反刍动物饲料间的组合效应及调控技术Microsoft Word 文档 (4)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反刍动物饲料间的组合效应及调控技术

反刍动物的能量需要以及不同饲料满足这种需要的程度是动物营养学家们必须首先了解的,它有助于我们准确地进行日粮配合以及生产体系的优缺点,而在现行的饲养体系中,饲料中的能值是被看作具有可加性来使用的,它假设饲料营养成分之间无相互影响,加工与混合也不引起营养成分利用率的改变,各个饲料的能值是稳定的。而越来越多的事实表明日粮采食水平、蛋白含量和饲养水平会改变单个饲料的消化率,当然也就改变了饲料的能量利用效率。其实早在19世纪末,德国学者Forbes 1931就首次提出混合饲料的非加性效应或组合效应这一术语,他们发现一种饲料的净能在喂牛时随日粮的组成而变化,并于1933年进一步提出单个饲料的净能值,在很大程度上取决于与其配合的其它饲料。

当某日粮的表观消化率不等于组成该日粮的各饲料消化率的加权和时就意味着产生了组合效应,但是必须指出,尽管某些饲料配合后其营养价值提高了,如在粗料中补加一些蛋白饲料时,粗饲料的消化率和采食量提高的现象是缓解了营养素的缺乏而不是组合效应,Gill等1993认为衡量组合效应的指标应包括采食量的变化,这突破了组合效应仅仅限于非加性的传统界限,并提出日粮配合中的组合效应实质上应指来自不同饲料的营养物质间的整体效应,并应包括营养因素与非营养因素或措施之间的互作效应。反刍动物饲料间存在组合效应是对已往饲养体系的挑战卢德勋,1993,康奈尔净碳水化合物和净蛋白体CNCPS充分考虑了饲料间的互作,是一种科学的动态和系统。

1.组合效应产生的原因:当在某一日粮中加入少量易降解的碳水化合物如淀粉或葡萄糖时,纤维消化率提高,但当易降解碳水化合物加入量增大时,日粮中粗料的消化率就会降低,这是最常见的组合效应Mould 1988,淀粉消化的下降也被看作为引起组合效应的一个重要因素,尤其是玉米用作精料时更明显。为证实是否存在组合效应,科研人员研究了许多种饲料饲喂反刍动物。这些日粮所提供的营养水平对组合效应的产生似乎有很大的影响,当日粮的营养水平高于维持

能量需要时,才产生组合效应。

如果饲料在营养上彼此是互相促进的则产生正的组合效应,反之则是负的组合效应,当纤维素或淀粉的消化减少或受阻而引起日粮能值的降低,就出现了负的组合效应,最后Silwa和Srskov 1983 试验发现了正的组合效应,在很大程序上提高了纤维素的分解率。本文主要针对负组合效应产生的原因加以阐述。

1.1 纤维素的分解降低:

1.1.1 碳水化合物:Belch和Johnson 1950等报道,添加淀粉来补充能量,降低了纤维素的分解。Head 1953也发现,如果能量与氨之间保持平衡那么纤维分解的受抑制程度可以降低。Campling和Muedoch 1966试验表明,补充能源可降低纤维素分解和干物质的采食量,采食量可随着粗料质量的提高而增加,甚至在粗料的质量很高时不需要其它任何补充料。Vadiveloo和Holmes 1979指出,纤维素分解的降低可能是由于高质量粗料已含有大量的碳水化合物,所以再补充很可能就降低了瘤胃pH值,结果也降低了纤维素的分解,补充的碳水化合物的发酵率也是很重要的。Drskov和Fraser 1975观察到,提高压扁大麦的补充水平,可降低纤维素的分解,但是,若用同一水平的整粒大麦,则纤维的消化不会降低到相同的程度。因此,他们认为由于整粒籽实中淀粉的缓慢释放和唾液分泌量的增加,使得瘤胃的PH值升高,较高的瘤胃pH值消除了阻止纤维素分解的一些因素。

1.1.2 瘤胃pH值对纤维素的分解:进行体外研究表时,纤维素的分解主要是受pH的影响。Halliwell 1957观察到,在pH值低于5.9时,纤维的分解完全被抑制。这主要是由于随着日粮精料水平的提高,使瘤胃内生成VFA的速度加快,产量增多,瘤胃pH急剧下降,抑制微生物发酵,使采食量和消化率下降,Terry等1969发现,在pH为6.8时,成熟鸡脚草的发酵作用最大。大量研究表明,日粮中特别是日粮中精料水平较高时添加缓冲盐能明显提高采食量和纤维物质消化率,主要是它提高和稳定了瘤胃pH,增加瘤胃液流通速率,增强纤维分解活性菌Osbourn等1970在含40%玉米的日粮中加入碳酸氢纳以保持瘤胃pH值在6.5左右时避免了纤维素分解的降低。Emmanuel等1970也报道,较低的

瘤胃pH引起的纤维素分解的降低,可由在日粮中添加磷酸盐、碳酸盐或碳酸氢盐来补偿。

1.1.3 瘤胃微生物区系Mann和Srekov1975报道,用整粒大麦饲喂绵羊,其瘤胃pH6.6值高于用制粒大麦饲喂的绵羊瘤胃pH值5.6,并产生一个新的瘤胃微生物区系。该区系的纤维素分解菌是原来的100到1000倍之多。Stewart 1997认为pH下降到5.3以下时微生物生长严重受阻。Depeters 1984认为瘤胃pH维持在6.6-6.8可以保证适宜的纤维消化环境,可见,瘤胃pH值的稳定是日粮中添加缓冲盐的主要目的。

1.1.4 微生物间的互作El-Shaely等1961认为,在反刍动物日粮中补加淀粉时,纤维素分解菌和淀粉分解菌之间对营养素的竞争是纤维素分解菌受抑制的一个主要原因。他们后来还发现,这种抑制作用可通过补加尿素而得以部分缓解。Mitchell等1940指出纤维素分解的下降是由于葡萄糖替代了瘤胃微生物作用的难溶或不溶性底物。Van Gylswyck和Labuschagne1971证实了这一论点,他们发现,分解纤维素的弧菌系首先作用是单糖而不是可降解的纤维素。

1.1.5 瘤胃流通速率减少粗饲料在瘤网胃中停留时间,可降低纤维素的降解度,提高采食量。Batch1950报道,如果磨得很细的饲料与大颗粒饲料组成日粮时,其流出瘤胃的速率要比与小颗粒饲料组成日粮时高得多。Campling等1961 观察到,粗料的自由采食量与其从瘤网胃消失的速度有关,秸秆通过的速率较慢是由于消化的速度慢,未消化的残余物滞留时间较长。相反,有机物消化率越高,滞留的时间越短,自由采食越高。

1.1.6 脂类:反刍动物日粮中含有脂类时,也可以观察到组合效应,这类物质含有较高的能量,是淀粉能量的二倍以上,而且还可能改变终产品的脂肪成分。但是大多数学者包括Bull 1971和Kowalcxyk 1997认为由于补充脂类物质,纤维的消化下降,同时也伴随着采食量的降低。

尽管纤维消化降低的准确机理还没有完全认识,但是已提出了多种可能性,包括瘤胃微生物数量的改变、纤维素分解酶的抑制或饲料颗粒表面的物理性涂层,阻碍了纤维素分解菌与之接近。此外,纤维素分解降低的程度似乎取决脂类

相关文档
最新文档