大数据技术原理与应用演示课件.ppt
大数据技术与应用(成功案例)ppt课件
![大数据技术与应用(成功案例)ppt课件](https://img.taocdn.com/s3/m/e0965734b52acfc789ebc983.png)
大数据商业价值---企业经营决策
某商店卖 牛奶,通过数据分 析,知道在本店买 了牛奶的顾客以后 常常会再去另一店 买包子,人数还不 少,那么这家店就 可以考虑与包子店 合作,或直接在店 里出售包子。
33 33
大数据商业价值---个性化营销
银行与客户的交 流渠道进行了整合,只要 某个客户在网上点击查询 了有关房贷利率的信息, 系统就会提示呼叫中心在 电话交流时推荐房贷产品, 如果发现顾客确实对此感 兴趣,销售部门就会发送 推介信息给客户,如果这 位顾客到银行网点办事, 业务人员就会详细介绍房 贷产品,开始只有少量的 线索,但通过多渠道的与 顾客交互接触,在这个过 程中,令顾客体验了银行 精准、体贴的服务,其结 果是营业收入大为增加, 成本大幅降低,
31•顺应客户购买行为习惯
31
大数据商业价值---大数据为“未来的新石油”
2013年,世界上存储的数 据预计能达到约1.2泽(约12亿TB) 字节,如果把这些数据全部印刷成 书,这些书可以覆盖整个美国52次, 如果将之存储于标准的光盘,这些 光盘可以堆成五堆,每一堆都可以 伸到月球。
2012年3月22日,奥巴马 政府宣布投资2亿美元拉动大数据相 关产业发展,将“大数据战略”上 升为国家战略。奥巴马政府甚至将 大数据定义为“未来的新石油”。
从范围来看,
传统数据管理方式
外部性管理,依赖管理力度和执行自律,成难毁 易。
元数据
数据 稽核
管理 制度
从内涵来看,
非结构化数据、内外部数据混搭、 云化处理等都会冲击传统管理模式
挑战1
从形式来看,
数据加工的复杂度和速度要求越来 越高,也对传统管理效率提出挑战
挑战2 6
资产验证
大数据技术原理与应用之图计算简介(PPT 44张)
![大数据技术原理与应用之图计算简介(PPT 44张)](https://img.taocdn.com/s3/m/12723c3aa300a6c30c229f45.png)
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
9.4.5输入和输出
• 在Pregel计算框架中,图的保存格式多种多样,包括文本文件、关系 数据库或键值数据库等 • 在Pregel中,“从输入文件生成得到图结构”和“执行图计算”这两 个过程是分离的,从而不会限制输入文件的格式 • 对于输出,Pregel也采用了灵活的方式,可以以多种方式进行输出
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
9.1.2图计算通用软件
一次BSP计算过程包括一系列全局超步(所谓的超步就是计算中的一次迭代), 每个超步主要包括三个组件: •局部计算:每个参与的处理器都有自身的计算任务,它们只读取存储在本地内 存中的值,不同处理器的计算任务都是异步并且独立的 •通讯:处理器群相互交换数据,交换的形式是,由一方发起推送(put)和获取 (get)操作 •栅栏同步(Barrier Synchronization):当一个处理器遇到“路障”(或栅栏), 会等到其他所有处理器完成它们的计算步骤;每一次同步也是一个超步的完成 和下一个超步的开始。图9-1是一个超步的垂直结构图
• • • • • 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 消息传递机制 Combiner Aggregator 拓扑改变 输入和输出
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
9.4.1消息传递机制
• 顶点之间的通讯是借助于消息传递机制来实现的,每条消息都包含了 消息值和需要到达的目标顶点ID。用户可以通过Vertex类的模板参数 来设定消息值的数据类型 • 在一个超步S中,一个顶点可以发送任意数量的消息,这些消息将在 下一个超步(S+1)中被其他顶点接收 • 一个顶点V通过与之关联的出射边向外发送消息,并且,消息要到达 的目标顶点并不一定是与顶点V相邻的顶点,一个消息可以连续经过 多条连通的边到达某个与顶点V不相邻的顶点U,U可以从接收的消息 中获取到与其不相邻的顶点V的ID
Chapter8-厦门大学-林子雨-大数据技术原理与应用-第八章-流计算
![Chapter8-厦门大学-林子雨-大数据技术原理与应用-第八章-流计算](https://img.taocdn.com/s3/m/bf4490e283d049649b6658b9.png)
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
8.1.3 流计算概念
• 流计算:实时获取来自不同数据源的海量数据,经过实时 分析处理,获得有价值的信息
数据采集
实时分析处理
结果反馈
《大数据技术原理与应用》
流计算示意图
厦门大学计算机科学系
林子雨
ziyulin@
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
8.1.1 静态数据和流数据
• 近年来,在Web应用、网络监控、传感监测等领域,兴起了一种新 的数据密集型应用——流数据,即数据以大量、快速、时变的流形式 持续到达
• 流数据具有如下特征: – 数据快速持续到达,潜在大小也许是无穷无尽的 – 数据来源众多,格式复杂 – 数据量大,但是不十分关注存储,一旦经过处理,要么被丢弃, 要么被归档存储 – 注重数据的整体价值,不过分关注个别数据 – 数据顺序颠倒,或者不完整,系统无法控制将要处理据,包括用户的 搜索内容、用户的浏览记录等数据。采用流计算进行实时数据分析, 可以了解每个时刻的流量变化情况,甚至可以分析用户的实时浏览轨 迹,从而进行实时个性化内容推荐
• 但是,并不是每个应用场景都需要用到流计算的。流计算适合于需要 处理持续到达的流数据、对数据处理有较高实时性要求的场景
传统的数据处理流程示意图
• 传统的数据处理流程隐含了两个前提:
– 存储的数据是旧的。存储的静态数据是过去某一时刻的快照,这 些数据在查询时可能已不具备时效性了
– 需要用户主动发出查询来获取结果
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
《大数据技术原理与操作应用》最新版精品课件第1章
![《大数据技术原理与操作应用》最新版精品课件第1章](https://img.taocdn.com/s3/m/7d0a534ca0116c175e0e4897.png)
1.2 Hadoop的介绍
Hadoop的发展历史
2003—2004 年,Google 公布部分GFS 、MapReduce 思想的细节, Doug Cutting 等人用两年的业余时间实现了DFS 和MapReduce 机制,使 Nutch 性能飙升。
2005 年,Hadoop 作为Lucene 的子项目Nutch的一部分正式引入 Apache 基金会。由于NDFS 和MapReduce 在Nutch 引擎中有着很好的应用。
1.2 Hadoop的介绍
Hadoop 的生态体系
Hadoop 是一个能够对大量数据进行分布式处理的软件框架,目前 Hadoop 已经发展成为包含很多项目的集合。Hadoop 的核心是HDFS 和 MapReduce,Hadoop 2. 0 还包括YARN。随着Hadoop 的兴起,其框架下的 开发工具也逐渐丰富。
11
1.2 Hadoop的介绍
Hadoop的由来
Apache Hadoop 项目是一款可靠、可扩展的分布式计算开源软件。 Hadoop 软件库是一个框架,该框架的两个核心模块是分布式文件系统(HDFS) 和数据计算MapReduce。
MapReduce 允许用户在不了解分布式系统底层知识的情况下,以可靠 、容错的方式灵活地并行处理大型计算机集群(数千个节点)上的大量数据。用 户可以轻松地搭建和使用Hadoop 分布式计算框架,并充分地利用集群的运算 和存储能力,完成海量数据的计算与存储。
(二)大数据预处理技术
大数据的预处理包括对数据的抽取和清洗等方面。由于大数据的数据类 型是多样化的,不利于快速分析处理,数据抽取过程可以将数据转化为单一的 或者便于处理的数据结构。
9
(三)大数据存储及管理技术
大数据技术及应用培训优质PPT
![大数据技术及应用培训优质PPT](https://img.taocdn.com/s3/m/f81f1c630166f5335a8102d276a20029bc646345.png)
医疗健康与生命科学
01
医疗健康
利用大数据技术对医疗数据进行收集、整理、分析和挖掘,为医疗诊断
和治疗提供更准确、更高效的方案。
02
生命科学
通过对生命科学领域的数据进行分析和研究,可以揭示生命的奥秘和疾
病的发生发展规律,为药物研发和治疗提供新的思路和方法。
03
案例分析
例如,某医疗机构利用大数据技术对患者的电子病历和医疗影像数据进
技术更新换代迅速
大数据技术发展迅速,需要不断跟进新技术,对人才提出更高的要 求。
跨界合作与创新
大数据技术与其他领域的跨界合作将产生更多创新应用,为各行业带 来新的发展机遇。
持续学习与技能提升的重要性
适应技术发展
大数据技术发展迅速,持 续学习和技能提升是适应 技术发展的关键。
提高职业竞争力
具备不断更新的技能将提 高个人在职业市场的竞争 力,获得更好的职业发展 机会。
随着业务对数据处理速度的要求提高,实时数据处理将成为大数据 技术的重要发展方向。
人工智能与大数据融合
人工智能技术的发展将促进大数据技术的智能化,提高数据处理和 分析的准确性。
大数据技术的未来挑战与机遇
数据安全与隐私保护
随着大数据技术的广泛应用,数据安全和隐私保护成为亟待解决的 问题,需要加强相关技术和法律手段的保障。
01
数据量大:数据量通常以TB或PB为单位 。
03
02
特点
04
速度快:需要实时或准实时的处理速度。
多样性:数据来源广泛,类型多样,包括 结构化、半结构化和非结构化数据。
05
06
复杂性:数据可能包含噪声、不完整甚至 错误的信息。
大数据技术的发展历程
大数据技术原理与应用-完整版
![大数据技术原理与应用-完整版](https://img.taocdn.com/s3/m/eafaac54d4d8d15abf234ec9.png)
包括提供数据分享平台、数据分析平台、数据租售平台等服务的企业提供技术支撑
2. CPU处理能力大幅提升
图1-3 CPU晶体管数目随时间变化情况
1.1.2信息科技为大数据时代提供技术支撑
摩尔定律:CPU性能每隔18个月提高一倍, 价格下降一半
1.1.2信息科技为大数据时代提供技术支撑
3. 网络带宽不断增加
图1-4 网络带宽随时间变化情况
–视频
pWeb 2.0数据
–查询日志/点击流
–Twitter/ Blog / SNS
–Wiki
1.2.3 处理速度快
p 从数据的生成到消耗,时间窗口非常小,可用于生 成决策的时间非常少
p 1秒定律:这一点也是和传统的数据挖掘技术有着 本质的不同
1.2.4 价值密度低
价值密度低,商业价值高 以视频为例,连续不间断监控过程中,可能有用的数据仅 仅有一两秒,但是具有很高的商业价值
信息爆炸
将涌现出一批新的 市场标杆企业
1.1.2信息科技为大数据时代提供技术支撑
1. 存储设备容量不断增加,速度不断提升, 价格却在不断下降
图1-1 存储价格随时间变化情况
1.2信息科技为大数据时代提供技术支撑
来自斯威本科技大学(Swinburne University of Technology) 的研究团队,在2013年6月29日刊出的《自然通讯(Nature Communications)》杂志的文章中,描述了一种全新的数据 存储方式,可将1PB(1024TB)的数据存储到一张仅DVD大 小的聚合物碟片上。
重大社2023《hadoop大数据技术原理与应用》教学课件u17
![重大社2023《hadoop大数据技术原理与应用》教学课件u17](https://img.taocdn.com/s3/m/c99c71940129bd64783e0912a216147917117ed5.png)
一个RDD就是一个分布式对象集合,RDD提供了一组丰富的操作以支持常见的数据运算,分为Action(动作)和 Transformation(转换)两种类型,RDD提供的转换接口都非常简单,都是类似map、filter、groupBy、join等粗粒 度的数据转换操作,而不是针对某个数据项的细粒度修改。
Spark大数据并行计算框架
Spark简介
目录
CONTENTS
1 Spark概述 2 Spark生态系统 3 Spark运行架构 4 RDD的运行原理
02 Spark生态系统
2. Spark生态系统
在实际应用中,大数据处理主要包括以下三个类型: 1. 复杂的批量数据处理:通常时间跨度在数十分钟到数小时之间 2. 基于历史数据的交互式查询:通常时间跨度在数十秒到数分钟之间 3. 基于实时数据流的数据处理:通常时间跨度在数百毫秒到数秒之间
4. Task在Executor上运行,把执行结果反馈给TaskScheduler, 然后反馈给DAGScheduler,运行完毕后写入数据并释放所 有资源。
04 RDD的运行原理
4. RDD的运行原理
RDD的设计背景 许多迭代式算法(比如机器学习、图算法等)和交互式数据挖掘工具,共同之处是,不同计算阶段之间会重 用中间结果。而目前的MapReduce框架都是把中间结果写入到稳定存储(比如磁盘)中,带来了大量的数据 复制、磁盘IO和序列化开销。
• Executor通过自身的块管理器为程序中要求缓 存的RDD提供内存式存储。
大数据技术原理与应用
![大数据技术原理与应用](https://img.taocdn.com/s3/m/50255e5fa88271fe910ef12d2af90242a895ab36.png)
大数据技术原理与应用一、大数据技术的原理大数据技术是由多个技术组成的,其中最核心的技术是分布式计算、数据挖掘、机器学习和云计算。
这些技术相互协作,共同构建了大数据技术体系的基石。
1. 分布式计算分布式计算是大数据技术中最重要的技术之一,也是最基础的技术。
它可以将一台或多台计算机视为一个整体,实现数据的高效处理和管理。
分布式计算有两个核心组件:分布式文件系统和分布式计算框架。
分布式文件系统是指将大量的数据分散在不同的节点上,以便实现高可靠性、高可扩展性、高性能和低成本的数据存储和管理。
Hadoop是开源的分布式文件系统,被广泛应用于大数据领域。
分布式计算框架是分布式系统中的一类重要技术。
它能够将计算任务分解成若干个子任务,并在多个节点上并行处理,最终将结果整合起来。
MapReduce是最常用的分布式计算框架之一,无论是Hadoop还是Spark都基于它开发。
2. 数据挖掘数据挖掘是一种从大量数据中提取并分析有价值的信息的过程。
它能够通过建立数据挖掘模型或使用机器学习算法,从海量数据中发现隐藏的关系和规律,提供有针对性的分析和预测。
数据挖掘的技术包括聚类分析、分类分析和关联规则挖掘等。
3. 机器学习机器学习是大数据技术中最受关注的领域之一,它能够通过构建数学模型来发现规律并进行预测。
机器学习包括监督学习、无监督学习和半监督学习等技术,其中监督学习是最常用的。
监督学习是通过给算法输入已知的训练数据集,通过寻找训练数据集中已知的“答案”来建立预测模型。
这种方法可以应用于数据分类、目标检测、图像识别和自然语言处理等领域。
4. 云计算云计算是指基于互联网的分布式计算、存储和应用服务。
它将计算资源转移到云中,用户只需通过网络连接云,就可以使用计算资源。
云计算可以分为三类:基础设施即服务、平台即服务和软件即服务。
它提供了高效、可扩展、经济的计算和存储资源,被广泛应用于大数据领域。
二、大数据技术的应用大数据技术已被广泛应用于各个领域,如金融、电商、医疗、社交媒体等。
大数据技术及应用教学课件第1章 大数据技术概述
![大数据技术及应用教学课件第1章 大数据技术概述](https://img.taocdn.com/s3/m/f9cbb924a58da0116d1749e7.png)
对数据进行规范化处理,将数 据转化成适合挖掘的形式。
数据集成
整合来自不同数据源的数据, 存放在统一的数据库或者数据 仓库中,包括模式集成、冗余 数据集成、数据值冲突的检测 与处理等。
数据规约
在不损害挖掘结果准确性的前 提下,通过有效的数据采样和 属性选择,缩小数据集的规模, 提高数据挖掘的效率。
传统的数据处理方法已经不能适应大数据处理的需求, 需要根据大数据的特点,对传统的常规数据处理技术进行 变革,形成适用于大数据发展的全新体系架构,实现大规 模数据的获取、存储、管理和分析。
如何理解大数据?
• 从人类认知方式
大数据与三个重大的思维转变有关:首先,要分析与 某事物相关的所有数据,而不是依靠分析少量的数据样本; 其次,乐于接受数据的纷繁复杂,而不再追求精确性;最 后,不再探求难以捉摸的因果关系,转而关注事物的相关 关系。
大数据技术及应用
Big Data Technology and Application
目录
CONCENTS
第1章 大数据技术概述 第2章 大数据采集与预处理 第3章 大数据存储技术 第4章 大数据分析挖掘-分类 第5章 大数据分析挖掘-回归
目录
CONCENTS
cont.
第6章 大数据分析挖掘-聚类 第7章 大数据分析挖掘-关联规则 第8章 大数据可视化技术 第9章 电信行业大数据应用 第10章 其他行业大数据应用
• 网络数据采集系统
综合运用网络爬虫、分词系统、任务与索引系统等技 术,从互联网海量信息中获取非结构化和半结构化数据,
数据采集
• 传感器采集
在信息时代,传感器已经成为人类生产、生活、科研 等活动中的重要工具,源源不断地向人类提供宏观与微观 的各种信息。Leabharlann 数据预处理数据清洗
大数据技术原理与应用-完整版ppt课件
![大数据技术原理与应用-完整版ppt课件](https://img.taocdn.com/s3/m/27a4cb8c25c52cc58ad6beba.png)
在从大数据中挖掘潜在的巨大商业价值和学术价值的同时,构 建隐私数据保护体系和数据安全体系,有效保护个人隐私和数 据安全
1.5大数据关键技术
两大核心技术
类似于 IaaS,但是它包括操作系统和围 绕特定应用的必需的服务
IaaS 将基础设施(计算资源和存储)作为服务出租
Server
Application Platform
Infrastructure Visualization Storage Server
Storage
SaaS Software as a Service
《大数据技术原理与应用》
主讲教师:
课程特色
ü 搭建起通向“大数
据知识空间”的桥
梁和纽带
ü 构建知识体系、阐
明基本原理
ü 引导初级实践、了
大
数 据
解相关应用
之
门
ü 为学生在大数据领
域“深耕细作”奠
定基础、指明方向
内容提要
本课程系统介绍了大数据相关知识,共有13章
系统地论述了大数据的基本概念、大数据处理架 构Hadoop、分布式文件系统HDFS、分布式数据 库HBase、NoSQL数据库、云数据库、分布式并 行编程模型MapReduce、流计算、图计算、数据 可视化以及大数据在互联网、生物医学和物流等 各个领域的应用
表1-1 三次信息化浪潮
信息化浪潮 发生时间
标志
解决问题
代表企业
第一次浪潮
1980年前 后
个人计算机
Intel、AMD、IBM 信息处理 、苹果、微软、联
大数据技术及应用PPT课件
![大数据技术及应用PPT课件](https://img.taocdn.com/s3/m/5fdda1bbeefdc8d377ee3282.png)
.
17
大数据技术介绍
何为大数据
技术能力视角
大数据指的是规模超过现有数据库工具获取、 存储、管理和分析能力的数据集额,并同时强 调并不是超过某个特定数量级的数据集才是大 数据
大数据内涵视角
大数据是具备海量、高速、多样、可变等特征 的多维数据集,需要通过可伸缩的体系结构实 现高效的存储、处理和分析。
.
• 实时数据流处理的要求,是区别大数 据引用和传统数据仓库技术,BI技术 的关键差别之一;
• 1s 是临界点,对于大数据应用而言, 必须要在1秒钟内形成答案,否则处 理结果就是过时和无效的;
.
30
中央政府对大数据的重视程度
习近平 政府管理不仅要讲究策略,还要讲究手段,比如大数据技术
的应用,2014年3月8日 “大数据”首次写入政府工作报告
该是一种什么样的体验。(其实你的信息,什么时候想要什么东西都
已经被商户预测啦,已经提前将商品运往目的地。甚至你路过的广告
屏,视频网站,包括使用的APP都将引导你消费。)
3.数据足够大就称呼其为大数据吗?(其实不然,关键在于其中承载
的信息。数据处理之后才可以称之为信息或者叫做知识。其实大数据
可以这样理解,当数据增长速度超过了计算机处理能力的增长速度,
大量的不相关信息;对未来趋势与模式的可预测分析;深度 复杂分析(机器学习、人工智能Vs传统商务智能)
实时分析而非批量式分析;数据输入、处理与丢弃; 立竿见影而非事后见效
.
26
大数据技术
Volume
1Bity
1K B
1 M B
1G B
1T B
1P B
1E B
1Z B
1Y B
1PB相当于50%的全美学术研究图书馆藏书信息内容 5EB相当于至今全世界人类所讲过的话语 1ZB如同全世界海滩上的沙子数量总和 1YB相当于7000位人类体内的微细胞总和
大数据技术原理与应用ppt课件
![大数据技术原理与应用ppt课件](https://img.taocdn.com/s3/m/9e0930c3192e45361166f515.png)
2. Namenode会检查要创建的文件是否已经存在,创建者是否有权限进行操作, 成功则会为文件创建一个记录,否则会让客户端抛出异常;
3. 当客户端开始写入文件的时候,开发库会将文件切分成多个packets,并在内 部以"data queue"的形式管理这些packets,并向Namenode申请新的blocks, 获取用来存储replicas的合适的datanodes列表,列表的大小根据在Namenode 中对replication的设置而定。
完整最新ppt
5
HDFS系统架构图
元数据操作
DFSClient
读操作
Datanodes
NameNode
Metadata(Name, replicas..) (/home/foo/data,6. ..
块操作
同步元数据和日志
Secondary NameNode
Datanodes
机架
写操作
DFSClient
每个文件都会被切分成若干个块(默认64MB) 每一块 都有连续的一段文件内容是存储的基本 单位。
客户端写文件的时候,不是一个字节一个字节写 入文件 系统的,而是累计到一定数量后,往文件个数据包。
Chunk
无
Secondary 无 NameNode
Block(64KB)
在每一个数据包中, 都会将数据切成更小的块( 512 字节 ) , 每一个块配上一个 奇偶校验码 (CRC), 这样的块,就是传输块。
的每一个用户端同时更新。
完整最新ppt
26
Hadoop YARN MR调度
完整最新ppt
27
Yarn vs MR 1.0
• MR1.0
大数据技术原理与应用精品PPT课件
![大数据技术原理与应用精品PPT课件](https://img.taocdn.com/s3/m/4a1d7c67240c844768eaee28.png)
3.3.2名称节点和数据节点
EditLog文件 •因为FsImage文件一般都很大(GB级别的很常见),如 果所有的更新操作都往FsImage文件中添加,这样会导致 系统运行的十分缓慢。因此,通常先往EditLog文件里面写。 由于EditLog 要小很多,因此就不会这样。每次执行写操 作之后,且在向客户端发送成功代码之前, EditLog文件 都需要同步更新。
群,具有很好的可伸缩性
●安全 含义:保障系统的安全性 HDFS实现情况:安全性较弱
3.2 HDFS简介
总体而言,HDFS要实现以下目标: ●容错 ●流式数据读写 ●能存储大数据集 ●强大的跨平台兼容性
HDFS在实现上述优良特性的同时,也使得自身具有一些应用局限性,主 ●不支持多用户写入及任意修改文件
●并发控制 含义:客户端对于文件的读写不应该影响其他客户端
对同一个文件的读写 HDFS实现情况:机制非常简单,任何时间都只允许有
一个程序在写入某个文件
3.1.3分布式文件系统的设计需求
●文件复制(容错机制) 含义:一个文件可以拥有在不同位置的多个副本 HDFS实现情况:HDFS采用了多副本机制
●硬件和操作系统的异构性(可伸缩性) 含义:可以在不同的操作系统和计算机上实现同
•名称节点起来之后,HDFS中的更新操作会重新写到 EditLog文件中。
3.3.2名称节点和数据节点
名称节点的启动
•在名称节点启动的时候,它会将FsImage文件中的内容 加载到内存中,之后再执行EditLog文件中的各项操作, 使得内存中的元数据和实际的同步,存在内存中的元数 据支持客户端的读操作。
Chapter10厦门大学林子雨-大数据技术原理与应用-第十章数据可视化精品PPT课件
![Chapter10厦门大学林子雨-大数据技术原理与应用-第十章数据可视化精品PPT课件](https://img.taocdn.com/s3/m/150f083827d3240c8447efdd.png)
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
10.1.3 可视化的重要作用
在大数据时代,可视化技术可以支持实现多种不同的目标: 《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
10.1.3 可视化的重要作用
(2)分析数据
数据 数据
可视化
图像
设置 可视化
感知和认知
知识
探索 用户
图10-4 用户参与的可视化分析过程
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
10.1.3 可视化的重要作用
(3)辅助理解数据
图10-5 微软“人立方”展示的人物关系图
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
10.1.3 可视化的重要作用
林子雨
10.2.1 入门级工具
• Excel是微软公司的办公软件Office家族的系列软件之一,可以进行 各种数据的处理、统计分析和辅助决策操作,已经广泛地应用于管理、 统计、金融等领域
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
10.2.2 信息图表工具
信息图表是信息、数据、知识等的视觉化表达,它利用人脑对于图 形信息相对于文字信息更容易理解的特点,更高效、直观、清晰地传递信 息,在计算机科学、数学以及统计学领域有着广泛的应用。
4. Tableau Tableau是桌面系统中最简单的商业智能工具软件,更适合企业和部门进 行日常数据报表和数据可视化分析工作。Tableau实现了数据运算与美观 的图表的完美结合,用户只要将大量数据拖放到数字“画布”上,转眼 间就能创建好各种图表。 5. 大数据魔镜 大数据魔镜是一款优秀的国产数据分析软件,它丰富的数据公式和算法 可以让用户真正理解探索分析数据,用户只要通过一个直观的拖放界面 就可创造交互式的图表和数据挖掘模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据复制 机架感知 Editlog
每个文件的block大小和replication因子都是可配置的。Replication因子可 以在文件创建的时候配置,以后也可以改变。HDFS中的文件是write-one, 并且 严格要求在任何时候只有一个writer。
在大多数情况下,replication因子是3,HDFS的存放策略是将一个副本存 放 在本地机架上的节点,一个副本放在同一机架上的另一个节点,最后一 个副本影响到数据的可靠性和有效性。放在不同机架上的一个节点。机架的 错误远远比节点的错误少。
备用的主控服务器,在身后默默的拉取着主控服务器的 日志,等待主控服务器牺牲后被扶正。
。
HDFS核心功能
功能
说明
Namespace HDFS支持传统的层次型文件组织,与大多数其他文件系统类似,用户可以 创建目录,并在其间创建、删除、移动和重命名文件。
Shell命令
Hadoop包括一系列的类shell的命令,可直接和HDFS以及其他Hadoop支 持的文件系统进行交互。
。
HDFS相关术语
HDFS NameNode
GFS Master
MooseFS Master
DataNode Block
Chunk Server
Chunk
Chunk Server
Chunk
Packet
无
无
说明
整个文件系统的大脑,它提供整个文件系统的目录信息, 各个文件的分块信息,数据块的位置信息,并且管理各 个数据服务器。 分布式文件系统中的每一个文件,都被切分成若务器上, HDFS Client,向远程的Namenode发起RPC请求; 2、Namenode会视情况返回文件的部分或者全部block列表,对于每个block,Namenode都会 返回有该block拷贝的datanode地址; 3-4、HDFS Client 选取离客户端最接近的datanode来读取block; 5、当读完列表的block后,如果文件读取还没有结束,客户端开发库会继续向Namenode获取 下一批的block列表。 6、读取完当前block的数据后,关闭与当前的datanode连接,并为读取下一个block寻找最 佳的datanode; 注:读取完一个block都会进行checksum验证,如果读取datanode时出现错误,客户端会通 知Namenode,然后再从下一个拥有该block拷贝。的datanode继续读。
2.2 Hadoop项目结构
组件 HDFS MapReduce YARN Tez Hive HBase Pig Sqoop Oozie Zookeeper Storm Flume
Ambari
Kafka Spark
功能 分布式文件系统 分布式并行编程模型 资源管理和调度器 运行在YARN之上的下一代Hadoop查询处理框架 Hadoop上的数据仓库 Hadoop上的非关系型的分布式数据库 一个基于Hadoop的大规模数据分析平台,提供类似SQL的查询语言Pig Latin 用于在Hadoop与传统数据库之间进行数据传递 Hadoop上的工作流管理系统 提供分布式协调一致性服务 流计算框架 一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统
每个文件都会被切分成若干个块(默认64MB) 每一块 都有连续的一段文件内容是存储的基本 单位。
客户端写文件的时候,不是一个字节一个字节写 入文件 系统的,而是累计到一定数量后,往文件个数据包。
Chunk
无
Secondary 无 NameNode
Block(64KB) Metalogger
在每一个数据包中, 都会将数据切成更小的块( 512 字节 ) , 每一个块配上一个 奇偶校验码 (CRC), 这样的块,就是传输块。
。
HDFS系统架构图
元数据操作
DFSClient
读操作
Datanodes
NameNode
Metadata(Name, replicas..) (/home/foo/data,6. ..
块操作
同步元数据和日志
Secondary NameNode
Datanodes
机架
写操作
DFSClient
另一个机架
写入文件流程
。
1. HDFS Client 向远程的Namenode发起RPC请求;
2. Namenode会检查要创建的文件是否已经存在,创建者是否有权限进行操作, 成功则会为文件创建一个记录,否则会让客户端抛出异常;
3. 当客户端开始写入文件的时候,开发库会将文件切分成多个packets,并在内 部以"data queue"的形式管理这些packets,并向Namenode申请新的blocks, 获取用来存储replicas的合适的datanodes列表,列表的大小根据在Namenode 中对replication的设置而定。
Hadoop快速部署工具,支持Apache Hadoop集群的供应、管理和监控
一种高吞吐量的分布式发布订阅消息系统,可以处理消费者规模的网站中的所有动作流数据 类似于Hadoop MapReduce的通用并行框架
HDFS是什么
• 分布式文件系统 • 冗余存储 • 面向大文件存储设计 • 面向批量插入设计 • 基于商用机器提供可靠的数据存储 • 容忍部分节点故障
/post/bigdata
Chap02 分布式处理软件架构 Hadoop
提纲
• 2.1 概述 • 2.2 Hadoop项目结构 • 2.3 Hadoop的安装与使用 • 2.4 Hadoop集群的部署与使用
2.2 Hadoop项目结构
Hadoop的项目结构不断丰富发展,已经形成一个丰富的Hadoop生态系统
FSEditLog类是整个日志体系的核心,提供了一大堆方便的日志写入API, 以及日志的恢复存储等功能。
集群均衡
如果某个DataNode节点上的空闲空间低于特定的临界点,那么就会启动一 个计划自动地将数据从一个DataNode搬移到空闲的DataNode。
空间的回收
删 除 文 件 并 没 有 立 刻 从 HDFS 中 删 除 , HDFS 将 这 个 文 件 重 命 名 , 并 转 移 到/trash目录,用于恢复,/trash可设置保存时间。