指令级并行性及其动态扩展
计算机体系结构期末试题-湖南城市学院
题一11.计算机系统结构的层次结构由高到低分别为应用语言机器级,高级语言机器级,汇编语言机器级,操作系统机器级,传统机器语言机器级,微程序机器级12.计算机系统弗林(Flynn)分类法,把计算机系统分成单指令流单数据流(SISD)、单指令流多数据流(SIMD)、多指令单数据流和多指令多数据流四大类。
13.透明指的是客观存在的事物或属性从某个角度看不到,它带来的好处是简化某级的设计,带来的不利是无法控制。
22.数据结构和数据表示之间是什么关系?确定和引入数据表示的基本原则是什么?数据表示是能由硬件直接识别和引用的数据类型。
数据结构反映各种数据元素或信息单元之间的结构关系。
数据结构要通过软件映象变换成机器所具有的各种数据表示实现,所以数据表示是数据结构的组成元素。
(2分)不同的数据表示可为数据结构的实现提供不同的支持,表现在实现效率和方便性不同。
数据表示和数据结构是软件、硬件的交界面。
(2分)除基本数据表示不可少外,高级数据表示的确定和引入遵循以下原则:(1)看系统的效率有否提高,是否减少了实现时间和存储空间。
(2)看引入这种数据表示后,其通用性和利用率是否高。
15.引入数据表示的两条基本原则是:一看系统的效率有否提高;二看数据表示的通用性和利用率是否高。
13.计算机组成指的是计算机系统结构的逻辑实现,包括机器级内的数据流和控制流的组成及逻辑设计等。
计算机实现指的是计算机组成的物理实现,。
21、软件和硬件在什么意义上是等效的?在什么意义上是不等效的?逻辑上等效,性能、价格、实现难易程度上不一样。
22.说明翻译和解释的区别和联系.区别:翻译是整个程序转换,解释是低级机器的一串语句仿真高级机器的一条语句。
联系:都是高级机器程序在低级机器上执行的必须步骤。
19.计算机系统结构也称计算机体系结构,指的是传统机器级的系统结构。
它是软件和硬件/固件的交界面,是机器语言汇编语言程序设计者或编译程序设计者看到的机器物理系统的抽象。
系统结构名词解释(3)
系统结构名词解释(3)系统结构名词解释结构冲突:因硬件资源满足不了指令重叠执行的要求而发生的冲突。
数据冲突:当指令在流水线中重叠执行时,因需要用到前面指令的执行结果而发生的冲突。
控制冲突:流水线遇到分支指令或其它会改变PC值的指令所引起的冲突。
定向:用来解决写后读冲突的。
在发生写后读相关的情况下,在计算结果尚未出来之前,后面等待使用该结果的指令并不见得是马上就要用该结果。
如果能够将该计算结果从其产生的地方直接送到其它指令需要它的地方,那么就可以避免停顿。
写后读冲突:考虑两条指令i和j,且i在j之前进入流水线,指令j用到指令i的计算结果,而且在i将结果写入寄存器之前就去读该寄存器,因而得到的是旧值。
读后写冲突:考虑两条指令i和j,且i在j之前进入流水线,指令j的目的寄存器和指令i的源操作数寄存器相同,而且j在i读取该寄存器之前就先对它进行了写操作,导致i读到的值是错误的。
写后写冲突:考虑两条指令i和j,且i在j之前进入流水线,,指令j和指令i的结果单元(寄存器或存储器单元)相同,而且j在i写入之前就先对该单元进行了写入操作,从而导致写入顺序错误。
这时在结果单元中留下的是i写入的值,而不是j写入的。
链接技术:具有先写后读相关的两条指令,在不出现功能部件冲突和Vi冲突的情况下,可以把功能部件链接起来进行流水处理,以达到加快执行的目的。
分段开采:当向量的长度大于向量寄存器的长度时,必须把长向量分成长度固定的段,然后循环分段处理,每一次循环只处理一个向量段。
半性能向量长度:向量处理机的性能为其最大性能的一半时所需的向量长度。
向量长度临界值:向量流水方式的处理速度优于标量串行方式的处理速度时所需的向量长度的最小值。
4.1解释下列术语指令级并行:简称ILP。
是指指令之间存在的一种并行性,利用它,计算机可以并行执行两条或两条以上的指令。
指令调度:通过在编译时让编译器重新组织指令顺序或通过硬件在执行时调整指令顺序来消除冲突。
指令级并行的概念
目 录
• 指令级并行简介 • 指令级并行技术 • 指令级并行应用场景 • 指令级并行面临的挑战与解决方案 • 指令级并行未来展望
01
指令级并行简介
定义与特点
定义
指令级并行是指计算机在执行程序时, 通过同时执行多个指令来提高处理速 度的一种并行处理技术。
特点
指令级并行主要依赖于处理器中的指 令流水线,通过并行执行多个指令, 实现处理速度的提升。
详细描述
超线程技术允许在一个物理处理器核心上同时运行多个线程,从而实现指令级的 并行处理。通过精细的调度和管理,超线程技术可以有效地利用处理器资源,提 高处理器的整体性能。
VLIW(Very Long Instruction Word)技术
总结词
VLIW技术是一种将多个操作码和操作数组合到一个长指令中,由处理器一次执行的方法。
VS
详细描述
EPIC技术强调在编译阶段对程序进行并 行化处理,通过分析程序中的指令关系和 数据依赖关系,自动地生成并行执行的代 码。EPIC技术的目标是最大化处理器的 并行执行能力,从而提高程序的执行效率 。
03
指令级并行应用场景
科学计算
科学计算是利用计算机进行大规模数值计算以解决科学研究 和工程领域中的复杂问题。指令级并行技术可以提高科学计 算的效率和精度,例如在气候模拟、流体动力学模拟、物理 模拟等领域的应用。
指令缓存失效问题
指令缓存失效问题
由于指令的执行结果可能被缓存在缓存中, 当指令并行执行时,缓存失效可能导致指令 重新读取数据,从而影响并行执行的效率。
解决方案
通过缓存行对齐技术,将并行执行的指令对 齐到同一缓存行,以减少缓存失效的次数。 此外,可以使用写回策略来将指令的执行结
计算机体系结构的基本概念
计算机体系结构的基本概念计算机体系结构是指机器语言程序的设计者或是编译程序设计者所看到的计算机系统的概念性结构和功能特性。
Amdahl所定义的体现结构是指程序员面对的是硬件的系统。
所关心的是如何合理的进行软硬件功能的分配。
计算机系统结构是指机器语言级的程序员所了解的计算机的属性,即外特性。
可以包含数据表示,寄存器定义、数量、使用方式,指令系统,中断系统,存存储系统,IO系统等。
计算机组成是计算机结构的逻辑实现。
可以包含数据通路宽度,专用部件设置,缓冲技术,优化处理等。
计算机的实现是指其计算机组成的物理实现。
包括处理机,主存部件的物理结构,器件的集成度,速度的选择,模块、硬件、插件底板的划分和连接。
从使用语言的角度,可以把计算机系统按功能从高到低分为7级:0应用语言机器级、1高级程序语言机器级、2汇编语言机器级、3操作系统机器级、4传统机器语言机器级、5微程序机器级和6电子线路级。
3~6级为虚拟机,其语言功能均由软件实现。
硬件功能分配的基本原则:(1)功能要求。
首先是应用领域对应的功能要求,其次是对软件兼容性的要求;(2)性能要求。
如运算速度,存储容量,可靠性,可维护性和人机交互能力等;(3)成本要求。
体系结构设计的方法有三种:由上而下-从考虑如何满足应用要求开始设计;由下而上-基于硬件技术所具有的条件;由中间开始的方法。
体系设计的步骤:需求分析、需求说明、概念性设计、具体设计、优化和评价。
计算机体系结构的分类:(1)弗林FL YNN分类法:按指令流和数据流将计算机分为4类:①单指令流、单数据流-Single Instruction Stream Single Data Stream,SISD。
计算机,即传统的单处理机,通常用的计算机多为此类,如脉动阵列计算机systolic array;②单指令流、多数据流-Multiple,SIMD。
典型代表是并行处理机。
其并行性在于指令一级。
如ILLIAC、PEPE、STARAN、MPP等;③MISD计算机;④MIMD计算机。
计算机体系结构性能优化方法
计算机体系结构性能优化方法在计算机体系结构的发展过程中,性能优化是一个至关重要的环节。
性能优化是指在保持计算机系统硬件和软件功能的前提下,提高其计算速度、响应时间、资源利用率和可靠性等方面的手段和措施。
本文将介绍一些常见的计算机体系结构性能优化方法。
一、并行计算并行计算是通过将一个任务拆分为多个子任务,然后将这些子任务分配给多个处理器同时执行的方法。
它可以充分利用多核处理器的并行计算能力,提高计算吞吐量和并发能力。
在并行计算中,需要注意任务的划分和调度,合理安排任务的调度顺序和负载均衡,以充分发挥并行计算的优势。
二、指令级并行指令级并行是通过同时执行多条指令来提高计算机的性能。
它包括指令并发和流水线技术。
指令并发是指在同一时钟周期内并行执行多条指令,充分利用处理器的执行单元。
流水线技术是指将指令的执行过程划分为多个阶段,使多条指令在不同阶段同时执行,以提高指令的吞吐量。
三、存储器层次结构优化存储器层次结构是计算机存储器的组织方式。
在性能优化中,存储器的访问速度是一个关键因素。
通过合理设计存储器的层次结构,如缓存技术、预取技术和虚拟存储器技术,可以提高存储器的访问速度和命中率,减少访问延迟,从而提高计算机的性能。
四、并行I/O优化在大规模数据处理和并行计算中,I/O操作成为性能瓶颈。
通过采用并行I/O技术,可以同时进行多个I/O操作,提高数据传输的速度和并发能力。
在并行I/O优化中,还可以使用缓冲区和预读取技术来提高I/O性能,减少CPU等待时间。
五、负载均衡优化负载均衡是指将任务合理分配给多个处理器,使得各个处理器的负载均衡,提高系统的整体性能。
在负载均衡优化中,需要考虑任务的复杂度和执行时间,采用任务分配算法和调度算法来实现任务的均衡分配。
六、优化算法和数据结构优化算法和数据结构是计算机程序设计的关键。
通过优选算法和数据结构,可以提高程序的效率和性能。
在实际应用中,可以使用一些常见的优化算法,如贪心算法、分治算法和动态规划算法,以及高效的数据结构,如哈希表和平衡二叉树,来优化计算机的性能。
archit44
4.3 动态分支预测技术
指令并行
处理器可达到的指令级并行度越高,控制相关 的影响越大 动态解决技术利用硬件对程序运行时分支的行 为进行预测,提前对分支操作做出反应,加快 分支处理的速度。分支预测的效果不仅取决于 其准确性,而且与分支预测时的开销密切相关。 分支转移的最终延迟取决于流水线的结构、预 测的方法和预测错误后恢复所采取的策略 动态分支预测技术要记录分支指令的历史、并 据此决定预测的分支,还要尽快找到分支目标 地址,从而避免控制相关造成流水线停顿
4.4 多指令流出技术
指令并行
将等于1的理想CPI减小,必须实现一个时钟周 期流出(发射issue)多条指令
超标量(Superscalar)处理器:每个时钟周期流出多条 指令(1~8),可以采用编译器进行静态调度顺序执行, 也可以采用硬件动态调度乱序执行 超长指令字(VLIW: Very Long Instruction Word):通 过编译器调度无关的多条指令(4~16)形成一条长指 令,每个时钟周期流出一条长指令 超级流水线(Super pipelining):将每个功能部件进一 步流水化,使得一个功能部件在一个时钟周期中可以处 理多条指令(可以简单地理解为很长的流水线)
WAW 冲突 (输出相关引起) 如果在SUB.D写入F10 之 前 ADD.D 执 行 结 束 , 会出现问题
寄存器换名可以消除WAR和WAW冲突
指令并行
DIV.D F4,F0,F2 SUB.D F10,F4,F6 ADD.D F8,F12,F14
DIV.D F4,F0,F2 SUB.D F10,F4,F6 ADD.D F8,F6,F14
① 根据历史记录(预测位状态)进行分支预测 ② 根据实际分支情况修改预测位
计算机系统结构--《张晨曦、王志英》课后习题参考答案
第1章计算机系统结构的基本概念1.1 解释下列术语层次机构: 按照计算机语言从低级到高级的次序, 把计算机系统按功能划分成多级层次结构, 每一层以一种不同的语言为特征。
这些层次依次为: 微程序机器级, 传统机器语言机器级, 汇编语言机器级, 高级语言机器级, 应用语言机器级等。
虚拟机: 用软件实现的机器。
翻译: 先用转换程序把高一级机器上的程序转换为低一级机器上等效的程序, 然后再在这低一级机器上运行, 实现程序的功能。
解释: 对于高一级机器上的程序中的每一条语句或指令, 都是转去执行低一级机器上的一段等效程序。
执行完后, 再去高一级机器取下一条语句或指令, 再进行解释执行, 如此反复, 直到解释执行完整个程序。
计算机系统结构: 传统机器程序员所看到的计算机属性, 即概念性结构与功能特性。
在计算机技术中, 把这种本来存在的事物或属性, 但从某种角度看又好像不存在的概念称为透明性。
计算机组成: 计算机系统结构的逻辑实现, 包含物理机器级中的数据流和控制流的组成以及逻辑设计等。
计算机实现: 计算机组成的物理实现, 包括处理机、主存等部件的物理结构, 器件的集成度和速度, 模块、插件、底板的划分与连接, 信号传输, 电源、冷却及整机装配技术等。
系统加速比: 对系统中某部分进行改进时, 改进后系统性能提高的倍数。
Amdahl定律: 当对一个系统中的某个部件进行改进后, 所能获得的整个系统性能的提高, 受限于该部件的执行时间占总执行时间的百分比。
程序的局部性原理: 程序执行时所访问的存储器地址不是随机分布的, 而是相对地簇聚。
包括时间局部性和空间局部性。
CPI: 每条指令执行的平均时钟周期数。
测试程序套件: 由各种不同的真实应用程序构成的一组测试程序, 用来测试计算机在各个方面的处理性能。
存储程序计算机: 冯·诺依曼结构计算机。
其基本点是指令驱动。
程序预先存放在计算机存储器中, 机器一旦启动, 就能按照程序指定的逻辑顺序执行这些程序, 自动完成由程序所描述的处理工作。
指令级并行
可弱化为:指令执行顺序的改变不能导致程序中发 生新的异常。
如果能做到保持程序的数据相关和控制相关, 就能保持程序的数据流和异常行为。
例:
DADDU R2,R3,R4
BEQZ R2,L1
LW
R1,0(R2)
L1 :
如果不保持关于R2的数据相关,程序的执 行结果就会改变。
软硬件结合方法:显式并行指令计算EPIC。
4.5 循环展开和指令调度
4.5.1 循环展开和指令调度的基本方法 为了充分发挥流水线的作用,必须设法让
它满负荷工作。因此要充分开发指令之间 存在的并行性,找出不相关的指令序列, 让它们在流水线上重叠并行执行。 增加指令间并行性最简单和最常用的方法
浮点计算
另一个浮点计算
3
浮点计算 浮点store(S.D)
2
浮点load(L.D) 浮点计算
1
浮点load(L.D) 浮点store(S.D)
0
Load指令的结果可以通过定向路径及时送给 store指令,所以延迟为0,不用插入停顿。
例4.6 对于下面的源代码,转换成MIPS汇编 语言,在不进行指令调度和进行指令调度两 种情况下,分析其代码一次循环所需的执行 时间。
1.流流水水线线处处理理机机的的实实际际CCPIP就I是理想流水线的
CPI加上各类停顿的时钟周期数: CPI流水线 = CPI理想 + 停顿结构冲突
+ 停顿数据冲突+ 停顿控制冲突
CPI理想即理想CPI,是衡量流水线最高性能 的指标之一。
IPCIP(C:In每s个tru时c钟ti周on期s内P完er成C的y指cl令e 条)数。
并行计算机体系结构的分类
并行计算机体系结构的分类并行计算机体系结构是指在计算机系统中,通过多个处理单元同时执行任务以提高计算性能的架构框架。
根据不同的设计思想和实现方式,可以将并行计算机体系结构分为多种分类。
本文将介绍几种常见的并行计算机体系结构分类,并对其特点和应用进行讨论。
1.指令级并行体系结构指令级并行体系结构(ILP)是基于指令级并行技术的一种体系结构。
ILP通过将单个指令分解为多个子操作,并在不同的处理单元上同时执行这些子操作,从而实现指令级并行。
这种体系结构适用于需要大量计算的应用,如科学计算和图像处理。
其中,超标量和超流水线是常见的ILP体系结构。
超标量体系结构通过在一个时钟周期内同时发射多条指令,利用指令之间的独立性实现指令级并行。
而超流水线体系结构则通过将指令的执行过程分解为多个阶段,并在每个阶段上同时执行不同的指令,进一步提高了并行度。
这两种体系结构能够充分利用处理器资源,提高计算性能。
2.向量处理体系结构向量处理体系结构是基于向量处理器的一种体系结构。
向量处理器是一种特殊的处理器,能够同时处理多个数据元素。
在向量处理体系结构中,处理器通过执行向量指令,对向量数据进行并行操作。
这种体系结构适用于需要对大规模数据进行相同类型操作的应用,如科学计算和图像处理。
向量处理体系结构具有高度的并行性和数据吞吐量,能够充分利用数据级并行性,提高计算性能。
然而,由于向量处理器对数据的访问具有一定的限制,对于不适合向量化的应用,其性能优势可能会受到限制。
3.多核体系结构多核体系结构是指在一个计算机系统中,使用多个处理核心来执行任务的体系结构。
每个处理核心都具有独立的处理器和内存,能够同时执行不同的指令流。
多核体系结构适用于需要同时执行多个任务的应用,如服务器和大数据处理。
多核体系结构具有良好的可扩展性和并行性,能够提供更高的计算性能。
通过将任务分配给不同的处理核心,可以充分利用系统资源,提高系统的吞吐量和响应速度。
然而,多核体系结构也面临着任务调度和数据共享的挑战,需要采用合适的并行编程模型和调度算法来优化性能。
专家谈可扩展多核编程问题
高性能计算发展与应用上海超级计算中心编印10《高性能计算发展与应用》 2007年第四期 总第二十一期专家谈可扩展多核编程问题编译:李 利 王广益 江南计算技术研究所 无锡 214083美国RapidMind公司首席科学家Michael D. McCool教授近日在《HPCwire》杂志上撰文探讨了他对可扩展多核编程的看法,现将该文编译整理如下。
多核设备将在结构和内核数量方面迅速发展,这促使软件开发人员将代码与硬件分离开来,以便应用程序可在不同结构上转移,并随着新一代处理器面市而自动扩展。
一种合适的编程模型能够在保持性能不降低(甚至有所增强)的情况下实现这种分离。
目前,单核处理器的性能已趋向极限,通过增加晶体管数已很难再提高其性能;而随着时钟频率不断攀升,功耗也以非线性方式迅速增加。
因此,业界所有处理器制造商都已经转而采用显式并行多核处理器的策略。
通过把多个小的高效内核结合在单块芯片上,就可以在提高整体性能的同时,获得更高的能效。
遗憾的是,只有并行化应用才能发挥这一优势。
事实上,由于处理器的每个内核通常都比过去单核处理器的速度慢,所以非并行应用在多核处理器上反而变慢了。
此外,由于内核数量将随着时间呈指数级增长(按照摩尔定律的新解释),因此要想获得实际性能增益,所有应用都必须以可扩展方式编写,使之能够利用任意数量的内核。
自动并行化工具的作用可能不大。
现代处理器已经通过低级指令级并行性(ILP)方式开发了应用内部的绝大部分隐式并行。
在大多数应用中,这种隐式并行量很小,而且几乎已被当今处理器充分发掘了。
实际上,存储器系统是众多应用中的首要瓶颈。
为了充分发挥处理器的增加性能,数据必须尽可能高效地进入和离开芯片。
如果数据速率跟不上计算性能,那么任何片上计算能力的增加都是无用的。
在多核处理器中,所有内核都必须共享有限的片外带宽,这使得存储器访问瓶颈更加突出。
另外,对于那些不在高速缓存(Cache)中的数据而言,从处理器访问主存储器需数百个处理器时钟周期才能完成。
ILP开发的技术
综述:ILP开发的技术前言:自1985年以来,所有的处理器都采用流水线方式使指令的执行可以重叠进行以提高性能。
由于可以将指令间的关系看做是并行的,因此将指令间的这种潜在重叠称为指令级并行。
于是可以提高对并行的开发能力的相关技术越来越受到人们的关注。
开发指令级并行的方法大致可以分为两类,一种方法是依赖硬件,动态地发现和开发指令级并行;另一种方法是依赖与软件技术,在编译阶段静态地发现。
本文中将着重讨论一系列技术,这些技术都是用来提高指令序列的并行度和扩展流水线的。
1.静态编译技术基本流水线调度:要保持一条流水线不停顿,就要去发现可以流水重叠的不想关的指令序列,并加以充分利用,为避免流水线的停顿,就要事先找出指令代码中的相关指令并将它们分离,使其相隔的时钟周期能正好等于原来指令在流水执行时的时延,编译器进行这类调度的能力既依赖与程序的指令级并行度,也依赖与流水线中功能单元的时延循环展开:为了增加有效操作对转移和开销指令的比重,循环展开可以通过多次复制循环体和调整循环中止码来实现。
循环展开因为它可以消除转移,所以它也可以用来改进调度。
并且循环展开这种转换方法对于各种处理器,从简单流水线到超标量多发射结构等等都适用。
但是这种转换也确实增加了现代编译器的复杂度。
预测技术:由于需要通过转移冒险和停顿来保持控制相关,因此转移会降低流水线的性能,上文提到的循环展开是减小转移冒险的方法之一,另外还可以通过转移预测技术来减小转移引起的性能损耗。
而且想要开发指令级并行,转移预测的准确率是个关键问题。
可以通过缓存的容量,增加每次预测所使用的预测方案的准确率。
2.动态调度机制一个简单的静态调度流水线负责取指令并将它发射出去,除非流水线中的指令与取到的指令之间存在数据相关,而且无法通过旁路技术和直接通路技术避免数据相关,如果有无法避免的数据相关,那么检测冒险的硬件将从使用相关结果的指令开始暂停流水线,停止取指令和发射指令的工作,直到相关被清除,而动态调度技术就是通过硬件对指令执行顺序进行重组,在保持数据流和异常行为的同时减少停顿,它可以处理一些在编译阶段无法预见的相关情况,同时它简化了编译器的设计,但是动态调度的这些优势是以硬件复杂度的显著增加为代价的。
指令级并行的概念
○ 是指令级并行研究 的重点之一。
指令级并行的概念
4.1 指令级并行的概念
最基本的开发循环级并行的技术
指令调度(scheduling)
A
技术 换名(renaming)技术 C
循环展开(loop
B
unrolling)技术
指令级并行 的概念
通过改变指令在程序中的位置,将相关指 ○ 令之间的距离加大到不小于指令执行延迟,将 ● 相关指令转化为无关指令。 ● 指令调度是循环展开的技术基础。
结构有关。 程序中的相关主要有以下三种
• 数据相关 • 名相关 • 控制相关
1.数据相关 (data
dependence)
指令级并行的概 念
0
对于指令i和指令j,如果
1
一.
指令j使用指令i产生的结果,或者
二.
指令j与指令k数据相关,指令k与指令i数据相
○
关,则指令j与指令i数据相关。
○
数据相关具有传递性。
ADDD F16,F14,F2
8
SD 0(R1),F4
SD -8(R1),F8
SUBI R1,R1,#32
12
SD 16(R1),F12
11
BNEZ R1,Loop
SD 8(R1),F16
14
指令 1 2
5 6
9 10
13
4.1 指令级并行的概念
结果分析:
没有数据相关引起的空转等待 整个循环仅仅使用了14个时钟周期
-8(R1),F8 F10,-16(R1) 13
流出时钟
ADDD 15
(空转) 16
(空转) 17
计算机体系结构张晨曦版本第四章解答-new
第四章习题四4.1解释下列术语:指令级并行:指令序列中存在的潜在的并行性称为指令级并行。
指令调度:指令调度是一种用以避免冲突的方法,但并不改变相关。
通过改变指令在程序中的位置,将相关指令间的距离加大到不小于指令执行延迟的时钟数,以此消除相关指令造成的流水线冲突。
指令的动态调度:在程序执行过程中,依靠专门的硬件对代码进行调度,重新安排指令的执行顺序,来调整相关指令实际执行时的关系,减少可能的冲突。
指令的静态调度:在程序的编译期间,由编译器进行代码调度和优化,重新安排指令的执行顺序,把相关的指令拉开距离,以减少可能产生的冲突。
保留站:在Tomasulo算法实现结构中,保留站设置在运算部件的入口,每个保留站中保存一条已经流出并等待到本功能部件执行的指令的相关信息,包括操作码、操作数以及用于检测和解决冲突的信息。
在一条指令流出到保留站的时候,如果该指令的操作数已经在寄存器中就绪,则将之取到该保留站中。
如果操作数还没有计算出来,则在该保留站中记录将产生这个操作数的保留站的标识。
CDB:公共数据总线,是Tomasulo算法实现结构中的一条重要的数据通路,所有功能部件的计算结果都要送到CDB上,由它把这些结果直接送到各个需要该结果的地方。
动态分支预测技术:用硬件动态地进行分支处理的方法。
这些方法是在程序运行时,根据分支指令过去的表现来预测其将来的行为。
如果分支行为发生了变化,预测结果也随之改变。
其目的有两个:预测分支是否成功和尽快找到分支目标地址(或指令),从而避免控制相关造成流水线停顿。
BHT:分支历史表,也称之为分支预测缓冲器,用来记录分支指令最近一次或几次的执行情况(成功或不成功),并根据此进行预测。
分支目标缓冲:将分支成功的分支指令的地址和它的分支目标地址都放到一个缓冲区中保存起来,缓冲区以分支指令的地址作为标识,取指令阶段,所有指令地址都与保存的标示作比较,一旦相同,就认为本指令是分支指令,且认为它转移成功,并且它的分支目标地址就是保存在缓冲区的分支目标地址。
指令级并行
指令级并行我们知道,要从系统结构上提高计算机的性能,就必须设法以各种方式挖掘计算机工作的并行性。
并行性又有粗粒度并行性(coarse-grained parallelism)和细粒度并行性(fine-grained parallelism)之分。
所谓粗粒度并行性是在多处理机上分别运行多个进程,由多台处理机合作完成一个程序。
所谓细粒度并行性是在一个进程中进行操作一级或指令一级的并行处理。
这两种粒度的并行性在一个计算机系统中可以同时采用,在单处理机上则用细粒度并行性。
指令级并行概念指令级并行(Instruction-Level Parallelism, ILP),是细粒度并行,主要是相对于粗粒度而言的。
顾名思义,指令级并行是指存在于指令一级即指令间的并行性,主要是指机器语言一级,如存储器访问指令、整型指令、浮点指令之间的并行性等,它的主要特点是并行性由处理器硬件和编译程序自动识别和利用,不需要程序员对顺序程序作任何修改。
正是由于这一优点,使得它的发展与处理器的发展紧密相连。
指令级并行技术突破了每个时钟周期完成一条指令的框框,做到在单处理机上每个时钟周期能完成的指令数平均多于一条。
我们已知道,向量处理机进行的是细粒度的并行处理,它在处理向量时由于采用了流水线,多功能部件河链接技术,能够做到每个时钟周期完成多个操作,相当于多条指令。
但它在处理标量时,效率将大大降低,有时甚至还不及一个普通的通用计算机。
现在几种新的系统结构设计,其基本思想是要挖掘指令级并行,使单处理机达到一个时钟周期完成多条指令。
指令级并行性的含义可用下面的例子来说明:(1)Load C1←23(R2)Add R3←R3+1FPAdd C4←C4+C3并行度=3(2)Add R3←R3+1Add R4←R3+R2Store R0←R4并行度=1上例中,(1)的三条指令是互相独立的,它们之间不存在数相关,所以可以并行执行。
反之,(2)的三条指令中,第2条要用到第1条的结果,第3条要用到第2条的结果,它们都不能并行执行。
计算机体系结构指令级并行与超标量技术的优化方法
计算机体系结构指令级并行与超标量技术的优化方法计算机体系结构指令级并行与超标量技术的优化方法是指通过提高计算机指令级并行性和利用超标量技术来提高计算机性能的方法。
本文将介绍这些优化方法,并讨论它们在现代计算机体系结构中的应用。
一、指令级并行优化方法指令级并行是指在执行一条计算机指令时,同时执行多条指令的能力。
在传统的单指令多数据(SIMD)和多指令多数据(MIMD)体系结构中,指令级并行主要通过指令流水线、乱序执行和分支预测等技术来实现。
1. 指令流水线指令流水线是将一条指令的执行过程划分为多个子阶段,并通过并行执行这些子阶段来提高计算机的吞吐量。
典型的指令流水线包括取指、译码、执行、访存和写回等阶段。
指令流水线的优化方法包括增加流水线的深度、减少流水线的停顿以及解决流水线冲突等。
2. 乱序执行乱序执行是指根据指令之间的依赖关系,在不改变程序执行结果的前提下,通过调整指令的执行顺序来提高指令级并行性。
乱序执行技术包括乱序发射、数据回复和指令重排序等。
3. 分支预测分支预测是为了解决程序中分支指令对流水线的冲击而出现的一种技术。
分支预测通过猜测分支指令的执行方向来提高指令级并行性。
常见的分支预测方法包括静态分支预测和动态分支预测。
二、超标量技术的优化方法超标量技术是指在同一个时钟周期内同时发射多条指令,并通过并行执行这些指令来提高计算机性能的技术。
超标量技术主要包括超标量发射、超标量执行和动态调度等。
1. 超标量发射超标量发射是指在一个时钟周期内同时发射多条指令到执行单元。
通过增加发射宽度,可以同时发射更多的指令,从而提高指令级并行性。
2. 超标量执行超标量执行是指在一个时钟周期内通过并行执行多条指令来提高计算机性能。
超标量执行的优化方法包括增加执行单元的数量、增加执行单元的功能和使用更高效的执行指令等。
3. 动态调度动态调度是指通过调度器来动态选择可以立即执行的指令,并将其发送到执行单元。
通过动态调度,可以有效地利用执行单元的资源,提高指令级并行性和计算机性能。
计算机系统结构 总复习
∑ 而且设置有足够地缓冲寄存器,若以最快的方式用该流水计算: AiBi i =1
① 画出时空图;(9 分) ② 计算实际的吞吐率、加速比和效率。(6 分) 15. 静态多功能流水线由 6 个功能段组成,如图 E_3 所示。其中,s1、s4、s5、s6 组
成乘法流水线,s1、s2、s3、s6 组成加法流水线,各个功能段时间均为△t,假设 该流水线的输出结果可以直接返回输入端,而且设置有足够地缓冲寄存器,若以 最快的方式用该流水计算:∏(Ai+Bi)(其中 i=1..4,∏为连乘符号) ① 画出时空图;(9 分) ② 计算实际的吞吐率、加速比和效率。(6 分) 16. (20 分)设指令流水线由取指令、分析指令和执行指令 3 个部件构成,每个部件 经过的时间为△t,连续流入 12 条指令。分别画出标量流水处理机以及 ILP 均为 4 的超标量处理机、超长指令字处理机、超流水处理机的时空图,并分别计算它们 相对于标量流水处理机的加速比。 17. (15 分)给定以下的假设,试计算直接映象 Cache 和两路组相联 Cache 的平均访 问时间以及 CPU 时间。 ① 理想 Cache(命中率为 100%)情况下的 CPI 为 2.0,时钟周期为 2ns,平均每条指 令访存 1.2 次。 ② 两种 Cache 容量均为 64KB,块大小都是 32 字节。 ③ 组相联 Cache 中的多路选择器使 CPU 的时钟周期增加了 10%。 ④ 这两种 Cache 的失效开销都是 80 ns。 ⑤ 命中时间为 1 个时钟周期。 ⑥ 64 KB 直接映象 Cache 的失效率为 1.4%,64 KB 两路组相联 Cache 的失效率为 1.0%。
① 画出处理过程的时空图。(9 分) ② 计算其吞吐率、加速比和效率。(6 分) 12. 有一条动态多功能流水线由 5 段组成(如图 E_2 所示),加法用 1、3、4、5 段,
计算机体系结构指令级并行基础知识详解
计算机体系结构指令级并行基础知识详解计算机体系结构是计算机科学中的一个重要领域,它研究计算机各个组成部分之间的关系和相互作用。
指令级并行是计算机体系结构中的一个重要概念,它可以提高计算机的性能和效率。
本文将详细介绍计算机体系结构指令级并行的基础知识。
一、什么是计算机体系结构指令级并行?计算机体系结构指令级并行是指在计算机指令的执行过程中,同时执行多条指令,以提高计算机的性能和效率。
传统上,计算机执行一条指令需要按照顺序依次执行多个步骤,即取指令、译码、执行、访存和写回。
而指令级并行则允许多个指令的某些步骤并行执行,从而加快指令的执行速度。
二、指令级并行的基本原理1. 流水线技术流水线是指将指令的执行过程分为多个阶段,并使每个阶段同时执行不同的指令。
每个阶段执行完毕后,指令便进入下一个阶段,以此类推。
这样可以使多条指令同时在不同的阶段执行,达到指令级并行的效果。
2. 超标量技术超标量是指在一个时钟周期内,同时发射并执行多条指令。
通过提高处理器的运算能力和硬件资源,可以达到超标量执行多条指令的效果。
三、指令级并行的优势和挑战1. 优势指令级并行可以提高计算机的性能和效率,缩短程序的执行时间。
通过同时执行多条指令,可以充分利用计算机硬件资源,加快指令的执行速度。
2. 挑战指令级并行虽然可以提高计算机的性能,但同时也带来了一些挑战。
例如,指令之间可能存在数据依赖关系,需要解决数据相关性问题。
此外,指令级并行还需要考虑硬件资源分配和调度问题,以充分利用计算机的处理能力。
四、指令级并行的应用指令级并行广泛应用于现代计算机体系结构中。
例如,现代CPU通过流水线和超标量技术实现指令级并行,提高计算机的性能。
同时,指令级并行也被用于并行计算和分布式系统中,以加快任务的执行速度。
五、结论计算机体系结构指令级并行是提高计算机性能和效率的重要手段之一。
通过流水线和超标量技术,可以实现指令的并行执行,加快程序的执行速度。
自考02325计算机系统结构自考历年真题汇总2016.04-2019.10简答题
三、简答题(本大题共5小题,每小题6分,共30分)21. 简述指令字格式优化的措施。
p80(1)采用扩展操作码,并根据指令的频度P的分布状况选择合适的编码方式,以缩短操作码的平均码长;(1分)(2)采用多种寻址方式,以缩短地址码的长度并在有限的地址长度内提供更多的地址信息;(1分)(3)采用0、1、2、3等多种地址制,以增强指令的功能;(1分)(4)在同种地址制内再采用多种地址形式,让每种地址字段可以有多种长度,且让长操作码与短操作码进行组配;(1分)(5)在维持指令字在存储器中按整数边界存储前提下使用多种不同的指令字长度。
22.简述引入数据表示的原则。
p61(1)看系统的效率是否有显著提高,(1分)包实现时间和存储空间是否有显著减少;(1分)实现时间是否减少又主要看主和处理机之间传递的信息量是否减少;(1分)(2)看引入这种数据表示后,其通用性和利用是否提高。
(1分)如果只对某种数据结构的实现效率高、而对其他数据结构实现效率低,或应用较少,(1分)将导致性价比下降。
(1分)23.简述数组多路通道的数据传输方式。
p119数组多路通道在每选择好一台设备后,要续传送完固定K个字节的成组数后,才能释放总线,(1分)通道再去选择下台设备,(1分)再传送个字节。
(1分)如此,以成组方式轮流交叉地多台高速设备服务。
(分)某台设备要想传送N个字节,就需要先后经NK次申请使用通道总线才行(2分)24.简述机群系统相对于传统的并行系统的优点。
(1)系统有高的性能价格比;(1分)(2)系统的开发周期短(1分)(3)系统的可扩展性好;(1分)(4)系统的资源利用率高;(1分)(5)用户投资风险小;(1分)(6)用户编程方便。
(1分)25.简述SIMD系统的互连网络的设计目标。
(1)结构不要过于复杂,以降低成本(1分)(2)互连要灵活,以满足算法和应用的需要;(1分)(3)处理单元间信息交换所需传送步数尽可能少(1分)以提高速度性能;(1分)(4)能用规整单一的基本构件组合而成,或经多通过或者经多级连接来实现复杂的互连,使模块性好,(1分)以便于用VISI实并满足系统的可扩充性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
3.3.5 Pipelining Control Hazards
Taxonomy
Structural hazards Data hazards
of Hazards
12
Modify MIPS Datapath
Move the Branch Computation Forward
IF/ID 4
ID/EX
EX/MEM
MEM/WB
ADD
MUX
转移 发生
0?
MUX
16
Sign extend
32
MUX
13
数 据 存 储 器
PC
ALU
IR
IR11..15 MEM/ WB .IR
if R2=0 then ADD R1,R2,R3
ADD R1,R2,R3 if R2=0 then SUB R4,R5,R6 (b)From target
ADD R1,R2,R3 if R2=0 then SUB R4,R5,R6
(a)From before
(c)From fall-through
These are conflicts over hardware resources.
Instruction depends on result of prior computation which is not ready (computed or stored) yet OK, we did these, Double Bump, Forwarding path, software scheduling, otherwise have to stall
10
IF/ID 4
ID/EX
EX/MEM
MEM/WB
ADD
MUX
转移 发生
0?
AL
IR6..10
U
MUX
16
Sign extend
32
MUX
11
数 据 存 储 器
PC
ALU
IR
IR11..15 MEM/ WB .IR
寄 存 器
MUX
数 据 存 储 器
Pipeline status for predict-taken
Hardware
Compiler
Treat every branch as taken (evidence: more than 60% branches are taken) As soon as the branch target address is computed, assume the branch to be taken and begin fetching and executing at the target. Only useful when the target is known before the branch outcome. No advantage at all for MIPS 5-stage pipeline. Can improve the performance by coding the most frequent case in the taken path.
5
二、The Penalty of Control hazard
b=3
6
三、Dealing with the control hazard
Four simple solutions
Freeze or flush the pipeline
Predict-not-taken (Predict-untaken)
48 or 72
15
(4)Delayed branch
Good
Strange
Just 1 cycle to figure out what the right branch address is So, not 2 or 3 cycles of potential NOP or stall
Can improve the performance by coding the most frequent case in the untaken path.
9
(3)Predict –taken
Most branches(60%) are taken, so we should make the taken branch more faster. Why not try assuming the branch always taken?
news
16
Branch delay slot
Hence the name: branch delay slot
Consequence
The instruction cycle after the branch is used for address calculation , 1 cycle delay necessary SO…we regard this as a free instruction cycle, and we just DO IT
20
Example: rewrite the code (b-2)
Loop: LW R2, 0(R1) ADD R3, R2, R4 SW R3, 0(R1) DIV ….. …… SUB R1, R1, #4 BNEZ R1, Loop Loop: LW R2, 0(R1) ADD R3, R2, R4 DIV …... …... SUB R1, R1, #4 BNEZ R1, Loop SW R3, +4(R1)
44 BEQ R1, R3, 24 48 AND R12, R2, R5 72 LW R4, 50(R7) 76 48 AND R12, R2, R5 IF ID IF EX idle IF MEM idle ID IF WB idle idle idle IF idle idle idle ID idle idle EX
17
How to adjust the codes?
ADD R1,R2,R3 if R2=0 then Delay slot SUB R4,R5,R6 ADD R1,R2,R3 if R2=0 then Delay slot ADD R1,R2,R3 if R2=0 then Delay slot SUB R4,R5,R6
7
(1)Freeze or flush the pipeline
8
(2)Predict not-taken
Hardware:
Treat every branch as not taken (or as the formal instruction)
Compiler:
When branch is not taken, the fetched instruction just continues to flow on. No stall at all. If the branch is taken, then restart the fetch at the branch target, which cause 3 stall.(should turn the fetched instruction into a no-op)
information
OK, it’s always 1 cycle, and we always have to wait And on MIPS, this instruction always executes, no matter whether the branch taken or not taken. (hardware scheme)
Control
hazards can cause a greater and greater performance loss for MIPS pipeline than do data hazards.
3
Example: Branches
4
Branches of Basic Pipelined Datapath
Branch is taken: 1 stall
44 BEQ R1, R3, 24 IF ID EX MEM WB
48 AND R12, R2, R5
72 LW R4, 50(R7) 76 80
IF
idle
IF
idle
ID IF
idle
EX ID IF
idle
MEM EX ID WB MEM EX
Branch is not taken: 3 stall
18
Example: rewrite the code (a)
19
Example: rewrite the code (b-1)
Loop: LW R2, 0(R1) ADD R3, R2, R4 SW R3, 0(R1) …… SUB R1, R1, #4 BNEZ R1, Loop
LW R2, 0(R1) Loop: ADD R3, R2, R4 SW R3, 0(R1) …… SUB R1,R1, #4 BNEZ R1, Loop LW R2, 0(R1)
21
Schedualing strategy vs. performance improvement
Scheduling Requirements strategy a. From before branch b. From target Improves when? performance