气相色谱1ppt课件

合集下载

《气相色谱》课件

《气相色谱》课件
特点
高分离效能、高灵敏度、高选择性、应用范围广等。
气相色谱法的应用领域
环境监测
用于检测空气、水体、 土壤等环境样品中的有 机污染物和有害气体。
食品检测
用于检测食品中的农药 残留、添加剂、营养成
分等。
医药分析
用于药物成分分析、药 物代谢产物检测等。
化工分析
用于石油、化工、香料 、化妆品等行业的组分
分析和质量控制。
详细描述
气相色谱可以检测环境样品中的挥发性有机物、半挥发性有机物、农药残留等污 染物,为环境监测和污染治理提供有力支持。
食品与药物分析
总结词
气相色谱在食品和药物分析中具有高灵敏度、高分离效能和 低检测限的特点。
详细描述
气相色谱可以用于食品中农药残留、添加剂、风味组分的分 析,以及药物中有效成分、溶剂残留等的分析,保障食品安 全和药物质量。
06
气相色谱的挑战与展望
当前挑战
样品复杂性
随着样品多样性的增加,如何有效地分离和检测复杂样品 成为气相色谱技术面临的重要挑战。
灵敏度与特异性
对于痕量组分的检测,提高气相色谱的灵敏度和特异性是 当前面临的关键问题。
快速分析
在许多应用中,如环境监测和临床诊断,需要快速、实时 地进行分析,这对气相色谱技术的响应速度提出了更高的 要求。
气相色谱法的历史与发展
起源
01
气相色谱法的起源可以追溯到20世纪初,当时英国科学家第一
次使用气体通过色谱柱的方法进行实验。
初步发展
02
经过几十年的研究和发展,气相色谱法逐渐成熟,并成为一种
重要的分析方法。
现ห้องสมุดไป่ตู้发展
03
随着科技的不断进步,气相色谱法的技术和仪器不断得到改进

气相色谱(共13张PPT)

气相色谱(共13张PPT)
气化室温度100℃;检测室温度120℃;
在没有组分流出时,色谱图的记录是检测器的本底信 GC所能直接分离的样品应是可挥发,且是热稳定的,沸点一般不超过500oC。
常用的载气有氦气,氮气和氢气。
号,即色谱图的基线。 检测器能将奖品组分的存在与否转变为电信号,而电信号的大小与被检测组分的量成正比例。
固定的物质(可以是固体或液体)称为固定相。
第3页,共13页。
GC所能直接分离的样品应是可挥发,且是热 稳定的,沸点一般不超过500oC。有些虽然 不能用GC直接分析的样品,可通过特殊进样 技术,如裂解进样和顶空进样,也可用GC间 接分析。
第4页,共13页。
GC分析流程图
样品 进样汽化
色谱柱分离 检测器
载气 信号记录
第5页,共13页。
第6页,共13页。
第8页,共13页。
气相色谱法分析氮乙烯单体中的杂质
1 实脸部分
1.1 /仪器
1102一气相色谱仪(上海分析仪器厂); FID检测器;CDMC一1EX色谱数据处理机; TG一328A分析天平(上海天平仪器厂)。 1.2 试剂
1,1一二氯乙烷(GR);乙醛(GR);乙炔 (99.99%);偏抓乙烯(GR);1,2一二氯乙烷
第2页,共13页。
GC用气体做流动相,又叫载气。常用的载 气有氦气,氮气和氢气。与LC相比,GC流 动相的种类少,可选择范围小,载气的主要 作用是将样品带入GC系统进行分离,其本身 对分离结果的影响很有限。换个角度看,GC 的操作参数优化相对LC要简单一些。此外, 一般GC载气的成本要低于LC的流动相的成 本.
第12页,共13页。
参考文献
<<气相色谱方法及应用>> 刘虎威 编著

气相色谱 ppt课件

气相色谱 ppt课件

➢ 固定相——CaCO3颗粒 ➢ 流动相——石油醚
色带
1906 色谱法 1930 离子交换色谱法(IEC) 1938 薄层色谱法(TLC) 1941 分配色谱法(LLC) 1944 纸色谱(PC) 1952 气相色谱法(GC) 1959 凝胶色谱 (GPC) 1968 高效液相色谱法 (HPLC) 1988 超临界流体色谱(SFC)
气——液色谱中被分离物随着载气的流动,被测组分 在固定液中进行溶解,挥发,再溶解,再挥发……的过程 ,使不同物质在色谱柱中的保留时间不同而达到分离的目 的。
二、气相色谱流出曲线和有关术语
图1 色谱流出曲线
气相色谱基本术语 1、基线(base line)
当色谱柱中没有组分进入检测器时,在实验操作条 件下,反应检测器系统噪声随时间变化的线称为基线 。
色谱法的起源和发展
茨维特(Tswett)的实验
茨维特:俄国植物学家主要 从事植物色素的研究工作 ,在1906 年发表的文章中 ,首次提出色谱的概念。
他用碳酸钙作固定相,石 油醚作移动相,在玻璃管 内分离叶绿素,使人们认 识到色谱技术对物质分离 和定性的潜力这通常被认 为是色谱学的开始
原理 使混合物中各组分 在两相间进行分配, 其中一相是不动的 (固定相),另一相 (流动相)携带混合 物流过此固定相,与 固定相发生作用,在 同一推动力下,不同 组分在固定相中滞 留的时间不同,依次 从固定相中流出,又 称色层法,层析法
4、调整保留时间(adjusted retention time)
tR’=tR-tm 某组分由于溶解或吸附与固定相,比不溶解或不被吸 附的组分在色谱柱中多只溜的时间。
三.气相色谱仪工作原理
气相色谱分离是利用试样中各组分在色谱柱中 的气相和固定相间的分配系数不同,当汽化后的 试样被载气带入色谱柱中运行时,组分就在其中 的两相间进行反复多次(103—106)的分配(吸附-脱附--放出)由于固定相对各种组分的吸附能力 不同(即保存作用不同),因此各组分在色谱柱 中的运行速度就不同,经过一定的柱长后,变彼 此分离,顺序离开色谱柱进入检测器,产生的离 子流信号经放大后,在记录器上描绘出各组分的 色谱峰。

气相色谱基本知识PPT课件

气相色谱基本知识PPT课件
分离系统是指把混合样品中各组分分离的装置,它由色谱柱 组成
色谱柱的分类:
1)填充柱 由不锈钢、玻璃和聚四氟乙烯等材料制成,常用 的为不锈钢柱,柱管内径为2-6mm,柱长1-5m。柱形 有U型和螺旋型二种。
2)毛细管柱又叫空心柱,分为涂壁、多孔层和涂载体空心柱。空 心毛细管柱材质为玻璃或石英。内径一般为,长度30-300m, 呈螺旋型。
第十八页,共53页。
3.进样的速度
1)对于有的样品,进样速度要快
2)留针:对于粘滞的样品,先刺入隔垫,进针2/3,推针不马上进 行,待升温使其溶解后再推针.
4. 泄漏:
进样垫和柱泄漏会改变保留时间和峰面积。样品可能从泄漏处跑掉, 空气会扩散入进样口造成柱损伤。定期更换进样垫并在第一次发 生问题时检查柱连接。
第三十五页,共53页。
10.进行气体检漏:
当我们对进样口和检测器进行载气检漏时,使用电子检测计 (Electronic Leak Detector)是最为有效的方法之一.
11.确定载气流量,再对色谱柱的安装进行检查 . 12.色谱柱的老化:
对色谱柱升温到一恒定温度,通常为其温度上限。超过温 度上限,那样极易损坏色谱柱。升温速度一定要快,不要将 程序升温的速度设太慢。当达到老化温度后,记录并观察基 线。比例放大基线,以便容易观察。
4)选择混合固定液:对于难分离的复杂样品,可选用两种或两 种以上的固定液。
第二十九页,共53页。
常用的基质:
无机载体(如硅藻土、玻璃粉末或微球、金属粉末或微球、 金属化合物)和有机载体(如聚四氟乙烯、聚乙烯、聚乙 烯丙烯酸酯)
第三十页,共53页。
❖ 2. 气-固色谱
气-固色谱的固定相是固体吸附剂,分离是基于样品分子在 固定相表面的吸附能力的差异而实现的。

气相色谱介绍PPT课件

气相色谱介绍PPT课件
第6页/共18页
常用的色谱柱
第7页/共18页
二 气相色谱的分类及特点
按两相状态分类 按固定相性质分类 按动力学分类
气固色谱法 气液色谱法
柱色谱法 纸色谱法 薄层色谱法/薄板层析法 冲洗法 顶替法 迎头法
第8页/共18页
特点
高效能 高选择性 高灵敏度 分析速度快 应用范围广
毛细管柱可达105-106块塔板
第16页/共18页
第17页/共18页
感谢您的观看。
第18页/共18页
第4页/共18页
气相色谱仪的组成
1.进样隔垫 进样隔垫一般为硅橡胶材料制成,一般可分普通型、优
质型和高温型三种,普通型为米黄色,不耐高温,一般在 200℃以下使用;优质型可耐温到300℃;高温型为绿色,使 用温度可高于350℃,至色谱柱最高使用温度的400℃。
2.玻璃衬管 气相色谱的衬管多为玻璃或石英材料制成,主要分成分
通过高选择性的固定液,是各组分分配 系数有较大差别而实现分离
使用高灵敏度检测器保以检测出10-11-10-13 克物质
电子计算机控制色谱分析,使色谱分析 和处理数据全部自动
可分析气体液体固体,有机物和无机 物,还可以高分子和生物大分子
第9页/共18页
三 SP—6890型气相色谱仪
第10页/共18页
流衬管、不分流衬管、填充柱玻璃衬管三种类型。
第5页/共18页
3.气体过滤器 变色硅胶可根据颜色变化来判断其性能,但分子筛等吸附有
机物的过滤器就不能用肉眼判断了,所以必须定期更换,一般3 个月更换或再生一次。
4 检测器 目前,GC所使用的检测器有多种,其中常用的检测器主要有火 焰离子化检测器(FID)、火焰热离子检测器(FTD)、火焰光 度检测器(FPD)、热导检测器(TCD)、电子俘获检测器 (ECD)等。

色谱讲座课件_气相色谱法PPT_

色谱讲座课件_气相色谱法PPT_
气相色谱仪的工作过程
气相色谱仪
气路系统 进样系统 分离系统 温控系统 检测和记录系统
Filters/Traps
Air
Hydrogen
Gas Carrier
Column
Data system
Syringe/Sampler
Inlets
Detectors
Regul常用的载气有氢气,氮气,氦气和氩气。 气路结构:主要有两种气路形式 单柱单气路,适用于恒温分析 双柱双气路,适用于程序升温,并能补偿固定液的流失使其基线稳定。 净化器:主要用来提高载气纯度。 稳压恒流装置:稳定载气流速。
100% polydimethyl siloxane (PDMS)
50% PDMS
50% phenyl
Increasing polarity
high polarity polyethylene glycol
100% cyanopropyl siloxane
温控系统
温控系统是用来设定,控制,测量色谱柱炉,气化室,检测室三处的温度。
气化室的温度应使试样瞬时气化而又不分解。在一般情况下,气化室的温度比柱温高10 50C。
热导池检测器 thermal conductivity detector, TCD 氢火焰离子化检测器 flame ionization detector, FID 电子捕获检测器 electron-capture detector, ECD 热离子化检测器 thermionic detector, TID 火焰光度检测器 flame photometric detector, FPD
Flame Photometric Detector
Selective detection of sulfur- and phosphorus-containing compounds based on chemiluminescence in the H2 – Air flame Thermal excitation in the flame R R + hn S2 S2 + hn (lmax = 394 nm) HPO HPO + hn (lmax = doublet 510-526 nm)

1气相色谱仪基本构造.ppt

1气相色谱仪基本构造.ppt
仪器分析技术
任务资讯
气相色谱仪基本构造
仪器分析技术
任务资讯 认识气相色谱仪
仪器分析技术
任务资讯
问题:气相色谱仪的基本组成? 总结气相色谱仪的基本组成及作用(共由六大系统组成)
➢气路系统。作用是提供连续运行且具有稳定流速与流量的载气与 其它辅助气体。主要由钢瓶、减压阀、净化器、稳压阀、稳流阀 等部件组成。 ➢进样系统。作用是将样品定量引入色谱系统,并使样品有效地气 化,然后用载气将样品快速“扫入”色谱柱。主要包括进样器和 气化室。 ➢分离系统。主要由柱箱和色谱柱组成,其中色谱柱是核心,主要 作用是将多组分样品分离为单一组分的样品。
仪பைடு நூலகம்分析技术
任务资讯
总结气相色谱仪的基本组成(续)
➢检测系统。其作用是将经色谱柱分离后顺序流出的化学组分的信 息转变为便于记录的电信号,然后对被分离物质的组成和含量进行 鉴定和测量,是色谱仪的“眼睛”。主要有FID检测器与TCD检测 器。 ➢数据处理系统。最基本的功能是将检测器输出的模拟信号随时间 的变化曲线,即将色谱图绘制出来。目前使用较多的是色谱数据处 理机与色谱工作站。 ➢温度控制系统。在气相色谱测定中,温度的控制(主要对色谱柱、 气化室与检测器三处的温度进行控制)是重要的指标,它直接影响 柱的分离效能、检测器的灵敏度和稳定性。

气相色谱PPT

气相色谱PPT

Wi =
mi
m
=
mi
m1+m2+m3+m4+…+mn
mi = f`i · Ai
= A1fi A1f1 +A2f2+…+Anfn A1 A1 +A2+…+An
Wi =
气相色谱的分析 2.内标法 只需测定某几样组分,不像归一化在使用上有限制。
内标物
mi = f`i · Ai ms = f`s · As
气相色谱的原理
气相色谱的原理
返回
气相色谱的分析 定性分析(鉴别) 保留值r:各种物质在一定的色谱条件(固定项、操作条件)下均 有确定不变的保留值。因此保留值可以作为一种定性的指标,它的测 定时最常用的色谱定性方法。这种方法应用简便,不需要其他仪器设 备,但由于不同化合物在相同的色谱条件下往往具有相似,甚至完全 相同的保留值,因此这种方法的应用有很大的局限性。 相对保留值r21:保留时间由于受柱长、固定液含量、载气流速等 操作条件影响较大,重现性较差,因此一般宜采用仅与柱温有关,不 受操作条件影响的相对保留值r21作为定性指标。 与其他方法结合的定性分析: 1.与质谱、红外光谱等仪器联用 2.与化学分析配合进行定性分析 利用检测器的选择性进行定性分析
气相色谱
气相色谱的构造
气相色谱的原理
气相色谱的分析 气相色谱的应用
气相色谱的构造
返回
气相色谱的构造
返回
1.载气系统 2.进样系统 3.色谱柱和色谱箱 4.检测系统 5.记录及数据处理系统
气相色谱的原理
色谱法是一种分离技术,它是利用不同物质在两相中具有不同的分配系数 或吸附能力及其亲和作用性能的差异为分离依据,当混合物中各组分随流动相 移动时,在两相中反复进行多次分配,从而使各组分得到分离,这就是色谱分 析。 气相色谱法(gas chromatography 简称GC)是色谱法的一种。色谱法 中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就 叫液相色谱,用气体作流动相,就叫气相色谱。 气相色谱法由于所用的固定相不同,可以分为两种,用固体吸附剂作固定 相的叫气固色谱,用涂有固定液的单体作固定相的叫气液色谱。 在实际工作中,气相色谱法是以气液色谱为主。 气相色谱原理: 利用试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试 样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由 于固定相对各组份的吸附或溶解能力不同, 因此各组份在色谱柱中的运行速 度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器, 产生的离子流讯号经放大后,在记录器上描绘出各组份的色谱峰。Leabharlann 相色谱的分析定量分析(Wi)

《气相色谱》幻灯片

《气相色谱》幻灯片
不同规格的专用注射器,填充柱色谱常用10μL; 毛细管色谱常用1μL;新型仪器带有全自动液体进样 器,清洗、润冲、取样、进样、换样等过程自动完 成,一次可放置数十个试样。
气化室:将液体试样瞬间气化的 装置。无催化作用。
10
(3) 色谱柱系统〔别离柱〕
色谱柱:色谱仪的核心部件。
柱材质:不锈钢管或玻璃管,内径3-6毫米。长度可根 据
需要确定。
柱填料:粒度为60-80或80-100目的色谱固定相。
液-固色谱:固体吸附剂
液-液色谱:担体+固定液
柱制备对柱效有较大影响,填料装填太紧,柱前压力大, 流速慢或将 柱堵死,反之空隙体积大,柱效低。
有关固定液性质及其选择见下一节。
11
(4) 检测系统
色谱仪的眼睛, 通常由检测元件、放大器、显示记录三局部组成; 被色谱柱别离后的组分依次进入检测器,按其浓度或质 量随时间的变化,转化成相应电信号,经放大后记录和显示, 给出色谱图; 检测器:广普型——对所有物质均有响应;
出峰
峰,
的先出
沸点相同则沸点相同则极性峰
极性组分先组分后出峰
出峰
16
4.固定液的最高最低使用温度
高于最高使用温度易分解,温度低呈固体。 5. 混合固定相
对于复杂的难别离组分通常采用特殊固定液或将两种甚 至两种以上配合使用。
17
(二) 载体〔担体〕 solid support 1. 对载体的要求:
= K2 / K1 = k2 / k1
42
影响R的因素:
• n:峰的宽度
• :峰间距
• k:峰位
43
色谱柱的性质
固定相粒度及厚度、 柱填充均匀程度、柱长
n
载气流速

《气相色谱》PPT课件

《气相色谱》PPT课件

2021/8/17
49
• 但是它仅对含碳有机化合物有响 应,对某些物质,如永久性气体、 水、一氧化碳、二氧化碳、氮的 氧化物、硫化氢等不产生信号或 者信号很弱。
2021/8/17
50
2021/8/17
51
2021/8/17
52
• 试样被带入检测器,在氢火焰能 源的作用下离子化。产生的离子 在发射极和收集极的外电场作用 下定向运动,形成电流。
2021/8/17
59
(Ⅳ)火焰光度检测器
• 火焰光度检测器(FPD)又叫硫 磷检测器。它是一种对含磷、硫 的有机化合物具有高选择性和高 灵敏度的检测器。检测器主要由 火焰喷嘴、滤光片、光电倍增管 构成。
2021/8/17
60
• 在火焰光度检测器上,有机硫、 磷的检测限比碳氢化合物的干扰,
非常有利于痕量磷、硫化合物的 分析。
2021/8/17
14
第一节 气相色谱仪
气路系统 进样系统 分离系统 温控系统 检测器
2021/8/17
15
图1 气相色谱过程示意图
1—载气钢瓶;2—减压阀;3—净化器;4—气流调节阀;
2021/8/17 5—转子流速计;6—气化室;7—色谱柱;8—检测器
16
气相色谱仪的工作过程
• 气化室与进样口相接,它的作用 是?
36
• 3线性范围 是指其信号与被测物质 浓度成线性关系的范围,用样品浓度 上下限的比值来表示。
2021/8/17
37
(Ⅰ)、热导池检测器
热导池检测器是一种结构简单、 性能稳定、线性范围宽、对无机、 有机物质都有响应、灵敏度适宜 的检测器,因此在气相色谱中得 到广泛的应用。
2021/8/17

气相色谱培训ppt课件

气相色谱培训ppt课件
当气化室中注入样品时,样品立即被气化并被载气带入色谱柱进行分离。分离后的各组分,先后流出色谱柱进入检测器,检测器将其浓度信号转变成电信号,再经放大器放大后在记录器上显示出来,就得到了色谱的流出曲线。
利用色谱流出曲线上的色谱峰就可以进行定性、定量分析。这就是气相色谱法分析的过程。
一、气路系统 气路系统:获得纯净、流速稳定的载气。包括压力计、流量计及气体化装置。
程序升温,分离效果好,且分析时间短
温度高,分析时间短,但分离效果差
程序 升温控制是否准确、升、降温速度是否快速是市售色谱仪器的最重要指标之一。
控温系统包括对三个部分的控温,即,气化室、柱箱和检测器。 控温方式:恒温和程序升温。 温度选择:在介绍仪器组成时给出,此处略。
2)池体温度:池体温度低,与热敏元件间温差大,灵敏度提高。但温度过低,可使试样凝结于检测器中。通常池体温度应高于柱温。
3)载气种类:载气与试样的热导系数相差越大,则灵敏度越高。通常选择热导系数大的H2 和Ar 作载气。用N2作载气,热导系数较大的试样(如甲烷)可出现倒峰。
4)热敏元件阻值:阻值高、电阻温度系数大(随温度改变,阻值改变大,或者说热敏性好)的热敏元件,其灵敏度高。 综述:较大的桥电流、较低的池体温度、低分子量的载气以及具有大的电阻温度系数的热敏元件可获得较高的灵敏度。
气固色谱:利用不同物质在固体吸附剂上的物理吸附-解吸能力不同实现物质的分离。
由于活性(或极性)分子在这些吸附剂上的半永久性滞留(吸附-脱附过程为非线性的),导致色谱峰严重拖尾,因此气固色谱应用有限。只适于较低分子量和低沸点气体组分的分离分析。
气液色谱:通常直接称之为气相色谱。它是利用待测物在气体流动相和固定在惰性固体表面的液体固定相之间的分配原理实现分离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年代 1906 1941 1952 1956 1958 1960 前后
1979
表1-1 气相色谱法的发展简史
发明者
发明的色谱方法或重要应用
Tswett Martin, Synge Martin, James Van Deemter等
Golay IG McWilliam J E Lovelock
最先提出色谱概念。 预言了气相色谱。 从理论和实践方面完善了气-液分配色谱法 提出色谱速率理论,并应用于气相色谱。 发明毛细管柱气相色谱。 发明氢火焰离子化检测器(FID) 发明电子捕获检测器(ECD)
tR’=tR-tm 某组分由于溶解或吸附与固定相,比不溶解或不被吸 附的组分在色谱柱中多只溜的时间。
.
三.气相色谱仪工作原理
气相色谱分离是利用试样中各组分在色谱柱中 的气相和固定相间的分配系数不同,当汽化后的 试样被载气带入色谱柱中运行时,组分就在其中 的两相间进行反复多次(103—106)的分配(吸附-脱附--放出)由于固定相对各种组分的吸附能力 不同(即保存作用不同),因此各组分在色谱柱 中的运行速度就不同,经过一定的柱长后,变彼 此分离,顺序离开色谱柱进入检测器,产生的离 子流信号经放大后,在记录器上描绘出各组分的 色谱峰。
.
二、气相色谱流出曲线和有关术语
图1 色谱流出曲线
.
气相色谱基本术语 1、基线(base line)
当色谱柱中没有组分进入检测器时,在实验操作条 件下,反应检测器系统噪声随时间变化的线称为基线。
2、保留值(retention value)
表示试样中各组分在色谱柱中的滞留时间的数值, 通常用时间或用将组分带处色谱柱所需载气的体积来表 示。任何一种物质都有一定的保留值。
.
二、色谱法的分类 (一)按两相状态分类 按流动相的状态分类 :
气相色谱法(GC):用气体作为流动相的色谱法 液相色谱法(LC):用液体作为流动相的色谱法 超临界流体色谱法(SFC):以超临界流体作为流动相的色谱法
按固定相的状态分类: 气相色谱法分:气-固色谱法(GSC)和气-液色谱法(GLC) 液相色谱法分:液-固色谱法(LSC)和液-液色谱法(LLC)
.
色谱法的起源和发展
茨维特(Tswett)的实验 茨维特:俄国植物学家主要 从事植物色素的研究工作 ,在1906 年发表的文章中 ,首次提出色谱的概念。 他用碳酸钙作固定相,石 油醚作移动相,在玻璃管 内分离叶绿素,使人们认 识到色谱技术对物质分离 和定性的潜力这通常被认 为是色谱学的开始
.
原理 使混合物中各组分 在两相间进行分配, 其中一相是不动的 (固定相),另一相 (流动相)携带混合 物流过此固定相,与 固定相发生作用,在 同一推动力下,不同 组分在固定相中滞 留的时间不同,依次 从固定相中流出,又 称色层法,层析法
.
(二)按分离机理分类 吸附色谱法:利用物理吸附性能的差异 分配色谱法:利用分配系数的不同 离子交换色谱法:利用离子交换原理 尺寸排ห้องสมุดไป่ตู้色谱法:利用分子在固定相中的选择渗透
(三)按操作形式分类 1.柱色谱法 填充柱色谱 毛细管柱色谱 纸色谱法 2.平面色谱法 薄层色谱法 薄膜色谱法
.
1 概述>>
1.0 气相色谱法的发展简史
➢ 固定相——CaCO3颗粒 ➢ 流动相——石油醚
色带
.
1906 色谱法 1930 离子交换色谱法(IEC) 1938 薄层色谱法(TLC) 1941 分配色谱法(LLC) 1944 纸色谱(PC) 1952 气相色谱法(GC) 1959 凝胶色谱 (GPC) 1968 高效液相色谱法 (HPLC) 1988 超临界流体色谱(SFC)
.
色谱法的起源和发展
一、色谱法的起源和发展 俄国植物学家M.Tswett于1906年首次提出色谱法。 固定相(stationary phase):填入玻璃柱内静止不动的一相(固 体或液体)。 流动相(mobile phase):自上而下流动的一相(液体、气体或 超临界流体)。 色谱柱(chromatographic column):装有固定相的柱子。
Dandeneau, 制造出熔融石英毛细管柱,为现代气相色谱法的 Hewlett-Pachard 发展奠定了基础。
.
1 概述>>
1.1 气相色谱法的分类
按固定相的物态分类 气-固色谱法(GSC) 气-液色谱法(GLC)
按柱径和填充分类
填充柱色谱法(φ2-4mm) 毛细管柱色谱法(φ0.1-0.53mm)
按分离机制分类
吸附色谱法(吸附剂固定相) 分配色谱法(液体固定相)
.
1 概述>>
1.2气相色谱仪的一般流程
载体 系统
分离系统 (色谱柱)
检测 系统
进样系统 (气化)
温控 系统
色谱 工作站
.
气相色谱法
定义:以气体为流动相的柱色谱分离技术 1. 按固定相分 气-固色谱
气-液色谱 2. 按分离原理分 吸附色谱
色谱法
generalization of chromatograph analysis
色谱法是一种物理或物理化学分离分析方法,特别适宜于分离 多组分的试样,是各种分离技术中效率很高和应用最广的一种 方法。
它是利用各物质在两相中具有不同的分配系数,当两相作相对 运动时,这些物质在两相中进行多次反复的分配来达到分离的 目的。
分配色谱 3. 按柱子粗细分 填充柱色谱
毛细管柱色谱
.
一.基本原理
气固色谱、气液色谱:分配系数差异 气——固色谱中被分离物随着载气的流动,被测组分
在吸附剂表面进行吸附,脱附,再吸附,再脱附……这样 反复的过程不同物质在色谱柱中的保留时间不同而达到分 离的目的。
气——液色谱中被分离物随着载气的流动,被测组分 在固定液中进行溶解,挥发,再溶解,再挥发……的过程 ,使不同物质在色谱柱中的保留时间不同而达到分离的目 的。
.
气相色谱基本术语
3、死时间(dead time)
指不被固定相吸附或溶解的气体(如空气、甲烷)从 进样开始到柱后出现浓度最大值时所需时间。 保留时间(retention time)tR 指被测样品从进样开始到柱后出现浓度最大值时所需的时 间O’B。
4、调整保留时间(adjusted retention time)
相关文档
最新文档