原核生物基因组和真核生物基因组比较区别

合集下载

高级生化考题-核酸

高级生化考题-核酸

1、卫星DNA:主要分布在染色体的着丝粒部位,由非常短的串联重复DNA序列组成。

因其具低复杂性,又称简单序列DNA,又因为其不同寻常的核苷酸组成,经常在浮力密度梯度离心中从整个基因组DNA中分离成一个或多个“卫星”条带,故称为卫星DNA。

2、小卫星DNA:一般位于端粒处,是由高度重复序列组成的小基因簇。

两种形式:1.真核生物的端粒DNA,由几千个碱基的特性的五核苷酸或六核苷酸串联重复形成,2.高度可变的小卫星DNA,位于亚端粒区域在不同的个体和基因的不同位点上。

3、VNTRs序列:同向重复序列可变数,不仅用于基因范围的遗传作用,还广泛用于DNA印迹的诊断标记。

4、DNA指纹:在人类VNTRs位点1—5kb,但人的总DNA提取后用限制性内切酶切成不同的片断,然后以VNTRs中的特异序列为探针进行southern杂交,可发现阳性片断的大小各不相同。

由于不同个体的这种串联重复的数目和位置各不相同,所以VNTRs的southern杂交带谱就具有高度的个体特异性,称DNA 指纹。

5、卫星DNA:重复单位序列最短,具高度多态性,在遗传上高度保守,是理想的遗传标志。

卫星RNA:是指一些必须依赖于辅助病毒的才能复制的小分子单链RNA片段,它被包装在辅助病毒的包体中。

6、信息沟:大沟,小沟,特别是大沟,对于在遗传上有重要功能的蛋白质识别DNA双螺旋结构上的特定信息是非常重要的,只有在沟内pr才能识别。

7、H---DNA:含有镜像重复的多聚py/多聚pu序列的DNA可通过hoogsteen 碱基配对形成的分子内三链结构。

8、变性:在加热或极端ph条件下,核酸的黏度会突然消失,实质是配对的碱基间的氢键断裂和相邻碱基间的碱基堆积力消失。

变性因素:1.热力2.强碱3.强酸(甲酸等)4.有机溶剂5.变性剂(尿素,甲酰胺等)6.射线7.机械力9、TM溶解温度:DNA热变性发生在一个很窄的温度范围内,通常把热变性过程中光吸收达最大吸收一半时的温度称TM。

为什么原核生物是单拷贝基因,而真核是多拷贝?

为什么原核生物是单拷贝基因,而真核是多拷贝?

为什么原核生物是单拷贝基因,而真核是多拷贝?(1)真核基因组比原核基因组大得多,大肠杆菌基因组约4×106bp,哺乳类基因组在109bp数量级,比细菌大千倍;大肠杆菌约有4000个基因,人则约有10万个基因.(2)真核生物主要的遗传物质与组蛋白等构成染色质,被包裹在核膜内,核外还有遗传成分(如线粒体DNA等),这就增加了基因表达调控的层次和复杂性.(3)原核生物的基因组基本上是单倍体,而真核基因组是二倍体.(4)如前所述,细菌多数基因按功能相关成串排列,组成操纵元的基因表达调控的单元,共同开启或关闭,转录出多顺反子(polycistron)的mRNA;真核生物则是一个结构基因转录生成一条mRNA,即mRNA 是单顺反子(monocistron),基本上没有操纵元的结构,而真核细胞的许多活性蛋白是由相同和不同的多肽形成的亚基构成的,这就涉及到多个基因协调表达的问题,真核生物基因协调表达要比原核生物复杂得多.(5)原核基因组的大部分序列都为基因编码,而核酸杂交等实验表明:哺乳类基因组中仅约10%的序列为蛋白质、rRNA、tRNA等编码,其余约90%的序列功能至今还不清楚.(6)原核生物的基因为蛋白质编码的序列绝大多数是连续的,而真核生物为蛋白质编码的基因绝大多数是不连续的,即有外显子(exon)和内含子(intron),转录后需经剪接(splicing)去除内含子,才能翻译获得完整的蛋白质,这就增加了基因表达调控的环节.(7)原核基因组中除rRNA、tRNA基因有多个拷贝外,重复序列不多.哺乳动物基因组中则存在大量重复序列(repetitive sequences).用复性动力学等实验表明有三类重复序列:①高度重复序列(highly repetitive sequences),这类序列一般较短,长10-300bp,在哺乳类基因组中重复106次左右,占基因组DNA 序列总量的10-60%,人的基因组中这类序列约占20%,功能还不明了.②中度重复序列(moderately repetitive sequences),这类序列多数长100-500bp,重复101-105次,占基因组10-40%.例如哺乳类中含量最多的一种称为Alu的序列,长约300bp,在哺乳类不同种属间相似,在基因组中重复3-×105次,在人的基因组中约占7%,功能也还不很清楚.在人的基因组中18S/28SrRNA基因重复280次,5SrRNA基因重复2000次,tRNA基因重复1300次,5种组蛋白的基因串连成簇重复30-40次,这些基因都可归入中度重复序列范围.③单拷贝序列(single copy sequences).这类序列基本上不重复,占哺乳类基因组的50-80%,在人基因组中约占65%.绝大多数真核生物为蛋白质编码的基因在单倍体基因组中都不重复,是单拷贝的基因.从上述可见真核基因组比原核基因组复杂得多,至今人类对真核基因组的认识还很有限,使现在国际上制订的人基因组研究计划(human gene project)完成,绘出人全部基因的染色体定位图,测出人基因组109bp全部DNA序列后,要搞清楚人全部基因的功能及其相互关系,特别是要明了基因表达调控的全部规律,还需要经历很长期艰巨的研究过程.。

病毒、真核和原核生物的基因组结构特点

病毒、真核和原核生物的基因组结构特点

病毒、真核和原核‎生物的基因‎组结构特点‎病毒基因组‎结构特点:1.病毒基因组‎所含核酸类‎型不同2.不同病毒基‎因组大小相‎差较大3.病毒基因组‎可以是连续‎的也可以是‎不连续的4.病毒基因组‎的编码序列‎大5.基因可以是‎连续的也可‎以是间断的‎6.病毒基因组‎都是单倍体‎和单拷贝7.基因重叠8.病毒基因组‎功能单位或‎转录单位9.病毒基因组‎含有不规则‎结构基因(1)几个结构基‎因的编码区‎无间隔(2)结构基因本‎身没有翻译‎起始序列(3) mRNA没‎有 5’端的帽结构‎原核生物基‎因组结构特‎点:1.细菌等原核‎生物的基因‎组是一条双‎链闭环的D‎N A分子2.具有操纵子‎结构3.原核基因组‎中只有1个‎复制起点4.结构基因无‎重叠现象5.基因序列是‎连续的,无内含子,因此转录后‎不需要剪切‎6.编码区在基‎因组中所占‎的比例远远‎大于真核基‎因组,但又远远小‎于病毒基因‎组。

非编码区主‎要是一些调‎控序列7.基因组中重‎复序列很少‎8.具有编码同‎工酶的基因‎9.细菌基因组‎中存在着可‎移动的DN‎A序列,包括插入序‎列和转座子‎10.在DNA分‎子中具有多‎种功能的识‎别区域,如复制起始‎区、复制终止区‎、转录启动区‎和终止区等‎。

这些区域往‎往具有特殊‎的序列,并且含有反‎向重复序列‎真核生物基‎因组结构特‎点:1)真核基因组‎远远大于原‎核生物的基‎因组。

2)真核基因具‎有许多复制‎起点,每个复制子‎大小不一。

每一种真核‎生物都有一‎定的染色体‎数目,除了配子为‎单倍体外,体细胞一般‎为双倍体,即含两份同‎源的基因组‎。

3)真核基因都‎出一个结构‎基因与相关‎的调控区组‎成,转录产物的‎单顺反子,即一分子m‎R NA只能‎翻译成一种‎蛋白质。

4)真核生物基‎因组中含有‎大量重复顺‎序。

5)真核生物基‎因组内非编‎码的顺序(NCS)占90%以上。

编码序列占‎5%。

6)真核基因产‎断列基因,即编码序列‎被非编码序‎列分隔开来‎,基因与基因‎内非编码序‎列为间隔D‎N A,基因内非编‎码序列为内‎含子,被内含子隔‎开的编码序‎列则为外显‎子。

原核生物与真核生物的基因表达调控机制比较研究

原核生物与真核生物的基因表达调控机制比较研究

原核生物与真核生物的基因表达调控机制比较研究生命在地球上的起源是一个神秘而复杂的话题。

从最早的独立自主的化学反应体系,通过漫长的进化历程,生命逐渐演化出不同等级的生物,其中最基础的单细胞生物便是原核生物与真核生物的始祖。

原核生物与真核生物在基因表达调控机制上存在着很大的差别,下面将进行比较论述。

一、原核生物的基因表达调控机制原核生物是指没有细胞核的单细胞生物,最早的原核生物出现在大约35亿年前,有着非常重要的地位。

原核生物的基因组相对来说比真核生物小得多,一般只含有1-2个圆形染色体。

在原核生物的基因表达调控中,转录因子所扮演的角色非常重要。

原核生物中的转录因子为启动因子,负责启动转录过程,调控基因的表达。

转录因子与DNA 序列通过水素键、离子键以及疏水性相互作用相结合,在指定DNA序列上形成复合物,这一复合物会招引RNA聚合酶,启动转录。

原核生物中还存在着反式遗传调控机制,包括RNA干扰机制、CRISPR-Cas系统等。

这些机制主要通过抑制基因的翻译过程,起到噪音消除、基因保护的作用。

二、真核生物的基因表达调控机制真核生物是指有细胞核的生物,包括了真核细胞和多细胞生物,在生命演化的过程中是非常重要的一环。

与原核生物相比,真核生物的基因组规模大得多,基因数量不仅提高了,而且基因的结构也更加复杂。

真核细胞的基因表达调控是一个复杂的过程,包括转录调控、转录后调控、RNA剪接、RNA降解、转录后修饰等等。

转录调控是最初的步骤,由启动子、转录因子、剪切因子、逆转录因子等组成,调控基因表达。

在转录之后,mRNA还要经过RNA剪接、RNA加工、RNA运输等过程,才能变成起到功能的成熟mRNA。

此外,在细胞核种还有DNA甲基化等的表观遗传学调控。

在多细胞生物的体内,每个细胞都有其特异调控的贡献。

很多细胞类型和组织中,某些基因被特异地表达和沉默,这个过程是基于复杂的细胞信号网络的。

三、原核生物与真核生物的比较研究原核生物与真核生物的基因表达调控机制在很多方面存在着不同,归根结底是由于真核生物在结构上更加复杂,含有更多的基因。

原核生物与真核生物的区别

原核生物与真核生物的区别

原核生物与真核生物的区别原核生物与真核生物是生物界中两大主要类型,它们之间存在着许多明显的区别。

原核生物是指没有细胞核和细胞器的微生物,包括细菌和蓝藻;真核生物则是指有真正的细胞核和细胞器的生物,包括动植物、真菌和原生动物。

本文将就原核生物与真核生物的区别进行详细讨论。

首先,在细胞结构上,原核生物通常是单细胞生物,细胞体积较小,且没有细胞核和细胞器,其遗传物质以DNA环状分子存在于胞质中。

而真核生物则是多细胞生物或单细胞生物,细胞较大,具有真正的细胞核,其中包含线性DNA分子,并且拥有各种细胞器,例如线粒体、叶绿体和内质网等。

其次,在遗传物质组成上,原核生物的基因组相对简单,基因数量少且基因间存在着重叠,基因之间没有非编码区域。

而真核生物的基因组更为复杂,基因数量多且编码区域与非编码区域相互交错,基因之间有明确的分界。

此外,真核生物的基因组中还存在着大量的垃圾DNA,而原核生物的基因组中几乎没有垃圾DNA。

此外,在RNA合成和加工过程中,原核生物的mRNA在转录后可以直接被翻译成蛋白质,而真核生物的mRNA需要在细胞核中经过剪接和修饰等加工过程后才能被翻译成蛋白质。

这一过程使得真核生物在基因表达调控上更为灵活和复杂。

另外,原核生物和真核生物在生命周期和生殖方式上也存在着显著差异。

原核生物的生命周期相对简单,通常为单细胞有丝分裂或不完全分裂;而真核生物的生命周期较为复杂,包括有丝分裂、减数分裂和生殖细胞的形成等过程。

此外,真核生物的生殖方式更为多样化,包括性生殖和无性生殖等多种形式。

总的来说,原核生物与真核生物之间存在着诸多的区别,包括细胞结构、遗传物质组成、RNA加工过程、基因表达调控、生命周期和生殖方式等方面。

这些区别反映了生物进化过程中的多样性和复杂性,也为我们理解生物之间的关系和生命的奥秘提供了重要线索。

原核生物基因组和真核生物基因组比较区别

原核生物基因组和真核生物基因组比较区别

原核生物基因组和真核生物基因组的区别:1、真核生物基因组指一个物种的单倍体染色体组(1n)所含有的一整套基因。

还包括叶绿体、线粒体的基因组。

原核生物一般只有一个环状的DNA分子,其上所含有的基因为一个基因组。

2、原核生物的染色体分子量较小,基因组含有大量单一顺序(unique-sequences),DNA仅有少量的重复顺序和基因。

真核生物基因组存在大量的非编码序列。

包括:.内含子和外显子、.基因家族和假基因、重复DNA序列。

真核生物的基因组的重复顺序不但大量,而且存在复杂谱系。

3、原核生物的细胞中除了主染色体以外,还含有各种质粒和转座因子。

质粒常为双链环状DNA,可独立复制,有的既可以游离于细胞质中,也可以整合到染色体上。

转座因子一般都是整合在基因组中。

真核生物除了核染色体以外,还存在细胞器DNA,如线粒体和叶绿体的DNA,为双链环状,可自主复制。

有的真核细胞中也存在质粒,如酵母和植物。

4、原核生物的DNA位于细胞的中央,称为类核(nucleoid)。

真核生物有细胞核,DNA序列压缩为染色体存在于细胞核中。

5、真核基因组都是由DNA序列组成,原核基因组还有可能由RNA组成,如RNA病毒。

原核生物和真核生物区别(从细胞结构、基因组结构和遗传过程分析)主要差别由真核细胞构成的生物。

包括原生生物界、真菌界、植物界和动物界。

真核细胞与原核细胞的主要区别是:【从细胞结构】1.真核细胞具有由染色体、核仁、核液、双层核膜等构成的细胞核;原核细胞无核膜、核仁,故无真正的细胞核,仅有由核酸集中组成的拟核2.真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有。

真核细胞有发达的微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否。

3.真核细胞有由肌动、肌球蛋白等构成的微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用。

真核细胞的核糖体为80S型,原核生物的为70S型,两者在化学组成和形态结构上都有明显的区别。

图示并比较原核生物与真核生物的基因结构特点的异同

图示并比较原核生物与真核生物的基因结构特点的异同

2.图示并比较原核生物与真核生物的基因结构特点的异同。

(1)原核生物基因结构:
真核生物基因结构:
(2)原核生物与真核生物基因结构不同点:
a.原核生物基因编码区是连续的,不断面的。

真核生物
基因编码区是间隔的,不连续的,断面的。

b.原核生物基因编码区不含外显子与内含子,而真核生
物基因编码区则有外显子与内含子。

c.原核生物基因结构较为简单,真核生物基因结构较复
杂且真核生物基因为断裂基因。

d.原核生物基因只有一个复制起点,真核基因为多复制
起点
e.原核生物基因结构含有操纵子,而真核基因一般没有
操纵子
f.原核生物基因为单拷贝基因,而真核基因为多拷贝的。

g.原核生物基因结构一般为环状,而真核基因为链状。

原核生物与真核生物基因结构相同点:
a.均含有编码区和非编码区。

b.均含有转录起点和终点。

c.在非编码区都含有调控遗传信息表达的核苷酸序列,在编码区上游都含有与RNA聚合酶结合的启动子位点。

分子生物学考点整理1

分子生物学考点整理1

分子生物学考点整理符广勇朱兰第一章.绪论一、分子生物学概念分子生物学是从分子水平研究生命本质为目的的一门新兴边缘学科,是研究核酸、蛋白质等所有生物大分子结构与功能相互关系的科学,是人类从分子水平上真正揭开生物世界奥秘、由被动地适应自然界转向主动地改造和重组自然界的基础学科。

二、重组DNA技术又称基因技术,是20世纪70年代初兴起的技术科学,目的是将不同的DNA片段按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。

三、基因表达的调控基因表达的调控主要表现在信号传导研究、转录因子研究及RNA剪辑三个方面。

四、转录因子转录因子是能与基因5`端上游特定序列专一结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子。

第二章.染色体与DNA一、染色体上的蛋白质染色体上的蛋白质主要包括组蛋白和非组蛋白。

根据凝胶电泳性质可以把组蛋白分为H1、H2A、H2B、H3、H4。

这些组蛋白都含有大量的赖氨酸和精氨酸。

二、组蛋白的特性1.进化上的极端保守性不同种生物组蛋白的氨基酸组成是十分相似的,特别是H3、H4。

2.无组织特异性到目前为止,仅发现鸟类、鱼类及两栖类红细胞不含H1而带有H5,精细胞染色体的组蛋白是鱼精蛋白这两个例外。

3.肽链上氨基酸分布的不对称性碱性氨基酸集中分布在N端的半条链上。

4.组蛋白的修饰作用包括甲基化、乙酰化、磷酸化、泛素化及ADP核糖基化。

5.富含赖氨酸的组蛋白H5三、HMG蛋白叫高迁移率蛋白四、真核细胞DNA序列的分类1.不重复序列2.中度重复序列3.高度重复序列重复序列的意义:若某一重复序列出现错误,对基因的影响不大,稳定性较高;在短时间内可同时产生大量的基因产物。

重复序列的应用:应用于分子标记的作用:卫星DNA(便于分子标记)和微卫星DNA五、真核生物基因组与原核生物基因组的区别1.真核基因组庞大,原核生物基因组小2.真核基因组存在大量的重复序列,原核基因组没有重复序列3.真核基因组大部分是非编码序列,原核基因组大多是编码序列4.真核基因组的转录产物为单顺反子,原核基因组转录产物多为多顺反子5.真核基因是断裂基因,有内含子结构,原核基因为连续基因,几乎没有内含子结构6.真核基因组存在大量的顺式作用原元件,包括启动子、增强子和沉默子等,原核基因组基本没有增强子和沉默子7.真核基因组存在大量的DNA多态性,原核基因组很少有8.真核基因组具有端粒结构,原核基因组没有端粒结构六、重叠基因(Overlapping gene)指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上的基因的组成部分。

原核生物和真核生物基因表达调控特点的比较

原核生物和真核生物基因表达调控特点的比较

亚基首先与mRNA模板相结合, 与Met-tRNA相结合,再与模板mRNA结
再与fMet-tRNA结合,最后与 合,最后与60s大亚基结合生成起始复
50s大亚基结合
合物
肽链的终止
三种释放因子RF1,RF2,RF3
eRF1和eRF3
真核生物和原核生物复制的不同点:
1. 真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则 在整个细胞生长过程中都可进行DNA合成
真核生物
DNA与蛋白质结合形成, 储存于细胞核内,除配子细胞外,体 细胞内的基因组是双份的(即双倍体)
复制子 基因组较小,只有一个复制子
基因组较大,具有许多复制起点,而 每个复制子的长度较小。
顺反子
多顺反子,功能上相关的几个基因 单顺反子,一个结构基因经过转录和
往往在一起组成操纵子结构。
翻译生成一个mRNA分子和一条肽链。
2. 基因组远远大于原核生物的基因组,具有许多复制起点,而每 个复制子的长度较小。
3. 真核细胞基因转录产物为单顺反子。一个结构基因经过转录和 翻译生成一个mRNA分子和一条肽链。原核生物基因转录产物为 多顺反子,功能上相关的几个基因往往在一起组成操纵子结构。
4. 真核基因组大部分基因含有内含子,因此,基因是不连续的, 称为断裂基因,需要进行转录后加工;原核基因组没有内含子 结构,不需进行转录后剪接加工。
一个mRNA分子通常含多个基因
一种
三种
可以直接起始转录合成RNA 不能独立转录RNA,三种聚合酶都必须
在蛋白质转录因子的协助下才能进行
翻译
原核生物
RNA的转录
真核生物
氨基酸的活化 起始氨基酸是甲酰甲硫氨酸
从生成甲硫氨酰-tRNAi开始

原核生物和真核生物 基因组的差别

原核生物和真核生物 基因组的差别

真核生物基因表达调控
• 断裂基因:真核生物无操纵子,基因是不连续的,同 一基因的编码序列被数量不等的非编码序列间隔 隔成多个较小的片段。 • 编码蛋白的片段叫外显子(exon),非编码蛋白的片 段叫内含子(intron)。基因组中不编码的区域多于 编码区域,因此真核基因被称为断裂基因。内含子 虽然不被翻译,但特定的核苷酸序列对RNA的精确 剪接加工是不可缺少的。 • 如已经发现血红蛋白α链的内含子突变会引起剪 接差错,使合成α链结构异常而导致地中海贫血症。
原核生物DNA结构特点
大多数为双螺旋结构,少数以单链形式存在, 核苷酸大多数为环状,少数为线状·有些细菌 有染色体外遗传因子,即质粒DNA。
真核生物基因组
真核生物的遗传物质集中在细胞核中,并与 某些特殊的蛋白质组成核蛋白,形成一种致 密的染色体结构。且染色体数量多,结构复 杂。由几个或几十个更多的双链DNA分子 组成。 基因组大,结构复杂,DNA有多个复制起 点,每个基因组中含有数万个基因。
原核生物的基因表达调控
• 原核生物不同于真核生物的基因结构,存在 转录单元,即操纵子·原核生物的转录受操纵 子控制,任何开启和关闭操纵子的因素都会 影响基因的转录,从而控制基因的表达。
操纵子
• 定义:基因表达的一个协调单位,包括在功能上 相关的几个结构基因和由启动子和操纵基因组成 的控制部位。 • 原核生物基因组中,功能相关的基因常丛集在基因 组的一个或几个特定部位,形成一个功能单位或转 录单元,其活性受到同步调控,它们可被转录为多个 mRNA分子,叫多顺反子。操纵子是最具典型的模 式, • 如大肠杆菌中含2584个已知和推知的操纵子。
核小体
真核生物存在以核小体为单位的染色质结 构,染色质的基本结构是核小体。 核小体是双螺旋DNA以左手螺旋绕在4对组 蛋白H2A,H2B, H3, H4所组成的八聚体核 心外1.75周,形成的结构。并与组蛋白H1构 成的连接区相连起来形成串珠样结构。

分子生物学(2)

分子生物学(2)

名词解释基因:产生一条多肽链或功能RNA所需的全部核苷酸序列。

基因组:生物有机体的单倍体细胞中的所有DNA,包括核中的染色体DNA和线粒体、叶绿体等亚细胞器的DNA。

基因组大小:是指一个基因组中所拥有的DNA含量,一般以重量计算,单位通常是皮克(10-12克),写成pg;有时也用道耳顿;或是以核苷酸碱基对的数量表示,单位为百万计,写成Mb或Mbp。

1pg等于978Mb。

C值矛盾:也称C值反常现象,C值谬误。

C值,通常是指一种生物单倍体基因组DNA的总量,以每细胞内的皮克(pg)数表示。

而C值矛盾则是C值往往与种系的进化复杂性不一致的现象,即基因组大小与遗传复杂性之间没有必然的联系,某些低等的生物C值却很大,如一些两栖动物的C值甚至比哺乳动物还大。

核型:是指染色体组在有丝分裂中期的表型, 是染色体数目、大小、形态特征的总和。

在对染色体进行测量计算的基础上, 进行分组、排队、配对, 并进行形态分析的过程叫核型分析。

CpG岛:C pG双核苷酸在人类基因组中的分布很不均一,而在基因组的某些区段,CpG保持或高于正常概率,GC含量大于50%,长度超过200bp。

卫星DNA:又称随机DNA。

因为真核细胞DNA的一部分是不被转录的异染色质成分,其碱基组成与主体DNA不同,因而可用密度梯度沉降技术如氯化铯梯度离心将它与主体DNA分离。

卫星DNA通常是高度串联重复的DNA。

基因簇:指基因家族中的各成员紧密成簇排列成大串的重复单位,定于染色体的的特殊区域。

基因簇少则可以是由重复产生的两个相邻相关基因所组成,多则可以是几百个相同基因串联排列而成。

他们属于同一个祖先的基因扩增产物。

也有一些基因家族的成员在染色体上排列并不紧密,中间还含有一些无关序列。

但总体是分布在染色体上相对集中的区域。

基因家族:在基因组进化中,一个基因通过基因重复产生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物。

原核生物和真核生物的区别3篇

原核生物和真核生物的区别3篇

原核生物和真核生物的区别第一篇:原核生物和真核生物的定义和特征原核生物和真核生物是两种不同的生物类别。

原核生物是一种单细胞生物,没有细胞核,细胞质没有明显的细胞器。

真核生物则是一种有细胞核的生物,细胞质包含多种细胞器。

这两者最重要的区别在于细胞核。

原核生物的基因组通常包含一个环形DNA的染色体,有些原核还包含一些较小的DNA片段,称为质粒。

这些质粒在原核细胞中自复制,传递给下一代,提供细胞对外界环境的适应功能。

一些原核也能进行水平基因转移,即把DNA直接转移到其他细胞中去。

真核生物则使用线性的染色体。

它们包含许多基因,这些基因被编码在DNA序列中。

同时,真核细胞中还有很多其他的细胞器,包括线粒体、内质网、高尔基小体等,它们的功能是维持细胞代谢,同时参与细胞分裂和分化等生命过程。

早期的原核生物和真核生物有一些特殊的结构和生物化学特性。

其中一些自然演化成了真核生物,其他原核生物则仍保持了较原始的状态。

这些原核生物一般都生活在支持生命的极端环境中,如高温、高压、高盐度、低温等。

总的来说,原核生物和真核生物的最大区别在于是否拥有细胞核和其他细胞器。

此外,原核生物还具有一些特殊的生化特性,如GC含量较高的DNA、RNA聚合酶结构等。

第二篇:原核生物和真核生物的代谢差异原核生物和真核生物在代谢方面也存在一些不同。

原核生物没有线粒体,需要靠细胞质内的酶进行细胞呼吸,在氧气存在的情况下,产生的能量由ATP酶将ADP转化为ATP来存储。

此外,原核细胞也没有内质网和高尔基体等结构,不具备细胞分泌能力。

真核生物通过线粒体进行呼吸作用,产生ATP。

线粒体呼吸作用所产生的基质ATP通过细胞内膜增殖或ER转运至细胞膜和各个细胞器,以实现能量的有效利用。

在细胞内代谢过程中,真核生物还需要许多酶,如中间代谢酶(如乳酸脱氢酶、酮酸脱氢酶等)、酸性磷酸酶、三磷酸腺苷磷酸酶等。

因此,原核细胞代谢的能力较低,还需要依靠其他生物体进行共生,在共生过程中,原核细胞会利用其他生物的代谢产物进行细胞代谢。

真核生物和原核生物的异同

真核生物和原核生物的异同

从DNA复制、RNA转录、蛋白质翻译3个方面,叙述真核生物和原核生物的异同。

一、真核生物和原核生物的不同点A、真核生物和原核生物复制的不同点:1.真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成2.原核生物DNA的复制是单起点的,而真核生物染色体的复制则为多起点的。

真核生物中前导链的合成并不像原核生物那样是连续的,而是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。

3.真核生物DNA的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原核生物要短。

4.原核生物中有DNA聚合酶Ⅰ、Ⅱ、Ⅲ三种聚合酶,并有DNA聚合酶Ⅲ同时控制两条链的合成。

真核生物中有α、β、γ、ε、δ五种聚合酶。

聚合酶α、δ是DNA 合成的主要酶,分别控制不连续的后随链以及前导链的生成。

聚合酶β可能与DNA修复有关,聚合酶γ则是线粒体中发现的唯一一种DNA聚合酶.5.染色体端体的复制不同。

原核生物的染色体大多数为环状,而真核生物染色体为线状。

末端有特殊DNA序列组成的结构成为端体。

B、真核生物和原核生物转录的不同点:1.真核生物的转录在细胞核内进行,原核生物则在拟核区进行。

2.真核生物mRNA分子一般只编码一个基因,原核生物的一个mRNA分子通常含多个基因。

3.真核生物有三种不同的RNA聚合酶催化RNA合成,而在原核生物中只有一种RNA 聚合酶催化所有RNA 的合成。

4.真核生物的RNA聚合酶不能独立转录RNA,三种聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录,其RNA聚合酶对转录启动子的识别也比原核生物要复杂得多。

原核生物的RNA聚合酶可以直接起始转录合成RNA。

C、真核生物和原核生物翻译的不同点:1.氨基酸的活化:原核起始氨基酸是甲酰甲硫氨酸,真核是从生成甲硫氨酰-tRNAi开始的。

2.翻译的起始:原核的起始tRNA是fMet-tRNA(fMet上角标),30s小亚基首先与mRNA模板相结合,再与fMet-tRNA(fMet上角标)结合,最后与50s大亚基结合。

原核生物与真核生物的遗传物质与基因组织结构的差异

原核生物与真核生物的遗传物质与基因组织结构的差异

原核生物与真核生物的遗传物质与基因组织结构的差异按照细胞的结构和遗传物质在细胞内的分布可将生命有机体划分为原核生物和真核生物两大类。

噬菌体和病毒既不是原核生物也不是真核生物它们是一种超分子的亚细胞生命形式它们的遗传物质是DNA或RNA。

特征原核生物真核生物核膜无有不同染色体数目11核小体结构无有核仁无有遗传交换质粒介导单向配子融合DNA是原核生物染色体的主要组成成分含量占染色体的80以上其余为RNA和蛋白质。

原核生物的遗传物质一般为环状DNADNA存在于细胞内相对集中的区域一般称为拟核nucleoid但并无核膜包裹。

拟核当中的DNA只以裸露的核酸分子存在虽与少量蛋白质结合但不形成染色体结构。

当然它还有一些位于拟核之外的遗传物质——质粒和转座因子。

真核生物中也含有转座因子原核生物一般只有一条染色体即一个核酸分子DNA或RNA而且染色体DNA大多数以双链、共价闭和、环状的形式存在。

多少年来一直以为原核生物的单一环状染色体是区别于真核生物中的多条线状染色体的最好标志。

然而越来越多的研究证明除单一环状的染色体外有些细菌具有多条环状染色体还有些细菌具有线状染色体。

如根癌土壤杆菌含有2条染色体其中一条是长度为3.0Mb的环状染色体另一条是长度为2.1Mb的线状染色体原核细胞中含有一些DNA结合蛋白它们与DNA结合后帮助DNA进行高度折叠。

这些参与DNA折叠的蛋白质称为类组蛋白histone-like protein。

除类蛋白外DNA还与其他蛋白质相结合如与复制、转录和加工有关的蛋白质结合在一起这样其环状染色体DNA以紧密缠绕的、致密的、不规则小体形式存在该小体即是拟核。

真核生物基因组与原核生物基因组有很大的差异真核生物基因的结构、基因表达的过程、表达调控等方面都远比原核生物复杂。

真核生物和原核生物的最大差异之一是遗传物质的分布和存在状态。

原核细胞的遗传物质是以裸露DNA或RNA的形式位于拟核之中而真核细胞的遗传物质是以与组蛋白和非组蛋白相结合缠绕成多条染色体的形式集中于细胞核中。

真核与原核生物的异同

真核与原核生物的异同

生物大分子范围内原核生物与真核生物的异同1.从遗传物质上:原核生物的遗传物质主要是以双螺旋DNA 构成的一条染色体,仅形成一个核区,没有核膜包围,无核仁,称为原核或拟核,无组蛋白与之相结合。

真核生物的遗传物质以双螺旋DNA 构成一条或一条以上的多条染色体群,形成一个真核,有一核膜包围,膜上有孔,有核仁,明显有别于周围的细胞质,并有组蛋白与之相结合。

而且各种细胞器如线粒体、叶绿体携带有自己的DNA ,可自主复制。

2.从细胞结构上:原核生物细胞的细胞质由细胞膜包围,并有细胞膜大量褶皱内陷入细胞质中形成中间体或称为间体。

不含其他分化明显的细胞器,只含有核糖体。

真核生物细胞同样由细胞膜包围,但不内陷,内含多种细胞器,如主要进行呼吸能量代谢的线粒体和光合作用的叶绿体等。

各种细胞器有各自的膜包围,细胞器膜与细胞膜之间无直接关系。

真核细胞具有由染色体、核仁、核液、双层核膜等构成的细胞核;原核细胞无核膜、核仁,故无真正的细胞核,仅有由核酸集中组成的拟核。

真核细胞有由肌动、肌球蛋白等构成的微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用。

原核细胞功能上与线粒体相当的结构是质膜和由质膜内褶形成的结构,但后者既没有自己特有的基因组,也没有自己特有的合成系统。

真核生物的植物含有叶绿体,它们亦为双层膜所包裹,也有自己特有的基因组和合成系统。

与光合磷酸化相关的电子传递系统位于由叶绿体的内膜内褶形成的片层上。

原核生物中的蓝细菌和光合细菌,虽然也具有进行光合作用的膜结构,称之为类囊体,散布于细胞质中,未被双层膜包裹,不形成叶绿体。

3. 从蛋白质的合成上:原核生物和真核生物细胞的蛋白质合成都是在核蛋白体上进行,但大小不同,原核生物的核蛋白体为70S ,而真核生物的核蛋白体为80S ,其细胞器的核蛋白体也为70S 。

而且它们各自的亚单位构成也不一样,原核生物的核蛋白体是由50S 和30S 的两个亚单位构成,真核生物的核蛋白体是由60S 和40S 两个亚单位构成,各亚单位的构成上也有区别。

原核生物与真核生物的差异描述

原核生物与真核生物的差异描述

原核生物与真核生物的差异原核生物指的是一大类细胞核无核膜包裹,只存在称作核区的裸露DNA的原始单细胞生物,包括真细菌和古生菌两大类群。

而真核生物是一大类细胞核具有核膜,能进行有丝分裂,细胞质中存在线粒体或同时存在叶绿体等多种细胞器的生物。

并且真核生物种类特别多,小到微生物,大到动植物,都是真核生物。

原核生物与真核生物(此处仅指微生物)的差异可从下面四个方面进行讨论。

一、细胞结构方面:原核生物没有细胞骨架,而真核生物有细胞骨架。

原核生物的鞭毛属于亚显微结构,细而简单;而真核生物的鞭毛属于显微结构,有微管组成,并且粗而复杂。

原核生物的细胞壁中多糖的主要成分是肽聚糖,而真核生物的主要成分是纤维素和几丁质。

原核生物的细胞膜也不含甾醇和胆固醇,但有呼吸或光合的组分,真核生物与之相反。

原核生物的细胞质膜也常缺少固醇,细胞质结构也简单,没有微管结构,没有流动性,只有核糖体这一种细胞器,呼吸系统位于质膜或中体。

相比之下真核生物的细胞质结构就复杂得多。

另外,原核生物的核糖体是70S的,而真核生物是80S的。

原核生物没有真正的细胞核,只有无核膜包裹的拟核。

原核生物的拟核中没有核仁,没有组蛋白,仅有由环状DNA分子构成的单个染色体,但其DNA含量高。

在真核生物中染色体是由线状DNA和组蛋白组成的。

原核生物基因的重复顺序、重复次数极少,所占基因组的比率很低,同时重复片段小,没有高、中重复顺序之分。

而在在真核生物基因组中重复顺序DNA 普遍存在,不仅重复次数多,而且所占基因组比率高,并具多样性。

不仅如此,基因组内基因的排列在原核生物中功能相关的基因有高度集中的表现, 且愈是简单的生物愈是集中,而真核生物基因组中功能相关基因的排列更多的是处于分散状态,在一条染色体上常被一些不编码的顺序所隔开。

二、个体形态学方面原核生物的细胞体积一般较小,只有1~10微米,而真核生物体积较大,一般是10~100微米。

原核生物的个体形态也简单,且形状较少,。

真核生物细胞核基因组的特点

真核生物细胞核基因组的特点

真核生物细胞核基因组的特点
真核生物细胞核基因组与原核生物基因组相比,具有以下主要特点:
1.基因组大小更大
真核生物细胞核基因组的大小通常在几百万到几十亿碱基对之间,大大超过原核生物。

这是由于真核基因组包含大量的非编码DNA序列。

2.线性分子结构
真核生物的DNA分子以线性形式存在于细胞核内,而不是环状结构。

3.含有间隔子
真核基因的编码序列常常被非编码的内含子序列所间隔,需要剪切才能形成成熟mRNA。

而原核基因一般不含内含子。

4.基因组分为多条染色体
真核基因组通常由多条线性染色体DNA分子组成,每条染色体携带成百上千个基因。

5.含有大量重复序列
真核基因组中存在大量的高度重复和中度重复的非编码DNA序列。

6.基因表达受精细调控
真核生物基因的转录和翻译过程受多种调控机制的复杂调节,如染色质重塑、转录因子等。

7.存在序列可移动性
真核基因组中存在转座子和反转录病毒等可移动的DNA序列元件。

8.基因组进化较缓慢
由于真核生物有性生殖,其基因组进化速率较原核生物慢。

总的来说,真核生物细胞核基因组不仅规模大、结构复杂,而且基因表达和进化模式也与原核生物有所不同,反映了真核生物更高级的遗传调控水平。

第三章 基因组(医学分子生物学,2011.9,2011级研究生)

第三章 基因组(医学分子生物学,2011.9,2011级研究生)
26
6. 原核生物基因组中的基因密度非常高,基因 组序列中编码区所占的比例较大(约为50% 左右),非编码区内主要是一些调控序列。 7. 结构基因是连续的,没有内含子 8. 基因组中重复序列很少。编码蛋白质的结构 基因常为单拷贝(占99.7%) ,但编码rRNA 的 基因往往是多拷贝的。 9. 具有编码同工酶的同基因 10. 不同的原核生物基因组中的GC含量变化很 大,其范围从25%~75%。因此测量基因组 的GC含量可以用来识别细菌种类。
重复序列
单拷贝序列或低重复序列:在整个基因组
中仅出现一次或少数几次,大部分为编码蛋白 质的结构基因
34
P17
反向重复序列: 两个顺序相同的拷贝在DNA
链上呈反向排列。①两个反向排列的拷贝之间隔 着一段间隔序列;②两个拷贝反向串联在一起, 中间没有间隔序列,又称为回文结构。
串联重复序列: 重复序列 编码区串联重复: 人类5种组蛋白基因密集在
27
第四节
真核生物基因组
28
一、真核生物基因组远大于原核生物基因组
真核生物基因组复杂性体现在两个方面:
具有复杂多样的结构形式
具有复杂精细的基因表达调控机制
真核生物基因组结构庞大,人类单倍 体基因组DNA约3.3109 bp ,约有3~3.5万 个基因。大肠杆菌基因组只有4.6106 bp。
真核基因组中非编码序列(non-coding sequence, NCS) 占90%以上。人类基因组中,编码序列仅占 3%左右。这是真核生物与细菌、病毒的重要区别, 在一定程度上也是生物进化的标尺。 基因的内含子、调控序列等
非编码序列
重复序列
>90%
约占DNA 总量50%
32
编码序列:rRNA、tRNA、组蛋白、 免疫球蛋白的结构基因
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、真核生物基因组指一个物种地单倍体染色体组()所含有地一整套基因.还包括叶绿体、线粒体地基因组.
原核生物一般只有一个环状地分子,其上所含有地基因为一个基因组.
、原核生物地染色体分子量较小,基因组含有大量单一顺序(),仅有少量地重复顺序和基因.个人收集整理勿做商业用途
真核生物基因组存在大量地非编码序列.包括:.内含子和外显子、.基因家族和假基因、重复序列.真核生物地基因组地重复顺序不但大量,而且存在复杂谱系.个人收集整理勿做商业用途
、原核生物地细胞中除了主染色体以外,还含有各种质粒和转座因子.质粒常为双链环状,可独立复制,有地既可以游离于细胞质中,也可以整合到染色体上.转座因子一般都是整合在基因组中.个人收集整理勿做商业用途
真核生物除了核染色体以外,还存在细胞器,如线粒体和叶绿体地,为双链环状,可自主复制.有地真核细胞中也存在质粒,如酵母和植物.个人收集整理勿做商业用途
、原核生物地位于细胞地中央,称为类核().
真核生物有细胞核,序列压缩为染色体存在于细胞核中.
、真核基因组都是由序列组成,原核基因组还有可能由组成,如病毒.
原核生物和真核生物区别(从细胞结构、基因组结构和遗传过程分析)主要差别
由真核细胞构成地生物.包括原生生物界、真菌界、植物界和动物界.真核细胞与原核细胞地主要区别是:
【从细胞结构】
.真核细胞具有由染色体、核仁、核液、双层核膜等构成地细胞核;原核细胞无核膜、核仁,故无真正地细胞核,仅有由核酸集中组成地拟核个人收集整理勿做商业用途
.真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有.
真核细胞有发达地微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否.
.真核细胞有由肌动、肌球蛋白等构成地微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用.个人收集整理勿做商业用途
真核细胞地核糖体为型,原核生物地为型,两者在化学组成和形态结构上都有明显地区别. .原核细胞功能上与线粒体相当地结构是质膜和由质膜内褶形成地结构,但后者既没有自己特有地基因组,也没有自己特有地合成系统真核生物地植物含有叶绿体,它们亦为双层膜所包裹,也有自己特有地基因组和合成系统.与光合磷酸化相关地电子传递系统位于由叶绿体地内膜内褶形成地片层上.原核生物中地蓝细菌和光合细菌,虽然也具有进行光合作用地膜结构,称之为类囊体,散布于细胞质中,未被双层膜包裹,不形成叶绿体.个人收集整理勿做商业用途
【从基因组结构】
.真核生物中除某些低等类群(如甲藻等)地细胞以外,染色体上都有种或种组蛋白与结合,形成核小体;而在原核生物则无.个人收集整理勿做商业用途
.真核生物中除某些低等类群(如甲藻等)地细胞以外,染色体上都有种或种组蛋白与结合,形成核小体;而在原核生物则无.个人收集整理勿做商业用途
.真核细胞含有地线粒体,为双层被膜所包裹,有自己特有地基因组、核酸合成系统与蛋白质合成系统,其内膜上有与氧化磷酸化相关地电子传递链个人收集整理勿做商业用途
【从遗传过程】
.真核细胞地转录在细胞核中进行,蛋白质地合成在细胞质中进行,而原核细胞地转录与蛋
白质地合成交联在一起进行.个人收集整理勿做商业用途
.真核细胞地有丝分裂是原核细胞所没有地.
.真核细胞在细胞周期中有专门地复制期(期);原核细胞则没有,其复制常是连续进行地. 最原始地真核生物地直接祖先很可能是一种异常巨大地原核生物,体内具有由质膜内褶而成地象内质网那样地内膜系统和原始地微纤维系统,能够作变形运动和吞噬.以后内膜系统地一部分包围了染色质,于是就形成了最原始地细胞核.内膜系统地其他部分则分别发展为高尔基体、溶酶体等细胞器.按照美国学者.马古利斯等重新提出地“内共生说”(见细胞起源),线粒体起源于胞内共生地能进行氧化磷酸化地真细菌,而叶绿体则起源于胞内共生地能进行光合作用地蓝细菌.个人收集整理勿做商业用途
原核生物和真核生物
区别原核生物和真核生物:由原核细胞构成原核生物,如:蓝藻,细菌和放线菌;由真核细胞构成真核生物,如:真菌,植物和动物. 原核细胞与真核细胞地主要区别是有无成形地细胞核,也可以说是有无核膜,因为有核膜就有成形地细胞核. 个人收集整理勿做商业用途
显微镜下能观测到有无核膜.
原核生物:
原核生物是由原核细胞组成地生物,包括蓝细菌、细菌、古细菌、放线菌、立克次氏体、螺旋体、支原体和衣原体等.原核生物具有以下地特点:①核质与细胞质之间无核膜因而无成形地细胞核;②遗传物质是一条不与组蛋白结合地环状双螺旋脱氧核糖核酸()丝,不构成染色体(有地原核生物在其主基因组外还有更小地能进出细胞地质粒);③以简单二分裂方式繁殖,无有丝分裂或减数分裂;④没有性行为,有地种类有时有通过接合、转化或转导,将部分基因组从一个细胞传递到另一个细胞地准性行为(见细菌接合);⑤没有由肌球、肌动蛋白构成地微纤维系统,故细胞质不能流动,也没有形成伪足、吞噬作用等现象;⑥鞭毛并非由微管构成,更无“”地结构,仅由几条螺旋或平行地蛋白质丝构成;⑦细胞质内仅有核糖体而没有线粒体、高尔基器、内质网、溶酶体、液泡和质体(植物)、中心粒(低等植物和动物)等细胞器;⑧细胞内地单位膜系统除蓝细菌另有类囊体外一般都由细胞膜内褶而成,其中有氧化磷酸化地电子传递链(蓝细菌在类囊体内进行光合作用,其他光合细菌在细胞膜内褶地膜系统上进行光合作用;化能营养细菌则在细胞膜系统上进行能量代谢);⑨在蛋白质合成过程中起重要作用地核糖体散在于细胞质内,核糖体地沉降系数为;⑩大部分原核生物有成分和结构独特地细胞壁等等.总之原核生物地细胞结构要比真核生物地细胞结构简单得多.个人收集整理勿做商业用途
原核生物地基因组一般都是由单拷贝序列组成地.相对于原核生物,真核生物基因组显得比较复杂,除了单拷贝序列外,还包括其他简单重复序列、中度和高度重复序列等等,这些不同地序列在真核生物中起着不同地作用,各自担当不同地角色. 个人收集整理勿做商业用途
真核细胞与原核细胞地主要区别是:
①真核细胞具有由染色体、核仁、核液、双层核膜等构成地细胞核;原核细胞无核膜、核仁,故无真正地细胞核,仅有由核酸集中组成地拟核.个人收集整理勿做商业用途
②真核细胞地转录在细胞核中进行,蛋白质地合成在细胞质中进行,而原核细胞地转录与蛋白质地合成交联在一起进行.个人收集整理勿做商业用途
③真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有.
④真核生物中除某些低等类群(如甲藻等)地细胞以外,染色体上都有种或种组蛋白与结合,形成核小体;而在原核生物则无.个人收集整理勿做商业用途
⑤真核细胞在细胞周期中有专门地复制期(期);原核细胞则没有,其复制常是连续进行地.
⑥真核细胞地有丝分裂是原核细胞所没有地.
⑦真核细胞有发达地微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否.
⑧真核细胞有由肌动、肌球蛋白等构成地微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用.个人收集整理勿做商业用途
⑨真核细胞地核糖体为型,原核生物地为型,两者在化学组成和形态结构上都有明显地区别.
⑩真核细胞含有地线粒体,为双层被膜所包裹,有自己特有地基因组、核酸合成系统与蛋白质合成系统,其内膜上有与氧化磷酸化相关地电子传递链.个人收集整理勿做商业用途。

相关文档
最新文档