光电子行业调查报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电子行业调查报告

光电子材料向纳米结构、非均值、非线性和非平衡态发展。小编为大家收集整理的光电子行业调查报告,希望大家能够喜欢。

20 世纪微电子技术的发展,伴随着计算机技术、数字技术、多媒体技术以及络技术等的出现,使社会进人了信息化时代。光电子技术是继微电子技术之后30 多年来迅猛发展起来的综合性高新技术,以其强大的生命力推动着光电子(光子)技术与产业的发展,随着70 年代后期半导体激光器和硅基光导纤维两大基础元件在原理和制造工艺上的突破,光子技术和电子技术开始结合并形成了具有强大生命力的信息光电子技术和产业。至今光电子

(光子)技术的应用已涉及科技、经济、军事和社会发展的各个领域,光电子产业必将成为本世纪的支柱产业之一。光电子技术产业发展水平既是一个国家的科技实力的体现,更是一个国家综合实力的体现。

光电子材料是指能产生、转换、传输、处理、存储光电子信号的材料。光电子器件是指能实现光辐射能量与信号之间转换功能或光电信号传输、处理和存储等功能的器件。光电子材料是随着光电子技术的兴起而发展起来的,光子运动速度高,容量大,不受电磁干扰,无电阻热。

光电子材料向纳米结构、非均值、非线性和非平衡态发展。光电集成将是本世纪光电子技术发展的一个重要方向。光电子材料是发展光电信息技术的先导和基础,材料尺度逐步低维化——由体材料向薄层、超薄层和纳米结构材料的方向发展,材料

系统由均质到非均质、工作特性由线性向非线性,由平衡态向非平衡态发展是其最明显的特征。

1、光电子材料按其功能,一般可分为以下7 类:

(l) 发光( 包括激光)材料;

(2) 光电显示材料;

(3) 光存储材料;

(4) 光电探测器材料;

(5) 光学功能材料;

(6) 光电转换材料;

(7) 光电集成材料。其中,发展重点将主要集中在激光材料、红外探测器材料、液晶显示材料、高亮度发光二极管材料、光纤材料等. 。

2. 激光晶体材料

1960 年研制成功了世界上第一台红宝石(Cr3+:Al2O3) 脉冲激光器。随后,人们对激光晶体材料进行了广泛的研究,研究的主要目的是收集有关激光晶体的光谱和受激发射特性,确定究竟哪些类型的激光晶体能提高激光效率。为此,大量合成了一些有科学和应用价值的有序化合物和无序化合物晶体以作为激光基质,然后再掺入激活离子。

当前激光晶体材料向着大尺寸、高功率、LD 泵浦、宽带可调

谐以及新波长、多功能应用方向发展。激光晶体中以Nd:YAG最成熟,应用最广,产量最大。

Nd:YAG 及Yb:YAG 晶体材料

得到广泛应用的钇铝石榴石(YAG)是一种综合性能( 包括:光学、力学和热学)优良的激光基质。Nd:YAG 称为掺钕钇铝石榴石(Nd3+:Y3Al5O12 ,Nd:YAG),是于1965 年前后从数百种激光新晶体中优选出来的。20 世纪70 年代在国际上完成了

Nd:YAG晶体生长条件的研究,80 年代研制成功的较大尺寸的Nd:YAG晶体走向工业生产,90 年代采用自动化晶体生长设备,批量生产出Ф70mmФ100mm大尺寸Nd:YAG晶体,使得采用单棒和多棒串联组合体系的千瓦级Nd:YAG 激光器得到了发展。

因为Nd:YAG 具有较高的热导率和抗光伤阈值,同时3

价钕离子取代YAG中的钇离子无须电荷补偿而提高激光输出效率,使它成为用量最多、最成熟的激光材料。此外,为了寻找新的激光波长,对YAG基质进行了Er ,Ho,Tm,Cr 等的单独或组合掺杂,获得了数种波长的激光振荡。

Nd:YAG 是理想的四能级激光器。引上法制备的Nd:YAG 因单晶激光棒的增益高、机械性能好而得到广泛应用。Nd3+ 的离子半径为,Y3+的离子半径为,因为空间位置效应,YAG

晶体中Y3+不易被Nd3+所取代,故Nd3+在钇铝石榴石中的分凝系数比较小,约为。Nd3+浓度的集中使该区域形成化学应力,导致中心区域的折射率高于周围区域的,成分的差异也引起相应热膨胀系数的差异。此外,用提拉法生长单晶周期长(约几周),晶

体的生长方式限制了晶体的生长尺寸,也限制其潜在的输出功率。

长期以来,人们一直在寻求替代材料,如:含钕玻璃或微晶玻璃等,但其性能均不及Nd: YAG 单晶材料。自上世纪60 年代,人们发现某些致密透明多晶材料(陶瓷)在某些性能上与同材质单晶材料相近,甚至可以取代单晶材料。由于陶瓷制备技术的优点,克服单晶材料的一些缺点,使产品不仅具有尺寸大,生产效率高,成本低的特点,而且掺钕量可远高于单晶体的,使其激光输出功率大。用新工艺制造出的陶瓷激光介质,因其散射损耗小和高效的激光振荡而引起广泛关注。因此,Nd:YAG陶瓷有望取代单晶材料而成为大型高功率固体激光器的工作物质。

在1965 年贝尔实验室首次获得了Yb:YAG 激光,但由于闪光灯泵浦条件下Yb:YAG 晶体的高阈值和低转换效率,并未引起人们的重视。1971 年采用GaAs:Si 发光二极管为泵浦源,在77K温度下获得了Yb:YAG在1029nm的脉冲激光输出,峰值功率达,表明此类晶体的激光性能主要取决于泵浦条件。80 年代末至90 年代,随着InGaAs 激光二极管性能的发展和成本的降低,开始寻求适于激光二极管泵浦条件下的激光晶体,而掺Yb3+激光材料由于具有以下特点而受到了广泛的重视。

(1) Yb3+ 离子的电子构型为4,仅有两个电子态,即基态

2F7/2 和激发态2F5/2 ,在配位场作用下产生Stark 分裂后,形成准三或准四能级的激光运行机构。

(2) Yb3+ 离子吸收带在9001000nm波长范围,能与InGaAs

半导体泵浦源(8701100 nm) 有效耦合,且吸收带较宽,对半导体器件温度控制的要求有所降低。

(3) 泵浦波长与激光输出波长接近,量子效率高达90%。

(4) 由于量子缺陷较低(%) ,材料的热负荷较低( (5) 不存在激发态吸收和上转换,光转换效率高。

(6) 在相对较高的掺杂浓度下也不会出现浓度猝灭。

(7) 荧光寿命长,在同种激光材料中为Nd3+离子的三倍多,能有效储存能量。

目前已获得千瓦级连续激光输出的是Yb:YAG 晶体,其YAG 基质具有优良的光学、热力学、机械加工性能和化学稳定性,特别适合于作为激光二极管泵浦条件下的高功率激光输出,在激光切割、钻孔以及军用领域具有重要应用价值。

金绿宝石激光材料

金绿宝石(Cr3+: BeAl2O4) 是一种新型基质固态激光材料,用闪光灯泵浦在室温下能发射701818 纳米的整个波长范围的激光。这个区间增益是由于电子跃迁到电子震动带而

产生的。另外,人工金绿宝石激光在R线(纳米)的发射截面约为红宝石(R 线6943 纳米)的十倍,Nd :YAG(1064 纳米)的三分之一。在人工金绿宝石中,泵浦发射激光过程的闪光灯的辐射是在中心位于420 和590 纳米的带上被吸收。在这个波长区域的激发态吸收相当于激光跃迁上能级中的离子吸收。随着激发态吸收,离子无辐射地衰减到激光跃迁的上能级。因此激发态的吸收导

相关文档
最新文档