椭圆离心率求法总结
离心率的五种求法
离心率的五种求法离心率是圆锥曲线中的一个重要的几何性质,在高考中频繁出现. 椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出,a c ,求解e 已知标准方程或,a c 易求时,可利用离心率公式c e a=来求解。
例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是( )A. 10B. 5C.310D. 25分析:这里的1,a c ==2b ,即可利用定义求解。
解:易知A (-1,0),则直线l 的方程为1x y +=。
直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10ace ==,从而选A 。
二、变用公式)c e a =双曲线,)c e a ==椭圆,整体求出e例2. 已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为43y x =,则双曲线的离心率为( ) A.35 B. 34C.45D.23 分析:本题已知b a=34,不能直接求出a 、c ,可用整体代入套用公式。
解:因为双曲线的一条渐近线方程为43y x =,所以 43b a =,则53c e a ===,从而选A 。
1.设双曲线(a >0,b >0)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( C )A. C. D.解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得,因渐近线与抛物线相切,所以,即224b a =e ∴===2.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若12AB BC =uur uu u r,则双曲线的离心率是 ( )A .B .C .D . 答案:C【解析】对于,则直线方程为,直线与两渐近线的交点为B ,C ,,,222,4AB BC a b =∴=uur uu u r 因此 ,即224b a =,e ∴===3.过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为( ) A . B . C . D .【解析】因为,再由有即2223b a =从而可得e ∴===B三、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。
例析椭圆、双曲线离心率的求法
例析椭圆、双曲线离心率的求法
椭圆和双曲线都是非常重要的数学曲线,从古代就有了历史。
它们的运用十分
广泛,比如天文学、力学等多种领域。
此外,椭圆和双曲线的离心率也是一个重要的概念,因此了解它们求法也是十分重要的。
首先,椭圆的离心率求法。
根据弦长定理,椭圆的离心率ε可表示为:ε=c
/a,其中a为椭圆长轴,c为短轴,由此乘以ε即可求出离心率。
其次,双曲线的离心率求法。
根据常见的双曲线方程:x2/a2-y2/b2=1,其中
a为椭圆长轴,b为短轴,把中间的数学符号μ代入公式:μ=a2/b2;由此乘以
μ即可求出离心率。
另外,椭圆和双曲线的离心率也可以通过数学计算的方式进行求解,比如把它
们的方程式代入特殊函数求解,或者调用计算器进行计算,这些都有很多种方法。
为了解椭圆和双曲线的离心率,我们可以利用尺规、直角三角形等工具求解;
也可以通过计算机程序解出精确的实际结果。
有时候,采用抽象的思维能够获得更准确的结果。
但无论哪种方法,了解椭圆和双曲线的离心率都有它自身的优劣之处,希望大家可以按自己的意愿选择合适的方法。
椭圆离心率求法大全
椭圆离心率求法大全
椭圆离心率又叫做偏心率,是衡量椭圆的对称性的重要特征值,表示椭圆的离心程度,离心率值越大椭圆形状越扁,可以表示为0≤E≤1,其中较接近圆形的图形偏心率接近0,而较远离圆形图形的离心率则更接近1。
下面是求椭圆离心率的公式及求法:
(1)根据椭圆的标准方程:
$$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$
,其中a为长轴,b为短轴,可以求出椭圆的离心率E,公式为:
(2)也可以根据椭圆的几何定义求出离心率:
椭圆的离心率按照以下公式求出:
其中,e表示椭圆的外径c与内径b的绝对值的差值,e=|c-b|。
(3)根据椭圆的离心率及长短轴的比值,可以得出椭圆的长轴a和短轴b的关系:
a=b/E
(4)可以根据椭圆的中心坐标和其上任意点坐标进行求椭圆离心率计算:
(i)得到椭圆的中心坐标(h,k),任意点坐标为(x,y),并设椭圆的离心率为E。
(ii)根据点(h,k)和点(x,y)求椭圆的半长轴长:
a = $\sqrt{(x-h)^2+(y-k)^2}$
(iii)半短轴长可以求得:
(iv)根据半长轴长a及半短轴长b求离心率:
根据以上公式及求法,可以计算出椭圆的离心率。
注意,离心率在[0,1]之间,较接
近圆形的图形偏心率接近0,而较远离圆形图形的离心率则更接近1。
椭圆离心率求法经典全面
离心率的五种求法椭圆的商心率0<0<1,双曲线的商心率丘>1,抛物线的离心率e = \. 一、直接求出“、J 求解《巳知圆锥曲线的标准方程或4、e 易求时,可利用率心率公式0 =上来解决。
a例1:已知双曲线^y-y 2 =1 (d>0)的一条淮线与抛物线y 2 =-6x 的准线重合, 则该双曲线的离心率为()A •迺B. 22 2Q 2 解:抛物线y 2 =-6x 的准线是X = -,即双曲线的右准线X =—2c2c 2 — 3c — 2 = 0 > 解得 c = 2 , a = -x/3,e =—=——,故选 r> a 3变式练习1:若椭圆通过原点,且核心为仟(1,0)、竹(3,0),则其商心率为()A. -B. -C. -D.丄43 24解:由片(1,0)、F 2(3,0)知 2c = 3 —1, • • c = 1 ,又T 椭圆过原点,■•a_c = l, a + c = 3 > • • a = 2 , c = 1 ,所以离心率e = — = — •故选C ・a 2变式练习2:若是双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为()A. —B. —C. - D 22 2 2c 3解:由题设a = 2, 2C = 69则c = 3, ^ =-=-,因此选Ca 2变式练习3:点P (-3, 1)在椭圆亠+二=1 (a >b>0)的左准线上,过点P 且方向 a 2b 2为a =(2,-5)的光线,经直线$ = -2反射后通过椭圆的左核心,则这个椭圆的离心率为()Di 2解:由题意知,入射光线为y-l=--(x + 3),关于y = —2的反射光线(对称关系)为 2 尤“c J3c解得 a = \[3 9 c = 1,则 e = — = •故选A云+ 5 = 0"3二、构造"、。
的齐次式,解出fV 6 TB !35x-2y+ 5 = 0,贝ij<按照题设条件,借助〃、b、C之间的关系,构造"、e的关系(特别是齐二次式),进而取得关于0的一元方程,从而解得离心率2 2例2:已知片、化是双曲线二一匚=1 (。
求椭圆离心率常用的三种方法
椭圆的离心率是椭圆的一个重要性质,它是反映椭圆的扁平程度的量.求椭圆的离心率问题比较常见.这类问题常与平面几何、三角函数、平面向量等知识相结合,侧重于考查同学们的逻辑推理和数学运算能力.那么,求椭圆的离心率有哪些方法呢?下面结合实例进行探讨.一、公式法我们知道,圆锥曲线的离心率公式为e=ca.因此要求椭圆x2a2+y2b2=1(a>b>0)的离心率,只需求出椭圆方程中的参数a、c的值或c与a的比值即可.例1.已知椭圆E:x2a2+y2b2=1(a>b>0)的长轴长是短轴长的2倍,则E的离心率为_______.解:因为椭圆的长轴长是短轴长的2倍,所以2a=4b,所以ba=12,可得e=ca本题较为简单,由题意可以很容易确定椭圆中参数a、b之间的关系,直接根据椭圆方程中参数a、b、c之间的关系a2=b2+c2,即可求得c与a的比值,从而求得椭圆的离心率.例2.已知椭圆C:x2a2+y2b2=1()a>b>0的右焦点为F()2,0,P为椭圆的左顶点,且||PF=5,则椭圆C的离心率为().A.23B.12C.25D.13解:因为椭圆的右焦点为F()2,0,所以c=2,因为P为椭圆的左顶点,所以||PF=a+c=a+2=5,解得a=3,所以椭圆C的离心率为e=ca=23.故选A.我们首先根据题意可以确定c的值;然后根据P点的位置,确定a的值,即可根据椭圆离心率的公式求得问题的答案.二、几何性质法几何性质法是指利用平面几何图形的性质解题.在求椭圆的离心率时,我们可以根据题意画出几何图形,将椭圆参数方程中的a视为长半轴长、b视为短半轴长、c视为焦半径,根据椭圆、三角形、平行四边形、梯形的性质来求得椭圆的长半轴长、短半轴长、焦半径,或建立三者之间的关系式.例3.已知椭圆C:x2a2+y2b2=1()a>b>0的左右焦点分别为F1,F2,点M是椭圆C上第一象限的点,若||MF1=||F1F2,直线F1M与y轴交于点A,且F2A是∠MF2F1的角平分线,则椭圆C的离心率为_______.解:由题意得||MF1=||F1F2=2c,由椭圆的定义得||MF2=2a-2c,记∠MF1F2=θ,则∠AF2F1=∠MF2A=θ,∠F1F2M=∠F1MF2=∠MAF2=2θ,则||AF2=||AF1=2a-2c,所以||AM=4c-2a,故ΔMF1F2∽ΔMF2A,则||MF2||F1F2=||AM||MF2,则2a-2c2c=4c-2a2a-2c,可得e2+e-1=0,解得e=5-12或e=-5-12(舍).解答本题,需运用相似三角形的性质建立关于||MF1、||F1F2||AM、||MF2的关系式,并根据椭圆的定义,即在平面内到两个定点的距离之和为定值的点的轨迹,确定||MF1、||F1F2||AM、||MF2与a、c之间的关系,从而使问题获解.例4.如图1,已知椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点分别为F1(-c,0),F2(c,0),点M()x0,y0()x0>c是C上的一点,点A是直线MF2与y轴的交点,ΔAMF1的内切圆与MF1相切于点N,若|MN|=2||F1F2,则椭圆C的离心率e=______.解:设内切圆与AM切于Q,与AF1切于P,所以||MN=||MQ=2||F1F2=22c,||F1N=||F1P,||AP=||AQ,图141由圆的对称性知||AF 1=||AF 2,所以||PF 1=||QF 2,即||NF 1=||QF 2,所以2a=||MF 2+||MF 1=()||MQ -||QF 2+()||MN +||NF 1=||MQ +||MN =42所以e =c a =242我们先结合图形明确点、圆、椭圆之间的位置关系;然后根据椭圆的定义将问题转化为线段问题,即可根据圆的对称性、圆与切线的位置关系建立线段||MF 2、||MF 1、||MQ 、||QF 2、||MN 、||NF 1之间的关系,得到关于a 、c 的关系式,进而求出椭圆的离心率.用几何性质法解题的计算量较小,有利于提升解题的效率.三、构造齐次式在求椭圆的离心率时,若不易求出a 、c 的值或比值,则可考虑根据题目中的条件与椭圆的方程,建立关于a 、b 、c 的二次齐次式,即可根据离心率公式e =ca,得到关于e 的二次方程,进而通过解方程求得离心率e 的值.例5.如图2,已知椭圆的方程为:x 2a 2+y 2b2=1()a >b >0,过原点的直线交椭圆于M ,N 两点,点P 在x 轴上,其横坐标是点M 横坐标的3倍,直线NP 交椭圆于点Q .若直线QM 恰好是以MN 为直径的圆的切线,求椭圆的离心率.解:设M ()x 1,y 1,Q ()x 2,y 2,则N ()-x 1,-y 1,P ()3x 1,0,设直线MN 、QM 、NP 的斜率分别为k 1、k 2、k 3,则k 1=y 1x 1,k 2=y 2-y 1x 2-x 1,k 3=0+y 13x 1-()-x 1=y 14x 1=14k 1,因为直线QM 是圆的切线,所以QM ⊥MN ,k 1k 2=-1,所以k 2k 3=-14,又Q 在直线NP 上,所以k 3=y 2+y 1x 2+x 1,因为M 、Q 在椭圆x 2a 2+y 2b 2=1()a >b >0上,所以x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1,将上述两式相减得x 21-x 22a 2+y 21-y 22b 2=0,整理得y 2+y 1x 2+x 1⋅y 2-y 1x 2-x 1=-b 2a 2,故k 2k 3=-b 2a 2=-14,即b 2a 2=14,可得a 2-c 2a 2=34,即a2-c 2a 2=1-e 2=14,解得e 我们先根据三条直线与圆、椭圆的位置关系建立关于a 、c 的二次齐次式a 2-c 2a 2=34;再根据离心率公式e=c a ,建立关于e 的方程,即可求得e 的值.在求得e 的值后,一定要注意检验所得的值是否在(0,1)内,以确保得到的答案是正确的.图2图3例6.如图3,已知AB 直线过椭圆x 2a 2+y 2b2=1()a >b >0的左焦点F ()-2,0,且与椭圆交于A 、B 两点,与y 轴交于点C ,若点C ,F 分别是线段AB 的三等分点,则该椭圆的离心率为_______.解:因为点C 、F 是线段AB 的三等分点,由图3可知C 为AF 的中点,右焦点为F 2,所以AF 2//OC ,所以AF 2⊥x 轴,由椭圆的方程得A 点的坐标为()c ,b 2a ,C ()0,b 22a,因为C ,B 关于F 对称,所以B 点的坐标为()-2c ,-b 22a ,将其代入椭圆的方程x 2a 2+y 2b2=1()a >b >0中得:4c 2a 2+b 24a2=1,即16c 2+b 2=4a 2,得a 2=5c 2,所以离心率为e =c a 先由点C 、F 是线段AB 的三等分点可得AF 2//OC ;再根据线段的对称性可求得B 点的坐标;最后将其代入椭圆中,即可建立关于a 、b 、c 的二次齐次式,进而得到关于椭圆离心率e 的方程.无论采用哪种方法求椭圆的离心率,我们需明确解题的目的有两个:一是通过计算求得c 与a 的值;二是利用已知条件建立关于c 与a 的齐次式,进一步将其转化为关于ca的方程.(作者单位:四川省内江市威远中学校)42。
椭圆离心率求法总结
椭圆离心率的解法一、 运用几何图形中线段的几何意义。
基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F ,设椭圆的离心率为e ,则①e=错误!②e=错误!③e=错误!④e=错误!⑤e=错误!评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。
∵|AO |=a ,|OF |=c,∴有⑤;∵|AO |=a,|BO |= 错误!∴有③.题目1:椭圆x2 a2+错误!=1(a 〉b 〉0)的两焦点为F1 、F2 ,以F1F2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ?思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF2 的中点B ,连接BF1 ,把已知条件放在椭圆内,构造△F1BF2分析三角形的各边长及关系.解:∵|F1F2|=2c |BF1|=c |BF2|=错误!cc+错误!c=2a ∴e= 错误!= 错误!-1变形1:椭圆错误! +错误!=1(a 〉b 〉0)的两焦点为F1 、F2 ,点P 在椭圆上,使△OPF1 为正三角形,求椭圆离心率?解:连接PF2 ,则|OF2|=|OF1|=|OP|,∠F1PF2 =90°图形如上图,e=错误!—1变形2:椭圆错误! +错误!=1(a>b 〉0)的两焦点为F1 、F2 ,AB为椭圆的顶点,P是椭圆上一点,且PF1 ⊥X轴,PF2 ∥AB,求椭圆离心率?解:∵|PF1|=错误!错误!|F2 F1|=2c |OB|=b |OA|=aPF2 ∥AB ∴错误!= 错误!又∵b= 错误!∴a2=5c2 e=错误!点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a与c的方程式,推导离心率.二、运用正余弦定理解决图形中的三角形题目2:椭圆错误! +错误!=1(a〉b >0),A是左顶点,F是右焦点,B是短轴的一个顶点,∠ABF=90°,求e?解:|AO|=a |OF|=c |BF|=a |AB|=错误!a2+b2+a2 =(a+c)2 =a2+2ac+c2 a2—c2—ac=0 两边同除以a2e2+e—1=0 e=错误! e=错误!(舍去)变形:椭圆错误! +错误!=1(a〉b 〉0),e=错误!, A是左顶点,F是右焦点,B是短轴的一个顶点,求∠ABF?点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。
求离心率范围的六种方法
求解离心率范围六法在圆锥曲线的诸多性质中,离心率经常渗透在各类题型中。
离心率是描述圆锥曲线“扁平程度”或“张口大小”的一个重要数据,在每年的高考中它常与“定义”、“焦点三角形”等联系在一起。
因此求离心率的取值范围,综合性强,是解析几何复习的一个难点。
笔者从事高中数学教学二十余载,积累了六种求解这类问题的通法,供同仁研讨。
一、利用椭圆上一点P (x ,y )坐标的取值范围,构造关于a ,b ,c 的不等式例1 若椭圆()012222 b a by a x =+上存在一点P ,使︒=∠900PA ,其中0为原点,A 为椭圆的右顶点,求椭圆离心率e 的取值范围。
解:设()00,y x P 为椭圆上一点,则122220=+b y a x . ① 因为︒=∠900PA ,所以以O A 为直径的圆经过点P ,所以020020=+-y ax x . ②联立①、②消去0y 并整理得当a x =0时,P 与A 重合,不合题意,舍去。
所以2220ba ab x -=又a x 00,所以a ba ab 2220-, 即 ()22222c a b a -=得2122 ac ,即223e又10 e ,故e 的取值范围是⎪⎪⎭⎫⎢⎣⎡1,22 二、利用圆锥曲线的焦点和曲线上一点构成的“焦三角形”三边大小关系,构造关于a ,b ,c 不等式例2 已知双曲线()0,01x 2222 b a by a =-左、右焦点分别为F 1、F 2,左准线为p ,ι是双曲线左支上一点,并且221PF PF d =,由双曲线第二定义得ed =1PF ,所以12PF PF e =. ① 由又曲线第一定义得a PF 2PF 12=- ②由①-②得在21PF F ∆中,所以 c e ea e a 21212≥-+- , 即e e e ≥-+11. 又1 e ,从而解得e 的取值范围是(]21,1+。
三、利用圆锥曲线的“焦三角形”+余弦定理+均值不等式例3 设椭圆()012222 b a by a x =+的两焦点为F 1、F 2,问当离心率E 在什么范围内取值时,椭圆上存在点P ,使21PF F ∆=120°.解:设椭圆的焦距为2c ,由椭圆的定义知a PF PF 221=+.在21PF F ∆中,由余弦定理得=212221PF PF PF PF ++ =(21221)PF PF PF PF -+所以22212122244a PF PF PF PF c a =⎪⎪⎭⎫⎝⎛+≤=- 所以23,4322≥≤a cc a 得. 又10 e ,故e 的取值范围是⎪⎪⎭⎫⎢⎣⎡1,23 四、利用圆锥曲线的定义,结合完全平方数(式)非负的属性构造关于a ,b ,c 的不等式例4 如图1,已知椭圆长轴长为4,以y 轴为准线,且左顶点在抛物线1y 2-=x 上,求椭圆离心率e 的取值范围。
离心率及范围总结
. 离心率求解总结一.椭圆的离心率1.离心率e=a c=21)(a b -、e 2=1-2)(ab 2.焦半径︱P F 1︱=a+ex 0 ︱P F 2︱= a-ex 0 2,1cos ep b MF p e aθ==-3.∠F 1BF 2 , ∠A 1BA 2为最大张角4.P 是椭圆上一点,∠PF 1F 2=α ∠PF 2F 1=β, 则e=βαβαsin sin sin ++)(=cos2cos2e αβαβ+=- 5.AF FB λ=u u u r u u u r 2221cos 1e λθλ-⎛⎫= ⎪+⎝⎭6.e = 其中P 为椭圆上任意一点,A,B 为顶点12,k kx二.双曲线的离心率①e == ② e = 其中P 为双曲线上任意一点,A,B 为顶点12,k k 为斜率 ③sin2sin2e αβαβ+=- ∠PF 1F 2=α ∠PF 2F 1=β 一.含直角三角形及夹角的离心率例1在椭圆中有一点P 12PF PF ⊥求椭圆的离心率0,0a b a c >>>>OM b≥分析: b<OP<c例2.过椭圆右焦点1F 的直线交椭圆与P,Q 两点且满足1PF PQ ⊥ 若15sin 13FQP ∠=,求椭圆的离心率 分析:1PF =5x, 1F Q =13x PQ =12x, 11PQ PF FQ ++=4a 例3椭圆x 2 a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 (-c ,0)、F 2 (c,0),P是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2 =5∠PF 2F 1 ,求e?变形1:椭圆x 2 a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 (-c ,0)、F 2 (c,0),P 是椭圆上一点,且∠F 1PF 2 =60°,求e 的取值范围? 分析:上题公式直接应用。
离心率的求解方法
离心率的求解方法离心率是描述椭圆轨道形状的一个重要参数,它决定了椭圆轨道的偏心程度。
在天体力学中,离心率是描述行星、卫星等天体绕着太阳或者其他天体运动的轨道形状的一个关键参数。
在本文中,将介绍离心率的定义、求解方法以及应用。
1.离心率的定义离心率是一个无量纲的参数,用e来表示。
它的物理意义是描述椭圆轨道形状的离心程度。
在圆形轨道中,离心率为0;在近似圆形轨道中,离心率接近于0;而在长轴方向明显大于短轴方向的椭圆轨道中,离心率接近12.离心率的计算方法离心率可以通过已知轨道参数的测量数据来计算。
以下是一种常用的求解离心率的方法:(1)通过测量两个不同时刻的星体位置和速度,可以得到星体在椭圆轨道上的轨道半长轴a和偏心率e的值。
(2)计算轨道能量E,其中E等于单位质量质点的总机械能。
轨道能量可以通过以下公式得到:E=-GM/2a其中,G为引力常数,M为太阳质量,a为椭圆轨道的半长轴。
(3)计算星体的轨道角动量h,其中h等于单位质量质点的角动量大小。
轨道角动量可以通过以下公式得到:h=r*v其中,r为星体位置向量的大小,v为星体的速度向量的大小。
(4)通过轨道能量和轨道角动量,可以得到离心率的公式:e = sqrt(1 + (2E*h^2) / (GM^2))3.离心率的应用离心率是天体运动中的重要参数,具有广泛的应用。
下面介绍一些离心率的常见应用:(1)行星轨道研究:离心率可以帮助我们了解行星轨道的形状和演化过程。
通过测量行星的离心率,可以推断行星的形成和演化历史。
(2)卫星轨道设计:离心率是设计和控制卫星轨道的重要参数。
通过选择合适的离心率,可以实现卫星的特定任务要求,例如地球观测、通信或者导航。
(3)表征彗星轨道:彗星是一种具有非常大离心率的天体,离心率可以帮助我们了解彗星的轨道形状和运动方式。
通过研究彗星轨道的离心率,可以揭示彗星的起源和演化。
(4)星际旅行轨道计算:在太空探索领域,离心率是计算星际飞行轨道的重要参数之一、通过选取合适的离心率,可以实现星际旅行的精确计划和导航。
求离心率的八种方法
求离心率的八种方法求解离心率是天文学和航天学等领域中经常涉及到的问题。
离心率是描述椭圆轨道形状的参数,它是轨道长半径与短半径之差的一半与轨道长半径之和的比值。
在本文中,我们将介绍八种不同的方法来求解离心率。
方法一:利用轨道能量和角动量轨道能量和角动量是求解离心率的重要参数。
根据公式,离心率e 等于角动量L和轨道能量E的平方差除以质量m和引力常数G的平方根。
因此,我们可以通过求解轨道能量和角动量来计算离心率。
方法二:利用轨道速度和距离轨道速度和距离也是求解离心率的重要参数。
根据公式,离心率e 等于轨道速度v和距离r的平方差除以引力常数G乘以质量m。
因此,我们可以通过求解轨道速度和距离来计算离心率。
方法三:利用轨道周期和半长轴轨道周期和半长轴也是求解离心率的重要参数。
根据公式,离心率e等于轨道周期T的平方除以半长轴a的立方和2π的商减去1。
因此,我们可以通过求解轨道周期和半长轴来计算离心率。
方法四:利用轨道偏心率和半长轴轨道偏心率和半长轴也是求解离心率的重要参数。
根据公式,离心率e等于轨道偏心率ε除以半长轴a加上1的和。
因此,我们可以通过求解轨道偏心率和半长轴来计算离心率。
方法五:利用轨道倾角和升交点距角轨道倾角和升交点距角也是求解离心率的重要参数。
根据公式,离心率e等于1减去升交点距角ω的正弦值除以轨道倾角i的正弦值。
因此,我们可以通过求解轨道倾角和升交点距角来计算离心率。
方法六:利用轨道速度和半长轴轨道速度和半长轴也是求解离心率的重要参数。
根据公式,离心率e等于轨道速度v的平方除以引力常数G乘以质量m乘以半长轴a 减去1的平方根。
因此,我们可以通过求解轨道速度和半长轴来计算离心率。
方法七:利用轨道周期和轨道偏心率轨道周期和轨道偏心率也是求解离心率的重要参数。
根据公式,离心率e等于轨道周期T的平方除以轨道偏心率ε乘以4π的平方根。
因此,我们可以通过求解轨道周期和轨道偏心率来计算离心率。
方法八:利用轨道速度和轨道偏心率轨道速度和轨道偏心率也是求解离心率的重要参数。
椭圆离心率常见求法整理归纳
1.设行4 = 1G∕>∕7>O)的左.右焦点,若椭圆上存在点A ,使Cr IyZ斤AF2 =90」且|4可=3PlE则椭圆的离心率为____________________ .2.设椭圆C:) + * = l (a>b>0)的左、右焦点分别为斤,巧,P是C上的点,P巧丄F1F2, ZP斥竹=30。
,则椭圆C的离心率为 _____________________ .3.设斤、耳分别是椭圆C± + ∙^ = l(">b>0)的左、右焦点,点P在椭圆C上,线段PF∣的中点在y轴上,若ZPF I F2 = 30 ,则椭圆的离心率为___________________ .7 74.已知椭圆—+ —= 1 (a>b>0)的两个焦点为F r F,,以斥只为边作正三角形,若椭Cr Zr圆恰好平分正三角形的另外两条边,且闪可=4,则"等于 ______________________ .2 25.椭圆丄τ + =τ = l(α>b>0)的左、右顶点分别是A, B,左、右焦点分别是U F=•若Cr b~I AF I 1,1 F1F21,1斤Bl成等比数列,则此椭圆的离心率为____________ .6.已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D , 且BF=2FD,则C的离心率为_________________ .7.设椭圆C:* +沪l(">b>0)的左右焦点为F lf F2,作竹作X轴的垂线与C交于A, B两点,F0与y轴交于点£>,若AD丄F1B,则椭圆C的离心率等于_____________________ .8.过点M(Ij)作斜率为一丄的直线与椭圆C:二+二=1(。
>〃>0)相交于43,若M2 Cr Zr是线段AB的中点,则椭圆C的离心率为 _______ ・9.椭圆c: 4+4=Cr Iy= ∖(a>b>0)左右焦F1,F2,若椭圆C上恰有4个不同的点P,使得ΔPF I F2为等腰三角形,则C的离心率的取值范用是______________510. 设椭圆C :4 + ^T = l(«>^>0)的两个焦点分别为F C F 2,过片且斜率为2的直线交椭圆C 于P 、0两点,若厶PF x F 2为直角三角形,则椭圆C 的离心率为 _____________ .11. 直线y = Ox 与椭圆二+ = = l(α>b>O)相交于A 、3两点,过点A 作X 轴的垂线,2 6Γ Ir垂足恰好是椭圆的一个焦点,则椭圆的离心率是 ______________ .12. 设椭圆(7:卡+ 沪1(。
浅谈一道椭圆离心率问题的多种解法
浅谈一道椭圆离心率问题的多种解法椭圆离心率是椭圆的重要参数,应用于航天飞机的运动轨道计算,利用椭圆的离心率可以更直观地分析航天飞机的运动情况,特别是在开展气动模型实验的时候,需要准确的椭圆离心率来作为参数输入,因此,计算出一道椭圆离心率问题的正确答案就显得十分重要。
椭圆离心率问题大致可以分为三类,分别是通用公式、三角函数和矩阵表达式。
这三类解法都可以在数学上解决椭圆离心率问题,但是它们之间的适用场景也有所不同。
因此,要根据具体的应用需求选择合适的求解方法。
首先,从通用公式的角度来看,椭圆离心率是椭圆的短轴和长轴的比值。
通过椭圆的短轴和长轴长度就可以计算出离心率,但是这种方法只适用于给定椭圆上任意点的离心率问题。
其次,从三角函数的角度来看,可以通过正弦定理求解椭圆离心率。
通过计算椭圆上任意点的两个法向量的夹角,并用正弦定理求出夹角的正弦值,即可以得出该点的离心率。
但是,这种方法的精度较低,受误差影响较大。
最后,从矩阵表达式的角度来看,可以使用矩阵来求解椭圆离心率。
矩阵求解法首先把椭圆表示成矩阵形式,然后再计算出离心率。
这种方式可以被认为是最为准确的求解方式,并且可以解决许多复杂的椭圆定位问题。
上述三种椭圆离心率解法都可以在数学上解决椭圆离心率问题,但是它们之间也存在着一定的差异,要根据具体的需求来选择合适的求解方法。
此外,在应用以上解法时,要特别注意精度的把握,为了获得更加准确的结果,有时候需要做多次迭代。
总而言之,椭圆离心率问题可以运用通用公式、三角函数和矩阵表达式等多种数学方法,来求解。
它们有不同的适用范围,在计算结果的精度要求比较高的时候,可以采取多次迭代的办法,提高求解的精确度。
虽然上述解法都可以用来求解椭圆离心率,但是具体要根据应用场景来选择对于的解法,从而以最优的解决方案应对椭圆离心率问题。
除此之外,还可以利用新技术求解椭圆离心率问题,如数值分析技术和逼近技术,以及利用计算机软件进行矩阵计算来求解椭圆离心率问题。
求离心率知识点总结
求离心率知识点总结首先,我们需要明确离心率的定义。
在物理学中,离心率(eccentricity)通常用e表示,它是描述一个椭圆轨道偏心程度的参数。
对于圆形轨道,离心率等于0,而对于椭圆轨道,离心率在0到1之间。
当离心率为1时,轨道是一个抛物线,当离心率大于1时,轨道是一个双曲线。
离心率的定义可以用数学公式表示为:\[ e = \sqrt{1 - \frac{b^2}{a^2}} \]其中,a和b分别是椭圆轨道的长轴和短轴,e是离心率。
这个公式可以帮助我们理解离心率的物理意义,即描述了轨道的形状和偏心程度。
在天文学中,离心率通常用来描述行星绕太阳的轨道,而在工程学和化工领域,离心率则用于描述离心机等设备中旋转物体的离心力。
其次,我们需要了解如何计算离心率。
在天体力学中,可以通过观测天体的轨道和运动来计算离心率。
通过测量天体的运动参数,比如距离和速度,可以推导出轨道的形状和离心率。
在工程学和化工领域,离心率常常通过离心机等设备的设计参数来计算。
离心机是一种利用离心力将混合物分离成不同组分的设备,它的设计和运行参数决定了离心率的大小和分离效果。
离心率的计算方法因情境而异,但都可以通过测量和推导轨道参数来得出。
在天文学中,计算离心率需要利用开普勒定律等理论框架,而在工程学中,则需要考虑离心机的结构和操作参数。
无论情境如何,确定离心率都是对系统运动和形状的重要分析手段。
最后,我们需要讨论离心率的应用。
离心率在物理学、天文学和工程学中都有重要的应用价值。
在天文学中,离心率被用来描述行星和其他天体绕太阳的轨道形状,帮助科学家研究行星运动规律和宇宙结构。
在工程学中,离心率被用来设计和优化离心机等设备,以便更有效地分离和提纯混合物。
离心率还被广泛应用在化工和生物工程领域,比如用于分离油水混合物、提纯生物制剂等。
总之,离心率是一个重要的物理参数,它描述了一个系统中离心程度的大小。
通过对离心率的定义、计算和应用的讨论,我们可以更深入地了解这一重要概念在不同领域中的作用和意义。
椭圆离心率求法
离心率的五种求法椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式ace =来解决。
例1:已知双曲线1222=-y ax (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( ) A. 23 B. 23 C. 26D. 332解:抛物线x y 62-=的准线是23=x ,即双曲线的右准线23122=-==c c c a x ,则02322=--c c ,解得2=c ,3=a ,332==a c e ,故选D 变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( )A. 43B. 32C. 21D. 41解:由()0,11F 、()0,32F 知 132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A.23 B. 26 C. 23 D 2 解:由题设2=a ,62=c ,则3=c ,23==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=a 的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A33 B 31 C 22D 21 解:由题意知,入射光线为()3251+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则⎪⎩⎪⎨⎧=+-=05532c ca 解得3=a ,1=c ,则33==a c e ,故选A 二、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。
离心率问题的7种题型15种方法
离心率问题的7种题型15种方法求离心率常用公式题型一 椭圆离心率的求值方法一 定义法求离心率1. 已知椭圆C 14222=+y a x 的一个焦点为(2,0),则C 的离心率为( ) A .31 B .21 C .22 D .322 【解析】 14222=+y a x ,∵ a 2−4=4⇒a =2√2 ,则 e =c a =2√2=√22 ,选C2. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13 B .12 C .23 D .34【解析】由直角三角形的面积关系得bc =124⨯12c e a ==,选B3. 若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A .45 B .35 C .25D . 15【解析】设长轴为2a ,短轴为2b ,焦距为2c ,则2222.a c b +=⨯ 即22222()44()a c b a c b a c +=⇒+==-. 整理得:2225230,5230c ac a e e +-=+-=,选B4. 椭圆12222=+by a x (a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为【解析】椭圆12222=+by a x (a >b >0)左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2若|AF1|,|F1F2|,|F1B|成等比数列,所以(a﹣c)(a+c)=4c2,即a2=5c2,所以e=55方法二运用通径求离心率5.设椭圆C2222x ya b+=1(a>b>0)的左右焦点为F1,F2,过F2作x轴的垂线与C相交于A,B两点,F1B与y轴相交于点D,若AD⊥F1B,则椭圆C的离心率等于【解析】不妨假设椭圆中的a=1,则F1(﹣c,0),F2(c,0),当x=c时,由2222x ya b+=1得y=ab2=b2,即A(c,b2),B(c,﹣b2),设D(0,m),∵F1,D,B三点共线,∴,得m=﹣2b2,即D(0,﹣2b2),∴若AD⊥F1B,在,即=﹣1,即3b4=4c2,则3b2=2c=3(1﹣c2)=2c,即3c2+2c﹣3=0,解得c==,则c=,∵a=1,∴离心率e=ac=336.从椭圆22221x ya b+=(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥O P(O是坐标原点),则该椭圆的离心率是【解析】由题意知A(a,0),B(0,b),P2,bca⎛⎫-⎪⎝⎭∵AB∥O P,∴2b bac a-=-.∴b=c;又∵a2=b2+c2,∴22212cea==.∴2e=7.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是【解法一】设1(,0)F c-,2(,0)F c,由题意易知,21212,PF F F c PF===,1212212F Fcea PF PF∴====+【解法二】由题意易知,2122,PF FF c ==由通径得22=a b PF ,故22c=ab ,解得e 1方法三 运用e =e = 8. 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且FD BF 2=,则C 的离心率为【解】 如图,,作DD 1⊥y 轴于点D 1,则由,得,所以,,即,由椭圆的第二定义得又由|BF |=2|FD |,得,a 2=3c 2,解得e ==33,9. 经过椭圆2222=1x y a b+(a >b >0)的左焦点F 1作倾斜角为60°的直线和椭圆相交于A ,B两点,若||||AF BF 112=,求椭圆的离心率。
椭圆离心率求法
离心率的五种求法椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式ace =来解决。
例1:已知双曲线1222=-y ax (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )A.23 B. 23 C. 26D. 332解:抛物线x y 62-=的准线是23=x ,即双曲线的右准线23122=-==c c c a x ,则02322=--c c ,解得2=c ,3=a ,332==a c e ,故选D变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( )A.43 B. 32 C. 21 D. 41 解:由()0,11F 、()0,32F 知 132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A.23 B. 26C. 23 D 2解:由题设2=a ,62=c ,则3=c ,23==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A33 B 31 C 22D 21 解:由题意知,入射光线为()3251+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则⎪⎩⎪⎨⎧=+-=05532c c a 解得3=a ,1=c ,则33==a c e ,故选A二、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆离心率的解法一、 运用几何图形中线段的几何意义。
基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F,设椭圆的离心率为e ,则①e=|PF ||PD |②e=|QF ||BF |③e=|AO ||BO |④e=|AF ||BA |⑤e=|FO ||AO |评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。
∵|AO |=a,|OF |=c,∴有⑤;∵|AO|=a,|BO |= a2c ∴有③。
题目1:椭圆x2 a2 +y2b2 =1(a>b >0)的两焦点为F1 、F2 ,以F1F2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ?思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF2 的中点B ,连接BF1 ,把已知条件放在椭圆内,构造△F1BF2分析三角形的各边长及关系。
解:∵|F1F2|=2c |BF1|=c |BF2|=3cc+3c=2a ∴e= ca =3-1变形1:椭圆x2 a2 +y2b2 =1(a>b >0)的两焦点为F1 、F2 ,点P 在椭圆上,使△OPF1 为正三角形,求椭圆离心率?解:连接PF2 ,则|OF2|=|OF1|=|OP |,∠F1PF2 =90°图形如上图,e=3-1变形2: 椭圆x2 a2 +y2b2 =1(a>b >0)的两焦点为F1 、F2 ,AB 为椭圆的顶点,P 是椭圆上一点,且PF1 ⊥X 轴,PF2 ∥AB,求椭圆离心率?解:∵|PF1|= b2a |F2 F1|=2c |OB |=b |OA |=a PF2 ∥AB ∴|PF1| |F2 F1|= ba 又 ∵b=a2-c2∴a2=5c2 e=55点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a 与c 的 方程式,推导离心率。
二、运用正余弦定理解决图形中的三角形题目2:椭圆x2 a2 +y2b2 =1(a>b >0),A 是左顶点,F 是右焦点,B 是短轴的一个顶点,∠ABF=90°,求e?解:|AO |=a |OF |=c |BF |=a |AB |=a2+b2 a2+b2+a2 =(a+c)2 =a2+2ac+c2 a2-c2-ac=0 两边同除以a2 e2+e-1=0 e=-1+ 5 2 e=-1-52(舍去)变形:椭圆x2 a2 +y2 b2 =1(a>b >0),e=-1+ 52, A 是左顶点,F 是右焦点,B 是短轴的一个顶点,求∠ABF ?点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。
答案:90°引申:此类e=5-12的椭圆为优美椭圆。
性质:1、∠ABF=90°2、假设下端点为B1 ,则ABFB1 四点共圆。
3、焦点与相应准线之间的距离等于长半轴长。
总结:焦点三角形以外的三角形的处理方法根据几何意义,找各边的表示,结合解斜三角形公式,列出有关e 的方程式。
题目3:椭圆x2 a2 +y2b2 =1(a>b >0),过左焦点F1 且倾斜角为60°的直线交椭圆与AB 两点,若|F1A |=2|BF1|,求e?解:设|BF1|=m 则|AF2|=2a-am |BF2|=2a-m在△AF1F2 及△BF1F2 中,由余弦定理得:⎩⎨⎧a2 –c2=m(2a-c) 2(a2-c2)=m(2a+c) 两式相除:2a-c 2a+c =12 ⇒e=23 题目4:椭圆x2 a2 +y2b2 =1(a>b >0)的两焦点为F1 (-c ,0)、F2 (c,0),P 是以|F1F2|为直径的圆与椭圆的一个交点,且 ∠PF1F2 =5∠PF2F1 ,求e?分析:此题有角的值,可以考虑正弦定理的应用。
解:由正弦定理:|F1F2|sin F1PF2 = |F1P |sin F1F2P = |PF2|sin PF1F2 根据和比性质:|F1F2|sin F1PF2 = |F1P |+|PF2|sinF1F2P+sin PF1F2 变形得: |F1F2| |PF2|+|F1P |=sin F1PF2sin F1F2P +sin PF1F2 ==2c2a =e∠PF1F2 =75°∠PF2F1 =15° e= sin90° sin75°+sin15°=63 点评:在焦点三角形中,使用第一定义和正弦定理可知 e=sin F1PF2sin F1F2P +sin PF1F2变形1:椭圆x2 a2 +y2b2 =1(a>b >0)的两焦点为F1 (-c ,0)、F2 (c,0),P 是椭圆上一点,且∠F1PF2 =60°,求e 的取值范围? 分析:上题公式直接应用。
解:设∠F1F2P=α,则∠F2F1P=120°-α e=sin F1PF2sin F1F2P +sin PF1F2 = sin60° sin α+sin(120°-α)=1 2sin(α+30°)≥12 ∴12≤e<1变形2:已知椭圆x24+ y24t2 =1 (t>0) F1F2 为椭圆两焦点,M 为椭圆上任意一点(M 不与长轴两端点重合)设∠PF1F2 =α,∠PF2F1 =β若13 <tan α 2< tan β2 <12 ,求e 的取值范围? 分析:运用三角函数的公式,把正弦化正切。
解;根据上题结论e=sin F1PF2sin F1F2P +sin PF1F2 =sin(α+β)sin α+sin β =2sin α+β 2 cos α+β 22sin α+β 2 cos α-β2 = cos α 2cos β 2 -sin α 2 sin β 2 cos α 2cos β 2 +sin α 2 sin β 2=1- tan α 2 tan β2 1- tan α 2 tan β2 =e∵13<1-e 1+e <12 ∴13<e<12三、 以直线与椭圆的位置关系为背景,用设而不求的方法找e 所符合的关系式. 题目5:椭圆x2 a2 +y2b2 =1(a>b >0),斜率为1,且过椭圆右焦点F 的直线交椭圆于A 、B 两点,→OA +→OB 与→a =(3,-1)共线,求e?法一:设A(x1,y1) ,B(x2,y2)⎩⎨⎧b2x2+a2y2=a2b2y=x-c(a2+b2)x2-2a2cx+a2c2-a2b2=0 x1+x2=2a2c a2+b2 y1+y2=2a2c a2+b2-2c=-2b2ca2+b2 →OA +→OB =(x1+x2,y1+y2)与(3,-1)共线,则 -(x1+x2)=3(y1+y2)既 a2=3b2 e=63 法二:设AB 的中点N ,则2→ON =→OA +→OB⎩⎨⎧x12a2+ y12b2 =1 ①x22a2+ y22b2 =1 ②① -② 得: y1-y2x1-x2 =- b2a2 x1 +x2 y1+y2 ∴1=- b2a2 (-3) 既a2=3b2 e=63 四、 由图形中暗含的不等关系,求离心率的取值范围。
题目6:椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 (-c ,0)、F2 (c,0),满足→MF 1·→MF 2 =0的点M 总在椭圆内部,则e 的取值范围?分析:∵→MF 1·→MF 2 =0∴以F1F2 为直径作圆,M 在圆O 上,与椭圆没有交点。
解:∴c<ba2=b2+c2 >2c2 ∴0<e<22题目7:椭圆x2 a2 +y2b2 =1(a>b >0)的两焦点为F1 (-c ,0)、F2 (c,0),P 为右准线L 上一点,F1P 的垂直平分线恰过F2 点,求e 的取值范围?分析:思路1,如图F1P 与 F2M 垂直,根据向量垂直,找a 、b 、c 的不等关系。
思路2:根据图形中的边长之间的不等关系,求e 解法一:F1 (-c ,0) F2 (c,0) P(a2c ,y0 ) M( a2c -c2 ,y02 )既( b22c , y0 2 ) 则→PF 1 =-( a2c +c, y0 ) →MF 2 =-( b22c -c, y0 2 ) →PF 1·→MF 2 =0 ( a2c +c, y0 ) ·( b22c -c, y0 2 )=0 ( a2c +c)·( b22c -c)+ y02 2 =0 a2-3c2≤0 ∴33≤e<1 解法2:|F1F2|=|PF2|=2c|PF2|≥a2c -c 则2c ≥a2c -c 3c ≥a2c 3c2≥a2 则33≤e<1设椭圆x a y ba b 222210+=>>()的左、右焦点分别为F F 12、,如果椭圆上存在点P ,使∠=︒F PF 1290,求离心率e 的取值范围。
解法1:利用曲线范围设P (x ,y ),又知F c F c 1200(,),(,)-,则F P x c y F P x c y F PF F P F P F P F P x c x c y x y c 1212121222229000→→→→→→=+=-∠=︒⊥⋅=+-+=+=()()()(),,,由,知,则,即得将这个方程与椭圆方程联立,消去y ,可解得x a c a b a b F PF x aa c ab a ba 2222222122222222229000=--∠=︒≤<≤--<但由椭圆范围及知即可得,即,且从而得,且所以,)c b c a c c a e c a e c a e 2222222221221≥≥-<=≥=<∈[解法2:利用二次方程有实根由椭圆定义知||||||||||||PF PF a PF PF PF PF a 121222122224+=⇒++=又由,知则可得这样,与是方程的两个实根,因此∠=︒+===--+-=F PF PF PF F F c PF PF a c PF PF u au a c 12122212221222122229042220||||||||||()||||()∆=--≥⇒=≥⇒≥4801222222222a a c e c a e ()因此,e ∈[)221 解法3:利用三角函数有界性记∠=∠=PF F PF F 1221αβ,,由正弦定理有||sin ||sin ||sin ||||sin sin ||||||||sin sin sincoscosPF PF F F PF PF F F PF PF a F F c e c a 121212121212902211222122βααβαβαβαβαβ==︒⇒++=+====+=+-=-又,,则有而知从而可得09002452221221≤-<︒≤-<︒<-≤≤<||||cos αβαβαβe解法4:利用焦半径 由焦半径公式得||||||||||PF a ex PF a ex PF PF F F a cx e x a cx e x ca e x c x c a e P x y x a x a 12122212222222222222222222224220=+=-+=+++-+=+==-≠±≤<,又由,所以有即,又点(,)在椭圆上,且,则知,即022212222≤-<∈c a ea e 得,)[解法5:利用基本不等式由椭圆定义,有212a PF PF =+|||| 平方后得42228212221212221222a PF PF PF PF PF PF F F c =++⋅≤+==||||||||(||||)|| 得c a2212≥ 所以有,)e ∈[221 解法6:巧用图形的几何特性由∠=︒F PF 1290,知点P 在以||F F c 122=为直径的圆上。