机电一体化系统设计之建模与仿真
第五章-机电一体化系统的建模与仿真
机电一体化系统设计基础课程教学辅导第五章:机电一体化系统的建模与仿真一、教学建议●通过文字教材熟悉机电一体化系统的建模与仿真相关理论基础和方法;●录像教材第5讲讲述了典型机电一体化系统的建模与仿真,并通过第11讲课程实验:MATLAB/Simulink环境下的建模与仿真演示了系统建模与仿真的具体方法。
●流媒体课件也详细介绍了机电一体化系统的建模与仿真相关理论基础和方法;●由在学习的过程中,如果有学习的心得和体会,请在课程论坛上和大家分享;如果有什么疑惑,也可以在课程论坛寻找帮助。
二、教学要求:熟悉机电一体化系统的建模方法1.系统模型系统模型是对系统的特征与变化规律的一种定量抽象,是人们用以认识事物的一种手段或工具,系统模型一般包括物理模型、数学模型和描述模型三种类型。
物理模型就是根据相似原理,把真实系统按比例放大或缩小制成的模型,其状态变量与原系统完全相同。
数学模型是一种用数学方程或信号流程图、结构图等来描述系统性能的模型,描述模型是一种抽象的,不能或很难用数学方法描述的,只能用自然语言或程序语言描述的系统模型。
2.系统仿真在系统实际运行前,也希望对项目的实施结果加以预测,以便选择正确、高效的运行策略或提前消除设计中的缺陷,最大限度地提高实际系统的运行水平,采用仿真技术可以省时省力省钱地达到上述目的。
仿真根据采用的模型可以分为:计算机仿真、半物理仿真、全物理仿真。
当仿真所采用的模型是物理模型时,称之为(全)物理仿真;是数学模型时,称之为数学仿真,由于数学仿真基本上是通过计算机来实现,所以数学仿真也称为计算机仿真;用已研制出来的系统中的实际部件或子系统代替部分数学模型所构成的仿真称为半物理仿真。
计算机仿真包括三个基本要素,即实际系统、数学模型与计算机,联系这三个要素则有三个基本活动:模型建立、仿真实验与结果分析。
3.机电一体化系统的数学模型机电一体化系统属多学科交叉领域,可通过仿真手段进行分析和设计,而机电一体化系统的计算机仿真是建立在其数学模型基础之上,因此需要首先用数学形式描述各类系统的运动规律,即建立它们的数学模型。
基于ADAMS与Simulink的机电一体化系统联合仿真
参 考 文 献
[1].魏玉东, 滚筒洗衣机动态性能研究[D], 2008, 天津大学. [2].黎海青,郭百巍,徐红.基于ADAMS与SIMULINK的舵机虚拟 样机建模和仿真[J]. 系统 仿真学报 [3].任远与白广忱, 基于ADAMS与Simulink的机电一体化系统联 合仿真[J]. 机电一体化, 2009(06): 第31-34页. [4]王晓东,毕开波,周须峰.基于ADAMS与SIMULINK 的协同仿真 技术及应用[J]. 计算机仿真, 2007, 24(4): 271-274. [5] 李增刚. ADAMS 入门详解与实例[M]. 北京: 国防工业出版社,
Step 1
构造ADAMS机械系统样 机模型
确定ADAMS输入和输出 Step 2
Step 3 控制系统建模
机电系统仿真分析 Step 4
STEP 1 构造ADAMS机械系统样机模型
熟悉模型
1
2
3
4
5
6
方向旋 转马达
方位减 速齿轮
方位固 定
天线支 撑杆
仰角轴 承
天线
1 1、方向旋转马达:马达通过旋转副同地面基础框架连接 2、方向减速齿轮:该齿轮通过旋转副同地面基础框架连接 3、方向圆盘:通过旋转副同地面基础框架连接 4、天线支撑杆:用一个固定副将天线支撑杆同方向圆盘相连接 5、仰角轴承:使用一个固定副将仰角轴承同天线支撑杆相连接 6、天线:天线通过旋转副同仰角轴承连接
接口文件的调用
在MATLAB中输 入”adams_sys”会产
生如下的窗口
控制系统建模操作
S-Function: 实现非线性 MSC.ADAMS 模型的
State-Space 是线性化的 MSC.ADAMS的模型。
机电一体化课程说明书
课前预习,课上听讲、记笔记,课后复习、浏览教学网站。
五、实践教学(含课程实验、课程论文、读书报告、文物考察、野外实习、写生等)
无
六、成绩考核
平时成绩
占总成绩10%。其中,作业质量和上课出席参与占10%。
期末成绩
占总成绩90%,闭卷(时间为120分钟,满分为100分)。
题目类型有名词解释、简答题、判断题、计算题(携带计算器)、填空题等。
第15周
§5.2.2电磁干扰的形式和途径
§5.2.3常用的干扰抑制技术
第16周
第六章机电一体化系统设计
§6.1概述
§6.2机电一体化的产品规划
§6.3机电一体化系统的概念设计
周一9、10节补课
§6.4机电一体化系统的详细设计
§6.5机电一体化系统的评价与决策
周三9、10节补课
教学方法
与手段
通过教材进行基本内容讲解,理论联系实际,并辅以多媒体辅助教学手段。
四、教学信息
教学目标
本课程旨在通过机电一体化系统设计的教与学,使学生掌握机电一体化技术基本知识和技能,掌握测系统分析和设计的基本方法,为进一步学习、研究和处理机械工程技术问题打下基础。
教学进度
(以周为单位)
课堂讲授
实验、实习、作业、课外阅读及参考文献等
教学内容摘要
(章节名称、讲述的内容提要,课堂讨论的题目等)
三、教学资源
指定教材
《机电一体化技术》(第二版).孙卫青、李建勇主编,科学出版社,2010年.
参考文献
《机电一体化系统设计》,赵松年编著,机械工业出版社,2011年.
《机电一体化系统设计》,张建民编著,高等教育出版社,2009年.
《机电一体化系统设计》,姜培刚编著,机械工业出版社,2011年.
复杂机电系统的建模与仿真技术研究
复杂机电系统的建模与仿真技术研究现代机电技术越来越注重复杂系统的研究和开发,但是复杂系统往往由多个子系统的耦合构成,使得系统的设计、测试和优化等方面变得极为复杂和困难。
在这方面,建模和仿真技术的快速发展为复杂机电系统的研究提供了一种新的途径。
一、复杂机电系统的建模建模是复杂机电系统研究的重要基础,合理的建模可以快速的形成有效的仿真模型。
当然,建模的方法和技术是多种多样的,常见的有基于数学模型的建模方法,基于物理模型的建模方法和神经网络建模方法等等。
但是不管采用何种建模方法,建模效果好坏的关键在于模型的准确性和可靠性。
下面以数学模型为例,对复杂机电系统建模的几个关键点进行探讨。
1. 选择合适的建模工具选择合适的建模工具是建立复杂机电系统的数学模型的首要任务。
例如在机电一体化系统中因为涉及到多学科交叉,如电、机、液体等领域,因此在进行建模时需要采用比较通用的模型语言如Modelica或者MATLAB/Simulink等。
此外在涉及到特定领域,如风电系统、电力工程等,需要采用相应的软件,如ANSYS等。
当然,选择合适的建模工具不仅与领域有关,也需要考虑建模的复杂程度、重复利用性等因素。
2. 建立合理的变量模型建立复杂机电系统的数学模型,还需要考虑变量的建模。
系统中的变量包括输入、输出和控制变量等,它们具有不同的物理意义和参考系。
在模型建立过程中,需要建立一套合理的变量模型来表示系统的物理特征。
通常来说,在进行机电系统的变量建模时,需要将其分为机械、电气、液压和控制四个方面。
对于机械系统,常见的变量有位移、速度和加速度等。
对于电气系统,常见的变量有电流、电势和电磁力等。
液压系统中需要表达变量如液压油压力、流速等。
控制方面常用的变量如误差、控制量等。
理性建立合理的变量模型对模型的准确性和可靠性具有至关重要的意义。
3. 导出正确的物理方程机电的数学模型通常是由一系列的微分方程和代数方程组成的,因此构建数学模型的关键在于正确的表示物理方程。
机电一体化系统建模技术与仿真软件的研究与分析
392017年5月下 第10期 总第262期作者简介:韩召伟(1973—),男,山东济宁人,硕士,讲师,研究方向:机械制造方向。
由于我国市场竞争性越来越大,产品上市的周期正在逐渐缩短,在有限时间内研发出满足客户需要的、性能显著的机电产品可以说是各大厂家最终目标。
对此,电脑开始成为厂家研发中不可或缺的一项工具。
在计算机的帮助下进行机电一体化系统建模与仿真也就开始成为技术研究人员分析和探究的重要课题。
1 在电脑辅助下的机电一体化系统建模方式机电一体化系统其建模实际上就是物理对象的有效建模,再简单来说就是物理实体上的建模,把机电一体化的系统抽象成物理模型并在电脑中表达出来。
电脑中表达和描述的物理模型,一定要比较容易转变为数学描述,只有这样才可以把针对于物理模型方面的电脑仿真有效实现。
下面主要介绍几种国际中的物理模型方法。
1.1 方块图建模方块图来源于控制理论这一学科,能够对信号流的输出和输入进行有效建模。
它包含有很多基本型控制模块,例如积分、比例积分、微分、比例微分等等,根据线段再把这些模块相联系起来。
每一种模块都是由传递函数所构成的,其特点就是能够反馈模块与前馈模块对任意控制系统进行表达[1]。
1.2 系统图法系统图法其研究主要是以卡内基梅隆大学为主。
系统图描述的前提是线形图理论,系统图实际上就是系统能量流的拓扑构造线形图的一种表示形式,相关研究人员将方块图和线形图有效结合起来,使得系统图也能够对含有信号流的系统构造进行描述和表达,实现了系统图的描述方式。
系统图法跟键合图法相类似,都是通过运用一种在整个能量域中能够对系统行为加以建模的最少的通用原件对系统建模。
元件和元件之间用能量链的衔接来表达系统能量流的走向。
1.3 面向对象的建模这种建模方法主要是对象电子、机械等不同领域的对象分别建模。
并存在不同的数据库里不同目录当中。
这种建模法具有继承、层次化以及数据封袋等特点,能够有效减少失误、实现模型的再次使用。
基于虚拟原型的机电一体化建模与仿真技术研究
基于虚拟原型的机电一体化建模与仿真技术研究一、本文概述随着科技的不断进步和制造业的快速发展,机电一体化技术在现代工业生产中扮演着越来越重要的角色。
作为实现智能制造和高效生产的关键技术之一,机电一体化的建模与仿真技术对于提升产品质量、优化生产流程、降低生产成本具有重要意义。
本文旨在探讨基于虚拟原型的机电一体化建模与仿真技术的研究现状与发展趋势,分析其在工业制造领域的应用及效果,并提出一些建议和思考。
本文将对机电一体化建模与仿真技术的基本概念进行阐述,明确其研究范围和应用领域。
通过对国内外相关文献的综述和分析,总结当前基于虚拟原型的机电一体化建模与仿真技术的研究现状,包括建模方法、仿真技术、优化算法等方面的发展情况。
结合实际案例,探讨该技术在工业制造领域的应用实践,分析其对于提升产品质量、优化生产流程、降低生产成本的积极作用。
对基于虚拟原型的机电一体化建模与仿真技术的发展趋势进行展望,提出一些建议和思考,以期为该领域的研究和实践提供参考和借鉴。
二、虚拟原型技术在机电一体化建模中的应用虚拟原型技术作为现代工程设计和分析的重要工具,其在机电一体化建模中发挥着不可或缺的作用。
虚拟原型技术的核心在于通过计算机软件创建出物理产品的数字孪生,从而能够在虚拟环境中进行产品设计、测试和优化,极大地提高了机电一体化系统的研发效率。
系统架构设计:虚拟原型技术允许工程师在初步设计阶段就对机电一体化的整体架构进行模拟。
通过构建虚拟原型,工程师可以评估不同设计方案的有效性和可行性,从而选择最优的系统架构。
组件集成与测试:虚拟原型技术允许将各种机械、电子和控制组件在虚拟环境中进行集成,并进行各种条件下的性能测试。
这种模拟测试可以预测实际系统中的潜在问题,并在真实制造之前进行改进。
动态行为模拟:通过虚拟原型技术,可以对机电一体化系统的动态行为进行详细模拟。
这包括机械运动、电气响应和控制逻辑等多个方面的交互作用。
通过动态模拟,可以预测系统在实际工作环境中的表现,并据此进行优化。
基于虚拟原型的机电一体化建模与仿真技术研究
基于虚拟原型的机电一体化建模与仿真技术研究随着科学技术的不断发展,机械工业生产逐渐朝着先进化、自动化的方向发展。
传统的设计方式已经很难当前的综合性需求,其弊端表现主要表现在以下几个方面:第一,领域的单向性发展。
第二,技术设计方式片面化。
第三,建模理念较为分散。
所以,本文针对以上情况,探讨基于虚拟原型的机电一体化建模与方针技术。
“机电一体化”就是将现有的工业机械制造设计与信息技术相结合,将信息数据分析过程融入到工艺之中,以实现生产的整体性与最优化。
传统的机械制造手段已经不能适应精益化的技术要求。
只有以“机械”为载体,以“信息分析”为核心的实际化格局才是生产所需要的。
一、虚拟原型技术与机电一体化(一)虚拟原型技术的基本原理虚拟原型技术是一种以“并行设计思想”为主导,以信息化手段为线索的设计方式。
与传统的科技理念相比,它的先进性体现在设计系统的形成与控制模块的多样化。
在其总体系的内部有不同类型的功能化子设计,计算机可以将各子系统进行连接,按照结构性的不同进行合理划分。
在规划的过程中,系统中心会形成动态的设计中心,并通过一定的关系式进行结合。
从构成要素上来看,模型的建立方式并不是独立而单一的,它主要根据不同类型的子系统形成模型联合端口,联合端口的组成部分主要包括:产品的性能、产品外观、仿真模型建立平台以及CAD方式的产品设计。
以上子系统在协作的基础上有着共同的目标,都是对电力进行控制,对整体结构进行优化。
虚拟模型的建立主要借助“仿真”与“建模”两个部分。
从建模的方法上看,它可以以计算机为基础进行资料整合,将各学科的有关知识都结合到一起,筛选出程序所需要的部分,以测试指标为依据,分析产品的实际性能与综合利益效率。
而从仿真的角度来讲,系统主要是在实际工况的环境下进行操作模拟,通过对数据和测评方式内容进行分析,并根据系统的要求决定是否升级或者优化。
最终在屏幕上将可视化结果表现出来。
另外,通过虚拟建模的操作,设计人员还可以在产品运行前对物质的综合性能进行研究,对不完善的方面进行改进,从而缩短了生产时间,提升了工作人员的办事效率,避免了操作阶段的失误情况发生。
机电一体化系统的建模与仿真技术研究
机电一体化系统的建模与仿真技术研究机电一体化系统是由机械、电子、控制、软件等多个领域组成的智能系统,在现代工业领域中得到了越来越广泛的应用。
机电一体化系统具有高度的智能化、机动化和自动化特点,使现代机械设备不断地朝着高速度、高精度、高质量和高效能的方向发展,成为生产力的重要支撑。
机电一体化系统的建模与仿真技术是现代化机械设计的重要手段之一,其目的是通过计算机仿真来验证机械系统的设计和功能,从而提高机械系统的可靠性和性能。
机电一体化系统的建模与仿真技术涉及到机械、电子、控制、软件等多个领域,需要采用多学科的知识和技术来解决问题。
机电一体化系统的建模方法主要有物理建模、系统建模和行为建模三种。
物理建模主要是通过解析方法或模型法来描述、建立机械系统的物理模型,即将系统模型化为组成其系统的基本部件,通过连接及约束关系组成完整的系统模型。
系统建模是将机械系统分解为各个部件,建立系统的框图,并通过框图来描述各个部件之间的关系和信号传递。
行为建模是通过对系统的运动规律、逻辑关系和控制策略等进行描述来建立系统的行为模型。
机电一体化系统的仿真方法主要有数学仿真、逻辑仿真和动态仿真三种。
数学仿真是运用计算机数值计算的方法,用算法对模型进行数学求解,从而得出系统的运行情况。
逻辑仿真是根据系统的逻辑关系和控制策略建立系统的逻辑模型,通过模拟系统的控制过程来验证系统的控制能力。
动态仿真是将机械系统的动态运动、工作过程进行全过程的仿真模拟,通过动态仿真来验证系统的性能。
在机电一体化系统的建模与仿真技术中,多学科的知识和技术是不可或缺的。
机械设计工程师需要在设计机械系统时掌握机械、材料、力学等相关知识,通过物理建模建立机械系统的物理模型,并通过计算机进行数学仿真和动态仿真。
电子工程师需要掌握电子、电路、信号等知识,通过逻辑建模建立系统的逻辑模型,并通过逻辑仿真验证系统的控制策略和控制能力。
控制工程师需要掌握控制算法、控制方法等知识,通过行为建模建立系统的行为模型,并通过数学仿真和动态仿真验证系统的运行效果。
机电一体化系统的建模与仿真
(1)机理模型 由于实际的对象通常都比较复杂,难以用数学方法予以精
确地描述,因此在确定机理模型的结构和参数时,首先需提出 一系列合理的假定,这些假定应不致于造成模型与实际对象的 严重误差,且有利于简化所得到的模型。然后,基于所提出的 假设条件,通过分析,列出被控对象运动规律方程式。最后, 建立方程的边界条件,将边界条件与方程结合起来,构成被控 对象的基本模型。
仿真系统可以采用面向对象的程序设计语言自建,也可以 购买商业仿真工作包。
利用商业工具包中的标准库模型可以很快地进行简单群体 系统的仿真。本小节就以SIMULINK仿真软件为例。
(1) SIMULINK仿真软件简介 SIMULINK是MATLAB里的工具箱之一,主要功能是实现动 态系统建模、仿真与分析;SIMULINK提供了一种图形化的 交互环境,只需用鼠标拖动的方法,便能迅速地建立起系统框 图模型,并在此基础上对系统进行仿真分析和改进设计。 创建模型及进行仿真运行。
为便于用户使用,SIMULINK可提供9类基本模块库和 许多专业模块子集。考虑到一般机电一体化主要分析连续控制 系统,这里仅介绍其中的连续系统模块库(Continuous)、系 统输入模块库(Sourses)和系统输出模块库(Sinks)。
①连续系统模块库(Continuous) 连续系统模块库(Continuous)以及其中各模块的功能如图74及表7-1所示。
另一种方法是实验法,即采用某些检测仪器,在现场对控 制系统加入某种特定信号,对输出响应进行测量和分析,得到 实验数据,列出输入量和输出量之间的离散关系,采用适当的 数值分析方法建立系统的数学模型,此方法常用于解决复杂的 控制系统。
分析法建立起来的数学模型又被称为机理模型。机理模型 可反映被控对像的本质,有较大范围的适应性,所以在建立数 学模型时,
机电一体化系统的建模与仿真
机电一体化系统的建模与仿真机电一体化系统是近年来工业自动化发展的一个重要方向,它将机械、电气、电子、计算机等多个学科有机结合,实现了产品的智能化和高效化。
在机电一体化系统的设计和开发过程中,建模与仿真是非常关键的一环。
本文将探讨机电一体化系统的建模与仿真的重要性、方法和应用。
一、机电一体化系统建模的重要性1. 减少开发成本和时间:通过建模与仿真,可以在产品实际制造之前发现问题和缺陷,减少开发过程中的试错成本和时间。
同时,可以在虚拟环境中对系统进行优化,提高产品的性能和质量。
2. 提高系统可靠性:通过建模与仿真,可以深入分析系统的运行过程,预测出潜在的故障和问题,并进行针对性的优化。
这样可以提高系统的可靠性和稳定性,减少故障率和维修成本。
3. 优化系统性能:建模与仿真可以帮助工程师在设计阶段进行多种方案的比较和评估,找出最优解决方案。
通过对系统进行仿真和测试,可以预测系统在不同工况下的性能,并进行优化调整,以实现更好的工作效果。
二、机电一体化系统建模与仿真的方法1. 建模方法(1)物理模型:通过对机电一体化系统的结构、元件和工作原理进行建模,可以快速构建一个具有物理实际意义的模型。
采用物理模型可以更好地反映系统的实际情况,但是建模过程相对较复杂。
(2)数据驱动模型:通过收集和分析大量的实验数据,利用统计学和机器学习等方法建立数学模型。
数据驱动模型可以根据实际数据自动调整和更新,适用于一些复杂的非线性系统。
2. 仿真方法(1)数学仿真:利用计算机进行大规模的数值计算,对系统进行仿真模拟。
数学仿真可以基于系统的物理模型和数学模型,通过输入不同的参数和条件,模拟系统在不同工况下的运行状态,预测系统的性能指标。
(2)软件仿真:通过专门的软件工具,如MATLAB、Simulink等进行系统建模和仿真。
这些软件提供了丰富的模型库和仿真环境,可以方便地进行建模和仿真分析。
同时,软件仿真还可以与物理实验相结合,进行混合仿真,提高仿真的准确性。
机电系统建模与仿真 1概述讲解
4.2 仿真在机电系统设计中的作用
? 仿真的定义 仿真是指对现实系统某一层次 抽象属性的模仿。其基本思
想是利用物理的或数学的模型来类比模仿现实过程,以寻求 对真实过程的认识。它所遵循的基本原则是 相似性原理。
计算机仿真是基于所建立的系统仿真模型,利用计算机 对系统进行分析与研究的方法。
为什么要用仿真模型?
? 典型机电系统:自动化制造单元;顺序控制问题
? 典型机电系统:柔性制造单元;具有生产规划和调度能力
? 典型机电系统:无人工厂
4 仿真在机电系统设计与开发中的作用
4.1 机电系统开发的技术路线
? 拟定目标及初步技术规范、可行性分 析、初步设计(总体方案设计)、总 体方案的评价与评审、理论分析(建 模、仿真、模拟试验)、详细设计 (样机设计)、详细设计方案的评价 与评审、试制样机、样机试验测试、 技术鉴定
第1章 绪论
1.1 机电系统概述 1.1.1 机电一体化技术产生的背景 ? 机械技术向自动化、智能化发展的产物 ? 电子技术向机械工业领域的渗透 1.1.2 机电一体化的基本概念 ? 机电一体化的定义,机电一体化技术和产品
Mechatronics=Mechanics+Electronics 机械电子学 =机械学+电子学
离散时间 模型
连续时间 模型
建立模型的方法:数理方法(白箱)、试验建模(白、灰、黑
系统 模型
非线性 线性
连续 离散 混合
单变量 多变量
定常 时变
模型描述变量的轨迹
空间连续变化模型 空间不连续变化 模型
离散(变化) 模型
ቤተ መጻሕፍቲ ባይዱ
模 型形 式
偏微分方程 常微分方程
差分方程 有限状态机 马尔可夫链
4.1机电一体化系统的数学模型及其表现形式
机电一体化系统数学模型及其表现形式 1.数学模型 物理模型 完全根据相似原理 真实系统按比例放大或缩小
数学模型 数学方程 分静态模型(与时间无关)和动态模型(与时间有关)
描述模型 抽象,不能或很难用数学方法描述 智能用语言描述
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
机电一体化系统数学模型及其表现形式
2.数学模型的表现形式 2.3传递函数
对线性定常系统: a0 y(n) a1 y(n1) an1 y ' an y b0u(m)
bmu
在零初始条件下,两边同时进行拉普拉斯变换 (a0s(n) an1s an )Y (s) (b0s(m) bm1u bm )U(s)
传递函数
G(s)
Y (s) U(s)
b0 s(m) a0 s( n )
bm1u bm an1s an
连续系统的传递函数模型
sys=tf(num,den)
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
机电一体化系统数学模型及其表现形式
2.数学模型的表现形式
2.3传递函数
例2:用MATLAB建立系统传递函数模型:
机电一体化系统数学模型及其表现形式
机电一化系统的 数学模型及其表现形式
机电一体化系统数学模型及其表现形式 1.数学模型
数学模型
仿真求解
动态性能分析
设计技术指标
设计结果
建模是系统分析与设计的基础,仿真是系统分析与设计的重要手段
系统模型是对系统的特征与变化规律的一种定量抽象,是人们用 以认识事物的一种手段(或工具)
该系统的动力学模型 my(t) y(t) ky(t) ku(t)
机电一体化系统建模与仿真考核试卷
B.积分控制器
C.微分控制器
D. PID控制器
12.关于机电一体化系统建模,以下哪项是错误的?()
A.建模过程中需要考虑实际系统的复杂性
B.建模过程中可以忽略一些次要因素
C.建模过程需要与实际系统完全一致
D.建模过程需要根据实际系统进行适当简化
13.在机电一体化系统仿真中,以下哪种方法用于验证模型的准确性?()
机电一体化系统建模与仿真考核试卷
考生姓名:__________答题日期:__________得分:__________判卷人:__________
一、单项选择题(本题共20小题,每小题1分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.以下哪项不属于机电一体化系统的组成部分?()
A.仿真结果一定与实际情况完全相同
B.仿真只能用于预测系统动态行为
C.仿真可以验证系统设计是否合理
D.仿真不能应用于产品开发阶段
5.以下哪种方法不常用于机电一体化系统的数学建模?()
A.状态空间法
B.传递函数法
C. PID控制法
D.系统辨识法
6.在机电一体化系统中,以下哪种传感器应用最为广泛?()
A.温度传感器
A.系统具有强非线性特性
B.系统在较大工作范围内变化
C.系统对初始条件敏感
D.线性模型无法满足精度要求
11.以下哪些技术可以用于机电一体化系统的实时仿真?()
A.数字信号处理技术
B.分布式计算技术
C.虚拟现实技术
D.人工智能技术
12.机电一体化系统设计中,哪些环节可以通过建模与仿真来优化?()
A.控制策略
8. ABCD
9. ABC
基于虚拟原型的机电一体化建模与仿真技术研究
基于虚拟原型的机电一体化建模与仿真技术研究作者:蒋鸿森来源:《中国科技博览》2014年第26期摘要:本文以机电一体化技术为研究对象,对机电一体化的概念、发展与基本技术以及未来的发展趋势进行了分析,并侧重介绍了虚拟原型技术与机电一体化的结合,在此基础上对机电一体化的建模与仿真技术进行了简要的探析。
关键词:机电一体化;建模;仿真;虚拟原型中图分类号:TM 文献标识码:A 文章编号:1009-914x(2014)26-01-01引言机电一体化技术一般指的是电子、机械和信息技术结合的一种新型技术,最早在上世纪70年代在西方被提出来,其本质是机械技术通过运用信息化技术不和电子技术而达到效能最优的状态。
而目目前机电一体化的建模与方式技术是最新的研究热点,本文针对这个热点展开探究。
一、机电一体化技术概述第一,我国机电一体化技术的发展与现状。
我国机电一体化技术大体经历了自发初级阶段、蓬勃发展阶段和智能化发展新阶段等三个阶段。
初级阶段机械产品只是通过简单的电子技术进行了产品优化,到了发展阶段则利用了当时兴起的计算机、通信和控制技术,机电结合更为灵活,到了智能发展阶段,机电一体化技术更多地吸收了激光、模糊、信息和神经网络技术等其他学科成果,逐渐形成独立的技术体系。
第二,机电一体化的相关技术。
机电一体化主要涉及机械技术、检测与传感器技术、信息处理技术、伺服驱动技术、接口技术、监控与诊断技术、柔性制造系统技术等技术。
第三,机电一体化技术的发展趋势。
目前机电一体化主要朝着智能化、集成模块化、光机电一体化、信息网络化、系统化技术方向发展,朝着技术产品能功能多样、效率优化、智能运行、稳定性强的理念发展,力求让技术产品向轻盈、超薄、细微、小巧等时尚化方向发展。
二、虚拟原型技术与机电一体化(一)虚拟原型技术该技术是在CAX技术、DFX技术、物理样机设计技术的基础上发展起来的,并且在发展过程中吸收了信息技术、仿真技术和先进制造技术,让机电产品的设计智能化和灵巧化,生产效率高效而稳定,最终让产品开发形成一套从设计到仿真,从分析到复杂的系统化开发体系。
机电一体化产品虚拟样机协同体系设计及其模型建构
机电一体化产品虚拟样机协同体系设计及其模型建构1. 引言1.1 背景介绍机电一体化产品是指将机械、电子、控制等多个领域的技术融合在一起,形成一个整体的产品系统。
随着科技的发展和对产品功能、质量、成本等方面要求的不断提高,机电一体化产品虚拟样机逐渐成为研究的焦点。
在传统的产品设计中,需要制造实物样机进行测试和验证,这不仅耗费时间和成本,而且会受到设计周期的限制。
而虚拟样机技术的出现,允许将产品设计和测试过程移至计算机平台,在虚拟环境中模拟产品的性能和行为。
这不仅提高了产品设计开发的效率,还可以减少实际样机制造所需的时间和成本,同时提高产品的质量和性能。
通过机电一体化产品虚拟样机协同体系设计,可以将不同领域的技术和资源有效整合,实现多学科协同合作,提高产品设计和研发的效率和质量。
对机电一体化产品虚拟样机协同体系设计及其模型建构的研究具有重要意义。
本文将围绕这一主题展开深入探讨。
1.2 研究意义机电一体化产品的发展已经成为当前工业生产的一个重要趋势,其涉及电气、机械、自动控制等多个领域的知识和技术。
而虚拟样机作为机电一体化产品设计与制造中的重要工具,能够有效地模拟产品的运行状态,预测产品性能及行为,并在产品设计阶段发现和解决问题,从而提高产品设计效率和质量。
协同体系设计作为虚拟样机的一种重要应用方式,能够有效整合不同领域的专业知识和资源,提高团队协作效率,加快产品设计和研发进程。
通过协同体系设计,不同领域的专家和工程师可以实现实时沟通和合作,共同解决设计和制造过程中的问题,确保产品的性能和质量达到预期目标。
机电一体化产品虚拟样机协同体系设计及其模型建构的研究具有重要的意义。
通过深入研究虚拟样机的概念、协同体系设计原理和模型建构方法,可以为机电一体化产品的设计与制造提供更加科学的方法和技术支持,推动机电一体化产品的创新与发展。
实验验证和应用展望将进一步验证研究成果的可行性和实用性,为未来研究方向提供依据。
机电一体化安全执行机构的建模与仿真
构( 由隔离 体 、 销 器 、 簧 和 惯性 销 组 成 ) 光 电 拔 扭 、
传感 器 、 电雷 管 、 爆 序 列 和 短 路 机 构 等 部 分 构 传 成 。隔离体 是 核 心 , 时 它 在扭 簧 、 性 销 、 平 惯 拔 销器 的三 重 作 用下 , 定 在安 全 保 险 状 态 。 由惯 锁 性销 对 隔离体 作用 , 构成 第 一级 惯性 机械 保险 ; 由 计 时 电路 、 销器 和 隔离体 匹配 作用 , 成第 二级 拔 构 机 电 保 险 ; 光 电 传 感 器 、 簧 和 隔 离 体 匹 配 作 由 扭
机 电一体 化 安全 执 行 机构 的建模 与 仿 真
吕 忠 卫 , 周 如 江
( 上海航 天 技术 研究 院 82所 ,上海 20 9 ) 0 0 0 0
摘
要 : 用机 械和 电路 建模 软 件 建 立机 电一 体 化 安 全执 行 机 构 的模 型 , 用机 械 动 力 利 采
学分析 软件 对机 电一 体化 安 全执行 机 构进行 仿 真 分析 ; 系统 性 能 产 生 重 大影 响 的光 电传 感 对
L hn- e, Z V Z o g w i HOU R - a g uj n i
( o 8 2I tueo A T S ag a 20 9 ,C ia N ,0 n i t f S , h nhi 00 0 hn ) st S
Ab ta t Ac o ls e h d lo h lcrme ha ia ne rto aey a d ami g d vc y sr c : c mpih st e mo e f te ee to c n c it gain sf t l n r n e ie b
机电一体化系统设计机电一体化系统设计和分析方法
详细设计
概念设计
产品规划
形态学矩阵 模糊理论 知识方法维
方法维,是设计过程 的各种思维方法、工 作方法和涉及的相关 领域知识
时间维
时间维,描述按时间 排列的设计目标流程;
分 综评 决 析 合价 策
逻辑维
逻辑维,是解决问题的逻 辑步骤,是在设计的工作 流程中的每一个阶段内所 要进行的工作内容和遵循 的思维程序;
统的设计更为合理和完善。
机电产品设计开 发交互过程
新产品想法
机电产品设计和开发的实际过 程是一个交互过程,在概念设 计和细节设计过程中需要不断 地进行验证和修改。
需求
概念设计
细节设计
原型循环
设计
有效性
原型、实验和验证
实现
新产品需求改进
开发
回收
产品
维护
2.3.4机电系统的数学模型举例:
图示为电枢控制式直流电动机的工作原理图。图中电机线圈的电
数学仿真:对实际系统进行抽象,并将其特 性用数学关系加以描述而得到系统的数学 模型,对数学模型进行实验的过程称为数 学仿真。
优点:方便、灵活、经济。缺点:受限于系 统建模技术,即系统数学模型不易建立。
半实物仿真:将数学模型与物理模型甚至实 物联合起来进行实验。
系统仿真时模型所采用的时钟称为仿真时 钟,而实际动态系统的时钟称为实际时钟。 根据仿真时钟与实际时钟的比例关系,仿 真又分为实时、亚实时和超实时仿真三种。
机电一体化系统设计的类型
开发性设计(全新设计); 适应性设计(原理方案不变,仅对功
能及结构进行重新设计); 变参数设计(仅改变部分结构尺寸而
形成系列产品)
机电一体化系统设计原则
机电一体化设计要遵循产品的一般设计原则 (在保证产品目的功能、性能和使用寿命的前 提下,尽量降低成本),以计算机为辅助手段, 充分利用现代设计方法,以多功能化,节能化, 高效化满足市场要求。