪训练2解 函数f (x )的定义域为(0,+∞),f ′(x )=1-ax .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),因而f (1)=1,f ′(1)=-1.所以曲线y =f (x )在点A (1,f (1))处的切线方程为 y -1=-(x -1),即x +y -2=0. (2)由f ′(x )=1-a x =x -ax,x >0,知①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a . 又当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值. 例3解析 (1)若a <-1,因为f ′(x )=a (x +1)(x -a ), 所以f (x )在(-∞,a )上单调递减,在(a ,-1)上单调递增, 所以f (x )在x =a 处取得极小值,与题意不符;若-1<a <0,则f (x )在(-1,a )上单调递增,在(a ,+∞)上单调递减,从而在x =a 处取得极大值.若a >0,则f (x )在(-1,a )上单调递减,在(a ,+∞)上单调递增,与题意不符,故选D. (2)因为f (x )在x =-1时有极值0,且f ′(x )=3x 2+6ax +b ,所以⎩⎪⎨⎪⎧ f ′(-1)=0,f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, 所以f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-3,-1)时,f (x )为减函数, 当x ∈(-1,+∞)时,f (x )为增函数,所以f (x )在x =-1处取得极小值,因此a =2,b =9. 跟踪训练3 解 (1)∵f (x )=a ln x +bx 2+x , ∴f ′(x )=ax+2bx +1,∴f ′(1)=f ′(2)=0,∴a +2b +1=0且a2+4b +1=0,解得a =-23,b =-16.(2)由(1)可知f (x )=-23ln x -16x 2+x ,且定义域是(0,+∞),f ′(x )=-23x -1-13x +1=-(x -1)(x -2)3x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,2)时,f ′(x )>0; 当x ∈(2,+∞)时,f ′(x )<0.故x =1是函数f (x )的极小值点,x =2是函数f (x )的极大值点. 【当堂检测】1. D 2.D 3. 0 4.解析 f ′(x )=3x 2+2ax +b ,由题意知⎩⎪⎨⎪⎧ f ′(1)=3,f ′⎝⎛⎭⎫23=0,即⎩⎪⎨⎪⎧3+2a +b =3,43+43a +b =0,解得⎩⎪⎨⎪⎧a =2,b =-4,则a +b =-2.5.解 (1)f ′(x )=2ax +b x,由题意得⎩⎪⎨⎪⎧ f ′(1)=0,f (1)=12, 即⎩⎪⎨⎪⎧2a +b =0,a =12, ∴a =12,b =-1.(2)由(1)得,f ′(x )=x -1x =x 2-1x =(x +1)(x -1)x .又f (x )的定义域为(0,+∞), 令f ′(x )=0,解得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞). f (x )极小值=f (1)=12.。

高二数学导数大题练习题含答案

高二数学导数大题练习题含答案

高二数学导数大题练习题含答案一、解答题1.已知()2,13,1x x x f x x x ⎧-≥-=⎨+<-⎩,()()ln g x x a =+.(1)存在0x 满足:()()00f x g x =,()()00f x g x ''=,求a 的值; (2)当4a ≤时,讨论()()()h x f x g x =-的零点个数. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数21()ln (1)()22=+-+++∈R x f x a x a x a a 有一个大于1的零点0x .(1)求实数a 的取值范围;(2)证明:对任意的(]01,x x ∈,都有ln 10-+>a x x 恒成立.4.己知数列{}n a 和{}n b ,12a =且()11n nb n a *=-∈N ,函数()()ln 11mx f x x x=+-+,其中0m >.(1)求函数()f x 的单调区间;(2)若数列{}n a 各项均为正整数,且对任意的n *∈N 都有2112112n n n n a a a a +++-<+.求证:(ⅰ)()12n n a a n *+=∈N ;(ⅱ)53123e n b b b b ->,其中e 2.71828=⋅⋅⋅为自然对数的底数. 5.已知()21e 2x f x k x =-.(1)若函数()f x 有两个极值点,求实数k 的取值范围;(2)证明:当n *∈N 时,()222221123123e 4e 1en nn -+++⋅⋅⋅+<+. 6.已知函数()e xf x kx =-,()()28ln ag x x x a R x=--∈.(1)当1k =时,求函数()f x 在区间[]1,1-的最大值和最小值; (2)当()0f x =在1,22⎡⎤⎢⎥⎣⎦有解,求实数k 的取值范围;(3)当函数()g x 有两个极值点1x ,()212x x x <,且11x ≠时,是否存在实数m ,总有()21221ln 51a x m x x x >--成立,若存在,求出实数m 的取值范围,若不存在,请说明理由.7.已知函数()ln f x x =(1)过原点作()f x 的切线l ,求l 的方程; (2)令()()f x g x x=,求()g x a ≥在4e,e ⎡⎤⎣⎦恒成立,求a 的取值范围 8.设函数y =x 3+ax 2+bx +c 的图像如图所示,且与y =0在原点相切,若函数的极小值为-4.(1)求a ,b ,c 的值. (2)求函数的递减区间.9.已知函数e ()(1)1xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当1a =时,()2f x ≥恒成立,求b 的值.10.设函数()223ln 1f x a x ax x =+-+,其中0a >.(1)求()f x 的单调区间;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【参考答案】一、解答题1.(1)0a =或4; (2)答案见解析. 【解析】【分析】(1)在1x ≥-有()2000ln 21x x x -=--,构造中间函数并利用导数研究单调性和零点情况,求参数a ,在1x <-上根据已知列方程组求参数a ,即可得结果. (2)讨论a 的范围,利用导数研究()h x 的单调性,结合零点存在性定理判断各情况下零点的个数. (1)1x ≥-时()2f x x x =-,原条件等价于200000ln()1210x x x a x x a ⎧-=+⎪⎨-=>⎪+⎩,∴()2000ln 21x x x -=--,令()()2ln 21x x x x ϕ=-+-,则()221021x x x ϕ'=-+>-, ∴()ϕx 为增函数,由()10ϕ=,则()0x ϕ=有唯一解01x =,所以0a =,1x <-时,()000311x ln x a x a ⎧+=+⎪⎨=⎪+⎩,解得:4a =. 综上,0a =或4. (2)ⅰ.0a <时0x a +>,则0x a >->,()()()22ln ln h x x x x a x x x x ϕ=--+>--=,而()121x x x ϕ'=--,()2120x x ϕ''=+>,即()x ϕ'为增函数,又()01ϕ'=, 当()0,1∈x 时()0ϕ'<x ;当()1,x ∈+∞时()0ϕ'>x ,故()()10x ϕϕ≥=, ∴()0h x >恒成立,故0a <时零点个数为0;ⅱ.0a =时,()2ln h x x x x =--,由①知:仅当1x =时()0h x =,此时零点个数为1.ⅲ.01a <≤时,()()()2ln h x x x x a x a =--+>-,则()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,2102a h a a⎛⎫'-=---< ⎪⎝⎭,()11101h a'=->+, ∴()0h x '=仅有一解,设为0(,1)2ax ∈-,则在()0,a x -上()0h x '<,在()0,x +∞上()0h x '>,所以()h x 最小值为()0h x ,故()()010h x h ≤<.又2ln 02422a aa a h ⎛⎫-=+-> ⎪⎝⎭,()()22ln 20h a =-+>,故0,2a x ⎛⎫- ⎪⎝⎭、()0,2x 上()h x 各有一零点,即()h x 有2个零点.ⅳ.14a <<时,(),1a --上()()()()3ln 3ln 4h x x x a x x p x =+-+>+-+=,()()()1103304p x x p x p x '=-=⇒=-⇒≥-=+, ∴()h x 无零点,则[)1,-+∞上()()2ln h x x x x a =--+,()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,()11301h a '-=--<-+,()11101h a'=->+, ∴()0h x '=有唯一解,设为x ',则()()10h x h '≤<,又()()12ln 10h a -=--+>,()()22ln 20h a =-+>,故()1,x '-、(),2x '上,()h x 各有一个零点,即()h x 有2个零点.ⅴ.4a =时,由(1)知:(]4,1--上()h x 有唯一零点:3x =-;在()1,-+∞上()()2ln 4h x x x x =--+,则()1214h x x x '=--+,()2120(4)h x x ''=+>+, 所以()h x '为增函数,()11301h a '-=--<-+,()4105h '=>,故1(1,1)x ∃∈-使1()0h x '=,则1(1,)x -上()0h x '<,()h x 递减;1(,)x +∞上()0h x '>,()h x 递增; 故1()()h x h x ≥,而1()(1)ln 50h x h <=-<,又(1)2ln30h -=->,(2)2ln 60h =->,故在1(1,)x -、1(),2x 上()h x 各有一个零点, 所以()h x 共有3个零点.综上:0a <时()h x 零点个数为0;0a =时()h x 零点个数为1;04a <<时()h x 零点个数为2;4a =时()h x 零点个数为3. 【点睛】 关键点点睛:(1)根据分段函数的定义域讨论x ,结合函数、方程思想求参数.(2)讨论参数a ,利用二阶导数研究()h x '的单调性,进而判断其符号研究()h x 单调性,并结合零点存在性定理判断区间零点的个数. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x=+-的两个零点得到1212122ln x x x x x x -=,分别解出1211212ln x x x xx -=,2121212ln x x x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x =+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x xx x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)1a > (2)证明见解析 【解析】 【分析】(1)先求导,分1a ≤和1a >进行讨论,1a >时结合零点存在定理说明存在零点即可;(2)先构造函数()ln 1g x a x x =-+,求导证明函数先增后减,故只要说明两个端点大于0即可,化简得到()()0001()1212g x x x a =--+,由(21)0f a ->借助()f x 的单调性说明021<<-a x a ,即可得到0()0g x >. (1)2(1)(1)()()(1)a x a x a x x a f x x a x x x-++--=+-+==',①若1a ≤,则()0f x '>在(1,)+∞恒成立,即()f x 在(1,)+∞上单调递增, 当1x >时,()(1)0f x f >=,与()f x 有一个大于1的零点0x 矛盾.②若1a >,令()0f x '>,解得01x <<或x a >,令()0f x '<,解得1x a <<. 所以()f x 在(0,1)和(,)a +∞上单调递增,在(1,)a 单调递减.所以()(1)0f a f <=,当x →+∞时,()f x →+∞,由零点存在性定理,()f x 在(,)a +∞上存在一个零点0x . 综上,1a >. (2)令()ln 1,()1'-=-+=-=a a xg x a x x g x x x,由(1)知01<<a x ,令()0g x '>,解得1x a <<,令()0g x '<,解得0a x x <<,故()g x 在(1,)a 单调递增,在()0,a x 单调递减.(1)0g =,()000ln 1=-+g x a x x因为0x 为函数()f x 的零点,故()20001ln (1)022=+-+++=x f x a x a x a ,即20001ln (1)22=-++--x a x a x a ,所以()()220000000011ln 1112222x x g x a x x a x a x ax a =-+=-++---+=-+-+()()0011212=--+x x a . 又因为2(21)1(21)ln(21)(1)(21)ln(21)2222--=-+-+-++=--+a f a a a a a a a a a , 令()ln(21)22=--+h a a a a ,则21()ln(21)2ln(21)12121=-+-=-+-'--a h a a a a a ,令1()ln(21)121m a a a =-+--, 22224(1)()021(21)(21)a m a a a a -'=-=>---恒成立, 所以()h a '在(1,)+∞单调递增,()(1)0h a h ''>=,所以()h a 在(1,)+∞单调递增,()(1)0h a h >=,即(21)0f a ->,由(1)可知()0f a <,所以021<<-a x a ,因为0010,210-<-+<x x a ,所以()()()000112102=--+>g x x x a , 所以()0>g x 在(]01,x x ∈恒成立,故对任意的(]01,x x ∈,都有ln 10-+>a x x 恒成立. 【点睛】本题关键点在于构造函数()ln 1g x a x x =-+后,如何说明()()0001()1212g x x x a =--+大于0,由(21)0f a ->借助()f x 的单调性说明021<<-a x a ,即可得到0()0g x >,即可得证. 4.(1)单调增区间为()1,1m --,单调减区间为()1,m ∞-+ (2)(ⅰ)、(ⅱ)证明见解析 【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求得单调区间(2)(i )将已知恒成立的不等式化简之后再放缩得到121n na a +-<,又12n n a a +-为整数,则120n n a a +-=,即得所证(ii )对所要证明的不等式两边同时取对数,等价转化为115ln 123nk k =⎛⎫->- ⎪⎝⎭∑,利用(1)的结论可得()ln 11x x x+≥+(1x >-),赋值累加之后进一步将问题转化为证明115213nk k =<-∑,对通项进行放缩,即可证明(1)()()()211111x m mf x x xx --'=-=+++(1x >-),令()0f x '=得1x m =-. 因为0m >,所以11m ->-,当()1,1x m ∈--时,()0f x '<;当()1,x m ∈-+∞时,()0f x '>.故函数()f x 的单调递减区间为()1,1m --,单调递增区间为()1,m ∞-+. (2)(i )法一:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+.于是()211112122112n n n n n n n nn n a a a a a a a a a a +++++-=-≥-++,又2112112n n n n a a a a +++-<+, 所以121n n a a +-<,由题意12n n a a +-为整数, 因此只能120n n a a +-=,即12n n a a +=. (i )法二:由题,22111122111111212122222n n n n n n n n n n n n a a a a a a a a a a a a +++++--<⇔<⇔--<-<+++,因为{}n a 各项均为正整数,即1n a ≥, 故11022n a <≤,于是()111,022na --∈-且()110,122n a +∈. 由题意12n n a a +-为整数,因此只能120n n a a +-=,即12n n a a +=.(ii )法一:由12a =,得2n n a =,11112n n n b a =-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnkkk k ==⎛⎫-≥->- ⎪-⎝⎭∑∑, 即证明115213nn kk S ==<-∑. 记121k k c =-,则+1+1+1+1212111212222k k k k k k k kc c c c --=<=⇒<--.1513S =<;215133S =+<;当3n ≥时,112222*********3211222312n n n S c c c c c --⎛⎫- ⎪⎝⎭<+++++=+<-.故原不等式成立.(ii )法二:由12a =,得2n n a =,11112n nnb a=-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnk k k k ==⎛⎫-≥->- ⎪-⎝⎭∑∑,即证明115213nn k k S ==<-∑.1513S =<;215133S =+<; 当3k ≥时,24k >,故()42132k k ->⋅,即1412132k k <⋅-.当3n ≥时,2233111414414451582132133233332312n nnn k k n k k S --==⎛⎫- ⎪⎝⎭=+<+=+⋅=-<-⋅-∑∑.故原不等式成立. 【点睛】利用导数证明不等式,一般要结合所证不等式,抽象构造出函数,利用导数求出函数的单调性或最值,证明不等式成立,然后把已经证明的不等式替换,或应用得到需要证明的不等式,能力要求较高,属于难题. 5.(1)1(0,)e(2)证明见解析 【解析】 【分析】(1)求解导函数,再构造新函数,求导,判断单调性,求解极值,分类讨论1e k ≥与10e <<k 两种情况;(2)由(1)知,1e e x x ≤,可证2121(1)e (1)n n n n -++≤,由21111(1)(1)1n n n n n <=-+++,可得2111(1)e 1n n n n n -≤-++,从而利用裂项相消法求和可证明()222221123123e 4e 1en n n -+++⋅⋅⋅+<+.(1)由21()e 2x f x k x =-,得()e e ()e x x xxf x k x k '=-=-. 设()e x xg x =,则1()e xx g x -'=,当1x <时,()0g x '>,()g x 是增函数;当1x >时,()0g x '<,()g x 是减函数.又(1)0g '=,∴max 1()()(1)eg x g x g ===极大.设1e λ≥,当1ln x λ<-时,11111ln ln ()ln e x x g x e λλλλλ--=<=-<-.由于(0)0g =,所以()g x 在区间(,0)-∞上的值域是(,0)-∞.又0x >时,()0>g x ,所以当0k ≤时,直线y k =与曲线()y g x =有且只有一个交点,即()'f x 只有一个零点,不合题意,舍.当1ek ≥时,()0f x '≥,()f x 在R 上是增函数,不合题意,舍.当10e<<k 时,若1x ≤,由(1)可知,直线y k =与曲线()y g x =有一个交点.下面证明若1x >,直线y k =与曲线()y g x =有一个交点.由于()g x 是区间(1,)+∞上的减函数,所以需要证明()g x 在区间(1,)+∞上的值域为1(0,)e ,即对21(0,)eλ∀∈,都存在01x >,使得020()g x λ<<.构造函数2()e x h x x =-,则()e 2x h x x '=-,∴当ln 2x >时,()'()20xh x e =->',()h x '在区间(ln2,)+∞上是增函数,∴当1x >时,()(1)e 20h x h ''>=->,即()h x 是区间[1,)+∞的增函数,∴1x >时,()(1)e 10h x h >=->,此时2e x x >.设210e λ<<,当21x λ>时,0()e x x g x <=<221x x xλ=<,∴当10e<<k 时,直线y k =与曲线()y g x =有两个交点,即()'f x 有两个零点.设这两零点分别为1x ,212()x x x <,则1201x x <<<,不等式()0f x '>的解集为12(,)(,)x x -∞+∞,不等式()0f x '<的解集为12(,)x x .所以1x 为函数()f x 的极大值点,2x 为函数()f x 的极小值点. 综上所述,实数k 的取值范围是1(0,)e. (2)证明:由(1)知,1e ex x ≤,∴对*n N ∀∈,2121(1)e (1)n n n n -++≤. ∵211(1)(1)n n n <=++111n n -+,∴2111(1)1n n n e n n -<-++,∴22222112311111111(1)()()()123e 4e (1)e 2233411n n n n n n -++++<-+-+-++-=-+++, 所以,222221123123e 4e (1)e n nn -++++<+.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 6.(1)最大值为e 1-,最小值为1;(2)21e,?e 2⎡⎤⎢⎥⎣⎦;(3)(],1-∞-. 【解析】 【分析】(1)求得'()f x ,利用导数研究函数在区间上的单调性,再利用单调性求其最值即可;(2)分离参数并构造函数()e xh x x=,求其在区间上的值域即可求得参数的范围;(3)根据12,x x 是()g x 的极值点,求得12,,x x a 的等量关系以及取值范围,等价转化目标不等式,且构造函数()()212ln ,02m x m x x x x-=+<<,对参数进行分类讨论,利用导数研究其值域,即可求得参数范围. (1)当1k =时,()e xf x x =-,'()f x e 1x =-,令'()f x 0=,解得0x =,当()1,,0x ∈-时,()f x 单调递减,当()0,1x ∈时,()f x 单调递增; 又()()()111,01,1e 1ef f f -=+==-,且()()11f f >-, 故()f x 在[]1,1-上的最大值为e 1-,最小值为1. (2)令()e xf x kx =-0=,因为1,22x ⎡⎤∈⎢⎥⎣⎦,则0x ≠,故e xk x =,令()e 1,,22x h x x x ⎡⎤=∈⎢⎥⎣⎦,则'()h x ()2e 1 x x x -=,故当1,12x ⎛⎫∈ ⎪⎝⎭,()h x 单调递减,当()1,2x ∈,()h x 单调递增,又()()2111e,2e 22h h h ⎛⎫=== ⎪⎝⎭,且()122h h ⎛⎫> ⎪⎝⎭,故()h x 的值域为21e,?e 2⎡⎤⎢⎥⎣⎦,则要满足题意,只需21e,?e 2k ⎡⎤∈⎢⎥⎣⎦.即()h x 的取值范围为:21e,?e 2⎡⎤⎢⎥⎣⎦.(3)因为()28ln a g x x x x =--,'()g x 2228282a x x a x x x -+=+-=,因为()g x 有两个极值点12,x x ,故可得12126480,4,02a a x x x x ->+==>, 也即08a <<,且12124,2a x x x x +==. 因为11x ≠,12x x <,故()()10,11,2x ∈⋃,则()21221ln 51a xm x x x >--,即()()()211111124ln 5441x x x m x x x -⎡⎤>---⎣⎦-, 因为140x ->,故上式等价于()11112ln 11x x m x x >+-,即()21111112ln 01m x x x x x ⎡⎤-⎢⎥+>-⎢⎥⎣⎦,又当()0,1x ∈时,1101x x >-,当()1,2x ∈时,1101xx <-,令()()212ln ,02m x m x x x x-=+<<,则'()m x 222mxx mx ++=, 当0m ≥时,'()m x 0>,故()m x 在()0,2单调递增,又()10m =, 故当()0,1x ∈时,()0m x <,当()1,2x ∈时,()0m x >,故不满足题意;当0m <时,令()22n x mx x m =++,若方程()0n x =对应的2440m =-≤时,即1m ≤-时,'()m x 0≤,()m x 单调递减, 又()10m =,故当()0,1x ∈时,()0m x >,当()1,2x ∈时,()0m x <,满足题意; 若2440m =->,即10m -<<时,又()y n x =的对称轴11x m=->,且开口向下, 又()1220n m =+>,不妨取1min ,2b m ⎧⎫=-⎨⎬⎩⎭, 故当()1,x b ∈,'()m x 0>,()m x 单调递增,又()10m =, 故此时()0m x >,不满足题意,舍去;综上所述:m 的取值范围为(],1-∞-. 【点睛】本题考察利用导数研究函数值域,有解问题,以及利用导数处理恒成立问题;其中第三问中,合理的处理12,,x x a 以及m 多变量问题,以及构造函数,是解决本题的关键,属综合困难题. 7.(1)1ey x =; (2)4e 4a ≤. 【解析】 【分析】(1)设切线的方程为y kx =,设切点为(,ln )t t ,求出e t =即得解;(2)利用导数求出函数()g x 在4⎤⎦上的单调区间即得解. (1)解:设切线的方程为y kx =,设切点为(,ln )t t , 因为()1f x x '=,则()1k f t t'==所以切线方程为()1ln y t x t t-=-即1ln 1y x t t =+- 由题得ln 10t -=则e t = ∴切线l 的方程为1ey x =. (2) 解:()21ln xg x x -'=,e x <<时,()0g x '>;4e e x <<时,()0g x '<,所以函数()g x 在单调递增,在4(e,e )单调递减,∵g =,()44e e 4g =, 因为44e <=所以最小值()44e e 4g =. 4e 4a ∴≤. 8.(1)3,0abc =-==; (2)(0,2). 【解析】 【分析】(1)由题得到三个方程,解方程即得解; (2)解不等式()'f x <0即得函数的单调递减区间. (1)解:由题意知(0)0f = ,∴c =0 .∴()f x =x 3+ax 2+bx , 所以()'f x =3x 2+2ax +b 由题得(0)f '=b =0,∴()'f x =3x 2+2ax =0,故极小值点为x 23a =-, ∴f (23a -)=﹣4,∴323a ⎛⎫-+ ⎪⎝⎭a 223a ⎛⎫-=- ⎪⎝⎭4,解得a =﹣3.故3,0a b c =-==. (2)解:令()'f x <0 即3x 2﹣6x <0,解得0<x <2, ∴函数的递减区间为(0,2). 9.(1)25y x =+ (2)0b = 【解析】 【分析】(1)利用切点和斜率求得切线方程.(2)由()2f x ≥恒成立构造函数()()2g x f x =-,对b 进行分类讨论,结合()'g x 研究()g x 的最小值,由此求得b 的值. (1)当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=- 又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为()520y x -=-, 即25y x =+. (2)当1a =时,令函数()()()2e 11xg x f x b x =-=+--,则()2f x ≥恒成立等价于()0g x ≥恒成立. 又()e 1,x g x b '=+-.当1b ≥时,()e 10,x g x b '=+->,g (x )在R 上单调递增,显然不合题意; 当1b <时,令()e 10,x g x b '=+-<,得ln(1)x b <-.令()e 10x g x b '=+->,得()ln 1x b >-,所以函数g (x )在(,ln(1))b -∞-上单调递减,在(ln(1),)b -+∞上单调递增,所以当ln(1)x b =-时,函数g (x )取得最小值. 又因为()00g =,所以0x =为g (x )的最小值点. 所以ln(1)0b -=,解得0b =.10.(1)在10,a ⎛⎫⎪⎝⎭上单调递减,在1,a⎛⎫+∞ ⎪⎝⎭上单调递增(2)1,e⎛⎫+∞ ⎪⎝⎭【解析】 【分析】(1)求导,根据定义域和a 的范围,讨论导数符号可得单调区间; (2)由(1)中单调性可得函数最小值,由最小值大于0可解. (1)函数()f x 的定义域为()0+∞,, ()()()222231323'2ax ax a x ax f x a x a x x x+-+-=+-==由于0a >且()0x ∈+∞,,所以230ax +>,令()'0f x =,解得1x a=, 当10x a ⎛⎫∈ ⎪⎝⎭,,()'0f x <,函数()f x 单调递减,当1x a⎛⎫∈+∞ ⎪⎝⎭,,()'0f x >,函数()f x 单调递增, ()f x ∴在10a ⎛⎫ ⎪⎝⎭,上单调递减,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递增. (2)要使()y f x =的图像与x 轴没有公共点,所以只需min ()0f x >即可,由(1)知min 111()113ln 133ln 33ln 0f x f a a a a ⎛⎫==+-+=-=+> ⎪⎝⎭,解得1e >a ,即a 的取值范围为1(,)e+∞。

江苏省2020年高二数学第09讲 导数的概念和几何意义 分层作业答案

江苏省2020年高二数学第09讲 导数的概念和几何意义 分层作业答案

2月19日 高二数学分层作业答案1.C2.B3.B4.B 3.B 解析:∵f'(x)=2x,g'(x)=1x ,∴2x-1x =1.∴2x 2-x-1=0,解得x=1或x=-12. 又∵g(x)有意义时,x>0,∴所求x=1.4.解析:ΔS=4π(R+ΔR)2-4πR 2=8πR ΔR+4π(ΔR)2.答案:B5. ︒456.27.928.[]21()=32,2(2)10,(2)0f x x f f '''-==()() 9.【解析】 ∵Δy =f(x 0+Δx)-f (x 0)=(x 0+Δx)3+a(x 0+Δx)2-9(x 0+Δx)-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a)(Δx)2+(Δx)3,∴Δy Δx=3x 20+2ax 0-9+(3x 0+a)Δx +(Δx)2. 当Δx 无限趋近于零时,Δy Δx无限趋近于3x 20+2ax 0-9.即f ′(x 0)=3x 20+2ax 0-9. ∴f ′(x 0)=3⎝⎛⎭⎪⎫x 0+a 32-9-a 23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23. ∵斜率最小的切线与12x +y =6平行,∴该切线斜率为-12.∴-9-a 23=-12.解得a =±3.又a<0,∴a =-3. 10.解析:由导数的几何意义,y=f(x)上任一点处的切线斜率均小于零且保持不变,则y=f(x)对应 B.y=g(x)上任一点处的切线斜率均小于零,且在起始部分斜率值趋近负无穷大,故y=g(x)对应C.y=α(x)图象上任一点处的切线斜率都大于零,且先小后大,故y=α(x)对应A. 答案:B C A11解:(1)在t=0和t=10时,蜥蜴的体温分别为T(0)=1200+5+15=39,T(10)=12010+5+15=23,从t=0到t=10 m in,蜥蜴的体温下降了16 ℃.(2)平均变化率ΔTΔt =T(10)−T(0)10=-1610=-1.6.它表示从t=0到t=10 min,蜥蜴的体温平均每分钟下降1.6 ℃.(3)T'(5)=limΔt→0120(5+Δt)+5+15−1205+5-15Δt =limΔt→012010+Δt -12Δt =lim Δt→0-1210+Δt=-1.2.它表示T=5 min 时蜥蜴体温下降的速度为1.2 ℃/min.。

高二数学(理科)参考答案.doc

高二数学(理科)参考答案.doc

12分2m+ 3 > 3mm — 2>lm=3 3 分vr高二数学(理科)参考答案一、 1—10: DCBBA CAAAD 二、 11, k<l 12、相交 13、0.414、3100415、若四面体A-BCD 的内切球的半径为R ,四个面的面积分别是5\、,、品、&,则 四面体的体积V A _BCD =:(S] +禹+S, +SQ 人三、16解:证对了一边得5分,证对了两边得10分,等号成立条件考虑对得12分 证明方法有比较法,分析法,综合法等。

证明过程略。

17解:以D 为坐标原点,DA, DC, OD]依次为x 轴、y 轴,z 轴正方向建立空间直角坐标系,并高正方体棱长为1,设点E 的坐标为8(0,7,0)。

(I ) 页= (-1,0,1), 函= (l,l-f,l) 疝瓦= (-1,0,1)(1,1T,1) = 0,EB[ ± ADj … (II)当E 是CD 中点时,——- —- 1ADj =(-1,0,1), AE = (-l,-,0),设平面 ARE 的一个法向量是 〃 = (x,y,z), AZ" = (x, y, z) • (-1,0,1) = 0 则由一 I 得一组解是" = (1,2,1),= (x,y,z)・=(—y ,0) = 0I .1 EB] • n 3由 I cos < EB 「, n >1=J --- = ----- —I 冲“I 而32从而直线EB,与平面AD.E 所成的角的正弦值是 —113由3 —《)4的展开式中的同项公式知T2= T 2 = C 》4T (_L )= x(2)当 x=l 时,S nx=l )("1) ]-x n当x^l 时,S n =——1 — X月收入不低于55百元人数 月收入低于55百元人数 合计赞成 a = 3 c = 2932 不赞成 b = 7d = ll18 合计10405050x(3x11 - 7x29)2(3 + 7)(29 + 11)(3 + 29)(7 + 11) (II ) g 所有可能取值有G 0一仁c-仁一一 -- - - &9 &9 \ /|\ /|\p P C ; CC 4 28 6 16 -4x^- = —x — + —x — CC C ; C ; 4 16 6 1 x —^+日乂― = —x —+—x — 席 C ;席 10 45 10C ; 4 1 2 _±_ = _ x __ — ___ C" 10 45 22510422535225 (12a n = x n~所以没有99%的把握认为月收入以5500为分界点对“楼市限购令”的态度有差异.(6分)6 28 84 '= x _ = _10 45 225所以g 的分布列是&0 1 2 3P84 225104 22535 2252 225所以g 的期望值是_ "04 | 70 | 6 _ 4'一 +225 + 225 +225 ~520 解 f\x) = --a(x > 0)X11 — X(I)当〃 =1 时,f\x) = 一 一1 =——,................................................ 2 分X X令> 0时,解得0<%<1,所以f3)在(0, 1)上单调递增; ……4分令f'3)<。

山东省聊城市临清先锋中学2021-2022学年高二数学理上学期期末试题含解析

山东省聊城市临清先锋中学2021-2022学年高二数学理上学期期末试题含解析

山东省聊城市临清先锋中学2021-2022学年高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列函数中,定义域是且为增函数的是()A. B. C. D.参考答案:A2. 设等差数列{a n}的前n项和为S n,,,则等于()A. 132B. 66C. 110D. 55参考答案:A【分析】设等差数列的公差为d,根据题意明确公差,进而得到,又,从而得到结果.【详解】设等差数列的公差为d,则即,∴,∴,故选A【点睛】本题考查了等差数列的通项公式,考查了等差数列的前n项和公式,考查等差数列的性质,是基础题.3. 已知是等比数列,,则公比等于( )A.2 B.C.D.参考答案:A略4. i为虚数单位,若,则|z|=( )A.1 B.C.D.2参考答案:A考点:复数求模.专题:数系的扩充和复数.分析:利用复数模的运算性质,将已知关系式等号两端取模,即可即可求得答案解答:解:∵,∴|||z|=||,即2|z|=2,∴|z|=1,故选:A.点评:本题考查了复数求模、熟练应用模的运算性质是关键,属于基础题.5. 若实数x,y满足约束条件,则的最小值为()A. B. 1 C. 2 D.参考答案:A【分析】作出不等式的可行域,的几何意义是可行域内的点与点连线的斜率的倒数,由斜率的最大值即可得解.【详解】作出不等式组构成的区域,的几何意义是可行域内的点与点连线的斜率的倒数,由图象知的斜率最大,由得,所以,此时.故选A.【点睛】常见的非线性目标函数问题,利用其几何意义求解:的几何意义为可行域内的点到直线的距离的倍的几何意义为可行域内的点到点的距离的平方。

几何意义为可行域内的点到点的直线的斜率.6. 已知,则A.B.C.D.参考答案:C略7. 对某小区100户居民的月均用水量进行统计,得到样本的频率分布直方图,则估计此样本的众数、中位数分别为()A.2.25,2.5 B.2.25,2.02 C.2,2.5 D.2.5,2.25参考答案:B【考点】频率分布直方图;众数、中位数、平均数.【专题】概率与统计.【分析】根据频率分布直方图,结合众数和中位数的定义进行求解即可.【解答】解:由频率分布直方图可知,数据在[2,2.5]之间的面积最大,此时众数集中在[2,2.5]内,用区间.2的中点值来表示,∴众数为2.25.第一组的频率为0.08×0.5=0.05,对应的频数为0.05×100=5,第二组的频率为0.16×0.5=0.08,对应的频数为0.08×100=8,第三组的频率为0.30×0.5=0.15,对应的频数为0.15×100=15,第四组的频率为0.44×0.5=0.22,对应的频数为0.22×100=22,第五组的频率为0.50×0.5=0.25,对应的频数为0.25×100=25,前四组的频数之和为5+8+15+22=50,∴中位数为第4组的最后一个数据以及第5组的第一个数据,则对应的中位数在5组内且比2大一点,故2.02比较适合,故选:B.【点评】本题考查频率分布直方图、利用频率分布直方图进行总体估计:求中位数以及众数的定义,比较基础.8. 从一批产品中取出三件产品,设三件产品全是正品,三件产品全是次品,三件产品不全是次品,则下列结论不正确的是()A.A与B互斥且为对立事件B.B与C为对立事件C.A与C存在着包含关系D.A与C不是互斥事件参考答案:A略9. 已知复数z的模为2,则的最大值为()A.1 B.2 C.D .3参考答案:D10. 矩形两边长分别为、,且,则矩形面积的最大值是A. B. C. D.参考答案: B二、 填空题:本大题共7小题,每小题4分,共28分11. 函数对于任意实数满足条件,若则______。

云南省昆明市先锋中学2022年高二数学文期末试题含解析

云南省昆明市先锋中学2022年高二数学文期末试题含解析

云南省昆明市先锋中学2021-2022学年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若直线平面,则条件甲:直线是条件乙:的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:D略2. 椭圆上的两点关于直线对称,则弦的中点坐标为()A. B. C.D.参考答案:D3. 已知等差数列{a n}的前n项和为S n,且a3+a4+a5+a6+a7=20,则S9=()A.18 B.36 C.60 D.72参考答案:B【考点】等差数列的前n项和.【分析】由等差数列的通项公式得a3+a4+a5+a6+a7=5a5=20,解得a5=4,从而S9=,由此能求出结果.【解答】解:∵等差数列{a n}的前n项和为S n,且a3+a4+a5+a6+a7=20,∴a3+a4+a5+a6+a7=5a5=20,解得a5=4,∴S9==36.故选:B.4. 圆的圆心坐标和半径分别为()A. B. C. D.参考答案:D略5. (1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i参考答案:B【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:原式=2﹣1+3i=1+3i.故选:B.6. 如图给出的是计算的值的一个程序框图,则判断框内应填入的条件是()A.?B.? C.? D.?参考答案:C略7. 将一枚骰子先后掷两次,向上点数之和为,则≥7的概率为()A. B. C. D.参考答案:C略8. 命题“?x∈R,x2﹣3x+2≥0”的否定是()A.?x∈R,x2﹣3x+2<0 B.?x∈R,x2﹣3x+2>0C.?x∈R,x2﹣3x+2≤0D.?x∈R,x2﹣3x+2≥0参考答案:A考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:∵全称命题的否定是特称命题,∴命题“?x∈R,x2﹣3x+2≥0”的否定是?x∈R,x2﹣3x+2<0,故选:A.点评:本题主要考查含有量词的命题的否定,要求熟练掌握含有量词的命题规律.9. 如果f′(x)是二次函数,且f′(x)的图象开口向上,顶点坐标为,那么曲线y=f (x)上任一点的切线的倾斜角α的取值范围是()A.B.C.D.参考答案:B考点:导数的几何意义;直线的倾斜角.专题:计算题.分析:由二次函数的图象可知最小值为,再根据导数的几何意义可知k=tanα≥,结合正切函数的图象求出角α的范围.解答:解:根据题意得f′(x)≥则曲线y=f(x)上任一点的切线的斜率k=tanα≥结合正切函数的图象由图可得α∈故选B.点评:本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,同时考查了数形结合法的应用,本题属于中档题.10. “”是“复数是纯虚数”的.必要不充分条件.充分不必要条件.充要条件.不充分不必要条件参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 定义平面向量之间的一种运算“”如下,对任意的=(m,n),=(p,q),令=(m q-n p),给出下面五个判断:① 若与共线,则=0;② 若与垂直,则=0;③ =;④ 对任意的R,有;⑤其中正确的有(请把正确的序号都写出)。

2021-2022学年黑龙江省哈尔滨市先锋高级中学高二数学文下学期期末试题含解析

2021-2022学年黑龙江省哈尔滨市先锋高级中学高二数学文下学期期末试题含解析

2021-2022学年黑龙江省哈尔滨市先锋高级中学高二数学文下学期期末试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 随机变量所有可能取值的集合是,且,,则的值为: A 、0 B 、 C 、 D 、 参考答案: C2. 为考察喜欢黑色的人是否易患抑郁症,对91名大学生进行调查,得到如下列联表:A.有把握B.有把握C.有把握D.不能参考答案: D 略3. 已知双曲线右焦点与抛物线的焦点重合,则该双曲线的离心率等于( )A .B .C .D .参考答案: B 略 4.已知,是的导数,若的展开式中的系数大于的展开式中的系数,则的取值范围是( ):A .或B .C .D .或参考答案:A5. 已知 x 与 y 之间的一组数据: 则 y 与 x 的线性回归方程为,则 a 的值为( )A. 0.325B. 0C. 2.2D. 2.6参考答案:D【分析】首先求出所给数据的平均数,得到样本中心点,根据线性回归直线过样本中心点,求出方程中的一个系数,【详解】解:由题意,,,样本中心点为,数据的样本中心点在线性回归直线上,,,故选:D【点睛】本题考查线性回归方程,考查样本中心点的应用,考查学生的计算能力,属于基础题.6. 设、是两条不同的直线,、是两个不同的平面,则下列命题中正确的是 ( )A.若∥,∥,则∥ B.若⊥,∥,则⊥C.若⊥,⊥,则∥ D.若⊥,⊥,⊥,则⊥参考答案:D略7. 设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c﹣1),则c=()A.1 B.2 C.3 D.4参考答案:B【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】画正态曲线图,由对称性得c﹣1与c+1的中点是2,由中点坐标公式得到c的值.【解答】解:∵N(2,32)?,,∴,解得c=2,所以选B.8. 下列说法正确的是( )平面和平面只有一个公共点两两相交的三条线必共面不共面的四点中, 任何三点不共线有三个公共点的两平面必重合参考答案:A略9. 若多项式,则=()A、509B、510C、511 D、1022参考答案:B10. 在中,,,,则三角形的面积为()A. B. C.D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行;(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.上面命题,真命题的序号是(写出所有真命题的序号)参考答案:(1)(2)【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用.【专题】空间位置关系与距离.【分析】从线面平行、垂直的判定定理,判断选项即可.【解答】解:由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对于(3)来说,α内直线只垂直于α和β的交线l,得不到其是β的垂线,故也得不出α⊥β.对于(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不一定垂直于α.【点评】本题考查空间中直线与平面之间的位置关系,理解定理是判断的前提,是中档题.12. 一个平面图形用斜二测画法作的直观图是一个边长为1cm的正方形,则原图形的周长为________________cm参考答案:813. 若实数满足,则的最大值是参考答案:1214. 已知函数f (x)=e x -2x +a 有零点,则a 的取值范围是_________.参考答案:(-,2ln2-2]15. 已知函数f(x)的图象在点M(1,f(1))处的切线方程是2x﹣3y+1=0,则f(1)+f′(1)= .参考答案:【考点】导数的运算;利用导数研究曲线上某点切线方程.【分析】由切线的方程找出切线的斜率,根据导函数在x=1的值等于斜率,得到x=1时,f′(1)的值,又切点在切线方程上,所以把x=1代入切线方程,求出的y的值即为f(1),把求出的f(1)和f′(1)相加即可得到所求式子的值.【解答】解:由切线方程2x﹣3y+1=0,得到斜率k=,即f′(1)=,又切点在切线方程上,所以把x=1代入切线方程得:2﹣3y+1=0,解得y=1即f(1)=1,则f(1)+f′(1)=+1=.故答案为:16. 已知双曲线的渐近线方程是,则其离心率是 .参考答案:略17. 若函数在上单调递增,则实数的取值范围是.参考答案:三、解答题:本大题共5小题,共72分。

云南省昆明市先锋中学2021年高二数学理期末试卷含解析

云南省昆明市先锋中学2021年高二数学理期末试卷含解析

云南省昆明市先锋中学2021年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 用三段论推理:“任何实数的平方大于0,因为a是实数,所以a2>0”,你认为这个推理()A.大前提错误B.小前提错误C.推理形式错误D.是正确的参考答案:A【考点】F6:演绎推理的基本方法.【分析】要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论是否都正确,根据三个方面都正确,得到结论.【解答】解:∵任何实数的平方大于0,因为a是实数,所以a2>0,大前提:任何实数的平方大于0是不正确的,0的平方就不大于0.故选A.【点评】本题是一个简单的演绎推理,这种问题不用进行运算,只要根据所学的知识点,判断这种说法是否正确,是一个基础题.2. 设且,则必有()... .参考答案:B略3. 已知数列的通项公式为,则下面哪一个数是这个数列的一项()A. B. C.D.参考答案:D4. 在1,2,3,4,5,6,7,8这组数据中,随机取出五个不同的数,则数字4是取出的五个不同数的中位数的概率为( )A.B. C. D.参考答案:B5. 曲线的焦点坐标为()A. B. C. D.参考答案:A略6. 函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别是()A. 1,-1 B. 3,-17 C. 1,-17 D.9,-19参考答案:B略7. 若,,,,成等比数列,,,,,成等差数列,则=()A. B. C.D.参考答案:A略8. 将点的直角坐标(-2,2)化为极径是正值,极角在0到之间的极坐标是( )A .(4,)B .(4,)C .(4,)D .(4,)参考答案:A 略9. 在的展开式中的常数项是( ) A.B .C .D .参考答案: D 略10. 在数列{a n }中,=1,,则的值为 ( )A .17B .19C .21D . 23参考答案:B二、 填空题:本大题共7小题,每小题4分,共28分11. 设函数,,不等式对恒成立,则的取值集合是▲ .参考答案:略12. 甲、乙两人在相同的条件下练习射击,每人打5发子弹,命中的环数如表: 甲:6,8,9,9,8; 乙:10,7,7,7,9.则两人的射击成绩较稳定的是 .参考答案:甲【考点】极差、方差与标准差;众数、中位数、平均数.【分析】求出平均数与方差,进而判断稳定性. 【解答】解:由表可求得, =8,=8,S 2甲=(4+1+1)=1.2,S 2乙=(4+1+1+1+1)=1.6;则两人射击成绩的稳定程度是:甲更稳定,故答案为:甲. 13. 曲线在点处的切线方程是 _______________。

山东省聊城市临清先锋中学2022年高二数学理下学期期末试题含解析

山东省聊城市临清先锋中学2022年高二数学理下学期期末试题含解析

山东省聊城市临清先锋中学2022年高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若复数是纯虚数,则实数的值为()A、 B、 C、或D、或参考答案:B2. 下列命题错误的是A命题“若,则x=l”的逆否命题为“若x≠1,则lgx≠0”B.若q为假命题,则p,q均为假命题C命题,使得sinx>l,则,均有D.“x>2”是“”的充分不必要条件参考答案:B3. 动点A在圆上移动时,它与定点B(3,0)连线的中点的轨迹方程是()A. B. C. D.参考答案:C略4. 等差数列中, , 那么它的公差是A.4 B.5 C.6D.7参考答案:B由等差中项得,解得,所以公差.5. 给出如下四个命题:①若“p∨q”为真命题,则p,q均为真命题;②“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”;③“?x∈R,x2+x≥1”的否定是“?x0∈R,x+x0≤1”;④“x>1”是“x>0”的充分不必要条件.其中不正确的命题是()A.①②B.②③C.①③D.③④参考答案:C【考点】命题的真假判断与应用.【分析】①根据复合命题真假关系进行判断,②根据否命题的定义进行判断,③根据全称命题的否定是特称命题进行判断即可,④根据充分条件和必要条件的定义进行判断.【解答】解:①若“p∨q”为真命题,则p,q至少有一个是真命题,故①错误;②“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”,故②正确,③“?x∈R,x2+x≥1”的否定是“?x0∈R,x+x0<1”;故③错误,④若x>1,则x>0成立,即充分性成立,若当x=满足x>0,但x>1不成立,即x>0“x>1”是“x<0”的充分不必要条件.故④正确,故错误的是①③,故选:C.6. 已知,,则()A. B. C. D.参考答案:C略7. 在⊿ABC中,,则此三角形为()A.直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形参考答案:C略8. 设、是不同的两条直线,、是不同的两个平面,分析下列命题,其中正确的是().A.,, B.∥,,∥C.,,∥ D.,,参考答案:B9. a、b∈R,下列命题正确的是()A.若a>b,则a2>b2 B.若|a|>b,则a2>b2C.若a>|b|,则a2>b2 D.若a≠|b|,则a2≠b2参考答案:C10. 等差数列中,,它的前16项的平均值是7,若从中抽取一项,余下的l5项的平均值为7. 2,则抽取的是( )A.第7项 B.第8项 C.第15项 D第16项参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 的展开式中的系数等于8,则实数= .参考答案:212. 设x ,y ,z 都是正数,则三个数的值说法正确的是.①都小于2 ②至少有一个不大于2 ③至少有一个不小于2④都大于2.参考答案:③【考点】不等式比较大小.【专题】应用题;转化思想;定义法;不等式的解法及应用.【分析】根据基本不等式得到x++y++z+≥2+2+2=6,问题得以解决.【解答】解:因为x,y,z都是正数,所以x++y++z+≥2+2+2=6,当且仅当x=y=1时取等号,故至少有一个不小于2,故答案为:③.【点评】本题考查了基本不等式的应用,属于基础题.13. 已知y=f(x)是定义在[-,]上的偶函数,y=g(x)是定义在[-,]上的奇函数,x∈[0, ]上的图象如图所示,则不等式的解集是________.参考答案:14. .在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.参考答案:15. 若复数在复平面内对应的点在第三象限,则整数a的取值为_____.参考答案:【分析】将复数写成a+bi(a,b∈R)的形式,然后由复数对应的点在第三象限,列出不等式,可得a的取值. 【详解】复数,若复数在复平面内对应的点在第三象限,则,解得,又a为整数,则a=0,故答案为:0【点睛】本题考查复数的乘法运算和复数的几何意义,属于简单题.16. 右图是一个几何体的三视图, 根据图中的数据,计算该几何体的表面积为_______.参考答案:略17. 设n∈N+,一元二次方程x2-4x+n=0有整数根的充要条件是__________.参考答案:略三、解答题:本大题共5小题,共72分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档