高中数学 第二章 推理与证明 2.1.2 演绎推理课件 新人教A版选修1-2.pptx
新人教A版高中数学选修1-2第二章:推理与证明
第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理A级基础巩固一、选择题1.下列推理是归纳推理的是()A.F1,F2为定点,动点P满足|PF1|+|PF2|=2a>|F1F2|,得P 的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n 项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇解析:由归纳推理的定义知,B项为归纳推理.答案:B2.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111A.111 1110B.1 111 111C.1 111 112 D.1 111 113解析:由1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=111 111;…归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,所以123 456×9+7=1 111 111.答案:B3.观察图形规律,在其右下角的空格内画上合适的图形为()解析:观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两个阴影一个空白,应为黑色矩形.答案:A4.设n是自然数,则18(n2-1)[1-(-1)n]的值()A.一定是零B.不一定是偶数C.一定是偶数D.是整数但不一定是偶数解析:当n为偶数时,18(n2-1)[1-(-1)n]=0为偶数;当n为奇数时(n=2k+1,k∈N),18(n2-1)[1-(-1)n]=18(4k2+4k)·2=k(k+1)为偶数.所以18(n 2-1)[1-(-1)n ]的值一定为偶数. 答案:C5.在平面直角坐标系内,方程x a +y b=1表示在x 轴,y 轴上的截距分别为a 和b 的直线,拓展到空间,在x 轴,y 轴,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c=1 B.x ab +y bc +z ca =1 C.xy ab +yz bc +zx ca =1 D .ax +by +cz =1解析:从方程x a +y b=1的结构形式来看,空间直角坐标系中,平面方程的形式应该是x a +y b +z c=1. 答案:A二、填空题6.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n =________.解析:计算得a 2=4,a 3=9,所以猜想a n =n 2.答案:n 27.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18. 答案:1∶88.观察下列各式:①(x3)′=3x2;②(sin x)′=cos x;③(e x-e-x)′=e x+e-x;④(x cos x)′=cos x-x sin x.根据其中函数f(x)及其导数f′(x)的奇偶性,运用归纳推理可得到的一个命题是__________________________________________.解析:对于①,f(x)=x3为奇函数,f′(x)=3x2为偶函数;对于②,g(x)=sin x为奇函数,f′(x)=cos x为偶函数;对于③,p(x)=e x-e-x为奇函数,p′(x)=e x+e-x为偶函数;对于④,q(x)=x cos x 为奇函数,q′(x)=cos x-x sin x为偶函数.归纳推理得结论:奇函数的导函数是偶函数.答案:奇函数的导函数是偶函数三、解答题9.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(132+52)(102+72)≥(13×10+5×7)2.请你观察这三个不等式,猜想出一个一般性结论,并证明你的结论.解:一般性结论为(a2+b2)(c2+d2)≥(ac+bd)2.证明:因为(a2+b2)(c2+d2)-(ac+bd)2=a2c2+b2c2+a2d2+b2d2-(a2c2+2abcd+b2d2)=b2c2+a2d2-2abcd=(bc-ad)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2.10.如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.解:如右图所示,在四面体PABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.B级能力提升1.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴的根数为() A.6n-2 B.8n-2C.6n+2 D.8n+2解析:从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.答案:C2.等差数列{a n}中,a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,q>1,写出b5,b7,b4,b8的一个不等关系________.解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.答案:b4+b8>b5+b73.观察下列等式: ①sin 210°+cos 240°+sin 10°cos 40°=34; ②sin 26°+cos 236°+sin6°cos36°=34. 由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.解:由①②知,两角相差30°,运算结果为34, 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+ sin α⎝ ⎛⎭⎪⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边 故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 2.1.2 演绎推理A 级 基础巩固一、选择题1.若大前提是“任何实数的平方都大于0”,小前提是“a∈R”,结论是“a2>0”,那么这个演绎推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误解析:因为“任何实数的平方非负”,所以“任何实数的平方都大于0”是错误的,即大前提错误.答案:A2.在“△ABC中,E,F分别是边AB,AC的中点,则EF∥BC”的推理过程中,大前提是()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边长的一半C.E,F为AB,AC的中点D.EF∥BC解析:大前提是“三角形的中位线平行于第三边”.答案:A3.下列四个推导过程符合演绎推理“三段论”形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大小前提及结论颠倒,不符合演绎推理“三段论”形式.答案:B4.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)·f(y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数解析:只有指数函数f(x)=a x(a>0,a≠1)满足条件.答案:C5.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.答案:C二、填空题6.已知△ABC中,∠A=30°,∠B=60°,求证a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的________.解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.答案:小前提7.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是________.解析:要使函数有意义,则log 2x -2≥0,解得x ≥4,所以函数y =log 2x -2的定义域是[4,+∞).答案:函数y =log 2x -2的定义域是[4,+∞)8.下面几种推理过程是演绎推理的是________(填序号).①两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行线的同旁内角,那么∠A +∠B =180°②由平面三角形的性质,推测空间四面体的性质③某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人④在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式.解析:①为演绎推理,②为类比推理,③④为归纳推理.答案:①三、解答题9.设m 为实数,利用三段论求证方程x 2-2mx +m -1=0有两个相异实根.证明:如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两相异实根.(大前提)一元二次方程x 2-2mx +m -1=0的判别式Δ=(2m )2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,(小前提)所以方程x 2-2mx +m -1=0有两相异实根.(结论)10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数f (x )的单调增区间.解:(1)∵x =π8是函数y =f (x )的图象的对称轴, ∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z. ∵-π<φ<0,∴φ=-3π4. (2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎪⎫2x -3π4. 由题意,得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z , ∴k π+π8≤x ≤5π8+k π,k ∈Z. 故函数f (x )的增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z. B 级 能力提升1.某人进行了如下的“三段论”:如果f ′(x 0)=0,则x =x 0是函数f (x )的极值点,因为函数f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.你认为以上推理的( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确解析:若f ′(x 0),则x =x 0不一定是函数f (x )的极值点,如f (x )=x 3,f ′(0)=0,但x =0不是极值点,故大前提错误.答案:A2.设a >0,f (x )=e x a +a e x 是R 上的偶函数,则a 的值为________. 解析:因为f (x )是R 上的偶函数,所以f (-x )=f (x ),所以⎝ ⎛⎭⎪⎫a -1a ⎝ ⎛⎭⎪⎫e x -1e x =0对于一切x ∈R 恒成立,由此得a -1a =0,即a 2=1.又a >0,所以a =1.答案:13.在数列{a n }中,a 1=2,a n +1=4a n -3n +1(n ∈N *).(1)证明数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n 对任意n ∈N *皆成立.(1)证明:由已知a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n ),n ∈N *,又a 1-1=2-1=1≠0,所以数列{a n -n }是首项为1,公比为4的等比数列.(2)解:由(1)得a n -n =4n -1,所以a n =4n -1+n .所以S n =a 1+a 2+a 3+…+a n =1+4+42+…+4n -1+(1+2+3+…+n )=4n -13+n (n +1)2. (3)证明:对任意的n ∈N *,S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎢⎡⎦⎥⎤4n -13+n (n +1)2=-12(3n 2+n -4)=-12(3n +4)(n -1)≤0. 所以不等式S n +1≤4S n 对任意n ∈N *皆成立.2.2 直接证明与间接证明2.2.1 综合法和分析法第1课 时综合法A 级 基础巩固一、选择题1.在下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:由题设知,f (x )在(0,+∞)上是减函数,由f (x )=1x,得f ′(x )=-1x2<0,所以f (x )=1x 在(0,+∞)上是减函数. 答案:A2.已知函数f (x )=lg 1-x 1+x,若f (a )=b ,则f (-a )等于( ) A .bB .-b C.1b D .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg ⎝ ⎛⎭⎪⎫1-a 1+a -1=-lg 1-a 1+a =-f (a )=-b .答案:B3.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .与n 取值有关解析:当n ≥2时,a n =S n -S n -1=4n -5又a 1=S 1=2×12-3×1=-1适合上式.∴a n =4n -5(n ∈N *),则a n -a n -1=4(常数)故数列{a n }是等差数列.答案:B4.若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2 D.a b <a +1b +1解析:在B 中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立.答案:B5.在△ABC 中,已知sin A cos A =sin B cos B ,则该三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:由sin A cos A =sin B cos B 得sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2.所以该三角形是等腰或直角三角形.答案:D二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.解析:本命题的证明,利用题设条件和导数与函数单调性的关系,经推理论证得到了结论,所以应用的是综合法的证明方法.答案:综合法7.角A,B为△ABC内角,A>B是sin A>sin B的________条件(填“充分”“必要”“充要”或“即不充分又不必要”).解析:在△ABC中,A>B⇔a>b由正弦定理asin A=bsin B,从而sin A>sin B.因此A>B⇔a>b⇔sin A>sin B,为充要条件.答案:充要8.已知p=a+1a-2(a>2),q=2-a2+4a-2(a>2),则p,q的大小关系为________.解析:因为p=a+1a-2=(a-2)+1a-2+2≥2(a-2)·1a-2+2=4,又-a2+4a-2=2-(a-2)2<2(a>2),所以q=2-a2+4a-2<4≤p.答案:p>q三、解答题9.已知a>0,b>0,且a+b=1,求证:1a+1b≥4.证明:因为a >0,b >0且a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b≥2+2 b a ·a b =4. 当且仅当b a =a b,即a =b 时,取等号, 故1a +1b≥4. 10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f ⎝ ⎛⎭⎪⎫x +12为偶函数. 证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称.∴f (x +1)=f (-x )则y =f (x )的图象关于x =12对称 ∴-b 2a =12,∴a =-b . 则f (x )=ax 2-ax +c =a ⎝ ⎛⎭⎪⎫x -122+c -a 4 ∴f ⎝ ⎛⎭⎪⎫x +12=ax 2+c -a 4为偶函数. B 级 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.答案:A2.已知sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,则tan⎝⎛⎭⎪⎫x-π4=________.解析:∵sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,∴cos x=-45,∴tan x=-12,∴tan⎝⎛⎭⎪⎫x-π4=tan x-11+tan x=-3.答案:-33.(2016·江苏卷)如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,所以DE∥A1C1.因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC A1B1C1中,A1A⊥平面A1B1C1,因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.又因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.第2课时分析法A级基础巩固一、选择题1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的两头凑法D.分析法又叫逆推证法或执果索因法解析:由综合法和分析法的意义与特点,知C错误.答案:C2.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:b2-ac<3a,则证明的依据应是() A.a-b>0B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔(a-c)·(2a +c)>0⇔(a-c)(a-b)>0.答案:C3.在不等边△ABC中,a为最大边,要想得到A为钝角的结论,对三边a,b,c应满足的条件,判断正确的是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2解析:要想得到A为钝角,只需cos A<0,因为cos A=b2+c2-a22bc,所以只需b2+c2-a2<0,即b2+c2<a2.答案:C4.对于不重合的直线m,l和平面α,β,要证明α⊥β,需要具备的条件是()A.m⊥l,m∥α,l∥βB.m⊥l,α∩β=m,l⊂αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m⊂α解析:对于选项A,与两相互垂直的直线平行的平面的位置关系不能确定;对于选项B,平面内的一条直线与另一个平面的交线垂直,这两个平面的位置关系不能确定;对于选项C,这两个平面有可能平行或重合;根据面面垂直的判定定理知选项D正确.答案:D5.设P=2,Q=7-3,R=6-2,则P,Q,R的大小关系是()A.P>Q>R B.P>R>QC.Q>P>R D.Q>R>P解析:先比较Q与R的大小.Q-R=7-3-(6-2)=(7+2)-(6+3).因为(7+2)2-(6+3)2=7+2+214-(6+3+218)=2(14-18)<0,所以Q<R.又P=2>R=2(3-1),所以P>R>Q.答案:B二、填空题6.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b7.当x>0时,sin x与x的大小关系为________.解析:令f(x)=x-sin x(x>0),则f′(x)=1-cos x≥0,所以f(x)在(0,+∞)上是增函数,因此f(x)>f(0)=0,则x>sin x.答案:x>sin x8.如图,在直四棱柱A1B1C1D1ABCD(侧棱与底面垂直)中,当底面四边形ABCD满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).解析:要证明A 1C ⊥B 1D 1只需证明B 1D 1⊥平面A 1C 1C因为CC 1⊥B 1D 1只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)三、解答题9.已知a >1,求证:a +1+a -1<2a .证明:因为a >1,要证a +1+a -1<2a ,只需证(a +1+a -1)2<(2a )2,只需证a +1+a -1+2(a +1)(a -1)<4a , 只需证(a +1)(a -1)<a ,只需证a 2-1<a 2,即证-1<0.该不等式显然成立,故原不等式成立.10.求证:2cos(α-β)-sin (2α-β)sin α=sin βsin α. 证明:欲证原等式2cos(α-β)-sin (2α-β)sin α=sin βsin α成立. 只需证2cos(α-β)sin α-sin(2α-β)=sin β,①因为①左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以①成立,所以原等式成立.B 级 能力提升1.设a ,b ,c ,d 为正实数,若a +d =b +c 且|a -d |<|b -c |,则有( )A .ad =bcB .ad <bcC .ad >bcD .ad ≤bc解析:∵|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔a 2+d 2-2ad <b 2+c 2-2bc ①又a +d =b +c∴a 2+d 2+2ad =b 2+c 2+2bc ②由②-①,得4ad >4bc ,即ad >bc .答案:C2.设函数f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=3a -4a +1,则实数a 的取值范围是________. 解析:因为f (x )是周期为3的奇函数,且f (1)>1,所以f (2)=f (-1)=-f (1),因此3a -4a +1<-1,则4a -3a +1<0, 解之得-1<a <34. 答案:⎝ ⎛⎭⎪⎫-1,34 3.设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,证明:a x +c y=2.证明:要证明ax+cy=2,只要证ay+cx=2xy,也就是证明2ay+2cx=4xy.由题设条件b2=ac,2x=a+b,2y=b+c,所以2ay+2cx=a(b+c)+(a+b)c=ab+2ac+bc,4xy=(a+b)(b+c)=ab+b2+bc+ac=ab+2ac+bc,所以2ay+2cx=4xy成立,故ax+cy=2成立.2.2.2 反证法A级基础巩固一、选择题1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论.A.①②B.①②④C.①②③D.②③解析:由反证法的定义知,可把①②③作为条件使用,而④原命题的结论是不可以作为条件使用的.答案:C2.用反证法证明命题:“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根解析:“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根.”答案:A3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.答案:B4.否定结论“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c都是奇数或至少有两个偶数解析:自然数a,b,c中奇数、偶数的可能情况有:全为奇数,恰有一个偶数,恰有两个偶数,全为偶数.除去结论即为反设,应选D.答案:D5.设实数a 、b 、c 满足a +b +c =1,则a ,b ,c 中至少有一个数不小于( )A .0B.13C.12 D .1解析:假设a ,b ,c 都小于13,则a +b +c <1,与a +b +c =1矛盾,选项B 正确.答案:B二、填空题6.已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a ,求证:b 与c 是异面直线,若利用反证法证明,则应假设________.解析:∵空间中两直线的位置关系有3种:异面、平行、相交, ∴应假设b 与c 平行或相交.答案:b 与c 平行或相交7.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:由假设p 为奇数可知(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…a 7)-(1+2+…+7)=0为偶数.答案:(a 1-1)+(a 2-2)+…+(a 7-7)8.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:0三、解答题9.设x ,y 都是正数,且x +y >2,试用反证法证明:1+x y <2和1+y x<2中至少有一个成立.证明:假设1+x y <2和1+y x <2都不成立,即1+x y ≥2,1+y x≥2. 又因为x ,y 都是正数,所以1+x ≥2y ,1+y ≥2x .两式相加,得2+x +y ≥2x +2y ,则x +y ≤2,这与题设x +y >2矛盾,所以假设不成立.故1+x y <2和1+y x<2中至少有一个成立. 10.已知三个正数a ,b ,c ,若a 2,b 2,c 2成公比不为1的等比数列,求证:a ,b ,c 不成等差数列.证明:假设a ,b ,c 成等差数列,则有2b =a +c ,即4b 2=a 2+c 2+2ac ,又a2,b2,c2成公比不为1的等比数列,且a,b,c为正数,所以b4=a2c2且a,b,c互不相等,即b2=ac,因此4ac=a2+c2+2ac,所以(a-c)2=0,从而a=c=b,这与a,b,c互不相等矛盾.故a,b,c不成等差数列.B级能力提升1.设a,b,c大于0,则3个数:a+1b,b+1c,c+1a的值()A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于2解析:假设a+1b,b+1c,c+1a都小于2则a+1b<2,b+1c<2,c+1a<2∴a+1b+b+1c+c+1a<6,①又a,b,c大于0所以a+1a≥2,b+1b≥2,c+1c≥2.∴a+1b+b+1c+c+1a≥6.②故①与②式矛盾,假设不成立所以a+1b,b+1c,c+1a至少有一个不小于2.答案:D2.对于定义在实数集R上的函数f(x),如果存在实数x0,使f(x0)=x0,那么x0叫作函数f(x)的一个好点.已知函数f(x)=x2+2ax+1不存在好点,那么a的取值范围是()A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,12 C .(-1,1) D .(-∞,-1)∪(1,+∞)解析:假设函数f (x )存在好点,则x 2+2ax +1=x 有实数解,即x 2+(2a -1)x +1=0有实数解.所以Δ=(2a -1)2-4≥0,解得a ≤-12或a ≥32. 所以f (x )不存在好点时,a 的取值范围是⎝ ⎛⎭⎪⎫-12,32. 答案:A3.已知二次函数f (x )=ax 2+bx +c (a >0,c >0)的图象与x 轴有两个不同的交点,若f (c )=0且0<x <c 时,恒有f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小. (1)证明:因为f (x )的图象与x 轴有两个不同的交点,所以f (x )=0有两个不等实根x 1,x 2.因为f (c )=0,所以x 1=c 是f (x )=0的根,又x 1x 2=c a, 所以x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c , 所以1a是f (x )=0的一个根. (2)解:假设1a<c ,又1a>0,且0<x <c 时,f (x )>0, 所以知f ⎝ ⎛⎭⎪⎫1a >0,这与f ⎝ ⎛⎭⎪⎫1a =0矛盾, 因此1a≥c , 又因为1a≠c , 所以1a>c .。
【成才之路】2014-2015学年高中数学 2.1 第2课时 演绎推理课件 新人教A版选修1-2
a 已知函数 f(x)=x+bx,其中 a>0,b>0,x∈(0,+∞),确 定 f(x)的单调区间,并证明在每个单调区间上的增减性. [解析] 设 0<x1<x2,则 a a f(x1)-f(x2)=x +bx1-x +bx2 1 2 a =(x2-x1)x x -b, 1 2
• 因为两组对边分别平行的四边形是平行四边 形,大前提 • DE∥BA,且FD∥AE,小前提 • 所以四边形AFDE为平行四边形.结论 • 因为平行四边形的对边相等,大前提 • ED和AF为平行四边形AFDE的对边,小前提 • 所以ED=AF.结论
• 演绎推理在代数问题中的应用
1 证明 f(x)=x2在(0,+∞)上为减函数.
• [解析] 上述推理过程应用了三次三段论.第 一次省略大前提和小前提的部分内容;第二 次省略大前提并承前省了其中一组对边平行 的条件;第三次省略了大前提并承前省略了 小前提,其完整演绎推理过程如下: • 因为同位角相等,两条直线平行,大前提 • ∠BFD与∠A是同位角,且∠BFD=∠A,小 前提 • 所以FD∥AE.结论
• 演绎推理的基本形式——三段 论
(1)一次函数是单调函数, 函数 y=2x-1 是一次函数, 所以 y=2x-1 是单调函数; (2)∵∠AOD 与∠BOC 是对顶角,∴∠AOD=∠BOC; (3)711 能被 3 整除.
• [分析] 在使用三段论推理的过程中,有时为 了简便,略去大前提或小前提,分析推理过 程时,要明确其大前提、小前提是什么.
• (1)若已知f(x)为“友谊函数”,求f(0)的值. • (2)函数g(x)=2x-1在区间[0,1]上是否为“友谊函 数”?并给出理由. • (3)已知f(x)为“友谊函数”,且0≤x1<x2≤1,求证: f(x1)≤f(x2). • [解题思路探究] 第一步,审题. • 审条件,挖掘解题信息. • ①定义域[0,1],在研究函数过程中不能超出这个范 围; • ②“友谊函数”新定义包含三个条件,尤其条件③ 需严格证明后才能确定.
高中数学第二章推理与证明2.1.2演绎推理课件新人教A版选修1-2
1.演绎推理中的“一般性原理”包括( )
①已有的事实;②定义、定理、公理等;③个人积累的经验.
A.①②
B.①③C.②③Fra bibliotekD.①②③
我还有这些不足: (1) ________________________________________________________ (2) ________________________________________________________ 我的课下提升方案: (1) ________________________________________________________ (2) ________________________________________________________
阶
阶
段
段
一
三
2.1.2 演绎推理
学
阶 段 二
业 分 层 测
评
[基础·初探] 教材整理 演绎推理
阅读教材 P30~P32 的内容,完成下列问题. 1.演绎推理 (1)含义:从 一般性的原理出发,推出 某个特殊情况下 的结论的推理. (2)特点:由 一般 到 特殊 的推理.
2.三段论
大前提 小前提
结论
一般模式 已知的 一般原理
所研究的 特殊情况 根据一般原理,对特
殊情况 做出的判断
常用格式 M是P S是M
S是P
[小组合作型] 把演绎推理写成三段论的形式
将下列演绎推理写成三段论的形式. (1)一切奇数都不能被 2 整除,75 不能被 2 整除,所以 75 是奇数. (2)三角形的内角和为 180°,Rt△ABC 的内角和为 180°. (3)菱形的对角线互相平分. (4)通项公式为 an=3n+2(n≥2)的数列{an}为等差数列.
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_18
2.1.2演绎推理教学设计整体设计教材分析《演绎推理》是高中数学中的基本思维过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程,也是人们学习和生活中经常使用的思维方式,是正确进行逻辑推理必不可少的基础知识,是高考热点.演绎推理具有证明结论、整理和构建知识体系的作用,是公理体系中的基本推理方法.本节内容相对比较抽象,教学中应紧密结合已学过的生活实例和数学实例,让学生了解演绎推理的含义,并在上一节学习的基础上,了解合情推理与演绎推理之间的联系与差异,同时纠正推理过程中可能犯的典型错误,增强学生的好奇心,激发出潜在的创造力,使学生能正确应用合情推理和演绎推理去进行一些简单的推理,证明一些数学结论.课时划分1课时.教学目标1.知识与技能目标了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理.2.过程与方法目标了解和体会演绎推理在日常生活和学习中的应用,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳、挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力.3.情感、态度与价值观通过本节课的学习,体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质.重点难点重点:正确地运用演绎推理进行简单的推理证明.难点:了解合情推理与演绎推理之间的联系与差别.教学过程引入新课观察与思考:新学期开始了,班里换了新的老师,他们是林老师、王老师和吴老师,三位老师分别教语文、数学、英语.已知:每个老师只教一门课;林老师上课全用汉语;英语老师是一个学生的哥哥;吴老师是一位女教师,她比数学老师活泼.问:三位老师各上什么课?活动设计:让学生带着浓厚的兴趣,先独立思考,然后小组交流.引导分析:启发学生把自己的思考过程借助于下列表格展示出来,从而解决问题.注意与学生交流.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于准确.活动结果:林老师——数学,王老师——英语,吴老师——语文.设计意图本着“兴趣是最好的老师”的原则,结合生活中具体的实例,激发学生学习的兴趣,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,体会演绎推理的现实意义.探究新知判断下列推理是合情推理吗?分析推理过程,明确它们的推理形式.(1)所有的金属都能导电,铜是金属,所以,铜能够导电.(2)一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.(3)三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.活动设计:学生口答,教师板书.学情预测:学生积极思考片刻,有学生举手回答且回答准确.活动结果:以上推理不是合情推理,它们的推理形式如下:(1)所有的金属都能导电,第一段铜是金属,第二段所以,铜能够导电.第三段(2)一切奇数都不能被2整除,第一段(2100+1)是奇数,第二段所以,(2100+1)不能被2整除.第三段(3)三角函数都是周期函数,第一段tanα是三角函数,第二段所以,tanα是周期函数.第三段提出问题:对于上面的三个推理,它们的推理形式有什么特点?活动设计:学生独立思考,并自由发言.学情预测:通过观察和分析,学生有足够的能力来解决上面所提问题.活动结果:上面的例子都有三段,是以一般的判断为前提,得出一些个别的、具体的判断:(1)所有的金属都能导电,大前提铜是金属,小前提所以,铜能够导电.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提所以,(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提tanα是三角函数,小前提所以,tanα是周期函数.结论教师:演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式,包括(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.设计意图通过对演绎推理概念的学习,体会以“三段论”模式来说明演绎推理的特点,从中概括出演绎推理的推理过程,对演绎推理是一般到特殊的推理有一个直观的认识,训练和培养学生的演绎推理能力.理解新知提出问题:在应用“三段论”进行推理的过程中,得到的推理结论一定正确吗?为什么?例如:(1)所有阔叶植物都是落叶的,葡萄树是阔叶植物,所以,葡萄树都是落叶的.(2)因为所有边长都相等的凸多边形是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形.(3)英雄难过美人关,我难过美人关,所以,我是英雄.活动设计:学生独立思考,先有学生自由发言,然后教师小结并形成新知.学情预测:学生们在积极思考,对(2)(3)两个小题的结论产生分歧,意见不统一.活动结果:(1)推理形式正确,前提正确,结论正确.(2)推理形式正确,大前提错误,结论错误.(3)推理形式错误(大、小前提没有连接起来),结论错误.教师:通过上面的学习,学生们对演绎推理和“三段论”模式都有了更深的了解,其中特别注意:(1)三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)(2)三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.(3)在演绎推理中,只有前提和推理形式都正确,结论才是正确的.设计意图通过所举的例子,教师可以了解学生对演绎推理和三段论模式的理解程度,明确概念的内涵和外延,加深理解,及时更正学生在认识推理中产生的错误和偏差.提出问题:合情推理与演绎推理有什么区别与联系?活动设计:学生独立思考,先由学生自由发言,然后教师小结并形成新知.活动结果:设计意图通过比较合情推理与演绎推理的区别与联系,有助于学生更清晰地理解和掌握这两种推理方法,并能灵活应用.运用新知例1如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到D ,E 的距离相等.思路分析:根据三段论的推理过程进行证明.证明:(1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ABD 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提 因为DM 是直角三角形ABD 斜边上的中线,——小前提 所以DM =12AB.——结论同理EM =12AB.所以DM =EM.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,突出演绎推理中的“大前提”“小前提”和“结论”.巩固练习由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理得出一个结论,则这个结论是( )A .正方形的对角线相等B .平行四边形的对角线相等C .正方形是平行四边形D .其他 答案:A例2证明函数f(x)=-x 2+2x 在(-∞,1)内是增函数.思路分析:证明本例所依据的大前提是:在某个区间(a ,b)内,如果f ′(x)>0,那么函数y =f(x)在这个区间内单调递增.小前提是f(x)=-x 2+2x 在(-∞,1)内有f ′(x)>0,这是证明本例的关键. 证明:f ′(x)=-2x +2,因为当x ∈(-∞,1)时,有1-x>0, 所以f ′(x)=-2x +2=2(1-x)>0,于是,根据“三段论”,可知f(x)=-x 2+2x 在(-∞,1)内是增函数.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,并加深对演绎推理的认识.教师:许多学生能写出证明过程,但不一定非常清楚证明的逻辑规则,因此在表述证明过程时往往显得杂乱无章,通过这两个例子的教学,应当使这种状况得到改善.变练演编(1)已知a ,b ,m 均为正实数,且b<a ,求证:b a <b +ma +m.(2)已知△ABC 的三条边分别为a ,b ,c ,则1+ <1+.思路分析:(1)中根据演绎推理的证明过程进行证明;(2)中不必证明,答案不唯一. 证明:(1)不等式两边乘以同一个正数,不等式仍成立,——大前提 b<a ,m>0,——小前提 所以mb<ma.——结论不等式两边加上同一个数,不等式仍成立,——大前提 mb<ma ,ab =ab ,——小前提所以ab +mb<ab +ma ,即b(a +m)<a(b +m).——结论 不等式两边除以同一个正数,不等式仍成立,——大前提 b(a +m)<a(b +m),a(a +m)>0,——小前提所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .——结论(2)c 1+c <a +b 1+a +b (答案不唯一,例如a1+a <c +b 1+c +b). 点评:通过证明(1)中不等式成立,感知条件与结论的不唯一性,例如:已知a ,b ,m 均为正实数,若a<b ,求证:a b <a +mb +m.(2)中加强学生思维的灵活性、分析问题的深刻性.活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结论一一列举,并由学生予以评价.设计意图通过变练演编,使学生对演绎推理的认识不断加深,同时培养学生逻辑思维的严谨性. 达标检测1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线平面α,直线平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 答案:1.D 2.C 3.A课堂小结1.知识收获:(1)演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.2.方法收获:利用演绎推理判断进行证明的方法与步骤:①找出大前提;②找出小前提;③根据“三段论”推出结论.3.思维收获:培养和训练学生严谨缜密的逻辑思维.布置作业课本本节练习1、2、3.补充练习基础练习1.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论.2.下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理的一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个3.下列几种推理过程是演绎推理的是()A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图4.已知△ABC,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论5.用演绎推理法证明y=x是增函数时的大前提是______.答案:1.解:二次函数的图象是一条抛物线(大前提),函数y=x2+x+1是二次函数(小前提),所以,函数y=x2+x+1的图象是一条抛物线(结论).2.C 3.A 4.B 5.增函数的定义拓展练习6.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.证明:如图,作AE⊥SB于E.∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.∵SA∩AE=A,SA⊂平面SAB,AE⊂平面SAB,∴BC⊥平面SAB.∵AB⊂平面SAB,∴AB⊥BC.设计说明由于这节课概念性、理论性较强,一般的教学方式会使学生感到枯燥乏味,为此,激发学生的学习兴趣是上好本节课的关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去总结概念“下定义”,去体会概念的本质属性.学生对于演绎推理和三段论的理解,需要经过一定时间的体会,先给出学生常见问题的解决步骤,结合以前所学的知识来解决问题,在教学中经常借助这些概念表达、阐述和分析问题.引导学生从日常生活中的推理问题出发,激发学生的学习兴趣,结合学生熟知的旧知识归纳新知识,同时在应用新知的过程中,将所学的知识条理化,使学生的认知结构更趋于合理.备课资料例1小王、小刘、小张参加了今年的高考,考完后在一起议论.小王说:“我肯定考上重点大学.”小刘说:“重点大学我是考不上了.”小张说:“要是不论重点不重点,我考上肯定没问题.”发榜结果表明,三人中考取重点大学、一般大学和没考上大学的各有一个,并且他们三个人的预言只有一个人是对的,另外两个人的预言都同事实恰好相反.可见() A.小王没考上,小刘考上一般大学,小张考上重点大学B.小王考上一般大学,小刘没考上,小张考上重点大学C.小王没考上,小刘考上重点大学,小张考上一般大学D.小王考上一般大学,小刘考上重点大学,小张没考上解析:根据推理知识得出结论.答案:C例2已知直线l、m,平面α、β,且l⊥α,m∥β,给出下列四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:根据演绎推理的定义,逐一判断结论的正误.由直线和平面、平面和平面平行和垂直的判定定理、性质定理,可知应选B.答案:B点评:以准确、完整地理解条件为基础,才能判断命题的正误.例3函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______.解析:根据函数的性质进行判断.∵函数y=f(x)在(0,2)上是增函数,∴0<x+2<2,即-2<x<0.∴函数y=f(x+2)在(-2,0)上是增函数.又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2)在(0,2)上是减函数.由图象可得f(2.5)>f(1)>f(3.5).故应填f(2.5)>f(1)>f(3.5).答案:f(2.5)>f(1)>f(3.5)点评:根据函数的基本性质,结合三段论的推理模式可得.例4已知lg2=m,计算lg0.8.分析:利用所学的推理知识解决问题.解:lga n=nlga(a>0),——大前提lg8=lg23,——小前提lg8=3lg2.——结论lg ab=lga-lgb(a>0,b>0),——大前提lg0.8=lg 810,——小前提所以lg0.8=lg8-1=3lg2-1=3m-1.——结论点评:找出三段论的大前提与小前提即可得到答案.设计者:李效三2018年5月22日星期二。
高中数学人教A版选修1-2第二章2.1.2演绎推理课件(共24张PPT)
概念辨析
分析下面两个推理是否正确?
(1)因为指数函数 y a x 是增函数,
而 y ( 1 ) x 是指数函数
2
所以
y
(
1 2
)
x
是增函数
大前提不正确
(2) 因为无理数是无限小数
1 是无限小数
3
所以
1
是无理数
3
推理形式错误
亚三段里论士的多创德始(人前。384—前322年),欧 (几 约里 公得 元前330年—前27,
---大前提20班每个同学(M)都努力(P)
张三是高二20班的, ---小前提张三(S)是20班的(M)
所以他学习也很努力.---结论 张三(S)也很努力(P)
概念深化
三段论推理的依据,用集合的观点来理解:
高二20班每个同学 学习都很努力,
---大前提20班每个同学(M)都努力(P)
所以,EF//BD
省略大前提:三角形的 中位线平行于第三边
又因为,EF 平面BCD,BD 平面BCD
省略大前提:如果平面外一条
所以 EF//平面BCD
直线和这个平面内的一条直线
平行,那么这条直线和这个平 面平行
概念应用
例3:证明函数f(x)=-x2+2x在(-∞,1)上是增函数.
合情推理与演绎推理的区别与联系
温故知新
由个别到一般的推理
由某类事物的部分对象具有某些特征, 推出该类事物的全部对象都具有这些特征 的推理,或者由个别事实概括出 一般结论 的推理,称为归纳推理(简称归纳).
温故知新
由特殊到特殊 由两类对象具有某些类似特征 和其中 一类对象的某些已知特征,推出另一类对 象也具有这些特征的推理称为类比推理.
数学:2[1].1《合情推理与演绎证明--合情推理》PPT课件(新人教A版-选修1-2)
2
1
3
解;设an表示移动n块金属片时的移动次数. 当n=1时,a1=1 当n=2时,a2= 3 猜想 an= 2n -1 当n=3时,a3= 7 当n=4时,a4= 15
2
1
3
歌德巴赫猜想的提出过程:
…
这种由某类事物的部分对象具有某些特征, 推出该类事物的全部对象都具有这些特征 的推理,或者由个别事实概栝出一般结论 的推理,称为归纳推理.(简称;归纳) 归纳推理的几个特点;
1.归纳是依据特殊现象推断一般现象,因而,由归纳 所得的结论超越了前提所包容的范围. 2.归纳是依据若干已知的、没有穷尽的现象推断尚 属未知的现象,因而结论具有猜测性. 3.归纳的前提是特殊的情况,因而归纳是立足于观 察、经验和实验的基础之上. 归纳是立足于观察、经验、实验和对有限资料分 析的基础上.提出带有规律性的结论. 需证明
这就是著的哥德巴赫猜想。欧拉在6月30日给他的回信中说, 他相信这个猜想是正确的,但他不能证明。叙述如此简单的问 题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引 起了许多数学家的注意。从提出这个猜想至今,许多数学家都 不断努力想攻克它,但都没有成功。当然曾经有人作了些具体 的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一 一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚 待数学家的努力。从此,这道著名的数学难题引起了世界上成 千上万数学家的注意。200年过去了,没有人证明它。哥德巴 赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了 20世纪20年代,才有人开始向它靠近。
高中数学第二章推理与证明2.1.2演绎推理课件新人教A版选修220721245
奇数都不能被2整除 2017是奇数 2017不能被2整除 (zhěngchú)
进一步观察(guānchá)上述例子有几部分组成? 各有什么特点?
第四页,共19页。
2、三段论
“三段论”是演绎推理的一般(yībān)模式,
包括:
(1)大前提——已知的一般(yībān)原理;
(2)小前提——所研究的特殊情源自;ED所以(suǒyǐ)DM=EM.
A
第十三页,共19页。
M
B
例3:证明大(z前hè提ng:mí增ng函)函数数的f定(x义)=(-dxì2n+g2yxì)在;(-∞,1)是增
证明函:数任。取x1 , x2 (,1), 且x1 x2 ,
f ( x1 ) f ( x2 ) ( x12 2 x1 ) ( x22 2 x2 )
f '( x) 2x 2 2( x 1), 又因为x (,1),即x 1, 所以x 1 0, 从而 2( x 1) 0,即f '( x) 0,
小前提所以f ( x) x2 2x在(,1)有f '( x) 0.
由函数的单调性与其导 数的关系知:
结论(jié函lù数n)f(x)=-x2+2x在(-∞,1)是增函数。
由上述(shàngshù)具体
事实能得到怎样的结论
?
1+3+……+(2n-1)=n2
正确 (zhèngq
第二页,共19页。
在空间中,若
α ⊥γ,β ⊥γ 则α//β。
错误 (可能相交
)
1、演绎推理:由一般(yībān)到特殊的推理。
所有金属都能导电 铜是金属
铜能导电
太阳系大行星以椭圆 冥王星是太阳 冥王星以椭圆形轨
《反证法》人教版高中数学选修1-2PPT课件(第2.2.2课时)
知识要点
反证法主要适用于以下两种情形: (1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰. (2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很 少的几种情形.
知识要点
用反证法证题时,应注意的事项 : (1)周密考察原命题结论的否定事项, 防止否定不当或有所遗漏; (2)推理过程必须完整,否则不能说明命题的真伪性; (3)在推理过程中,要充分使用已知条 件,否则推不出矛盾,或者不能断定推出的结果是错误的.
矛盾
所以 _假__设__不__成__立 ,即求证的命题正确. 命题成立
l3
P
l1
l2
知识要点
反证法的步骤 一、提出假设 假设待证命题不成立,或是命题的反面成立. 二、推理论证 以假设为条件,结合已知条件推理,得出与已知条件或是正确命题相矛盾的结论. 三、得出矛盾 这与“......”相矛盾. 四、结论成立 所以假设不成立,所求证的命题成立.
∴ ∠ 1 =∠ 2 =∠3(两直线平行,同位角相等) ∴ l 3∥ l2(同位角相等,两直线平行 ) 归纳
l1
l1
l2
P 2
l1
3
请同学们自己比较两种证明方法的各自特点,从中体验反证法的思考过程和特点.
新知探究
结合我们讲过的例子,我们可以得到什么?
思考
由上面的例子可以看出,反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件 矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.
知识要点
宜用反证法证明的题型
(1)以否定性判断作为结论的命题; (2)某些定理的逆命题; (3)以“至多”、“至少”或“不多于”等形式陈述的命题; (4)关于“唯一性”结论的命题; (5)解决整除性问题; (6)一些不等量命题的证明; (7)有些基本定理或某一知识体系的初始阶段; (8)涉及各种“无限”结论的命题等等.
高中数学 2.1《合情推理与演绎推理》课件(1) 新人教A版选修2-2
思考2 思考2:科学家们发现火星具有一些与地 球类似的特征, 球类似的特征,如火星也是围绕太阳运 绕轴自转的行星,也有大气层, 行、绕轴自转的行星,也有大气层,在 一年中也有季节的变更, 一年中也有季节的变更,而且火星上大 部分时间的温度适合地球上某些已知生 物的生存,等等.运用类比推理, 物的生存,等等.运用类比推理,你有什 么猜想?其推理过程是怎样形成的? 么猜想?其推理过程是怎样形成的? 猜想:火星上也可能有生命存在. 猜想:火星上也可能有生命存在.
不能! 不能!
思考6 对于等式:1·2+2·3+ 思考6:对于等式:1·2+2·3+3·4 n(n+1)= 3n+ n=1, +…+n(n+1)=3n2-3n+2,当n=1, 时等式成立吗? 2,3时等式成立吗?能否由此断定这个 等式对所有正整数n都成立? 等式对所有正整数n都成立? 思考7:应用归纳推理可以发现一般结 思考7 其不足之处是什么? 论,其不足之处是什么? 由归纳推理得出的结论不一定正确, 由归纳推理得出的结论不一定正确,其 真实性有待进一步证明. 真实性有待进一步证明.
圆的概念和性质 圆的周长 圆的面积 球的类似概念和性质 球的面积 球的体积
圆心与弦(非直径)中点 球心与截面(非大圆)圆心的 球心与截面(非大圆) 圆心与弦(非直径) 连线垂直于截面 的连线垂直于弦 与圆心距离相等的两弦相 等,与圆心距离不等的两 弦不等, 弦不等,距圆心较近的弦 较长. 较长. 圆的方程为: 圆的方程为: (x- (y- (x-x0)2+(y-y0)2=r2 与球心距离相等的两截面积相 等,与球心距离不等的两截面 积不等, 积不等,距球心较近的截面积 较大. 较大 球的方程
如图所示, 例1 如图所示,有三根针和套在一根针 上的若干金属片,按下列规则, 上的若干金属片,按下列规则,把金属片 从一根针上全部移到另一根针上. 从一根针上全部移到另一根针上. 每次只能移动1个金属片; (1)每次只能移动1个金属片; (2)较大的金属片不能放在较小的金属 片上面. 片上面. 试推测: 个金属片从1 试推测:把n个金属片从1号针移到3号 个金属片从 号针移到3 最少需要移动多少次? 针,最少需要移动多少次?
高中数学 第二章推理与证明全章归纳总结 新人教A版选修1-2
第二章 推理与证明2.1.1 合情推理与演绎推理(1)归纳推理【要点梳理】1、从一个或几个已知命题得出另一个新命题的思维过程称为 任何推理包括 和 两个部分。
是推理所依据的命题,它告诉我们 是什么, 是根据前提推得的命题,它告诉我们 是什么。
2、从个别事实中推演车一般性的结论的推理通常称为 ,它的思维过程是3、归纳推理有如下特点(1)归纳推理的前提是几个已知的 现象,归纳所得的结论是尚属未知的 现象,该结论超越了前提所包含的范围。
(2)由归纳推理得到的结论具有 的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它 作为数学证明的工具。
(填“能”或“不能”)(3)归纳推理是一种具有 的推理,通过归纳法得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。
【指点迷津】1、运用归纳推理的一般步骤是什么?首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广为一个明确表述的一般命题(猜想);然后,对所得的一般性命题进行检验。
2、在数学上,检验的标准是什么?标准是是否能进行严格的证明。
3、归纳推理的一般模式是什么?S 1具有P ;S 2具有P ;……;S n 具有P (S 1、S 2、…、S n 是A 类事件的对象) 所以A 类事件具有P【典型例题】例1、设N n x f x f x f x f x f x f x x f n n ∈'='='==-),()(,),()(),()(,sin )(112010 ,则)()(2005=x fA 、x sinB 、x sin -C 、x cosD 、x cos - 【解析】:,cos )(sin )(1x x x f ='=)()()(sin )(cos )()(cos )(sin )(sin )cos ()(cos )sin ()(sin )(cos )(42615432x f x f x f x x x f x f x x x f xx x f xx x f x x x f n n ====-='==='=='-=-='-=-='=+故可猜测)(x f n 是以4为周期的函数,有x x f x f x f n n sin )(,cos )1()(2414-===++xf x f x x f n n sin )4()(cos )(4434==-=++故选C【点评】归纳推理是由部分到整体、由个别到一般的推理,是人们在日常活动和科学学习研究中经常使用的一种推理方法,必须认真学习领会,在归纳推理的过程中,应注意所探求的事物或现象的本质属性和因果关系。
高中数学第二章推理与证明章末复习同步课件新人教A版选修1_2100
12345
答案
5.在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…
+a19-n(n<19,n∈N*)成立,类比上述性质,相应地,在等比数列{bn}
中,若b9=1,则有等b1式b2_…_b_n_=__b_1_b_2_…__b_1_7_-__n_(_n_<_1_7_,__n_∈__N__*_) _成立.
证明
反思与感悟 根据待证不等式的结构特点构造函数,将此问题转化为函 数问题,再利用函数的图象与性质解决问题.
跟踪训练2 设a,b是两个正实数,且a≠b,求证:a3+b3>a2b+ab2. 证明 要证a3+b3>a2b+ab2成立,即需证(a+b)(a2-ab+b2)>ab(a+b) 成立, 即需证a2-ab+b2>ab成立. 只需证a2-2ab+b2>0成立, 即需证(a-b)2>0成立. 而由已知条件可知,a≠b,所以a-b≠0, 所以(a-b)2>0显然成立. 即a3+b3>a2b+ab2.
证明
例3 证明
类型三 反证法 已知 f(x)=ax+xx- +21(a>1),求证:f(x)=0 没有负根. 假设x0是f(x)=0的负根,
则 x0<0 且 x0≠-1 且 a x0 =-xx00-+21, 由 0< a x0 <1,得 0<-xx00- +21<1,
解得21<x0<2,这与 x0<0 矛盾,
D.9(n-1)+(n-1)=10n-10
解析 由已知中的式子,我们视察后分析:
等式左边分别为9与编号减1的积再加上编号,
等式右边是一个等差数列.
根据已知可以推断:
人教版数学高二 数学A版选修1-2 第二章《推理与证明》教辅资料
满足y=x 2,则log 2(22)x y +的最小值是78;④若a 、b ∈R ,则221a b ab a b +++>+。
其中正确的是( )。
(A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④解析 用综合法可得应选(B ) 例2 函数y =f (x )在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是 .解析∵函数y =f (x )在(0,2)上是增函数, ∴ 0<x+2<2即-2<x <0∴函数y=f(x+2) 在(-2,0)上是增函数, 又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2) 在(0,2)上是减函数 由图象可得f(2.5)>f(1)>f(3.5)故应填f(2.5)>f(1)>f(3.5)例3 已知a ,b ,c 是全不相等的正实数,求证3>-++-++-+ccb a b bc a a a c b解析∵ a ,b ,c 全不相等∴ a b 与b a ,a c 与c a ,b c 与c b 全不相等。
∴ 2,2,2b a c a c ba b a c b c+>+>+>三式相加得6b c c a a ba ab bc c+++++>∴ (1)(1)(1)3b c c a a ba ab bc c+-++-++->即 3b c a a c b a b c a b c+-+-+-++>练习一、选择题1.如果数列{}n a 是等差数列,则( )。
(A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a =2.在△ABC 中若b=2asinB 则A 等于( )(A)06030或 (B)06045或 (C)0012060或 (D)0015030或 3.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+•+.其中不成立的有(A )1个 (B )2个 (C )3个 (D )4个二、填空题4. 已知 5,2==b a ,向量b a 与的 夹角为0120,则a b a .)2(-=5. 如图,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足n,n证明:如图,连接BD ,∵在△ABC 中,BE=CE DF=CF ∴E F ∥BD又BD ⊂平面ABD ∴BD ∥平面ABD7.解:∵f(x-4)=f(2-x),∴函数的图象关于x= -1对称 ∴12-=-ab即b =2a 由③知当x = 1时,y=0,即ab +c =0;由①得 f (1)≥1,由②得 f (1)≤1. ∴f (1)=1,即a +b +c =1,又ab +c =0 ∴a =41 b =21 c =41 ,∴f (x )=4121412++x x 假设存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x 取x =1时,有f (t +1)≤1⇒41(t +1)2+21(t +1)+41≤1⇒-4≤t ≤0 对固定的t ∈[-4,0],取x =m ,有f (t +m )≤m ⇒41(t +m )2+21(t +m )+41≤m ⇒2m +2(t-1)m +(t 2+2t +1)≤0 ⇒t t 41---≤m ≤t t 41-+- ∴m ≤t t 41--≤)4(4)4(1-⋅-+--=9当t = -4时,对任意的x ∈[1,9],恒有f(x-4)≤x ⇒41(2x -10x +9)=41(x-1)(x-9)≤0∴m 的最大值为9.解法二:∵f (x -4)=f (2-x ),∴函数的图象关于x =-1对称 ∴ 12-=-abb =2a 由③知当x=1时,y=0,即a b +c =0;由①得 f (1)≥1,由②得 f (1)≤1∴f (1)=1,即a +b +c =1,a b +c =0∴a =41 b =21 c =41∴f (x )=4121412++x x =41(x +1)2由f (x +t )=41(x +t +1)2≤x 在x ∈[1,m ]上恒成立 ∴4[f (x +t )-x ]=x 2+2(t -1)x +(t +1)2≤0当x ∈[1,m ]时,恒成立 令 x =1有t 2+4t ≤0⇒-4≤t ≤0令x =m 有t 2+2(m +1)t +(m -1)2≤0当t ∈[-4,0]时,恒有解令t = -4得,2m - 10m +9≤0⇒1≤m ≤9 即当t = -4时,任取x ∈[1,9]恒有f (x -4)-x =41(2x -10x +9)=41(x-1)(x-9)≤0 ∴ m max =92.2直接证明2.2.1 综合法一、选择题(1)由等差数列的性质:若m+n=p+q 则q p n m a a a a +=+可知应填(B )。
高中数学人教A版选修1-2第二章 2.1 2.1.2 演绎推理课件
(3)模式:三段论.
2.三段论 “三段论”是演绎推理的一般模式,包括:
[点睛] 用集合的观点理解三段论 若集合 M 的所有元素都具有性质 P,S 是 M 的一个子 集,那么 S 中所有元素也都具有性质 P.
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
2.1.2 演绎推理
预习课本 P30~33,思考并完成下列问题
(1)什么是演绎推理?它有什么特点? (2)什么是三段论?一般模式是什么? (3)合情推理与演绎推理有什么区别与联系?
[新知初探]
1.演绎推理
(1)概念:从一般性的原理 出发,推出某个特殊情况 下的 结论 ,我们把这种推理称为演绎推理.
演绎推理在几何中的应用
[典例] 如图所示,D,E,F 分别是 BC, CA,AB 边上的点,∠BFD=∠A,DE∥BA,求 证:DE=AF.写出“三段论”形式的演绎推理.
[解] (1)同位角相等,两直线平行,(大前提) ∠BFD 和∠A 是同位角,且∠BFD=∠A,(小前提) 所以 DF∥AE.(结论)
D.大前提:π 是无限不循环小数;小前提:π 是无理数;结论: 无限不循环小数是无理数
解析:选 B 对于 A,小前提与大前提间逻辑错误,不 符合演绎推理三段论形式;对于 B,符合演绎推理三段 论形式且推理正确;对于 C,大小前提颠倒,不符合演 绎推理三段论形式;对于 D,大小前提及结论颠倒,不 符合演绎推理三段论形式.
演绎推理在代数中的应用 [典例] 已知函数 f(x)=ax+xx- +21(a>1),求证:函数 f(x)在 (-1,+∞)上为增函数. [证明] 对于任意 x1,x2∈(-1,+∞),且 x1<x2,若 f(x1) <f(x2),则 y=f(x)在(-1,+∞)上是增函数.(大前提) 设 x1,x2∈(-1,+∞),且 x1<x2,
高中数学新课标人教A版选修1-2课件
类比推理的结论不一定成立.
第二十五页,编辑于星期一:点 十三分。
.
.
第二十六页,编辑于星期一:点 十三分。
圆的概念和性质
球的类似概念和性质
圆心与弦(非直径)中点连线垂直于 球心与截面圆(不经过球心的截面圆)
推理与证明
推理
证明
合情推理
演绎推理 直接证明 间接证明
第一页,编辑于星期一:点 十三分。
已知的判断
确定
新的判断
根据一个或几个已知的判断来确定一个新 的判断的思维过程就叫推理.
第二页,编辑于星期一:点 十三分。
第三页,编辑于星期一:点 十三分。
数学皇冠上璀璨的明珠——哥德巴赫猜想
3+7=10 3+17=20 13+17=30
第三十五页,编辑于星期一:点 十三分。
再 见
第三十六页,编辑于星期一:点 十三分。
八面体
三棱柱
四棱锥
尖顶塔
第十页,编辑于星期一:点 十三分。
凸多面体
四棱柱 三棱锥 八面体 三棱柱 四棱锥 尖顶塔
面数(F) 顶点数(V) 棱数(E)
第十一页,编辑于星期一:点 十三分。
四棱柱
凸多面体
四棱柱 三棱锥 八面体 三棱柱 四棱锥 尖顶塔
面数(F) 顶点数(V) 棱数(E)
6
8
12
第十二页,编辑于星期一:点 十三分。
n =1时,a1=1 第1个圆环从1到3. n=2时,a2=3 前1个圆环从1到2;
第2个圆环从1到3; 第1个圆环从2到3.
2
1
3
第三十三页,编辑于星期一:点 十三分。
高中数学 《合情推理与演绎证明》课件28 新人教A版选修1-2
开普勒
( Ke
pler , 1571
1630 ) 说 :
" 我珍惜类
比胜过任何
别的东西
,它
是我最可信
赖的老师
,它
能揭示自然
界的秘密
."
根 据 同 样 的 思 路, 我 们 还 可 以 定 义 并 且 研 究4维 球、5维 球 直 至n维 球.研 究n维 球 时,总 可 以
类比n 1维球的情形,从中获
为归纳推理 简称归纳 .简言之 ,归纳推理是由
部分到整体、由个一别般到的推. 理
例 如 ,由 铜 、 铁 、 铝 、 金 、 银等 金 属 能 导 电, 归 纳 出" 一 切 金 属 都 能 导 电" ;由 直 角 三 角 形 、 等 腰 三 角 形 、 等 边 三 角形 的 内 角 和 都 是180 0, 归 纳 出" 所 有 三 角 形 的 内 角 和 都是180 0 " 这 些 都 是 归 纳 推 理.在 统 计 学 中,我 们 总 是 从 所 研 究 的 对 象 全 体 中 抽取 一 部 分 进 行 观 测 或 试 验 以 取 得 信 息,从 而 对 整 体 作 出 推 断,这 也 是 归 纳 推 理.
思考科学家做出上述 推猜 理想 过的 程是怎 ? 样
在提出上述猜想,过 科程 学中 家对比了火球 星与 之间的某些相似 ,然特后征从地球的一特 个征 已知 (有性命存)出在发 ,猜测火星也可能个 具特 有征 .这
高中数学第二章推理与证明本章整合课件新人教A版选修1_2
2.演绎推理的应用 演绎推理是由一般到特殊的推理方法,又叫逻辑推理,其在前提 和推理形式均正确的前提下,得到的结论一定正确,演绎推理的内 容一般是通过合情推理获取的.
应用 3 已知定义在 R 上的函数 f(x) = ������������ 3 + ������������ 2+cx(a<b<c)在 x=1 时取得极值,且 y=f(x)的图象上有一点处的切线的斜率为-a. (1)求证:0≤ < 1; (2)若 f(x)在区间(s,t)内为增函数,求证:-2<s<t≤1.
专题1
专题2
专题3
证明:先证正弦定理.在△A'B'C'中,有
������'������' sin������
=
������'������' sin������
=
������'������' . sin������
设三棱柱 ABC-A1B1C1 的侧棱长为 l, 则
������· ������'������' ������· ������'������' ������· ������'������' = = , sin������ sin������ sin������ ������1 ������2 ������3 即 = = . sin������ sin������ sin������
������ ������ 1 3 1 2
提示:充分利用函数与其导数之间的关系,以及一元二次方程根 的分布情况,将条件转化为a,b,c的关系来解决问题.
专题1
专题2
1 3
专题3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[活学活用] 如图,在空间四边形 ABCD 中,E,F 分别是 AB, AD 的中点,求证:EF∥平面 BCD. 证明:三角形的中位线平行于底边,....................大前提 点 E,F 分别是 AB,AD 的中点,.................... 小前提 所以 EF∥BD. ...........................................................结论 若平面外一条直线平行于平面内一条直线, 则这条直线与此平面平行,......................................大前提 EF⊄平面 BCD,BD⊂平面 BCD,EF∥BD,...............小前提 所以 EF∥平面 BCD. .....................................................结论
12
(2)两组对边分别平行的四边形是平行四边形,(大前提) DE∥BA 且 DF∥EA,(小前提) 所以四边形 AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提) DE 和 AF 为平行四边形的对边,(小前提) 所以 ED=AF.(结论)
13
几何证明中应用演绎推理的两个关注点 (1)大前提的正确性:几何证明往往采用演绎推理,它往 往不是经过一次推理就能完成的,常需要几次使用演绎推理, 每一个推理都暗含着大、小前提,前一个推理的结论往往是 下一个推理的前提,在使用时不仅要推理的形式正确,还要 前提正确,才能得到正确的结论. (2)大前提可省略:在几何证明问题中,每一步都包含着 一般原理,都可以分析出大前提和小前提,将一般原理应用 于特殊情况,就能得出相应结论. 提醒:在应用“三段论”进行推理的过程中,大前提、 小前提或推理形式之一错误,都可能导致结论错误.
无理数;结论:π 是无理数 D.大前提:π 是无限不循环小数;小前提:π 是无理数;结论:
无限不循环小数是无理数
10
解析:选 B 对于 A,小前提与大前提间逻辑错误,不 符合演绎推理三段论形式;对于 B,符合演绎推理三段 论形式且推理正确;对于 C,大小前提颠倒,不符合演 绎推理三段论形式;对于 D,大小前提及结论颠倒,不 符合演绎推理三段论形式.
2.1.2 演绎推理
预习课本 P30~33,思考并完成下列问题
(1)什么是演绎推理?它有什么特点? (2)什么是三段论?一般模式是什么? (3)合情推理与演绎推理有什么区别与联系?
1
[新知初探]
1.演绎推理
(1)概念:从一般性的原理 出发,推出某个特殊情况 下的 结论 ,我们把这种推理称为演绎推理.
答案:小前提
6
把演绎推理写成三段论的形式
[典例] 将下列推理写成“三段论”的形式: (1)向量是既有大小又有方向的量,故零向量也有大小和方向; (2)0.332·是有理数; (3)y=sin x(x∈R)是周期函数. [解] (1)大前提:向量是既有大小又有方向的量. 小前提:零向量是向量. 结论:零向量也有大小和方向
5
2.平行于同一直线的两直线平行,因为 a∥b,b∥c,所以 a∥c,
这个推理称为
()
A.合情推理
B.归纳推理
C.类比推理
D.演绎推理
答案:D
3.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此 f(x)=sin(x2
+1)是奇函数,以上推理中“三段论”中的___活用] 下面四个推导过程符合演绎推理三段论形式且推理正确的是
() A.大前提:无限不循环小数是无理数;小前提:π 是无理数;
结论:π 是无限不循环小数 B.大前提:无限不循环小数是无理数;小前提:π 是无限不循
环小数;结论:π 是无理数 C.大前提:π 是无限不循环小数;小前提:无限不循环小数是
15
演绎推理在代数中的应用 [典例] 已知函数 f(x)=ax+xx- +21(a>1),求证:函数 f(x)在 (-1,+∞)上为增函数. [证明] 对于任意 x1,x2∈(-1,+∞),且 x1<x2,若 f(x1) <f(x2),则 y=f(x)在(-1,+∞)上是增函数.(大前提) 设 x1,x2∈(-1,+∞),且 x1<x2,
11
演绎推理在几何中的应用
[典例] 如图所示,D,E,F 分别是 BC, CA,AB 边上的点,∠BFD=∠A,DE∥BA,求 证:DE=AF.写出“三段论”形式的演绎推理.
[解] (1)同位角相等,两直线平行,(大前提) ∠BFD 和∠A 是同位角,且∠BFD=∠A,(小前提) 所以 DF∥AE.(结论)
③结论:S是P
3
[点睛] 用集合的观点理解三段论 若集合 M 的所有元素都具有性质 P,S 是 M 的一个子 集,那么 S 中所有元素也都具有性质 P.
4
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)“三段论”就是演绎推理.
( ×)
(2)演绎推理的结论是一定正确的.
(× )
(3)演绎推理是由特殊到一般再到特殊的推理. ( × )
7
(2)大前提:所有的循环小数都是有理数. 小前提:0.332·是循环小数. 结论:0.332·是有理数. (3)大前提:三角函数是周期函数. 小前提:y=sin x(x∈R)是三角函数. 结论:y=sin x(x∈R)是周期函数.
8
用三段论写推理过程的技巧 (1)关键:用三段论写推理过程时,关键是明确大、小 前提,三段论中大前提提供了一个一般原理,小前提提供 了一种特殊情况,两个命题结合起来,揭示了一般原理与 特殊情况的内在联系. (2)何时省略:有时可省略小前提,有时甚至也可将大 前提、小前提都省略. (3)如何寻找:在寻找大前提时可找一个使结论成立的 充分条件作大前提.
(2)特点:演绎推理是从 一般 到 特殊 的推理.
(3)模式:三段论.
2
2.三段论 “三段论”是演绎推理的一般模式,包括:
①大前提——已知的一般原理; “三段论”的 ②小前提——所研究的特殊情况;
结论 ③结论——根据一般原理,对特殊情况 做出的判断
“三段论”的 表示
①大前提:M是P; ②小前提:S是M;