8.1不定积分概念与基本积分公式
8.1 不定积分的概念与基本积分公式
x4 ( 2) 2 dx ; x 1
1 1 1 ( 3) ( 3 x 3 )dx ; 2 x x 1 x
2
例5、求下列不定积分。
(1) a x e x dx ;
cos 2 x ( 2) dx . sin x cos x
练习:求 (1) tan 2 x dx ;
(1) [ f ( x ) g ( x )]dx f ( x )dx g ( x )dx . ( 2) kf ( x )dx k f ( x )dx .
( k 是常数 , 且 k 0)
例4、求下列不定积分。
(1) (a0 x n a1 x n 1 a n 1 x a n )dx ;
1 x x2 ( 2) dx . 2 x(1 x )
x 1, x 1 设 f ( x) , 求 f ( x )dx . 例 6、 2 x, x 1
练习:求 | x 1 | dx .
作 业
习题8-1:5(偶数题)
§8.2-1
换元(Substitution Rules) 积分法
( 2) 若 G ( x ) 也是 f ( x ) 的一个原函数 , 则 存在常数C , 使得 G ( x ) F ( x ) C .
F ( x ) 是 f ( x ) 的一个原函数
F ( x ) C C R为 f ( x ) 的原函数集合
函数 f ( x ) 在区间 I 上的全体原函数称为 定义2: f ( x ) 在 I 上的不定积分 , 记作
f ( x ) dx 的图形
y
积分曲线族在横 坐标为 x0 处的 切线互相平行 .
o
x0
x
不定积分的概念和公式表
例4
求积分
( 1
3 x
2
2 )dx. 1 x2
解
( 1
3 x2
2 )dx
1 x2
3
1
1 x
2
dx
2
1 dx 1 x2
3arctan x 2arcsin x
例5
求积分
1 x x x(1 x2
2
)
dx.
解
1 x x x(1 x2
2
)
dx
x (1 x2 x(1 x2 )
)dx
1
1 x
2
1 x
dx
1
1 x2
dx
1dx x
arctan x ln x
例6
求积分
1 2x2
x2
(1
x2
dx. )
解
1 2x2
x 2 (1
x2
dx )
1 x 2 dx
1
1 x2dx
1 arctan x C. x
例7 求积分 (2x 3x )2dx.
解
(2x 3x )2dx
(22x 2 2x 3x 32x )dx
(4x 2 6x 9x )dx
4x 26x 9x C ln4 ln6 ln9
例8 求积分
(
1
2
x2
x4 1 x2
) dx.
解
(
2 1
x2
x4 1 x2
) dx.
2 dx 1 x2
x4 1 1 1 x2 dx.
2arcsin x
1
1 x
2
dx
x4 1 1 x2 dx.
证
f ( x)dx g( x)dx
《数学分析1》知识点总结:第八章-不定积分
第八章不定积分一、不定积分概念与基本积分公式1.原函数与不定积分①定义1:设函数f 与F 在区间I 上都有定义,若F’(x)=f(x),x ∈I ,则称F 为f 在区间I 上的一个原函数。
②定理8.1:若函数f 在区间I 上连续,则f 在I 上存在原函数F ,即F’(x)=f(x),x ∈I 。
·不连续的函数也可以有原函数③定理8.2:设F 是f 在区间I 上的一个原函数,则(i)F+C 也是f 在I 上的原函数,其中C 为任意常量函数;(ii)f 在I 上的任意两个原函数之间,只可能相差一个常数。
④定义2:函数f 在区间I 上的全体原函数称为f 在I 上的不定积分,记作∫f(x)dx 。
·[∫f(x)dx]’=[F(x)+C]’=f(x);·d ∫f(x)dx=d[F(x)+C];⑤不定积分的几何意义:积分曲线2.基本积分表①∫0dx=C ;②∫1dx=∫dx=x+C ;③)0,1(11>-≠++=⎰+x C x dx x αααα;④)0(||ln 1≠+=⎰x C x dx x ;⑤∫e x dx=e x +C ;⑥)0,1(ln >≠+=⎰a C aa dx a xx α;⑦)0(sin 1cos ≠+=⎰αC ax a axdx ;⑧)0(cos 1sin ≠+-=⎰αC ax a axdx ;⑨∫sec 2xdx=tanx+C ;⑩∫csc 2xd1=-cotx+C ;⑪∫secx ·tanxdx=secx+C ;⑫∫cscx ·cotxdx=-cscx+C ;⑬12arccos arcsin 1C x C x x dx+-=+=-⎰;⑭12cot arctan 1C x arc C x x dx +-=+=+⎰。
⑮定理8.3:若函数f 与g 在区间I 上都存在原函数,k 1,k 2为两个任意常数,则k 1f+k 2g 在I 上也存在原函数,且当k 1和k 2不同时为零时,有∫[k 1f(x)+k 2g(x)]dx=k 1∫f(x)dx +k 2∫g(x)dx二、换元积分法与分部积分法1.换元积分法①定理8.4(第一换元积分法/凑微分法):设函数f(x)在区间I 上有定义,φ(t)在区间J 上可导,且φ(J)⊆I 。
数学分析第八章 不定积分
或 df (x) f (x) C.
精品文档
3 不定积分的几何意义 函数f(x)的原函数的图形称 为f(x)的积分曲线。 函数f(x)的积分曲线有无限 多条。函数f(x)的不定积分 表示f(x)的一簇积分曲线, 而f(x)正是积分曲线的斜率。
结论: 若函数F为f 在区间I上的一个原函数,则 {F(x) c | c R}为f 在I上的原函数全体.
精品文档
(二) 不定积分
1. 定义2:函数f (x)在区间I上的全体原函数, 称 为f 在I上的不定积分,记作
f (x)dx
(3)
积分号 被积函数 积分变量
注1. 符号 f (x)dx 是一个整体记号.
1 (102x 102x ) 2x c 2 ln 10
精品文档
8) sec2 xdx tanx C
8 (tanx)' sec2 x
9) csc2 xdx cotx C 9 (cotx)' csc2 x
10) dx arcsin x C 10 (arcsin x)' 1
1 x2
1 x2
11)
dx 1 x2
arctanx C
11
(f g) = f g + f g ,
(f [ ]) = f [ ] 这些计算方法加上基本初等函数的导数公式, 我们可以解决初等函数的求导问题,即是,若 f 为 初等函数, f 的表达式能求出.
精品文档
我们现在来研究第五章求导问题的逆问题。
问题:在已知 f 的表达式时,f 的表 达式是什么形式呢?
1 (arctanx)' 1 x2
精品文档
不定积分公式口诀
不定积分公式口诀摘要:一、引言二、不定积分的概念与基本公式1.不定积分的定义2.基本积分公式三、常用初等函数的积分公式1.幂函数的积分公式2.三角函数的积分公式3.指数函数与对数函数的积分公式4.反三角函数的积分公式5.其他常见函数的积分公式四、记忆口诀与技巧1.口诀一:奇偶函数积分规律2.口诀二:高阶导数求积分3.口诀三:分部积分法五、总结正文:一、引言在微积分学习中,不定积分是重要的基础知识之一。
掌握好不定积分的方法和技巧,对于后续学习定积分、微分方程等课程具有重要意义。
本文将为大家介绍一些常用的不定积分公式,并通过口诀形式帮助大家记忆。
二、不定积分的概念与基本公式1.不定积分的定义:设函数f(x) 在区间[a, b] 上有界,F(x) 是f(x) 在[a, b] 上的一个原函数,则称F(x) 在[a, b] 上关于x 的不定积分。
通常用∫(a~b)f(x)dx 表示。
2.基本积分公式:对于一些基本的初等函数,我们可以直接查表或记忆其不定积分公式。
例如:∫(x^n)dx = x^(n+1)/(n+1)、∫(sinx)dx = -cosx +C、∫(ex)dx = ex + C 等。
三、常用初等函数的积分公式1.幂函数的积分公式:对于幂函数f(x) = x^n,其不定积分为F(x) =x^(n+1)/(n+1) + C。
2.三角函数的积分公式:对于正弦函数f(x) = sinx,其不定积分为F(x) = -cosx + C;对于余弦函数f(x) = cosx,其不定积分为F(x) = sinx + C。
3.指数函数与对数函数的积分公式:对于指数函数f(x) = ex,其不定积分为F(x) = ex + C;对于自然对数函数f(x) = lnx,其不定积分为F(x) = xlnx - ln(x) + C。
4.反三角函数的积分公式:对于反正弦函数f(x) = arcsin(x),其不定积分为F(x) = -√(1-x^2) + C;对于反余弦函数f(x) = arccos(x),其不定积分为F(x) = √(1-x^2) + C。
数学《不定积分》讲义
第八章 不 定 积 分1 概念与基本积分公式引入 求导 (微分)运算的逆运算一、不定积分的定义 1、原函数例 1 ( )'211x =+ ( )'2cos x =- ( )'2x = (d dx )sin 2x e x -=-(d )xdx = ( )'arctan x = 21arctan ln(1)2x x x ⋅-+定义 1 设函数F 和f 在区间I 上都有定义. 若在I 上,有()()F x f x '=, 则称F 为f 在区间I 上的一个原函数.注1 若f 可导, 则f 为()f x '的一个原函数. 原函数的基本问题1) 什么样的函数存在原函数?2) 若已知原函数存在,是否唯一? 如何求? 定理 1 若f 在区间I 上连续,则f 在I 上存在原函数. 推论1 初等函数在其定义域上都有原函数.问题 定理 1的逆定理是否成立? 即若f 在I 上存在原函数, 则f 是否连续?(答案是否定的, 也就是说间断函数可能具有原函数,). 详细地说, 仅有第二类间断点的函数可能有原函数. 而具有第一类间断点的函数不可能具有原函数.定理2 1) 若()F x 是()f x 在区间I 上的一个原函数,则对任何常数c ,()F x c + 都是()f x 在区间I 上的原函数.2) 若函数()G x 也是()f x 在区间I 上的一个原函数,则必有常数c ,使得()()G x F x c =+. (任何两个原函数之间相差一个常数c )注2 若()F x 为()f x 的一个原函数, 则()f x 的所有原函数为{(); }F x c c R +∈. 2、不定积分定义 2 f 在区间I 上的全体原函数称为f 的不定积分, 记作()f x dx ⎰或 f dx ⎰, 其中⎰为积分号,f 为被积函数, x 为积分变量, ()f x dx 为被积表达式.例 2 21dxx+⎰arctan x c =+, 323x x dx c =+⎰注 3 若F 为f 在区间I 上的一个原函数,则f 的不定积分为()F x c +,即()f x dx ⎰()F x c =+,这说明求不定积分只需求一个原函数, 再加上常数c 即可. 特别地,()()f x dx f x c '=+⎰, (())()f x dx f x '=⎰或者微分形式 ()()df x f x c =+⎰, (())()d f x dx f x dx =⎰. 在忽略常数的意义下, 求积分与求导数是一对互逆运算.不定积分的几何意义 若()F x 为()f x 的一个原函数,则称曲线()y F x =为f 的一条积分曲线. 这样f 的不定积分在几何上就表示f 的某一条积分曲线沿纵轴(y 轴)方向任意平移所得的一切积分曲线组成的曲线簇.现在我们回到前面的原函数基本问题: 怎么求原函数? 即怎样求不定积分?例 3 设()f x 是有界闭区间[,]a b 上的非负连续函数. 曲线()y f x =与直线,x a x b ==及0y =所围成的平面图形ABCD 称为曲边梯形,下面讨论曲边梯形的面积S (严格论证以后给出).任取[,]x a b ∈. 记曲边梯形AMND 的面积为()S x 则()0, ()S a S b S ==. 当x 变到x x +∆时……0x ∆≈时, ()()()S S x x S x f x x ∆=+∆-≈∆ 因此 '()()S x f x =因而求导的逆问题也称为求积问题,求曲边梯形面积可归结为求原函数问题. 到底该如何求原函数? 求原函数也的确是一个比较困难的问题,即使是一些简单的函数, 如前面的arctan x ,也不能一下看出来, 这就需要引进一些积分方法. 二、不定积分的基本公式 1、设函数,f g 存在原函数, 则1) (())()f x dx f x '=⎰, (())()d f x dx f x dx =⎰; 2)()()f x dx f x c '=+⎰, ()()df x f x c =+⎰; 3) 0α≠,()()f x dx f x dx αα=⎰⎰; 4)()()()()f x g x dx f x dx g x dx ±=±⎰⎰⎰.由3)、4) 可知不定积分为线性运算,即[()()]()()f x g x dx f x dx g x dx αβαβ+=+⎰⎰⎰ 22(,, 0)R αβαβ∀∈+≠. 2、基本积分表1) 0 dx c =⎰ 2) 1 dx x c =+⎰3) 11x x dx c ααα+=++⎰ (1)α≠- 4) 1ln ||dx x c x =+⎰5) xxe dx e c =+⎰ 6) ln xxa a dx c a=+⎰ (0,1)a a >≠7) sin cos x dx x c =-+⎰ 8) cos sin xdx x c =+⎰ 9) 2sec tan xdx x c =+⎰ 10) 2csc cot xdx x c =-+⎰ 11) sec tan sec x xdx x c =+⎰ 12) csc cot csc x xdx x c =-+⎰ 13)tan ln |cos |xdx x c =-+⎰ 14) cot ln |sin |xdx x c =+⎰15) sec ln |tan sec |xdx x x c =++⎰ 16) csc ln |csc cot |xdx x x c =-+⎰ 17)arcsin arccos x c x c =+=-+ 18)2arctan arccot 1dxx c x c x =+=-++⎰19)221arctan dx xc x a a a =++⎰ 20) 221ln ||2dx x ac x a a x a -=+-+⎰21)arcsinxc a=+ 22) ln(x c =++例 4 1) ⎰; 2)⎰;3) 01nn a a x a x dx ++⋅⋅⋅+⎰(); 4) 221x dx x +⎰;5) 421x dx x +⎰;6) 2(1010)x x dx -+⎰; 7) 2312x x e dx --⎰;8) 2cos 2sin xdx x ⎰; 9) 22cos sin d θθθ⋅⎰;10) cos cos3x xdx ⋅⎰; 11) 22dx x +⎰;12)()()dxx a x b ++⎰; 13)22dx x -⎰;问题: ()f x dx ⎰与()f u du ⎰是否相同?例 5 已知()F x 为()2f x x =的一个原函数, 且(2)5F =, 求()F x .例 6 已知211dy dx x =-, 求()y y x =.例 7 考察21sin , 0;() 0, 0,x x f x xx ⎧≠⎪=⎨⎪=⎩的导函数性质.2 换元积分与分部积分法一、第一类换元法----凑微分法544sin 25sin 2(sin 2)10sin 2cos 2d x x x dx x xdx '=⋅=⋅4410sin2cos 25sin 2(sin 2)x xdx x x dx '⋅=⋅⎰⎰45sin 2sin 2xd x =⎰sin 2u x = 45u du ⎰55sin 2u c x c =+=+ 定理 1 若()()f u du F u c =+⎰,()u x ϕ=连续可导, 则(())()(())f x x dx F x c ϕϕϕ'⋅=+⎰,即若被积函数()g x 能够分解为()(())()g x f x x ϕϕ'=⋅, 则()(())()(())()g x dt f x x dt f x d x ϕϕϕϕ'=⋅=⎰⎰⎰()u x ϕ=()()(())f u dx F u c F x c ϕ=+=+⎰例 1 1) ()m ax b dx +⎰ (1,0)m a ≠-≠2) 2sec (53)x dx -⎰3) 1cos3cos 2(cos cos5)2x xdx x x dx ⋅=+⎰⎰凑法1 11()()()()f ax b dx f ax b d ax b f u du a a+=++=例 2 1) 21sin (1cos 2)2xdx x dx =-⎰⎰2)2122dx c x =+⎰ 221[arctan ]dx x c a x a a =++⎰3)22232(1)2dx dx c x x x ==+++++⎰⎰4) 211ln ||23(3)(1)43dx dx x c x x x x x -==++-+-+⎰⎰5) 223xdx x x +-⎰例 3 21xdx x +⎰凑法2 111()()()()k k k k x f x dx f x d x f u du k k-== 如 2221()()2xf x dx f x dx =2f =例 4 1) 4104x dx x+⎰2) 2sin x x dx ⋅⎰3)4) 2c ===⎰⎰或5) 2221ln (1)21dx x c x x x =+++⎰凑法3 (sin )cos (sin )sin f x xdx f x d x ⋅= (cos )sin (cos )cos f x xdx f x d x =- 2(tan )sec (tan )tan f x xdx f x d x = 例 5 1) 3sin cos x xdx ⎰2) 3sin xdx ⎰3) 2cos 11sin sec ln ||cos 21sin x xxdx dx c x x+==+-⎰⎰4) 622sec (1tan )tan xdx x d x =+⎰⎰5) 5342tan sec tan sec sec x xdx x xd x =⎰⎰凑法4 ()()x x x x f e e dx f e de = 例 6 1) 2t dte --⎰2) 2t dt e -⎰凑法5 1(ln )(ln )ln f x dx f x d x x =例 7 1) 1ln dx x x ⎰ 2)(12ln )dxx x +⎰凑法6(arcsin )(arcsin )dx f x d x =2(arctan )(arctan )arctan 1f x dx f x d x x =+例 82c =+注:第一类换元积分关键在于看被积函数的形式能否凑成(())()f x x ϕϕ'⋅的形式,或看被积函数(复合)哪一部分较复杂,先换元试试看.例 9 1) ln()x x x x x x e e dx e e c e e----=+++⎰ [()ln |()|()f x dx f x c f x '=+⎰]2) ln 1ln x dx x x+⎰ 3)2sec sec tan sec sec tan x x x xdx dx x x +=+⎰⎰4)5)6)2222x dx x x -++⎰ 7) 2223x dx x x -+-⎰8) 分析22Ax Bx C dx ax bx c ++++⎰形式积分9)2222cos sin cos sin x x dx a x b x +⎰ 10) 2222cos sin dx a x b x +⎰11)22sin dx x -⎰ 12) 22sin dx x +⎰13)2sin cos sin cos x x dx x x -+⎰二、第二类换元法----拆微分法sin x t = sin t 21cos 1cos 22tdt tdt ==+⎰⎰11sin 224t t c =++1(arcsin )2x x c =+ 定理 2 设()x t ϕ=是连续可微的,且()0t ϕ'≠. 若(())()f t t ϕϕ'⋅具有原函数()F t , 则有换元公式1()(())()()(())f x dx f t t dt F t c F x c ϕϕϕ-'=⋅=+=+⎰⎰.常见代换:三角代换、无理代换、双曲代换、倒代换、万能代换、Euler 代换等1、 三角代换1) (正) 弦代换 (0)a >的积分施行,目的是去掉根号,方法是令sin x a t =cos cos a t a tdt =⋅, arcsin x t a =. 例 10 1)arcsin x c a =+2)=2) (正) 切代换 (0)a >的积分施行,目的是去掉根号,方法是令tan x a t =sec a t =, 2sec dx a tdt =, arctan x t a =. 例 11 1)2)222()dx x a +⎰ (0)a >3) (正) 割代换 (0)a >的积分施行,目的是去掉根号,方法是令sec x a t =tan a t =, sec tan dx a t tdt =⋅, arccos a t x =.例 12 1)sec ln |sec tan |ln ||...x tdt t t c c a a ==++=++=⎰2)c =2、万能代换 常用于被积函数为三角函数的有理分式形式 令tan 2x t =,则22sin 1t x t=+, 221cos 1t x t -=+, 22tan 1t x t =-, 221dt dx t =+, 2arctan x t =. 例 13 1)2cos dx x +⎰2)1sin cos dx x x ++⎰3)2sin cos sin cos x x dx x x -+⎰4) 1sin sin (1cos )x dx x x ++⎰5)2222sin cos dx a x b x +⎰3、无理代换若被积函数中有⋅⋅⋅形式时,令n 为12,,k n n n ⋅⋅⋅的最小公倍数,作代换t =,则1, n n x t dx nt dt -==,将被积函数转化为t 的有理函数。
ch8.1不定积分概念与基本积分公式
推论: 若
则
n
f (x)dx ki fi (x)dx i 1
17
直接积分法:
利用恒等变形, 积分性质 及 基本积分公式进行积分 . 分项积分
常用恒等变形方法 加项减项
利用三角公式 , 代数公式 ,
例5. 求
解: 原式 = (sec2x 1)dx sec2xdx dx tan x x C
arctan x ln x C
20
例8. 求
x4 1 x2
dx
.
解: 原式 =
(
x4 1
1) x2
1
dx
(
x
2
1)(x2 1 x2
1)
1
dx
(x2
1)
dx
1
dx x2
1 x3 x arctan x C 3
21
内容小结
1. 不定积分的概念 • 原函数与不定积分的定义 • 不定积分的性质 • 基本积分表
1 x )dx 1 x
(15) cos x cos 2xdx
(2) (x
1 )2 dx x
(4) (2x 3x )2 dx
x2
(6) 3(1 x2 ) dx
(8) sin2 xdx
(10)
cos 2x cos2 x sin2
x
dx
(12) x x x dx
28
8. 求下列不定积分(page180)
(1) (1 x x3 1 )dx 3 x2
(3)
1 dx 2gx
(5)
数学分析8.1不定积分概念与基本积分公式
2、f在I上的任意两个原函数之间,只可能相差一个常数.
证:1、依题意F’=f,则当C为常量函数时,(F+C)’=F’=f,得证.
2、设F,G是f在I上的任意两个原函数,则有(F-G)’=F’-G’=f-f=0.
根据拉格朗日中值定理推得:F-G≡C, C为常量函数.
[∫f(x)dx]’=[F(x)+C]’=f(x);d∫f(x)dx=d[F(x)+C]=f(x)dx.
不定积分的几何意义:若F是f的一个原函数,则称y=F(x)的图象为f的一条积分曲线.所以f的不定积分在几何上表示f的某一积分曲线沿纵轴方向任意平移所得一切积分曲线组成的曲线族。显然,在每一条积分曲线上横坐标相同的点处作切线,则这些切线互相平行。
7、∫cosaxdx= sinax+C (a≠0);8、∫sinaxdx=- cosax+C (a≠0);
9、∫sec2xdx=tanx+C;10、∫csc2xdx=-cotx+C;11、∫secx·tanxdx=secx+C;
12、∫cscx·cotxdx=-cscx+C;13、∫ =arcsinx+C=-arccosx+C1;
(2)∫(x- )2dx=∫(x2- + )dx=∫x2dx-∫2x dx+∫ dx= - x +ln|x|+C.
(3)∫ = ∫x- dx= x +C= +C.
(4)∫(2x-3x)2dx=∫(22x-2·6x+32x)dx=∫4xdx-2∫6xdx +∫9xdx= -2· + +C.
(5)∫( +sinx)dx= ∫ dx+∫sinxdx= arcsinx-cosx+C.
不定积分基本概念
不定积分基本概念数学中的积分是微积分的重要概念之一。
在求解函数的不定积分时,我们会遇到一些基本概念,本文将对这些概念进行详细介绍。
1. 不定积分的定义不定积分是求解一个函数的原函数的过程。
若函数F(x)在区间[a, b]上可导,且对于该区间上任意一点x,都有F'(x) = f(x),则F(x)就是函数f(x)在区间[a, b]上的一个原函数。
我们将F(x)称为原函数,而f(x)称为被积函数。
不定积分表示为∫f(x)dx,其中∫表示积分运算。
2. 不定积分的性质不定积分具有如下几个重要的性质:- 线性性质:对于任意的常数a和b,有∫(af(x)+bg(x))dx = a∫f(x)dx +b∫g(x)dx。
即不定积分具有可分配律。
- 求导与积分的关系:若F(x)是f(x)的一个原函数,则F'(x) = f(x),同时也可以推出f(x)是F(x)的一个原函数。
- 积分的逆运算:对于连续函数f(x),如果它在区间[a, b]上的一个原函数存在,那么∫(f'(x))dx = f(x) + C,其中C表示常数项。
3. 常见的不定积分公式在求解不定积分时,我们常常会用到一些常见的不定积分公式,下面列举一些常见的例子:- 常数函数的不定积分:∫kdx = kx + C,其中k为常数,C为常数项。
- 幂函数的不定积分:∫x^ndx = (x^(n+1))/(n+1) + C,其中n不等于-1,C为常数项。
- 正弦函数的不定积分:∫sinxdx = -cosx + C,其中C为常数项。
- 余弦函数的不定积分:∫cosxdx = sinx + C,其中C为常数项。
4. 换元积分法换元积分法是求解复杂函数不定积分的一种常用方法。
它通过引入一个新的变量,将原函数转化为更容易求解的形式。
换元积分法的基本步骤是:- 选择适当的变量代换,将不定积分转化为新变量的积分表达式。
- 对新变量进行积分运算,得到结果。
不定积分的性质与基本积分公式
不定积分的性质与基本积分公式不定积分是微积分中一个重要的概念,用于求解给定函数的原函数。
在实际应用中,不定积分可以用于求解曲线的长度、曲线下的面积、物体的质心等问题。
本文将介绍不定积分的性质和基本积分公式。
1.不定积分的定义不定积分是对函数进行积分运算的过程。
设函数f(x)在区间[a, b]上可导。
称满足F′(x) = f(x)的函数F(x)为f(x)在区间[a, b]上的一个原函数。
记为F(x) = ∫f(x)dx + C,其中C为常数。
这里的F(x)就是f(x)的一个原函数,符号∫f(x)dx称为不定积分。
2.不定积分的运算性质(1)线性性质:若F(x)和G(x)都是f(x)在区间[a,b]上的原函数,则c1F(x)+c2G(x)也是f(x)在区间[a,b]上的原函数,其中c1和c2为常数。
(2)积分和导数的关系:若F(x)是f(x)在区间[a,b]上的一个原函数,则F(x)+C也是f(x)的一个原函数,其中C为常数。
即:(F(x)+C)'=F'(x)=f(x)。
(3)换元法则:设u = g(x)是一个可导函数,f(u)在区间[a, b]上连续,且f(g(x))g′(x)在[a, b]上连续,则∫f(g(x))g′(x)dx =∫f(u)du。
(4)分部积分法则:设u = u(x)和v = v(x)是可导函数,且u′(x)和v′(x)在[a, b]上连续,则∫u′(x)v(x)dx = u(x)v(x) -∫v′(x)u(x)dx。
(1)常数函数:∫kdx = kx + C,其中C为常数。
(2)幂函数:∫x^ndx = (x^(n+1))/(n+1) + C,其中C为常数,n≠-1(3)指数函数:∫e^xdx = e^x + C,其中C为常数。
(4)三角函数:∫sinxdx = -cosx + C,∫cosxdx = sinx + C,∫sec^2xdx = tanx + C,其中C为常数。
《不定积分概念》课件
欢迎来到本次《不定积分概念》的PPT课件。在本课程中,我们将介绍不定积 分的定义、性质、计算方法、常见公式以及如何使用不定积分解决具体问题。
不定积分的定义
1 概念介绍
不定积分是函数积分的一种形式,表示函数的原函数。它可以用来描述函数与曲线之间 的面积关系。
2 符号表示
不定积分通常使用∫表示,积分变量写在∫号下面。例如,∫f(x) dx表示对函数f(x)进行积分。
1
面积和体积
使用不定积分可以计算曲线与坐标轴之间
速度和位移
2
的面积以及旋转曲线形成的体积。
不定积分可以用于计算运动过程中的速度
和位移,例如计算物体的位移函数或速度
函数。
3
概率和统计
在概率和统计中,不定积分可以用于计算 概率密度函数的面积和期望值。
注意事项与常见错误
积分常数
计算不定积分时,要记住添加积分常数,它表示不定积分的无穷多个解。
不定积分的计算方法
分部积分法
用于计算乘积函数的不定积分, 通过选择合适的两个函数进行积 分运算。
三角函数积分
用于计算三角函数的不定积分, 通过使用特定的三角函数公式进 行简化。
部分分式分解法
用于计算有理函数的不定积分, 将有理函数分解为几个简单的部 分分式进行积分。
常见的不定积分公式
1 基本积分公式
如多项式的积分公式、幂 函数的积分公式等,是计 算不定积分的基础。
2 指数函数和对数函数
的积分
指数函数和对数函数的积 分公式是计算含有指数函 数和对数函数的不定积分 的关键。
3 三角函数和反三角函
数的积分
三角函数和反三角函数的 积分公式是计算含有三角 函数和反三角函数的不定 积分的重要工具。
定积分公式和不定积分公式
定积分公式和不定积分公式定积分公式和不定积分公式数学中,积分是一个非常重要的概念。
根据积分的算法分类,可以分为定积分和不定积分两种类型。
在这两种类型之间,有着一系列的公式存在,下面将会对定积分公式和不定积分公式进行详细讨论。
一、定积分公式定积分公式是求解定积分时需要用到的一种数学公式。
在定积分的基础上,使用定积分公式可以极大的方便计算的过程,加快处理的速度。
常见的定积分公式有:(1)基本积分公式指数函数积分:$$\int e^xdx=e^x+C$$幂函数积分:$$\int x^ndx=\frac{x^{n+1}}{n+1}+C$$三角函数积分:$$\int \sin x dx=-\cos x+C$$$$\int \cos x dx=\sin x+C$$$$\int \tan x dx=\ln |\sec x|+C$$$$\int \cot x dx=\ln |\sin x|+C$$(2)换元积分公式逆元未知法:$$\int f(g(x))g'(x)dx=F(g(x))+C$$公式法:$$\int f(x)dx=\int \frac{f(ax+b)}{a}dx$$二、不定积分公式不定积分公式是一个求解不定积分的方法。
使用不定积分公式可以把不定积分转化为已知函数与常数的和。
常见的不定积分公式有:(1)基本积分公式指数函数积分:$$\int e^xdx=e^x+C$$幂函数积分:$$\int x^ndx=\frac{x^{n+1}}{n+1}+C$$三角函数积分:$$\int \sin x dx=-\cos x+C$$$$\int \cos x dx=\sin x+C$$(2)分部积分公式$$\int udv=uv-\int vdu,$$其中 $u$ 和 $v$ 分别为积分中的两个函数。
通过这样的分部积分,可以将一个较难求的积分,将其转化为两个较容易求的积分。
(3)三角代换公式$$\int R(\sin x,\cos x)dx$$此处,$R(\sin x,\cos x)$ 是一个使用 $\sin x$ 和 $\cos x$ 组成的有理函数。
高等数学第8章第1节不定积分概念与基本积分公式
高等数学第8章第1节不定积分概念与基本积分公式第八章不定积分§1不定积分概念与基本积分公式一原函数与不定积分1原函数定义1 设函数/(x)与F(x)在区间/上有宦义.若F'(x) = /(x), xeZ,则称F(A)为/(x)在区间/上的一个原函数.如:丄十是兀2在R上的一个原函数:一丄cos2x, —cos2x+1, sin2x ,—cos2x等都有是sin2x在R上的原函数一一若函数/(x)存在原函数,则其原函数不是唯一的.问题1 /(x)在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个?问题2 若函数/(朗的原函数存在,如何将它求岀?(这是本章的重点内容).2原函数存在定理定理8. 1若/(Q在区间/上连续,则/(x)在/上存在原函数F(x).证明:在第九章中进行.说明:(1)由于初等函数在其左义域内都是连续的,故初等函数在英左义域内必存在原函数(但苴原函数不一定仍是初等函数).(2)连续是存在原函数的充分条件,并非必要条件.3原函数之间关系定理8. 2 设F(x)是/(X)在在区间/上的一个原函数,则(1)设F(x) + C是/(X)在在区间/上的原函数,其中C为任意常量(若/(对存在原函数,则苴个数必为无穷多个).(2)/(x)在/上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系).证明:由肚义即可得.4不定积分定义2 函数/(X)在区间/上的原函数的全体称为/(x)在/上的不定积分,记作:其中J 一一积分号;/(x)—一被积函数:f(x)dx一―被积表达式:兀一一积分变量.注1 J f(x)dx是一个整体记号:不宦积分与原函数是总体与个体的关系,即若F(x)是/G)的一个原函数,则/(X)的不眾积分是一个函数族{F(x) + C},其中C是任意常数,于是,记为:J/(x)心二F(x) + C.高等数学第8章第1节不定积分概念与基本积分公式此时称C 为积分常数,它可取任意实数・故有不定积分简单性质[J f(x}dx\ = /(A)——先枳后导正好还原:或 町 f(x)dx = f{x)dx.^f\x)dx = f(x) + C ——先导后积还原后需加上一个常数(不能完全还原).或 | = f(x) + C.如:|x~dx =冷 + C ,|sin 2xdx = 一£cos2x + C. 几何意义:若FW 是/(x)的一个原函数,则称y = F(x)的图象为/(x)的一条积分曲线.于是,/W 的不淀积分在几何上表示/(X )的某一条积分曲线沿纵轴方向任意平移所得一载积分曲线组成的曲线族,如左图. 结论:若在每一条积分曲线上横坐标相同的点处作切线,则这些切线互相平行.注: 在求原函数的具体问题中,往往是先求出全体原函数,然后从中确左一个满足条件F(x 0) = y 0 (称之为初始条件,一般由具体问题确左)的原函数,它就是积分曲线族中通过点(兀,儿)的那条积分曲线.如:见P179.二基本积分公式1基本积分表由于不左积分的左义不象导数左义那样具有构造性,这就使得求原函数的问题要比求导数难得多,因此, 我们只能先按照微分法的已知结果去试探.首先,我们把基本导数公式改写成基本积分公式:x ^\ 2. | \dx = ^dx = x + C : 3. J x a dx =———-+ C 14. f . =arctanx + C = -arccotx + C }. J l + x 2注总:上述基本积分公式一立要牢记,因为其它函数的不加积分经运算变形后,最终归结为这些基本不 6."y c, (d>0,“Hl): 7. [cosaxdx = — sin ax + C 9 (G HO): J a4. = ln|x| + C , (x H 0) :5. J e x dx = e x +C: 8. [sin axdx =——cosax+ C t (a HO): 9. | sec 2 xdx = tan x + C :1. j0Jx = C {a H -l,x > 0):10. fcsc ,x/ =-cotx + C ; jsecx ・ tanx"\・=secx + C:12. jcscx ・cotA/Zr = -cscx + C: 13. dx7arcsin x + C =一arccosx + C\ :高等数学第8章第1节不定积分概念与基本积分公式 泄积分.另外,还须借助一些积分法则才能求岀更多函数的不立积分.2线性运算法则定理8.3 若函数/(x)与g(x)在区间/上都存在原函数,k^k 2为两个任意常数,则kJE + k^E 也存在原函数,且J [匕/(X )+ 込g(x)]c/x = £J/(x)dx + 心j*(积分的线性).证明:由泄义即得.注:线性法则的一般形式为: f 士kjjgdx = f kJ/⑴必."r-1 i-l例 1 p{x) = a^x n + a x x n ^ + …+ + a n例 2 J 詔心 Z» +寿)心 y“2arcW + C.e ax rCOS 2X + sin 2X f e, 7 7 x , ------ ; --- ;—= -- ; ---- -——dx = (esc* x + seL x)dx J cos' xsin" x J cos~ xsin" x J= -cotx +tanx + C ・|cos3x • sin xdx = —J (sin4x -sin 2x)dx = —(-—cos4x +—cos2x) + C 2 2 4* 2=-^(cos4x - cos2A ) + C.j(10v -l O~x )2dx =J(102v +10_2t 一2)dx = J[(1O 2)V +(1O _2)X -2\dx=—(102t-10-2v )-22 + C ・2InlO 作业 P182 2, 3, 5 (1) " (16)j pMdx = Q ()严1 n+T'dx n。
数学分析(第81节不定积分概念与基本积分公式)
详细描述
直接积分法基于不定积分的定义,通 过凑微分、变量替换等方式将不定积 分转化为定积分,从而求得原函数。
换元积分法
总结词
换元积分法是通过引入新的变量 来简化不定积分的方法。
详细描述
换元积分法通过引入新的变量, 将复杂的不定积分转化为简单的 不定积分,从而方便求解。常用 的换元方法有三角换元和倒代换
THANKS FOR WATCHING
感谢您的观看
公式示例
对于不定积分 $int x sin x dx$,分部积分法得到原函数 $x cos x - int cos x dx$。
03
不定积分的应用
解决实际问题
物理问题
不定积分在解决物理问题中有着 广泛的应用,如求变速运动的位 移、速度和加速度,以及求解热
传导方程等。
工程问题
在工程领域中,不定积分常被用于 解决各种实际问题,如求解流体动 力学中的压力分布、求解弹性力学 中的应力分布等。
直接积分法
利用基本初等函数的积分 公式和性质进行计算。
换元积分法
通过引入中间变量进行换 元,将复杂函数的不定积 分转化为简单函数的不定 积分。
分部积分法
将两个函数的乘积进行不 定积分,转化为分别对两 个函数进行不定积分后再 相减。
不定积分的几何意义
水平切线
不定积分表示函数图像上 方的面积,其几何意义是 曲线下的面积。
斜率
不定积分表示曲线在某一 点的切线的斜率,即该点 的导数值。
速度与加速度
不定积分可用于描述物理 中的速度和加速度,以及 工程中的流量和压力等实 际问题。
02
基本积分公式
直接积分法
总结词
公式示例
直接积分法是最基本的积分方法,通 过将不定积分转化为定积分来求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 (i) 路程函数 s(t) 是速度函数 v(t) 的一个原函
数:
s(t) v(t).
(ii) x3 是 x2 的一个原函数:
3
x3 3
x2.
(iii)ln( x 1 x2 ) 是 1 的一个原函数: 1 x2
ln( x 1 x2 ) 1 . 1 x2
(iv)
1 2
• 8.1 不定积分概念与基本积分公式 • 8.2 换元积分法和分部积分法 • 8.3 有理函数和可化为有理函数的不定积分
• 一、原函数 • 二、不定积分 • 三、基本积分表
一、原函数
微分运算的逆运算是由已知函数 f (x), 求函数F(x), 使
F ( x) f ( x). 例如 已知速度函数 v(t), 求路程函数 s(t). 即求
定理8.2 (原函数族的结构性定理) 设 F( x) 是 f ( x) 在区间 I 上的一个原函数, 则 (i) F( x) C 也是 f ( x) 在 I 上的原函数, 其中 C (ii) f (x) 在 I 上的任意两个原函数之间, 只可能相差 为任意常数. 一个常数.
二、不定积分
定义2 函数 f 在区间 I 上的全体原函数称为 f 在 I 上的不定积分, 记作
x
1 x2 arcsin x 是
1 x2 的一个原函数 :
1
2
x
1 x2
arcsin x
1 x2 .
从(iii) (iv)可以看出, 尽管象
1 和 1 x2 1 x2
定理8.1 (原函数存在性定理)
若函数 f 在区间 I 上连续, 则 f 在 I 上存在原函
数 F, 即 F( x) f ( x).
s(t), 使 s(t) v(t).
又如, 已知曲线在每一点处的切线斜率 k( x), 求 f ( x), 使 y f ( x)的图象正是该曲线, 即使得
f ( x) k( x).
定义1 设函数 f 与 F 在区间 I 上都有定义,若
F( x) f ( x), x I ,
则称 f 为 F 在区间 I 上的一个原函数.
像是 f (x) 的一条积分曲线.
所有的积分曲线都是
y
y F(x) C
由其中一条积分曲线
y F(x)
沿纵轴方向平移而得 到的.
( x0 , y0 )
O
x
满足条件 F ( x0 ) y0 的原函数正是在积分曲线中 通过点( x0, y0 )的那一条积分曲线. 例如, 质点以匀速 v0 运动时, 其路程函数
s(t) v0 dt v0 t C.
若 t0 时刻质点在 s0 处, 且速度为 v0, 则有
s (t) v0(t t0 ) s0 .
四、基本积分表
由基本求导公式可得以下基本积分公式:
1. 0dx C. 2. 1dx dx x C. 3. xdx x1 C ( 1, x 0).
p( x)dx a0 xn1 a1 xn
n1
n
a n1 2
x2
an x
C.
例2
x4 x2
1 1
dx
(x2
1
x
2 2
1
)
dx
1 x3 x 2arctan x C. 3
例3 tan2 x dx (sec2 x 1)dx tan x x C.
例4 (10x 10x )2dx (102x 102x 2)dx
[(102 )x (102 )x 2]dx
1 (102x 102x ) 2 x C. 2 ln 10
• 一、换元积分法 • 二、分部积分法
一、第一换元积分法
定理8.4 (第一换元积分法)
设 g (u) 在 [, ] 上有定义,且 g(u)du G(u) C.
又u ( x)在[a,b]上可导,且 ( x) , x [a,b].
则 g(( x))( x)dx g(u)du
G(u) C G(( x)) C. (1) 证 因为 d G(( x)) G(( x))( x) g(( x))( x).
dx 所以(1)式成立.
第一换元积分法亦称为凑微分法, 即
g(( x))( x)dx g(( x))d( x) G(( x)) C,
若函数 f 与 g 在区间 I 上都存在原函数, k1, k2为
任意常数, 则 k1 f k2g 在 I上也存在原函数, 且
( k1 f ( x) k2g( x) )dx k1 f ( x)dx k2 g( x)dx.
例1 p( x) a0 xn a1xn1 an1x an , 则
其中G(u) g(u). 常见的凑微分形式有
(1) adx d(ax);
(2) dx d( x a);
C 为任意常数.
由此, 从例 1(ii) (iii) (iv)可得:
x2dx 1 x3 C,
3
dx ln( x 1 x2 ) C, 1 x2
1 x2dx 1 x 1 x2 arcsin x C. 2
三、不定积分的几何意义
若F (x)是 f (x) 的一个原函数, 则称 y = F (x) 的图
11. sec x tan xdx sec x C.
12. csc x cot xdx csc x C.
dx
13.
arcsin x C arccos x C.
2
arctan x C
arccot
x C.
由导数线性运算法则可得到不定积分的线性运算
法则. 定理 8.3 (不定积分的线性运算法则)
1
4. 1xdx ln | x | C. 5. exdx ex C. 6. a xdx a x C.
ln a
7. cos xdx sin x C.
8. sin xdx cos x C. 9. sec2 xdx tan x C.
10. csc2 xdx cot x C.
f ( x)dx ,
其中称 x 为积分变量, f ( x) 为被积函数,
f ( x)dx 为积分表达式, 为积分号.
若 F( x) 是 f ( x) 的一个原函数, 则由定理 8.2,
f (x) d x F(x)C C R.
为方便起见, 我们记 f ( x)dx F ( x) C. 其中