(完整)stata命令总结,推荐文档

合集下载

stata命令大全(全)

stata命令大全(全)

********* 面板数据计量分析与软件实现 *********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

stata命令大全(全)

stata命令大全(全)

*********面板数据计量分析与软件实现*********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计)* 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

完整word版,stata命令大全(全),推荐文档

完整word版,stata命令大全(全),推荐文档

*********面板数据计量分析与软件实现*********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计)* 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog 生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/ gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

stata命令大全(全)

stata命令大全(全)
*-- R^2
* y_it = a_0 + x_it*b_o + e_it (1) pooled OLS
* y_it = u_i + x_it*b_w + e_it (2) within estimator
* ym_i = a_0 + xm_i*b_b + em_i (3) between estimator
**追加数据(用于面板数据和时间序列)
xtset id year
*或者
xtdes
tsappend,add(5) /表示在每个省份再追加5年,用于面板数据/
tsset
*或者
tsdes
.tsappend,add(8) /表示追加8年,用于时间序列/
*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)
drop if id==2 /*注意用==*/
*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令)
egen year_new=group(year)
xtset id year_new
**保留变量或保留观测值
keep inv /*删除变量*/
bysort year:corr Y X Z,cov
**生产虚拟变量
*生成年份虚拟变量
tab year,gen(yr)
*生成省份虚拟变量
tab id,gen(dum)
**生成滞后项和差分项
xtset id year
gen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/
gen ylag2=L2.y

STATA命令应用及详细解释汇总

STATA命令应用及详细解释汇总

精品文档命令应用及详细解释(汇总)STATA调整变量格式:,小数点后取三位x1的列宽固定为10format x1 .3f ——将,有效数字取三位的列宽固定为10format x1 .3g ——将x1 ,采用科学计数法的列宽固定为10format x1 .3e ——将x1,小数点后取三位,加的列宽固定为10x1format x1 .3fc ——将入千分位分隔符,有效数字取三位,的列宽固定为10format x1 .3gc ——将x1 加入千分位分隔符,有效数字取三10x1format x1 %-10.3gc ——将的列宽固定为”表示左对齐位,加入千分位分隔符,加入“- 合并数据:\2006.dta, clear 桌面use C:\Documents and Settings\xks\\1999.dta 桌面merge using C:\Documents and Settings\xks\排列的自然)observation 样本(的数据按照——将1999和2006 顺序合并起来\2006.dta, clear 桌面use C:\Documents and Settings\xks\桌面merge id using C:\Documents and Settings\xks\\1999.dta ,unique sort 来合并,)(20061999——将和的数据按照唯一的unique变量id. 精品文档)进行排序(sort在合并时对id 建议采用第一种方法。

对样本进行随机筛选:sample 5050%的样本,其余删除在观测案例中随机选取sample 50,count 50个样本,其余删除在观测案例中随机选取查看与编辑数据:browse x1 x2 if x3>3 (按所列变量与条件打开数据查看器)(按所列变量与条件打开数据编辑器)edit x1 x2 if x3>3)merge)与扩展(append数据合并(表示样本appendmerge 表示样本量不变,但增加了一些新变量;目不变。

(完整word版)stata命令语句.docx

(完整word版)stata命令语句.docx

stata学习心得(网络版存盘)2009-03-25 18:06调整变量格式:format x1 %10.3f——将 x1的列宽固定为10,小数点后取三位format x1 %10.3g——将x1的列宽固定为10,有效数字取三位format x1 %10.3e——将x1的列宽固定为10,采用科学计数法format x1 %10.3fc——将x1的列宽固定为10,小数点后取三位,加入千分位分隔符format x1 %10.3gc——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符format x1 %-10.3gc——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符,加入“- ”表示左对齐合并数据:桌面 \2006.dta", clear桌面 \1999.dta"——将 1999 和 2006 的数据按照样本(observation)排列的自然顺序合并起来桌面 \2006.dta", clear桌面 \1999.dta" ,unique sort——将 1999 和 2006 的数据按照唯一的(unique )变量 id 来合并,在合并时对id 进行排序( sort )建议采用第一种方法。

对样本进行随机筛选:sample 50在观测案例中随机选取50%的样本,其余删除在观测案例中随机选取50 个样本,其余删除查看与编辑数据:browse x1 x2 if x3>3(按所列变量与条件打开数据查看器)edit x1 x2 if x3>3(按所列变量与条件打开数据编辑器)数据合并( merge)与扩展( append)merge 表示样本量不变,但增加了一些新变量;append 表示样本总量增加了,但变量数目不变。

one-to-one merge:数据源自stata tutorial中的exampw1和exampw2第一步:将exampw1按 v001 ~ v003 这三个编码排序,并建立临时数据库tempw1clearuse "t:\statatut\exampw1.dta"su—— summarize 的简写sort v001 v002 v003save tempw1第二步:对exampw2做同样的处理clearuse "t:\statatut\exampw2.dta"susort v001 v002 v003save tempw2第三步:使用tempw1 数据库,将其与tempw2 合并:clearmerge v001 v002 v003 using tempw2第四步:查看合并后的数据状况:ta _merge——tabulate _merge的简写su第五步:清理临时数据库,并删除_merge,以免日后合并新变量时出错erase tempw1.dtaerase tempw2.dtadrop _merge数据扩展append:数据源自stata tutorial中的fac19和newfacclearuse "t:\statatut\fac19.dta"ta regionappend using "t:\statatut\newfac"ta region合并后样本量增加,但变量数不变茎叶图:stem x1,line(2)(做x1的茎叶图,每一个十分位的树茎都被拆分成两段来显示,前半段为0~ 4,后半段为5~ 9)stem x1,width(2)(做x1的茎叶图,每一个十分位的树茎都被拆分成五段来显示,每个小树茎的组stem x1,round(100)(将x1除以100后再做x1的茎叶图)直方图采用 auto 数据库histogram mpg, discrete frequency normal xlabel(1(1)5)(discrete表示变量不连续,frequency表示显示频数,normal加入正太分布曲线,xlabel设定x轴,1和5为极端值, (1) 为单位)histogram price, fraction norm(fraction表示y轴显示小数,除了frequency和fraction这两个选择之外,该命令可替换为“ percent”百分比,和“ density ”密度;未加上discrete就表示将price当作连续变量来绘图)histogram price, percent by(foreign)(按照变量“ foreign ”的分类,将不同类样本的“price ”绘制出来,两个图分左右排布)histogram mpg, discrete by(foreign, col(1))(按照变量“ foreign ”的分类,将不同类样本的“mpg”绘制出来,两个图分上下排布)histogram mpg, discrete percent by(foreign, total) norm(按照变量“ foreign ”的分类,将不同类样本的“mpg”绘制出来,同时绘出样本整体的“总”直方图)二变量图:graph twoway lfit price weight || scatter price weight(作出 price和weight的回归线图——“ lfit”,然后与price和weight的散点图相叠加)twoway scatter price weight,mlabel(make)(做 price和weight的散点图,并在每个点上标注“make”,即厂商的取值)twoway scatter price weight || lfit price weight,by(foreign)(按照变量foreign的分类,分别对不同类样本的price和weight做散点图和回归线图的叠加,两图呈左右分布)twoway scatter price weight || lfit price weight,by(foreign,col(1))(按照变量foreign的分类,分别对不同类样本的price和weight做散点图和回归线图的叠加,两图呈上下分布)twoway scatter price weight [fweight= displacement],msymbol(oh)(画出 price和weight的散点图,“ msybol(oh)”表示每个点均为中空的圆圈,[fweight=displacement]表示每个点的大小与displacement的取值大小成比例)twoway connected y1 time,yaxis(1) || y2 time,yaxis(2)(画出 y1 和 y2 这两个变量的时间点线图,并将它们叠加在一个图中,左边“yaxis(1) ”为y1 的度量,右边“yaxis(2) ”为y2 的)twoway line y1 time,yaxis(1) || y2 time,yaxis(2)(与上图基本相同,就是没有点,只显示曲线)graph twoway scatter var1 var4 || scatter var2 var4 || scatter var3 var4(做三个点图的叠加)graph twoway line var1 var4 || line var2 var4 || line var3 var4(做三个线图的叠加)graph twoway connected var1 var4 || connected var2 var4 || connected var3 var4(叠加三个点线相连图)更多变量:graph matrix a b c y(画出一个散点图矩阵,显示各变量之间所有可能的两两相互散点图)graph matrix a b c d,half(生成散点图矩阵,只显示下半部分的三角形区域)用 auto 数据集:graph matrix price mpg weight length,half by(foreign,total col(1) )(根据 foreign变量的不同类型绘制price等四个变量的散点图矩阵,要求绘出总图,并上下排列】=具)其他图形:graph box y,over(x) yline(.22)(对应 x 的每一个取值构建y 的箱型图,并在y 轴的 0.22 处划一条水平线)graph bar (mean) y,over(x)对应 x 的每一个取值,显示y 的平均数的条形图。

stata命令大全(全)

stata命令大全(全)

********* 面板数据计量分析与软件实现 *********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

(完整word版)STATA面板数据模型操作命令讲解

(完整word版)STATA面板数据模型操作命令讲解

STATA 面板数据模型估计命令一览表一、静态面板数据的STATA 处理命令εαβit ++=xy itiit固定效应模型μβit +=xy ititεαμit+=itit随机效应模型(一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式 ●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量 gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。

在我们这个例子中发现F统计量的概率为0。

0000,检验结果表明固定效应模型优于混合OLS模型.●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui"之后第一幅图将不会呈现)xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。

可见,随机效应模型也优于混合OLS模型.●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。

但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless)可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。

stata命令大全(全)

stata命令大全(全)

*********面板数据计量分析与软件实现*********说明:以下do文件相当一部分容来自于大学连玉君STATA教程,感他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计)* 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog 生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/ gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

stata命令大全(全)

stata命令大全(全)

********* 面板数据计量分析与软件实现 *********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

(完整word版)STATA面板数据模型操作命令要点

(完整word版)STATA面板数据模型操作命令要点

STATA 面板数据模型预计命令一览表一、静态面板数据的STATA办理命令y it i x it it固定效应模型y it x it itit it it随机效应模型(一)数据办理输入数据●tsset code year该命令是将数据定义为“面板”形式●xtdes该命令是认识面板数据构造● summarize sq cpi unem g se5 ln各变量的描绘性统计(统计剖析)● gen lag_y=L.y ///////产生一个滞后一期的新变量gen F_y=F.y ///////产生一个超前项的新变量gen D_y=D.y ///////产生一个一阶差分的新变量gen D2_y=D2.y ///////产生一个二阶差分的新变量(二)模型的挑选和查验●1、查验个体效应(混淆效应仍是固定效应)(原假定:使用 OLS 混淆模型)●xtreg sq cpi unem g se5 ln,fe关于固定效应模型而言,回归纳果中最后一行报告的 F 统计量便在于查验所有的个体效应整体上明显。

在我们这个例子中发现 F 统计量的概率为 0.0000 ,查验结果表示固定效应模型优于混淆 OLS模型。

● 2、查验时间效应(混淆效应仍是随机效应)(查验方法:LM统计量)(原假定:使用OLS混淆模型)●qui xtreg sq cpi unem g se5( 加上“ qui ”以后第一幅图将不会体现) ln,re xttest0能够看出, LM查验获取的 P 值为 0.0000 ,表示随机效应特别明显。

可见,随机效应模型也优于混淆 OLS模型。

● 3、查验固定效应模型or 随机效应模型(查验方法:Hausman查验)原假定:使用随机效应模型(个体效应与解说变量没关)经过上边剖析,能够发现当模型加入了个体效应的时候,将明显优于截距项为常数假定条件下的混淆 OLS模型。

可是没法明确划分 FE or RE 的好坏,这需要进行接下来的查验,以下:Step1 :预计固定效应模型,储存预计结果Step2 :预计随机效应模型,储存预计结果Step3 :进行 Hausman查验●qui xtreg sq cpi unem g se5ln,fe est store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe(或许更优的是hausman fe,sigmamore/ sigmaless)能够看出, hausman查验的 P 值为 0.0000 ,拒绝了原假定,以为随机效应模型的基本假定得不到知足。

(完整word版)STATA面板数据模型操作命令要点

(完整word版)STATA面板数据模型操作命令要点

STATA 面板数据模型估计命令一览表 一、静态面板数据的STATA 处理命令εαβit ++=x y it i it 固定效应模型μβit +=x y it itεαμit +=it it 随机效应模型(一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。

在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。

●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第一幅图将不会呈现) xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。

可见,随机效应模型也优于混合OLS模型。

●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。

但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless)可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。

stata命令大全(全)

stata命令大全(全)

********* 面板数据计量分析与软件实现 *********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

(完整word)Stata统计分析命令

(完整word)Stata统计分析命令

Stata统计分析常用命令汇总一、winsorize极端值处理范围:一般在1%和99%分位做极端值处理,对于小于1%的数用1%的值赋值,对于大于99%的数用99%的值赋值。

1、Stata中的单变量极端值处理:stata 11。

0,在命令窗口输入“findit winsor”后,系统弹出一个窗口,安装winsor模块安装好模块之后,就可以调用winsor命令,命令格式:winsor var1, gen(new var) p(0。

01)或者在命令窗口中输入:ssc install winsor安装winsor命令.winsor命令不能进行批量处理。

2、批量进行winsorize极端值处理:打开链接:http://personal。

/judson。

caskey/data。

html,找到winsorizeJ,点击右键,另存为到stata中的ado/plus/目录下即可。

命令格式:winsorizeJ var1var2var3,suffix(w)即可,这样会生成三个新变量,var1w var2w var3w,而且默认的是上下1%winsorize。

如果要修改分位点,则写成如下格式:winsorizeJ var 1 var2 var3,suffix(w) cuts(5 95)。

3、Excel中的极端值处理:(略)winsor2 命令使用说明简介:winsor2 winsorize or trim (if trim option is specified) the variables in varlist at particular percentiles specified by option cuts(# #)。

In defult, new variables will be generated with a suffix "_w” or "_tr", which can be changed by specifying suffix() option。

stata命令大全(全)

stata命令大全(全)

********* 面板数据计量分析与软件实现*********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计)* 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现,6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/ gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省20xx年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

(完整)stata命令总结,推荐文档

(完整)stata命令总结,推荐文档

stata11常用命令注:JB统计量对应的p大于0.05,则表明非正态,这点跟sktest和swilk 检验刚好相反;dta为数据文件;gph为图文件;do为程序文件;注意stata要区别大小写;不得用作用户变量名:_all _n _N _skip _b _coef _cons _pi _pred _rc _weight doublefloat long int in if using with命令:读入数据一种方式input x y1 42 5.53 6.24 7.75 8.5endsu/summarise/sum x 或 su/summarise/sum x,d对分组的描述:sort groupby group:su x%%%%%tabstat economy,stats(max) %返回变量economy的最大值%%stats括号里可以是:mean,count(非缺失观测值个数),sum(总和),max,min,range,%% sd,var,cv(变易系数=标准差/均值),skewness,kurtosis,median,p1(1%分位%% 数,类似地有p10, p25, p50, p75, p95, p99),iqr(interquantile range = p75 – p25)_all %描述全部_N 数据库中观察值的总个数。

_n 当前观察值的位置。

_pi 圆周率π的数值。

listgen/generate %产生数列egen wagemax=max(wage)clearuseby(分组变量)set more 1/0count %计数gsort +x (升序)gsort -x (降序)sort x 升序;并且其它变量顺序会跟着改变label var y "消费" %添加标签describe %描述数据文件的整体,包括观测总数,变量总数,生成日期,每个变量的存储类型(storage type),标签(label)replace x5=2*y if x!=3 %替换变量值replace age = 25 in 107 %令第107个观测中age为25rename y2 u %改变变量名drop in 2 %删除全部变量的第2行drop if x==. 删去x为缺失值的所有记录keep if x<2 %保留小于2的数据,其余变量跟随x改变keep in 2/10 %保留第2-10个数keep x1-x5 %保留数据库中介于x1和x5间的所有变量 (包括x1和x5),其余变量删除ci x1 x2,by(group) %算出置信区间,不过先前对group要先排序,即sort group;%by的意思逐个进行cii 12 3.816667 0.2710343, level(90) %已知均值,方差,计算90%的置信区间cii 10 2 %obs=10,mean=2,以二项分布形式,计算置信区间centile x,centile(2.5 25 50 75 97.5) %取分位数correlate/corr x y z %相关系数pwcorr x y,sig %给出原假设r=0的命令%如果变量非服从正态分布,则spearman x yregress/reg mean year %回归方程建立 reg y x,noconstant %无常数项predict meanhat %预测拟合值predict e,residual %得到残差estat hettest % 异方差检验dwstat % Durbin-Watson自相关检验vif % 方差膨胀因子logit y x1 x2 x3 (y取0或1,是被解释变量,x1-x3是被解释变量) %logit 回归probit y x1 x2 x3 (y取0或1,是被解释变量,x1-x3是被解释变量) %probit 回归tobit y x1 x2 x3 (y取值在0和1之间,是被解释变量,x1-x3是被解释变量) %tobit回归sktest e %残差正态性检验 p>0.05则接受原假设,即服从正态分布;%% sktest是基于变量的偏度和斜度(正态分布的偏度为0,斜度为3)swilk x %基于Shapiro-Wilk检验%%p值越小,越倾向于拒绝零假设,也就是变量越有可能不服从正态分布xi %生成虚拟变量tabulat gender,summ(math) %用gender指标对math进行分类,返回两类math 的mean、std、freqtabulate=tab %gen f=int((shengao-164)/3)*3+164 组距为3tabulate 变量名 [, generate(新变量) missing nofreq nolabel plot ] %%%%%generate(新变量) // 按分组变量产生哑变量nofreq // 不显示频数nolabel // 不显示数值标记plot // 显示各组频数图示missing // 包含缺失值cell // 显示各小组的构成比(小组之和为 1) column // 按栏显示各组之构成(各栏总计为 1)row // 按行显示各组之构成(各行总计为 1) %%%%%求和,求最小?mod(x,y) %求余数means %返回三种平均值di normprob(1.96)di invnorm(0.05)di binomial(20,5,0.5)di invbinomial(20,5,0.5)di tprob(10,2)di invt(10.0.05)di fprob(3,27,1)di invfprob(3,27,0.05)di chi2(3,5)di invchi2(3,0.05)stack x y z,into(e) %把三列合成一列xpose,clear %矩阵转置append using d:\0917.dta %把已打开的文件(x y z)跟0917里的(x y z)合并,是竖向合并,即观察值合并;merge using D:\0917.dta %把已打开的文件(x y z)跟0917里的(a b)合并,是横向合并,即变量合并;format x %9.2e %科学记数format x %9.2f %2位小数%产生随机数%1 产生20个在(0,1)区间上均匀分布的随机数uniform()set seed 100set obs 20gen r=uniform()list%clear 清除内存set seed 200 设置种子数为 200set obs 20 设置样本量为 20range no 1 20 建立编号 1 至 20gen r=uniform() 产生在(0,1)均匀分布的随机数gen group=1 设置分组变量 group 的初始值为 1sort r 对随机数从小到大排序replace group=2 in 11/20 设置最大的 10 个随机数所对应的记录为第2组,即:最小的10个随机数所对应的记录为第1组sort no 按照编号排序list 显示随机分组的结果也可以list if group==1和list no if group==1%2 产生10个服从正态分布N(100,6^2)的随机数invnorm(uniform())*sigma+u clear 清除内存set seed 200 设置种子数为 200set obs 10 设置样本量为 10 gen x=invnorm(uniform())*6+100 产生服从 N(100,6^2)的随机数list画图注意有些图前面要加histogram 直方图line 折线图scatter 散点图scatter y x,c(l) s(d) b2("(a)")graph twoway connected y x 连点图graph bar (sum) var2,over(var1) blabel(total) %条形图. graph bar p52 p72,by(d). graph bar p52 p72,over(d). graph bar p52 p72,by(d) stack. graph bar p52 p72,over(d) stack////////////数据如下%d p52 p72%1 163.2 27.4%2 72.5 83.6%3 57.2 178.2histogram x,bin(8) norm %画直方图,加正态分数线graph pie a b o ab if area==1,plabel(_all percent) %画饼图graph pie var2, over(var1) plabel(_all percent) %饼图graph pie p52 p72,by(d) %饼图graph box y1 %箱体图qnorm x %qq图lfit y x %回归直线graph matrix gender economy math 多变量散点图line yhat x||scatter y x,c(.l) s(O.) xline(12) yline(5.4) %线形图&散点图有一些通用的选项可以给图形“润色”:标题title(“string”) (string可为任意的字符串,下同)脚注note(“string”)横座标标题xtitle(“string”)纵座标标题ytitle(“sting”)横座标范围 xaxis(a,b) (a<b为两个数字,下同)纵座标范围 yaxis(a,b)插入文字 text (该命令既要指定插入文字的内容,也要指定插入的位置)插入图例 legend (该命令既要指定图例的内容,也要指定其位置)绘制散点图和线条的两个主要的选择项为:connect(c...c) //连接各散点的方式,c表示:或简写为c(c...c) . 不连接 (缺省值)l 用直线连接L 沿x方向只向前不向后直线连接m 计算中位数并用直线连接s 用三次平滑曲线连接J 以阶梯式直线条连接|| 用直线连接在同一纵向上的两点II 同 ||, 只是线的顶部和底部有一个短横Symbol(s...s) // 表示各散点的图形,s 表示:或简写为s(s...s) O 大圆圈 (缺省值)S 大方块T 大三角形o 小圆圈d 小菱形p 小加号. 小点i 无符号[varname] 用变量的取值代码表示[_n] 用点的记录号表示数学函数等都要与generate、replace、display一起使用,不能单独使用程序文件douse d:\0917.dtareg y xline y x,saving(d:\d4)按ctrl+D执行字符串操作函数:length(s) %长度函数,计算s的长度, 如,displength("ab")的结果是2substr(s,n1,n2) %子串函数,获得从s的n1个字符开始的n2个字符组成的字符串,disp substr("abcdef",2,3)的结果是"bcd"string(n) %将数值n转换成字符串函数,如,dispstring(41)+"f"的结果是"41f"real(s) %将字符串s转换成数值函数,如,dispreal("5.2")+1的结果是6.2upper(s) %转换成大写字母函数,如,disp upper("this")的结果是"THIS"lower(s) %转换成小写字母函数,如disp lower("THIS")的结果是"this"index(s1,s2) %子串位置函数,计算s2在s1中第一次出现的起始位置, 如果s2不在s1中, 则结果为0。

stata常用命令总结

stata常用命令总结

stata常用命令总结Stata常用命令总结Stata是一款广泛应用于数据分析与统计建模的统计软件,具有强大的功能和广泛的应用领域。

在Stata中,我们可以通过命令来完成数据的读取、整理、分析和可视化等任务。

本文将对一些常用的Stata命令进行总结和介绍,以帮助读者更好地理解和应用Stata软件。

一、数据的读取与整理1. 读取数据文件:- use 文件名:读取已经存在的Stata数据文件。

- import delimited 文件名:读取以逗号、制表符或其他分隔符分隔的文本文件。

2. 显示数据:- describe:显示数据文件的基本信息,包括变量名、数据类型、有效观测数等。

- browse:以表格形式显示数据文件的部分观测值。

3. 数据整理:- generate 新变量名=计算公式:创建新的变量,并根据指定公式进行计算。

- egen 新变量名=计算函数:根据指定的计算函数对现有变量进行计算,并创建新的变量。

二、数据的统计分析与建模1. 描述性统计:- summarize 变量名:对指定变量进行描述性统计,包括均值、标准差、最小值、最大值等。

- tabulate 变量名:生成指定变量的频数表和百分比表。

2. 数据筛选与子集选择:- keep 如果条件:保留符合条件的观测值,删除不满足条件的观测值。

- drop 如果条件:删除符合条件的观测值,保留不满足条件的观测值。

- qui keep 如果条件:以无输出方式保留符合条件的观测值并生成新数据集。

- qui drop 如果条件:以无输出方式删除符合条件的观测值并生成新数据集。

3. 参数估计与假设检验:- regress 因变量自变量1 自变量2 ...:进行普通最小二乘回归分析。

- ttest 变量名, by(分组变量):进行两组样本均值差异的t检验。

4. 数据可视化:- scatter 变量1 变量2:绘制散点图。

- histogram 变量名:绘制直方图。

(完整word版)Stata命令整理

(完整word版)Stata命令整理

Stata 命令语句格式:[by varlist:] command [varlist] [=exp] [if exp] [in range] [weight] [, options]1、[by varlist:]*如果需要分别知道国产车和进口车的价格和重量,可以采用分类操作来求得,sort foreign //按国产车和进口车排序. by foreign: sum price weight*更简略的方式是把两个命令用一个组合命令来写。

. by foreign, sort: sum price weight如果不想从小到大排序,而是从大到小排序,其命令为gsort。

. sort - price //按价格从高到低排序. sort foreign -price /*先把国产车都排在前,进口车排在后面,然后在国产车内再按价格从大小到排序,在进口车内部,也按从大到小排序*/2、[=exp]赋值运算. gen nprice=price+10 //生成新变量nprice,其值为price+10/*上面的命令generate(略写为gen) 生成一个新的变量,新变量的变量名为nprice,新的价格在原价格的基础上均增加了10 元。

. replace nprice=nprice-10 /*命令replace 则直接改变原变量的赋值,nprice 调减后与price 变量取值相等*/3、[if exp]条件表达式. list make price if foreign==0*只查看价格超过1 万元的进口车(同时满足两个条件),则. list make price if foreign==1 & price>10000*查看价格超过1 万元或者进口车(两个条件任满足一个). list make price if foreign==1 | price>100004、[in range]范围筛选sum price in 1/5注意“1/5”中,斜杠不是除号,而是从1 到 5 的意思,即1,2,3,4,5。

stata命令大全(全)

stata命令大全(全)

*********面板数据计量分析与软件实现*********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计)* 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog 生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/ gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

stata11常用命令注:JB统计量对应的p大于0.05,则表明非正态,这点跟sktest和swilk 检验刚好相反;dta为数据文件;gph为图文件;do为程序文件;注意stata要区别大小写;不得用作用户变量名:_all _n _N _skip _b _coef _cons _pi _pred _rc _weight doublefloat long int in if using with命令:读入数据一种方式input x y1 42 5.53 6.24 7.75 8.5endsu/summarise/sum x 或 su/summarise/sum x,d对分组的描述:sort groupby group:su x%%%%%tabstat economy,stats(max) %返回变量economy的最大值%%stats括号里可以是:mean,count(非缺失观测值个数),sum(总和),max,min,range,%% sd,var,cv(变易系数=标准差/均值),skewness,kurtosis,median,p1(1%分位%% 数,类似地有p10, p25, p50, p75, p95, p99),iqr(interquantile range = p75 – p25)_all %描述全部_N 数据库中观察值的总个数。

_n 当前观察值的位置。

_pi 圆周率π的数值。

listgen/generate %产生数列egen wagemax=max(wage)clearuseby(分组变量)set more 1/0count %计数gsort +x (升序)gsort -x (降序)sort x 升序;并且其它变量顺序会跟着改变label var y "消费" %添加标签describe %描述数据文件的整体,包括观测总数,变量总数,生成日期,每个变量的存储类型(storage type),标签(label)replace x5=2*y if x!=3 %替换变量值replace age = 25 in 107 %令第107个观测中age为25rename y2 u %改变变量名drop in 2 %删除全部变量的第2行drop if x==. 删去x为缺失值的所有记录keep if x<2 %保留小于2的数据,其余变量跟随x改变keep in 2/10 %保留第2-10个数keep x1-x5 %保留数据库中介于x1和x5间的所有变量 (包括x1和x5),其余变量删除ci x1 x2,by(group) %算出置信区间,不过先前对group要先排序,即sort group;%by的意思逐个进行cii 12 3.816667 0.2710343, level(90) %已知均值,方差,计算90%的置信区间cii 10 2 %obs=10,mean=2,以二项分布形式,计算置信区间centile x,centile(2.5 25 50 75 97.5) %取分位数correlate/corr x y z %相关系数pwcorr x y,sig %给出原假设r=0的命令%如果变量非服从正态分布,则spearman x yregress/reg mean year %回归方程建立 reg y x,noconstant %无常数项predict meanhat %预测拟合值predict e,residual %得到残差estat hettest % 异方差检验dwstat % Durbin-Watson自相关检验vif % 方差膨胀因子logit y x1 x2 x3 (y取0或1,是被解释变量,x1-x3是被解释变量) %logit 回归probit y x1 x2 x3 (y取0或1,是被解释变量,x1-x3是被解释变量) %probit 回归tobit y x1 x2 x3 (y取值在0和1之间,是被解释变量,x1-x3是被解释变量) %tobit回归sktest e %残差正态性检验 p>0.05则接受原假设,即服从正态分布;%% sktest是基于变量的偏度和斜度(正态分布的偏度为0,斜度为3)swilk x %基于Shapiro-Wilk检验%%p值越小,越倾向于拒绝零假设,也就是变量越有可能不服从正态分布xi %生成虚拟变量tabulat gender,summ(math) %用gender指标对math进行分类,返回两类math 的mean、std、freqtabulate=tab %gen f=int((shengao-164)/3)*3+164 组距为3tabulate 变量名 [, generate(新变量) missing nofreq nolabel plot ] %%%%%generate(新变量) // 按分组变量产生哑变量nofreq // 不显示频数nolabel // 不显示数值标记plot // 显示各组频数图示missing // 包含缺失值cell // 显示各小组的构成比(小组之和为 1) column // 按栏显示各组之构成(各栏总计为 1)row // 按行显示各组之构成(各行总计为 1) %%%%%求和,求最小?mod(x,y) %求余数means %返回三种平均值di normprob(1.96)di invnorm(0.05)di binomial(20,5,0.5)di invbinomial(20,5,0.5)di tprob(10,2)di invt(10.0.05)di fprob(3,27,1)di invfprob(3,27,0.05)di chi2(3,5)di invchi2(3,0.05)stack x y z,into(e) %把三列合成一列xpose,clear %矩阵转置append using d:\0917.dta %把已打开的文件(x y z)跟0917里的(x y z)合并,是竖向合并,即观察值合并;merge using D:\0917.dta %把已打开的文件(x y z)跟0917里的(a b)合并,是横向合并,即变量合并;format x %9.2e %科学记数format x %9.2f %2位小数%产生随机数%1 产生20个在(0,1)区间上均匀分布的随机数uniform()set seed 100set obs 20gen r=uniform()list%clear 清除内存set seed 200 设置种子数为 200set obs 20 设置样本量为 20range no 1 20 建立编号 1 至 20gen r=uniform() 产生在(0,1)均匀分布的随机数gen group=1 设置分组变量 group 的初始值为 1sort r 对随机数从小到大排序replace group=2 in 11/20 设置最大的 10 个随机数所对应的记录为第2组,即:最小的10个随机数所对应的记录为第1组sort no 按照编号排序list 显示随机分组的结果也可以list if group==1和list no if group==1%2 产生10个服从正态分布N(100,6^2)的随机数invnorm(uniform())*sigma+u clear 清除内存set seed 200 设置种子数为 200set obs 10 设置样本量为 10 gen x=invnorm(uniform())*6+100 产生服从 N(100,6^2)的随机数list画图注意有些图前面要加histogram 直方图line 折线图scatter 散点图scatter y x,c(l) s(d) b2("(a)")graph twoway connected y x 连点图graph bar (sum) var2,over(var1) blabel(total) %条形图. graph bar p52 p72,by(d). graph bar p52 p72,over(d). graph bar p52 p72,by(d) stack. graph bar p52 p72,over(d) stack////////////数据如下%d p52 p72%1 163.2 27.4%2 72.5 83.6%3 57.2 178.2histogram x,bin(8) norm %画直方图,加正态分数线graph pie a b o ab if area==1,plabel(_all percent) %画饼图graph pie var2, over(var1) plabel(_all percent) %饼图graph pie p52 p72,by(d) %饼图graph box y1 %箱体图qnorm x %qq图lfit y x %回归直线graph matrix gender economy math 多变量散点图line yhat x||scatter y x,c(.l) s(O.) xline(12) yline(5.4) %线形图&散点图有一些通用的选项可以给图形“润色”:标题title(“string”) (string可为任意的字符串,下同)脚注note(“string”)横座标标题xtitle(“string”)纵座标标题ytitle(“sting”)横座标范围 xaxis(a,b) (a<b为两个数字,下同)纵座标范围 yaxis(a,b)插入文字 text (该命令既要指定插入文字的内容,也要指定插入的位置)插入图例 legend (该命令既要指定图例的内容,也要指定其位置)绘制散点图和线条的两个主要的选择项为:connect(c...c) //连接各散点的方式,c表示:或简写为c(c...c) . 不连接 (缺省值)l 用直线连接L 沿x方向只向前不向后直线连接m 计算中位数并用直线连接s 用三次平滑曲线连接J 以阶梯式直线条连接|| 用直线连接在同一纵向上的两点II 同 ||, 只是线的顶部和底部有一个短横Symbol(s...s) // 表示各散点的图形,s 表示:或简写为s(s...s) O 大圆圈 (缺省值)S 大方块T 大三角形o 小圆圈d 小菱形p 小加号. 小点i 无符号[varname] 用变量的取值代码表示[_n] 用点的记录号表示数学函数等都要与generate、replace、display一起使用,不能单独使用程序文件douse d:\0917.dtareg y xline y x,saving(d:\d4)按ctrl+D执行字符串操作函数:length(s) %长度函数,计算s的长度, 如,displength("ab")的结果是2substr(s,n1,n2) %子串函数,获得从s的n1个字符开始的n2个字符组成的字符串,disp substr("abcdef",2,3)的结果是"bcd"string(n) %将数值n转换成字符串函数,如,dispstring(41)+"f"的结果是"41f"real(s) %将字符串s转换成数值函数,如,dispreal("5.2")+1的结果是6.2upper(s) %转换成大写字母函数,如,disp upper("this")的结果是"THIS"lower(s) %转换成小写字母函数,如disp lower("THIS")的结果是"this"index(s1,s2) %子串位置函数,计算s2在s1中第一次出现的起始位置, 如果s2不在s1中, 则结果为0。

相关文档
最新文档