人教版九年级下册数学 27.2相似三角形 同步练习(含解析)

合集下载

人教版九年级下册数学 27.2相似三角形 同步练习(含解析)

人教版九年级下册数学 27.2相似三角形 同步练习(含解析)

27.2相似三角形同步练习一.选择题1.如图,△ABC∽△DCA,∠B=33°,∠D=117°,则∠BAD的度数是()A.150°B.147°C.135°D.120°2.两个相似三角形对应角平分线的比为4:3,那么这两个三角形的面积的比是()A.2:3B.4:9C.16:36D.16:93.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.且∠B=∠DC.D.且∠A=∠D4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中能判断△ABC∽△AED 的是()①∠AED=∠B;②∠ADE=∠C;③=;④=.A.①②B.①②③C.①②④D.①②③④5.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=5:2,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.5:7B.10:4C.25:4D.25:496.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A.若△AEF与△ABC相似,则EF∥BCB.若AE×BE=AF×FC,则△AEF与△ABC相似C.若,则△AEF与△ABC相似D.若AF•BE=AE•FC,则△AEF与△ABC相似7.如图,在△ABC,D是BC上一点,BD:CD=1:2,E是AD上一点,DE:AE=1:2,连接CE,CE的延长线交AB于F,则AF:AB为()A.1:2B.2:3C.4:3D.4:78.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1:4B.1:5C.1:6D.1:79.如图,AD∥BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△P AD 与△PBC相似,则这样的点P有()A.1 个B.2 个C.3 个D.4 个10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于F,连接DF,若BF=,BC =3,则DF=()A.4B.3C.2D.二.填空题11.已知△ABC∽△A′B′C′,且AB=3cm,A′B′=5cm,则相似比为.12.如图,△ABC中,CA=CB,点E在BC边上,点D在AC边上,连接AE、DE,若AB =AE,2∠AEB+∠ADE=180°,BE=8,CD=,则CE=.13.如图,在△ABC中,若DE∥BC,EF∥CD,AE=2EC,则AF:FD:DB=.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值是.15.如图,在矩形ABCD中,AD=2,AB=4,E、F分别是AB、CD边上的动点,EF⊥AC,则AF+CE的最小值为.三.解答题16.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.17.如图,在△ABC中,点D、E分别在AB、AC上,DE、BC的延长线相交于点F,且EF•DF=CF•BF.求证:△CAB∽△DAE.18.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.参考答案一.选择题1.解:∵△ABC∽△DCA,∴∠BAC=∠D=117°,∠DAC=∠B=33°,∴∠BAD=∠BAC+∠DAC=150°,故选:A.2.解:∵两个相似三角形对应角平分线的比为4:3,∴它们的相似比为4:3,∴它们的面积比为16:9.故选:D.3.解:A、∠A=∠D,∠B=∠F,可以得出△ABC∽△DFE,故此选项不合题意;B、=且∠B=∠D,不是两边成比例且夹角相等,故此选项符合题意;C、==,可以得出△ABC∽△DEF,故此选项不合题意;D、=且∠A=∠D,可以得出△ABC∽△DEF,故此选项不合题意;故选:B.4.解:∵∠A=∠A,∴∠AED=∠B或∠ADE=∠C时,△ABC∽△AED.∵=,∴=∵∠A=∠A,∴△ABC∽△AED,故①②③可以判断三角形相似,故选:B.5.解:设DE=5k,EC=2k,则CD=7k,∵四边形ABCD是平行四边形,∴AB=CD=7k,DE∥AB,∴△DEF∽△BAF,∴===,故选:D.6.解:选项A错误,∵△AEF与△ABC相似,可能是∠AEF=∠C,推不出EF∥BC.选项B错误,由AE×BE=AF×FC,推不出△AEF与△ABC相似.选项C错误,由,推不出△AEF与△ABC相似.选项D正确.理由:∵AF•BE=AE•FC,∴=,∴EF∥BC,∴△AEF∽△ABC.故选:D.7.解:过D作DH∥AB交CF于H,如图,∵DH∥BF,∴=,∵BD:CD=1:2,∴CD:BC=2:3,∴BF=DH,∵DH∥AF,∴==2,∴AF=2DH,∴AF:BF=2DH:DH=4:3,∴AF:AB=4:7.故选:D.8.解:∵四边形ABCD是平行四边形,∴BO=DO,AB∥CD,∵E为OD的中点,∴DE=EO=DO,∴BO=2EO,BE=3DE,∵DF∥AB,∴△DFE∽△BAE,∴=()2=,设S△DEF=x,则S△BEA=9x,∵BO=2OE,∴S△AOB=6x=S△DOC,∴四边形EFCO的面积=5x,∴△DEF与四边形EFCO的面积比=1:5,故选:B.9.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.设DP的长为x,则CP长为6﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则DP:CP=AD:BC,即x:(6﹣x)=3:4,解得:x=②若△APD∽△BPC,则DP:PC=AD:BC,即x:4=3:(6﹣x),整理得:x2﹣6x+12=0,∵△<0,这种情形不存在,∴满足条件的点P的个数是1个,故选:A.10.解:如图,连接BD,∵∠AEF=∠BEA,∠AFE=∠BAE=90°,∴△AEF∽△BEA,∴=,∵AE=ED,∴=,又∵∠FED=∠DEB,∴△FED∽△DEB,∴∠EFD=∠EDB,∵∠EFD+∠DFC=90°,∠EDB+∠ODC=90°,∴∠DFC=∠ODC,∵在矩形ABCD中,OC=AC,OD=BD,AC=BD,∴OD=OC,∴∠OCD=∠ODC,∴∠DFC=∠OCD,∴DF=DC,在Rt△BCF中,FC===2,∵AD∥BC,∴△AEF∽△CBF,∴==,∴AF=FC=,∴AB===3,∴DF=3,故选:B.二.填空题11.解:由题意得,=,∵△ABC∽△A′B′C′,∴△ABC与△A′B′C′的相似比为=,故答案为:.12.解:如图,过点A作AM⊥BE于E,过点D作DN⊥EC于N,∵CA=CB,AB=AE,∴∠B=∠CAB,∠B=∠AEB,∴∠B=∠CAB=∠AEB,∵∠B+∠BAC+∠C=180°,∠B+∠AEB+∠BAE=180°,∴∠C=∠BAE,∴2∠AEB+∠C=180°,又∵2∠AEB+∠ADE=180°,∴∠C=∠ADE,又∵∠ADE=∠C+∠DEC,∴∠C=∠DEC,∴DE=DC=,∵AB=AE,AM⊥BE,DE=CC,DN⊥EC,∴BM=ME=BE=4,EN=NC=EC,AM∥DN,∴△CDN∽△CAM,∴,∴,∴EC=12,EC=﹣5(不合题意舍去),故答案为:12.13.解:∵EF∥CD,AE=2EC,∴==2,∵DE∥BC,∴==2,设DF=m,则AF=2m,AD=3m,DB=m,∴AF:DF:DB=2m:m:m=4:2:3.故答案为:4:2:3.14.解:∵DE∥AC,∴△DOE∽△COA,∴=()2=,∴=,∵DE∥AC,∴△BDE∽△BAC,∴=,∴=,故答案为:.15.解:如图所示:设DF=x,则FC=4﹣x;过点C作CG∥EF,且CG=EF,连接FG,当点A、F、G三点共线时,AF+FG的最值小;∵CG∥EF,且CG=EF,∴四边形CEFG是平行四边形;∴EC∥FG,EC=FG,又∵点A、F、G三点共线,∴AF∥EC,又∵四边形ABCD是矩形,∴AE∥DC,∠D=90°,∴四边形AECF是平行四边形,∴OA=OC,OE=OF,又∵EF⊥AC,AF=CF=4﹣x,在Rt△ADF中,由勾股定理得:AD2+DF2=AF2,又∵AD=2,DF=x,则FC=4﹣x,∴22+x2=(4﹣x)2,解得:x=,∴AF=,在Rt△ADC中,由勾股定理得:AD2+DC2=AC2,∴AC=,∴AO=,又∵OF∥CG,∴△AOF∽△ACG,∴=,∴AG=5,又∵AG=AF+FG,FG=EC,∴AF+EC=5,故答案为5.三.解答题16.证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.17.证明:∵EF•DF=CF•BF.∴,∵∠EFC=∠BFD,∴△EFC∽△BFD,∴∠CEF=∠B,∴∠B=∠AED,∵∠CAB=∠DAE,∴△CAB∽△DAE.18.(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.。

人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)

人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)

人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)1 / 17相似三角形的判定测试时间:100分钟 总分: 100一、选择题(本大题共10小题,共30.0分)1. 如图,在 中,点P 在边AB 上,则在下列四个条件中::;;; ,能满足 与 相似的条件是A. B.C. D.2. 下列 的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与 相似的是A. B. C. D.3. 如图所示,每个小正方形的边长均为1,则下列A 、B 、C 、D 四个图中的三角形 阴影部分 与 相似的是A. B. C. D.4. 如图,在 中, , ,点D 在AC 上,且,如果要在AB 上找一点E ,使 与 相似,则AE 的长为A. B. C.3D.或5. 如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且 ,将 绕点A 顺时针旋转 ,使点E落在点处,则下列判断不正确的是A. 是等腰直角三角形B. AF 垂直平分C. ∽D. 是等腰三角形6.如图,在中,点D,E分别在边AB,AC上,下列条件中不能判断 ∽ 的是A.B.C.D.7.如图,点D,E分别在的AB,AC边上,增加下列条件中的一个:,,,,,使与一定相似的有A. B. C. D.8.如图,在钝角三角形ABC中,,,动点D从A点出发到B点止,动点E从C点出发到A点止点D运动的速度为秒,点E运动的速度为秒如果两点同时运动,那么当以点A、D、E为顶点的三角形与相似时,运动的时间是A. 4或B. 3或C. 2或4D. 1或69.如图,在中,,,,将沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是A. B.C. D.10.如图,点E是矩形ABCD的边AD的中点,且于点F,则下列结论中错误的是A.B.C. 图中与相似的三角形共有4个D.人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)3 / 17二、填空题(本大题共10小题,共30.0分)11. 如图,已知 中,D 为边AC 上一点,P 为边AB 上一点,, , ,当AP 的长度为______ 时,和 相似.12. 如图,在 中, 、E 分别为边AB 、AC 上的点 , ,点F 为BC 边上一点,添加一个条件:______,可以使得 与 相似 只需写出一个13. 在 中, , ,点D 在边AB 上,且 ,点E 在边AC 上,当______时,以A 、D 、E 为顶点的三角形与 相似.14. 如图, , , , , ,点p 在BD 上移动,当 ______ 时, 和 相似.15. 如图,在 中,点E ,F 分别在AB ,AC 上,若∽ ,则需要增加的一个条件是______ 写出一个即可16. 如图, 中,D 、E 分别是AB 、AC 边上一点,连接 请你添加一个条件,使 ∽ ,则你添加的这一个条件可以是______ 写出一个即可 .17. 如图所示,中,E ,F 分别是边AB ,AC 上的点,且满足 ,则 与的面积比是______ .18. 已知在 中, , ,E 是边AB 上一点,且 ,若F 是AC 边上的点,且以A 、E 、F 为顶点的三角形与 相似,则AF 的长为______.19. 如图,在 中, , , ,点M 在AB 边上,且 ,过点M 作直线MN 与AC 边交于点N ,使截得的三角形与原三角形相似,则______ .20.如图,在正方形网格上有6个三角形:,,,,,.在 ~ 中,与相似的三角形的个数是______.三、计算题(本大题共4小题,共24.0分)21.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.求证: ≌ ;求证: ∽ .22.如图,在中,D、E分别是AB、AC上的点,,,AD::3,的角平分线AF交DE于点G,交BC于点F.请你直接写出图中所有的相似三角形;求AG与GF的比.23.如图,已知,,垂足分别为B、D,AD与BC相交于点E,,垂足为F,试回答人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)5 / 17图中, ∽ ______ , ∽ ______ , ∽ ______ .24. 在图中, 的内部任取一点O ,连接AO 、BO 、CO ,并在AO 、BO 、CO 这三条线段的延长线上分别取点D 、E 、F ,使 ,画出 你认为与 相似吗?为什么?你认为它们也具有位似形的特征吗?四、解答题(本大题共2小题,共16.0分)25. 如图所示, , , ,点P从点B 出发,沿BC 向点C 以 的速度移动,点Q从点C 出发沿CA 向点A 以 的速度移动,如果P 、Q 分别从B 、C 同时出发,过多少时,以C 、P 、Q 为顶点的三角形恰与 相似?26. 如图,四边形ABCD 中,AC 平分 , , ,E 为AB的中点.求证: ∽ ;与AD 有怎样的位置关系?试说明理由;若 , ,求 的值.人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)7 / 17答案和解析【答案】1. D2. B3. B4. D5. D6. A7. A8. B 9. C 10. C11. 4或912. ,或 13. 或14. 或12cm 或2cm15.16.17. 1:918. 或19. 4或620. 321. 证明: 正方形ABCD ,等腰直角三角形EDF ,, , ,,,在 和 中,,≌ ;延长BA 到M ,交ED 于点M ,≌ ,,即 ,,,,,,∽ .22. 解: ∽ , ∽ , ∽ ;, , ,又 ,∽ ,,为角平分线,∽ ,,.23. DAB;BCD;DCE24. 解:相似如图,,,∽ ,,同理,∽ ,它们也具有位似形的特征.25. 解:设经过y秒后, ∽ ,此时,.,,,. ∽ ,,设经过y秒后, ∽ ,此时,..∽ ,所以,经过秒或者经过后两个三角形都相似26. 解:平分,,又,::AB,∽ ;,理由: ∽ ,,又为AB的中点,,,,,;,,,人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析),,,∽ ,,.【解析】1. 解:当,,所以 ∽ ;当,,所以 ∽ ;当,即AC::AC,所以 ∽ ;当,即PC::AB,而,所以不能判断和相似.故选D.根据有两组角对应相等的两个三角形相似可对进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对进行判断.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.2. 解:根据勾股定理,,,所以,夹直角的两边的比为,观各选项,只有B选项三角形符合,与所给图形的三角形相似.故选:B.可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题.此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键.3. 解:小正方形的边长为1,在中,,,,A中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故A错误;B中,一边,一边,一边,有,即三边与中的三边对应成比例,故两三角形相似故B正确;C中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故C错误;D中,一边,一边,一边,三边与中的三边不能对应成比例,故两三角形不相似故D错误.故选:B.根据相似三角形的判定,易得出的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.本题考查了相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角9 / 17的度数、对应边的比本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.4. 解:是公共角,当,即时, ∽ ,解得:;当,即时, ∽ ,解得:,的长为:或.故选D.由是公共角,分别从当,即时, ∽ 与当,即时,∽ ,去分析求解即可求得答案.此题考查了相似三角形的判定注意分类讨论思想的应用.5. 解:将绕点A顺时针旋转,使点E落在点处,,,是等腰直角三角形,故A正确;将绕点A顺时针旋转,使点E落在点处,,四边形ABCD是正方形,,,,,,,垂直平分,故B正确;,,,,∽ ,故C正确;,但不一定等于,不一定是等腰三角形,故D错误;故选D.由旋转的性质得到,,于是得到是等腰直角三角形,故A正确;由旋转的性质得到,由正方形的性质得到,推出,于是得到AF垂直平分,故B正确;根据余角的性质得到,于是得到 ∽ ,故C正确;由于,但不一定等于,于是得到不一定是等腰三角形,故D错误.本题考查了旋转的性质,正方形的性质,相似三角形的判定,等腰直角三角形的判定,线段垂直平分线的判定,正确的识别图形是解题的关键.6. 解:,当或时, ∽ ;人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)11 / 17 当 即 时, ∽ .故选:A .根据相似三角形的判定定理进行判定即可.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.7. 解: , ,∽ , 正确;, ,∽ , 正确;, ,∽ , 正确;由 ,或 不能证明 与 相似.故选:A .由两角相等的两个三角形相似得出 正确,由两边成比例且夹角相等的两个三角形相似得出 正确;即可得出结果.本题考查了相似三角形的判定定理:两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似;如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.8. 解:根据题意得:设当以点A 、D 、E 为顶点的三角形与 相似时,运动的时间是x 秒,若 ∽ ,则AD : :AC ,即x : :12,解得: ;若 ∽ ,则AD : :AB ,即x : :6,解得: ;所以当以点A 、D 、E 为顶点的三角形与 相似时,运动的时间是3秒或 秒. 故选B .根据相似三角形的性质,由题意可知有两种相似形式,∽ 和 ∽ ,可求运动的时间是3秒或 秒.此题考查了相似三角形的性质,解题时要注意此题有两种相似形式,别漏解;还要注意运用方程思想解题.9. 解:A 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C .根据相似三角形的判定定理对各选项进行逐一判定即可.本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键. 10. 解:A 、 ,∽ ,,,,故A正确,不符合题意;B、过D作交AC于N,,,四边形BMDE是平行四边形,,,,于点F,,,,,故B正确,不符合题意;C、图中与相似的三角形有,,,,共有5个,故C错误.D、设,由 ∽ ,有.,故D正确,不符合题意.故选C.由,又,所以,故A正确,不符合题意;过D作交AC于N,得到四边形BMDE是平行四边形,求出,得到,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由 ∽ ,得到CD与AD的大小关系,根据正切函数可求的值,故D错误,符合题意.本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.11. 解:当 ∽ 时,,,解得:,当 ∽ 时,,,解得:,当AP的长度为4或9时,和相似.故答案为:4或9.人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)分别根据当 ∽ 时,当 ∽ 时,求出AP的长即可.此题主要考查了相似三角形的判定与性质,利用倒推法以及分类讨论得出是解题关键.12. 解:,或.理由:,,∽ ,当时, ∽ ,∽ .当时,,∽ .故答案为,或.结论:,或根据相似三角形的判定方法一一证明即可.本题考查相似三角形的判定和性质平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13. 解:当时,,∽ ,此时;当时,,∽ ,此时;故答案为:或.若A,D,E为顶点的三角形与相似时,则或,分情况进行讨论后即可求出AE的长度.本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法,解题的关键是分两种情况进行讨论.14. 解:由,,,设,则,若 ∽ ,则,即,变形得:,即,因式分解得:,解得:,,所以或12cm时, ∽ ;若 ∽ ,则,13 / 17即,解得:,,综上,或12cm或时, ∽ .故答案为:或12cm或2cm.设出,由表示出PD的长,若 ∽ ,根据相似三角形的对银边成比例可得比例式,把各边的长代入即可列出关于x的方程,求出方程的解即可得到x的值,即为PB的长.此题考查了相似三角形的判定与性质,相似三角形的性质有相似三角形的对应边成比例,对应角相等;相似三角形的判定方法有:1、两对对应角相等的两三角形相似;2、两对对应边成比例且夹角相等的两三角形相似;3、三边对应成比例的两三角形相似,本题属于条件开放型探究题,其解法:类似于分析法,假设结论成立,逐步探索其成立的条件.15. 解:当时, ∽ .故答案为.利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似进行添加条件.本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.16. 解:,当时, ∽ .故答案为.利用有两组角对应相等的两个三角形相似添加条件.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.17. 解:,,又,∽ ,与的面积比:9,故答案为:1:9.由已知条件易证 ∽ ,根据相似三角形的性质即可求出与的面积比.本题考查了相似三角形的判定和性质,熟悉相似三角形的性质:相似三角形的面积比是相似比的平方是解题关键.18. 解:,以A、E、F为顶点的三角形与相似,有 ∽ 和 ∽ 两种情况:如图1:人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)当时, ∽ 时,即,解得:;如图2:当时, ∽ 时,即,解得:.所以或.故答案为或.根据相似三角形的相似比求AF,注意分情况考虑.本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理,分情况讨论是解决本题的关键.19. 解:如图1,当时,则 ∽ ,故,则,解得:,如图2所示:当时,又,∽ ,,即,解得:,故答案为:4或6.分别利用当时以及当时,得出相似三角形,再利用相似三角形的15 / 17性质得出答案.此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.20. 解:,,,,,,,,,,,,,,,与不相似;,,,∽ ;,,,∽ ;,,,∽ ;,,,与不相似.故答案为3.先利用勾股定理计算出,,,,,,然后利用三组对应边的比相等的两个三角形相似依次判断,,,,与是否相似.本题考查了相似三角形的判定:三组对应边的比相等的两个三角形相似也考查了勾股定理.21. 由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;由第一问的全等三角形的对应角相等,根据等量代换得到,再由对顶角相等,利用两对角相等的三角形相似即可得证.此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的判定与性质是解本题的关键.22. 可得到三组三角形相似;先利用两组对应边的比相等且夹角对应相等的两个三角形相似证明 ∽ ,则,再利用有两组角对应相等的两个三角形相似证明 ∽ ,然后利用相似比和比例的性质求的值.本题考查了相似三角形的判断:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.23. 解:,,,,,,,,∽ ;,,∽ ;,,人教版数学九年级下27.2《相似三角形的判定》测试(含答案及解析)∽ ,故答案为:DAB;BCD;DCE.由AB垂直于BD,CD垂直于BD,得到一对同旁内角互补,利用同旁内角互补两直线平行得到AB与CD平行,同理EF与AB平行,且与CD平行,根据EF与AB平行,利用两直线平行同位角相等得到两对角相等,确定出三角形DEF与三角形DAB相似;同理得到三角形BEF与三角形BCD相似;由两直线平行得到两对内错角相等,得到三角形ABE与三角形DEC相似.此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.24. 由,可得 ∽ ,再由相似得出对应边成比例,即可得出与相似,由于它们有位似中心点O,所以它们也具有位似形的特征.本题主要考查了相似三角形的判定以及位似图形的问题,应熟练掌握位似与相似之间的联系及区别.25. 设经过y秒后相似,由于没有说明对应角的关系,所以共有两种情况: ∽与 ∽本题考查相似三角形的判定,解题的关键是分两种情况进行讨论,本题属于中等题型.26. 根据两组对应边的比相等且夹角对应相等的两个三角形相似进行求解;根据,,即可得出,进而得到;先根据,,判定 ∽ ,即可得出,进而得到.本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合.17 / 17。

2017-2018 人教版九年级数学下册 第27章 相似 27.2 相似三角形 27.2.1相似三角形的判定 同步练习 含答案

2017-2018 人教版九年级数学下册 第27章 相似 27.2 相似三角形 27.2.1相似三角形的判定 同步练习 含答案

人教版九年级数学下册 第27章 相似 27.2 相似三角形 27.2.1相似三角形的判定同步练习1.如图,DF ∥AC ,若AF BF =35,则△DBF 和△CBA 的相似比为( )A.53 B .35 C .32D .582.如图,在平行四边形ABCD 中,EF ∥AB 交AD 于E ,交BD 于F ,DE ∶EA =3∶4,EF =3,则CD 的长为( )A .4B .7C .3D .123.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1、l 2、l 3于点A 、B 、C ;直线DF 分别交l 1、l 2、l 3于点D 、E 、F.AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则DEEF 的值为( ) A.12 B .2 C .25D .354.如图,若DE∥BC,DE=12,BC=15,则△OED∽,相似比为,△ABC ∽△ADE,相似比为.5.如图,直线l1、l2、…、l6是一组等距离的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F,若BC=2,则EF的长是.6.已知△ABC和△DEF,∠C=∠E=75°,AC=4cm,BC=5cm,DE=6cm,要使△ABC ∽△DFE,则EF的长应为.7.如图所示,在△ABC中,D、E分别在边AC、AB上,且AD∶AB=AE∶AC=1∶3,BC =12,则DE=.8.如图,在△ABC和△A′B′C′中,∠A=60°,∠B=40°,∠A′=60°,当∠C′=时,则△ABC∽△A′B′C′.9.如图,点D、E分别在AB、AC上,且∠ABC=∠AED.若DE=4,AE=5,BC=8,则AB的长为.10.如图,在△ABC 中,DE ∥BC ,M 为DE 中点,CM 的延长线交AB 于N ,若AD ∶AB =2∶3,求ND ∶BD.11.如图所示,l 1∥l 2∥l 3,且AB =2BC ,DF =5cm ,AG =4cm ,求GF 、AF 、EF 的长.12.已知线段OA ⊥OB ,C 为OB 的中点,D 为AO 上一点,连接AC 、BD 交于P 点. (1)如图①,当OA =OB 且D 为AO 中点时,求APPC 的值;(2)如图②,当OA =OB ,AD AO =14时,求APAC的值.答案: 1. D 2. B 3. D4. △OBC 45 545. 56.7.5cm 7. 48. 80°9. 1010. 解:∵DE∥BC ,∴△ADE∽△ABC.∴DE BC =AD AB =23.∵M 为DE 中点,∴DMBC =13.∵DM∥BC,∴△NDM∽△NBC.∴ND NB =DM BC =13,∴ND∶BD=1∶2. 11. 解:∵l 1∥l 2∥l 3,∴AB BC =DE EF .又∵AB=2BC ,∴DE EF =2,∴DF=3EF.∴EF=13DF =13×5=53cm.∵l 1∥l 2∥l 3,∴AB BC =AG GF ,∴2=AG GF ,∴GF=42=2cm ,∴AF=AG +GF =4+2=6cm.故GF =2cm ,AF =6cm ,EF =53cm.12. 解:(1)过C 作CE∥OA 交BD 于E ,则△BCE∽△BOD,得CE =12OD =12AD.再由△ECP∽△DAP 得AP PC =ADCE=2;(2)过C 作CE∥OA 交BD 于E ,设AD =x ,则AO =OB =4x ,则OD =3x.由△BCE∽△BOD 得CE =12OD =32x.再由△ECP∽△DAP 得AP PC =AD EC =23.则AP AC =25.。

九年级数学下册第二十七章相似27.2相似三角形27.2.2相似三角形的性质练习新人教版

九年级数学下册第二十七章相似27.2相似三角形27.2.2相似三角形的性质练习新人教版

九年级数学下册第二十七章相似27.2 相似三角形27.2.2 相似三角形的性质同步练习(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册第二十七章相似27.2 相似三角形27.2.2 相似三角形的性质同步练习(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册第二十七章相似27.2 相似三角形27.2.2 相似三角形的性质同步练习(新版)新人教版的全部内容。

《27。

2.2相似三角形的性质》分层练习一.基础题1.已知△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,且C A AC ''=23,B ′D ′=4,则BD 的长为 。

2.已知△ABC ∽△A ′B ′C ′,AD 和A ′D ′是它们的对应角平分线,且AD=8 cm , A ′D ′=3 cm.,则△ABC 与△A ′B ′C ′对应高的比为 . 3。

两个相似三角形的相似比为2∶3,它们周长的差是25,那么较大三角形的周长是________,这两个三角形的面积比为 .4。

把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,那么边长应缩小到原来的________倍。

5。

已知ABC △与DEF △相似且面积比为4∶25,则ABC △与DEF △的相似比为 。

6。

已知ABC A B C '''△∽△且1:2ABC A B C S S '''=△△:,则:AB A B ''= 。

7.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为( ) A .8,3 B .8,6 C .4,3 D .4,68。

人教版数学九年级下册数学:27.2.1 相似三角形的判定 同步练习(附答案)

人教版数学九年级下册数学:27.2.1 相似三角形的判定  同步练习(附答案)

27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.如图所示,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( ) A.AD AC =AE AB =DE BC B.AD AB =AE ACC.AD AE =AC AB =DE BC D.AD AB =AE EC =DE BC2.两个三角形相似,且相似比k =1,则这两个三角形 .3.如图,在△ABC 中,DE ∥BC ,AD =6,DB =3,AE =4,则EC 的长为( )A .1B .2C .3D .44.如图,直线l 1∥l 2∥l 3,直线AC 交l 1,l 2,l 3于点A ,B ,C ,直线DF 交l 1,l 2,l 3于点D ,E ,F ,已知AB AC =13,则EFDE= .5.如图,在▱ABCD 中,EF ∥AB 交AD 于点E ,交BD 于点F ,DE ∶EA =3∶4,EF =3,则CD 的长为( )A .4B .7C .3D .126.如图,点E ,F 分别在△ABC 的边AB ,AC 上,且EF ∥BC ,点M 在边BC 上,AM 与EF 交于点D ,则图中相似三角形共有( )A .4对B .3对C .2对D .1对7.在△ABC 中,AB =6,AC =9,点P 是直线AB 上一点,且AP =2,过点P 作BC 边的平行线,交直线AC 于点M ,则MC 的长为 .8.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB 于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE=AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF9.如图,AG∶GD=4∶1,BD∶DC=2∶3,则AE∶EC的值是()A.3∶2B.4∶3C.6∶5D.8∶510.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上,若线段AB=4 cm,则线段BC=cm.11.如图,在△ABC中,点D,E分别为AB,AC的中点,连接DE,线段BE,CD相交于点O,若OD=2,则OC=.12.如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F,若CD=5,BC=8,AE=2,则AF=.13.中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”,修建高铁时常常要逢山开道、遇水搭桥,如图,某高铁在修建时需打通一直线隧道MN(M、N为山的两侧),工程人员为了计算M、N两点之间的直线距离,选择作MN的平行线BC,并测得AM=900米, AB=30米,BC=45米,求直线隧道MN的长.14.如图,延长正方形ABCD的一边CB至点E,ED与AB相交于点F,过点F作FG∥BE 交AE于点G,求证:GF=FB.15.如图,AD∥EG∥BC,EG分别交AB,DB,AC于点E,F,G,已知AD=6,BC=10,AE=3,AB=5,求EG,FG的长.第2课时 相似三角形的判定定理1,21.将一个三角形的各边长都缩小12后,得到的三角形与原三角形( )A .一定相似B .一定不相似C .不一定相似D .无法确定2.若△ABC 各边分别为AB =10 cm ,BC =8 cm ,AC =6 cm ,△DEF 的两边为DE =5 cm ,EF =4 cm ,则当DF = cm 时,△ABC ∽△DEF. 3.试判断图中的两个三角形是否相似,并说明理由.4.网格图中每个方格都是边长为1的正方形.若A ,B ,C ,D ,E ,F 都是格点,试说明△ABC ∽△DEF.5.能判定△ABC ∽△A ′B ′C ′的条件是( )A.AB A ′B ′=ACA ′C ′B.AB AC =A ′B ′A ′C ′且∠A =∠A ′ C.AB BC =A ′B ′A ′C ′且∠B =∠C ′ D.AB A ′B ′=ACA ′C ′且∠B =∠B ′6.如图,已知△ABC,则下列4个三角形中,与△ABC相似的是()7.如图,AB与CD相交于点O,OA=3,OB=5,OD=6,当OC=时,△AOC∽△BOD.8.如图,点C,D在线段AB上,∠A=∠B,AE=3,AD=2,BC=3,BF=4.5,DE=5,求CF的长.9.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=时,以A,D,E为顶点的三角形与△ABC相似.10.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P 1B.P2C.P3D.P411.如图,在△ABC中,点P在AB上,下列四个条件:①AP∶AC=AC∶AB;②AC2=AP·AB;③AB·CP=AP·CB.其中能满足△APC和△ACB相似的条件有()A.1个 B.2个C.3个D.0个12.如图,已知∠DAB=∠CAE,请补充一个条件:,使△ABC∽△ADE.13.如图,AB∥DE,AC∥DF,BC∥EF,求证:△DEF∽△ABC.14.如图,在△ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DB·CE.求证:△ADB∽△EAC.15.如图,正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,求证:△ADQ ∽△QCP.16.如图,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1 cm/s,点E运动的速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是.第3课时相似三角形的判定定理31.下列各组图形中有可能不相似的是()A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形2.已知△ABC中,∠A=40°,∠B=75°,下图各三角形中与△ABC相似的是.3.如图,锐角三角形ABC的边AB,AC上的高线EC,BF相交于点D,请写出图中的两对相似三角形.(用相似符号连接) 4.如图,点B,D,C,F在一条直线上,且AB∥EF,AC∥DE,求证:△ABC∽△EFD.5.如图,∠1=∠2,∠C =∠D.求证:△ABC ∽△AED.6.在△ABC 和△A ′B ′C ′中,∠C =∠C ′=90°,AC =12,AB =15,A ′C ′=8,则当A ′B ′= 时,△ABC ∽△A ′B ′C ′.7.一个直角三角形的一条直角边长和斜边长分别为8 cm 和15 cm ,另一个直角三角形的一条直角边长和斜边长分别是6 cm 和454 cm ,这两个直角三角形 (填“是”或“不是”)相似三角形.8.一个直角三角形的两边长分别为3和6,另一个直角三角形的两边长分别为2和4,那么这两个直角三角形 (填“一定”“不一定”或“一定不”)相似.9.如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,且∠DCE =∠B.那么下列判断中,错误的是( )A .△ADE ∽△ABCB .△ADE ∽△ACDC .△DEC ∽△CDBD .△ADE ∽△DCB10.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .811.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.12.如图,已知∠ACB=∠ABD=90°,AB=6,AC=2,求AD的长为多少时,图中两直角三角形相似?13.如图,在▱ABCD中,过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.求证:△ABF∽△BEC.14.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?15.如图,在△ABC中,AD,BF分别是BC,AC边上的高,过点D作AB的垂线交AB于点E,交BF于点G,交AC的延长线于点H,求证:DE2=EG·EH.参考答案:27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.A2. 全等.3.B4. 2.5.B6.B7. 6或12.8.D9.D10.12.11.4.12.169.13.解:∵BC ∥MN ,∴△ABC ∽△AMN.∴AB AM =BC MN ,即30900=45MN .∴MN =1 350.答: 直线隧道MN 的长为1 350米.14.证明:∵GF ∥AD ,∴GF AD =EFED .又FB ∥DC ,∴FB DC =EFED .又AD =DC ,∴GF AD =FBAD .∴GF =FB.15.解:∵在△ABC 中,EG ∥BC ,∴△AEG ∽△ABC ,∴EG BC =AEAB .∵BC =10,AE =3,AB =5,∴EG 10=35,∴EG =6. ∵在△BAD 中,EF ∥AD ,∴△BEF ∽△BAD ,∴EF AD =BE AB. ∵AD =6,AE =3,AB =5,∴EF 6=5-35.∴EF =125. ∴FG =EG -EF =185.第2课时 相似三角形的判定定理1,21.A2.3.3.解:相似.理由如下:在Rt △ABC 中,BC =AB 2-AC 2=32-2.42=1.8,在Rt △DEF 中,DF =DE 2-EF 2=62-3.62=4.8,∴AB DE =BC EF =AC DF =12. ∴△ABC ∽△DEF.4.证明:∵AC =2,BC =12+32=10,AB =4,DF =22+22=22,EF =22+62=210,ED =8,∴AC DF =BC EF =AB DE =12. ∴△ABC ∽△DEF.5.B6.C7. 1858.解:∵AE BF =34.5=23,AD BC =23,∴AE BF =AD BC.又∵∠A =∠B ,∴△AED ∽△BFC.∴AD BC =DE CF .∴23=5CF. ∴CF =152. 9. 125或53. 10.C11.B12. AD AB =AE AC 13.证明:∵AB ∥DE ,∴△ODE ∽△OAB.∴DE AB =OE OB. ∵BC ∥EF ,∴△OEF ∽△OBC.∴EF BC =OE OB =OF OC. ∵AC ∥DF ,∴△ODF ∽△OAC.∴DF AC =OF OC. ∴DE AB =EF BC =DF AC. ∴△DEF ∽△ABC.14.证明:∵AB =AC ,∴∠ABC =∠ACB.∴∠ABD =∠ACE.∵AB 2=DB ·CE ,∴AB CE =DB AB . 又AB =AC ,∴AB CE =DB AC. ∴△ADB ∽△EAC.15.证明:设正方形的边长为4a ,则AD =CD =BC =4a.∵Q 是CD 的中点,BP =3PC ,∴DQ =CQ =2a ,PC =a.∴DQ PC =AD CQ =21. 又∵∠D =∠C =90°,∴△ADQ ∽△QCP.16.3__s 或4.8__s .第3课时 相似三角形的判定定理31.A2. △EFD ,△HGK .3. 答案不唯一,如△BDE ∽△CDF ,△ABF ∽△ACE 等.4.证明:∵AB ∥EF ,AC ∥DE ,∴∠B =∠F ,∠ACB =∠EDF.∴△ABC ∽△EFD.5.证明:∵∠1=∠2,∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠EAD.又∵∠C =∠D ,∴△ABC ∽△AED.6.10.7.是.8.不一定.9.D10.B11.6017. 12.解:①若△ABC ∽△ADB ,则AB AD =AC AB.∴AD =3; ②若△ABC ∽△DAB ,则AB AD =BC AB.∴AD =3 2.综上所述,当AD =3或32时,两直角三角形相似.13.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AD =BC.∴∠D +∠C =180°,∠ABF =∠BEC.又∵∠AFB +∠AFE =180°,且∠AFE =∠D , ∴∠C =∠AFB.又∵∠ABF =∠BEC ,∴△ABF ∽△BEC.14.解:(1)证明:∵四边形ABCD 是矩形, ∴AB ∥CD.∴△APQ ∽△CDQ.(2)当DP ⊥AC 时,∠QCD +∠QDC =90°.∵∠ADQ +∠QDC =90°,∴∠DCA =∠ADP. 又∵∠ADC =∠DAP =90°,∴△ADC ∽△PAD.∴AD PA =DC AD .∴10PA =2010,解得PA =5. ∴t =5.15.证明:∵AD ,BF 分别是BC ,AC 边上的高, ∴∠ADB =∠BED =90°.∴∠EBD +∠EDB =∠EDB +∠ADE.∴∠EBD =∠EDA.∴△AED ∽△DEB.∴AE DE =DE BE,即DE 2=AE ·BE. 又∵∠HFG =90°,∠BGE =∠HGF ,∴∠EBG =∠H.∵∠BEG =∠HEA =90°,∴△BEG ∽△HEA.∴EG AE =BE EH,即EG ·EH =AE ·BE. ∴DE 2=EG ·EH.。

人教版数学九年级下册 第27章 相似 27.2 相似三角形 27.2.2相似三角形的判定 同步训

人教版数学九年级下册 第27章  相似  27.2 相似三角形 27.2.2相似三角形的判定 同步训

第27章 相似 27.2 相似三角形 27.2.2相似三角形的判定 同步训练1. 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则图中相似三角形共有( )A .1对B .2对C .3对D .4对2. 如图,点P 是▱ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E ,则图中相似的三角形有( )A .0对B .1对C .2对D .3对3.如图,在△ABC 中,∠AED =∠B ,则下列等式成立的是( )A.DE BC =AD DB B .AE BC =AD BD C.DE CB =AE AB D .AD AB =AE AC 4. 下列各组图形中有可能不相似的是( ) A .各有一个角是45°的两个等腰三角形 B .各有一个角是60°的两个等腰三角形 C .各有一个角是105°的两个等腰三角形 D .两个等腰直角三角形5. 如图,∠1=∠2=∠3,则图中共有相似三角形( )A .1对B .2对 C.3对 D .4对6. 如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交AD 的延长线于点E ,若AB =12,BM =5,则DE 的长为( )A .18B .1095 C.965 D .2537. 如图,有三个三角形,其中相似的是 .8. 如图,∠1=∠2,∠B =∠E ,△ABC 与△AED 相似吗?为什么?9. 如图,正方形ABCD 中,点E 、F 、G 分别在AB 、BC 、CD 上,且∠EFG =90°.求证:△EFB ∽△FCG.10. 如图已知,在△ABC 中,CD ⊥AB ,BE ⊥AC ,BE 交CD 于点O.求证:△ABE ∽△OCE.11.如图,在▱ABCD 中,AD =10cm ,CD =5cm ,E 为AD 上一点,且BE =BC ,CE =CD ,则DE = cm.12.如图,正方形ABCD 中,BC =2,点M 是边AB 的中点,连接DM ,DM 与AC 交于点P ,点E 在DC 上,点F 在DP 上,且∠DFE =45°,若PF =56,则CE = . 13. 如图,D 是△ABC 的边BC 上一点,E 为边AD 上一点.若∠1=∠B ,CD =CE ,试说明△ACE ∽△BAD.14. 如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE∶CP=2∶3,求AE的长.参考答案: 1---6 CDCAD B 7. ①与②8. 解:△ABC ∽△AED ,∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠EAD ,在△ABC 和△AED 中,∵∠B =∠E ,∠BAC =∠EAD ,∴△ABC ∽△AED. 9. 证明:∵四边形ABCD 是正方形,∴∠B =∠C =90°,∴BEF +∠BFE =90°,∵∠EFG =90°,∴∠BFE =∠CFG ,∴△EFB ∽△FCG.10. 证明:因为CD ⊥AB ,BE ⊥AC ,所以∠AEB =∠ADC =90°.又∠A =∠A ,所以∠ABE =∠OCE.又因为∠AEB =∠OEC ,所以△ABE ∽△OCE. 11. 2.5 12. 7613. 证明:∵CD =CE ,∴∠CED =∠CDE ,即∠B +∠3=∠1+∠2,又∠1=∠B ,∴∠2=∠3,∴△ACE ∽△BAD.14. (1)证明:∵AB =AD ,AC 平分∠BAD ,∴AC ⊥BD ,∴∠ACD +∠BDC =90°,∵AC =AD ,∴∠ACD =∠ADC ,∴∠ADC +∠BDC =90°,∵PD ⊥AD ,∴∠ADC +∠PDC =90°,∴∠BDC =∠PDC ;(2)解:过点C 作CM ⊥PD 于点M ,∵∠BDC =∠PDC ,∴CE =CM ,∵∠CMP =∠ADP =90°,∠P =∠P ,∴△CPM ∽△APD ,∴ CM AD =PCPA ,设CM =CE =x ,∵CE ∶CP =2∶3,∴PC =32x ,∵AB =AD =AC =1,∴x 1=32x 32x +1,解得:x =13,故AE =1-13=23.。

2021-2022学年人教版九年级数学下册《27-2相似三角形》同步达标测评(附答案)

2021-2022学年人教版九年级数学下册《27-2相似三角形》同步达标测评(附答案)

2021-2022学年人教版九年级数学下册《27.2相似三角形》同步达标测评(附答案)一.选择题(共15小题,满分45分)1.已知△ABC与△DEF相似,又∠A=40°,∠B=60°,那么∠D不可能是()A.40°B.60°C.80°D.100°2.如图△ABC∽△ACD,则下列式子中不成立的是()A.=B.=C.AC2=AD•AB D.=3.如果两个相似三角形的对应边之比为3:7,其中一个三角形的一边上的中线长为2,则另一个三角形对应中线的长为()A.B.C.或D.无法确定4.如图,在等边三角形ABC中,点D,E分别在AB,AC边上,如果△ADE∽△ABC,AD:AB=1:4,BC=8cm,那么△ADE的周长等于()A.2cm B.3cm C.6cm D.12cm5.如图,已知在△ABC中,点D、点E是边BC上的两点,联结AD、AE,且AD=AE,如果△ABE∽△CBA,那么下列等式错误的是()A.AB2=BE•BC B.CD•AB=AD•ACC.AE2=CD•BE D.AB•AC=BE•CD6.下列结论中正确的是()A.有两条边长比值是3:4的两个直角三角形相似B.一个角相等的两个等腰三角形相似C.两边对应成比例且一个角对应相等的两个三角形相似D.有一个角为60°的两个等腰三角形相似7.下列说法中不正确的是()A.如果两个三角形全等,那么这两个三角形相似B.如果两个三角形相似,且相似比为1,那么这两个三角形必全等C.如果两个三角形都与另一个三角形相似,那么这两个三角形相似D.如果两个三角形相似,那么它们一定能互相重合8.如图,D是△ABC边AB延长线上一点,添加一个条件后,仍不能使△ACD∽△ABC的是()A.∠ACB=∠D B.∠ACD=∠ABC C.D.9.如图△ABC中,点D、E分别在边AB、AC上,则在下列四个条件中:①∠AED=∠B;②DE∥BC;③;④AD•BC=DE•AC,能满足△ADE∽△ACB的条件有()A.1个B.2个C.3个D.4个10.如图,在四边形ABCD中,∠BAC=90°,AB=6,AC=8,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.下列结论错误的是()A.四边形AECD的周长是20B.△ABC∽△FECC.∠B+∠ACD=90°D.EF的长为11.如图,F为▱ABCD的边AD上一点,射线BF交CD的延长线于点E,则下列结论正确的是()A.=B.=C.=D.=12.如图,AD∥CB,E、F分别在AB、CD上,且EF∥CB,若=,CD=15,则线段DF的长为()A.3B.6C.9D.1013.如图,在平行四边形ABCD中,点E、F分别是AB及BA延长线上一点,连接CE、DF 相交于点H,CE交AD于点G,下列结论错误的是()A.=B.=C.=D.=14.如图.四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD、CD于点G、H,则下列结论不一定成立的是()A.=B.=C.=D.=15.如图,在△ABC中,DE∥BC,若AD=3,BD=4,则=()A.B.C.D.二.填空题(共10小题,满分30分)16.已知△ABC∽△A'B'C',AD和A′D'是它们的对应中线,若AD=10,A'D'=8,则△ABC 与△A'B'C′的周长比等于.17.若△ABC∽△DEF,且△ABC与△DEF的面积之比为1:9,则△ABC与△DEF的相似比为.18.已知△ABC∽△A'B'C',顶点A、B、C分别与顶点A'、B'、C'对应,AD、A'D'分别是BC、B'C'边上的中线,如果BC=3,AD=2.4,B'C'=2,那么A'D'的长是.19.如果两个相似三角形的周长之比为1:4.那么这两个三角形对应边上的高之比为.20.如图所示,在△ABC中D为AC边上一点,请你添加一个条件,使△ABC和△BCD相似,你所添加的条件是.21.如图,已知BD⊥AB于点B,AC⊥AB于点A,且BD=4,AC=3,AB=a,在线段AB 上找一点E,使△BDE与△ACE相似,若这样的点E有且只有两个,则a的值是.22.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)23.如图1,等边△ABC的顶点A在直角△MON的斜边MN上,顶点B与O重合,C在OM上.如图2,从O点出发在线段OM上平移等边△ABC,在开始平移△ABC同时,点P从△ABC的顶点B出发,沿线段BA运动,当点P运动到A时即停止运动,△ABC 也随之停止平移.边AB,AC分别与线段MN交于点E,F,已知∠M=30°,∠MON=90°,OM=6,点P的移动速度是△ABC移动速度的2倍.当△PEF∽△NOM时,则线段OB的长为.24.如图,在▱ABCD中,点E在边AD上,AE:AD=2:3,BE与AC交于点F.若AC=20,则AF的长为.25.如图,AB∥CD,AD、BC相交于点E过E作EF∥CD交BD于点F,如果AB=3,CD =6,那么EF的长是.三.解答题(共5小题,满分45分)26.已知:如图,Rt△ABC∽Rt△ACD,若AC=3,BC=4,求AD.27.两个相似三角形对应边的比是2:3.它们的面积和为65平方厘米,求较小三角形的面积.28.如图,将△ABC绕点A旋转得到△ADE,连接BD,CE.求证:△ADB∽△AEC.29.已知,如图,△ABC中,AB=4,BC=8,D为BC边上一点,BD=2.求证:△ABD ∽△CBA.30.已知,在▱ABCD中,∠ABC=45°,,点G是直线BC上一点,(1)如图,若AD=6,连接BD,AG,且AG⊥BD于点E,①求对角线BD的长;②线段BG的长为;(2)连接AG,作BF⊥AG,交直线AD于点F,当时,请直接写出线段BG的长.参考答案一.选择题(共15小题,满分45分)1.解:∵△ABC∽△DEF,∠A=40°,∠B=60°,∴∠A=∠D=40°或∠B=∠D=60°或∠C=∠D=180°﹣40°﹣60°=80°,故选:D.2.解:∵△ABC∽△ACD,∴=,=,,∴AC2=AD•AB,∴A、B、C成立,不符合题意;D错误,符合题意,故选:D.3.解:∵相似三角形的对应边之比为3:7,∴它们的对应中线的比为3:7,∵其中一个三角形的一条中线为2,而这条中线可能是小三角形的,也可能是大三角形的,∴另一个三角形对应的中线可能为,也可能是.故选:C.4.解:∵△ADE∽△ABC,AD:AB=1:4,∴其周长比为1:4,∵BC=8cm,三角形ABC为等边三角形,∴△ABC的周长为24cm,∴△ADE的周长为6cm.故选:C.5.解:∵△ABE∽△CBA,∴AB:BC=BE:AB,∴AB2=BE•BC,所以A选项的结论正确;∵△ABE∽△CBA,∴∠BAE=∠C,∠AEB=∠BAC,∵AD=AE,∴∠ADE=∠AED,∠ACD=∠BCA,∴∠ADE=∠BAC,∵∠ADC=∠BAC,∴△CAD∽△CBA,∴CD:AC=AD:AB,即CD•AB=AD•AC,所以B选项的结论正确;∵△ABE∽△CBA,△CAD∽△CBA,∴△CAD∽△ABE,∴AD:BE=CD:AE,即AD•AE=CD•BE,∵AD=AE,∴AE2=CD•BE,所以C选项的结论正确;∵△CBA∽△ABE,∴AC:AE=CB:AB,∴AB•AC=AE•CB,∵AE2=CD•BE,AE≠CB,∴AB•AC≠BE•CD,所以D选项的结论不正确.故选:D.6.解:A、错误.比如,一个直角三角形的直角边为3,4,另一个直角三角形的一条直角边为3,斜边为4,这两个直角三角形不相似;B、错误.当这个角一个是等腰三角形的顶角,一个是等腰三角形的底角,两个等腰三角形不相似;C、错误;边对应成比例且一个角对应相等的两个三角形不一定相似;D、正确.两个等边三角形相似;故选:D.7.解:A、如果两个三角形全等,则相似比为1,那么这两个三角形相似,故本选项不符合题意.B、如果两个三角形相似,且相似比为1,那么这两个三角形全等,故本选项不符合题意.C、如果两个三角形都与另一个三角形相似,那么这两个三角形相似,故本选项不符合题意.D、如果两个三角形相似,它们不一定全等,则它们不一定能互相重合,故本选项符合题意.故选:D.8.解:A、当∠ACB=∠D时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;B、当∠ACD=∠ABC时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;C、当时,无法得出△ACD∽△ABC,故此选项符合题意;D、当时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;故选:C.9.解:①∠B=∠AED,∠A=∠A,则可判断△ADE∽△ACB,故①符合题意;②DE∥BC,则△ADE∽△ABC,故②不符合题意,③,且夹角∠A=∠A,能确定△ADE∽△ACB,故③符合题意;④由AD•BC=DE•AC可得=,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB,故④不符合题意,故选:B.10.解:∵∠BAC=90°,AB=6,AC=8,∴BC==10,∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC=5,∴四边形AECD是菱形,∴菱形AECD的周长是20,故A选项正确,不符合题意;∵四边形AECD是菱形,∴∠ACB=∠ACD,∵∠B+∠ACB=90°,∴∠B+∠ACD=90°,故C选项正确,不符合题意;如图,过A作AH⊥BC于点H,∵S△ABC=BC•AH=AB•AC,∴AH==,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.故D选项正确,不符合题意;在Rt△EFC中,EF=,EC=5,∴FC==,在Rt△CAB中,AB=6,AC=8,BC=10,∵=,=,=,∴△ABC与△FEC不相似,故B选项错误,符合题意.故选:B.11.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△ABF∽△DEF,△EFD∽△EBC,∴,,,故选项A、C、D错误;∵△ABF∽△DEF,△EFD∽△EBC,∴△ABF∽△CEB,∴,故选项B正确;故选:B.12.解:∵AD∥CB,EF∥CB,∴AD∥EF∥CB,∴==,∴=,即=,∴DF=CD=×15=6.故选:B.13.解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,AD=BC,∴△AEG∽△BEC,△EFH∽△CDH,△AEG∽△DCG,∴=,故A正确,不符合题意;=,故B错误,符合题意;=,故C正确,不符合题意;∵=,∴+=+,∴=,∵AD=BC,∴=,∴=,故D正确,不符合题意.综上,只有B符合题意.故选:B.14.解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∴△EAG∽△EBF,△EAG∽△HDG,∴,,故选项A、B成立,∵CH∥BA,∴,∴,故选项C正确,∵AG∥AC,CH∥BA,∴,,而无法证明是否成立,故选项D不一定成立,故选:D.15.解:∵AD=3,BD=4,∴,∵DE∥BC,∴△ADE∽△ABC,∴===.故选:D.二.填空题(共10小题,满分45分)16.解:∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=8,∴ABC与△A'B'C'的周长比=AD:A′D′=10:8=5:4.故答案为:5:4.17.解:∵△ABC∽△DEF,△ABC与△DEF的面积之比为1:9,∴△ABC与△DEF的相似比为1:3,故答案为:1:3.18.解:∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,BC=3,AD=2.4,B'C'=2,∴BC:B′C′=AD:A′D′,∴2.4:A′D′=3:2,∴A'D'的长是1.6,故答案为:1.6.19.解:∵两个相似三角形的周长之比为1:4,∴这两个三角形的相似比为1:4,∴两个相似三角形对应边上的高之比1:4;故答案为:1:4.20.解:∵∠C=∠BCD,∴当∠A=∠CBD或∠CDB=∠ABC时,△ABC∽△BCD.故答案是:∠A=∠CBD或∠CDB=∠ABC(答案不唯一).21.解:∵BD⊥AB于点B,AC⊥AB,∴∠A=∠B=90°,当∠ACE=∠BDE时,△ACE∽△BDE,∴,∴AE=BE①,当∠ACE=∠BED时,△ACE∽△BED,∴,即AE•BE=AC•BD=3×4=12②,由①②可得:,解得:BE=4,∴AE=3,∴AB=AE+BE=7,即a=7,当AE=3时,BE=4时,两个三角形相似,当AE=4时,BE=3,两个三角形全等,符合题目要求,设AE=x,则BE=a﹣x,∴x:4=3:(a﹣x),整理得:x2﹣ax+12=0,方程有唯一解时,△=a2﹣48=0,解得:(舍去),∴a=4,当a=4时,AE:BE=3:4,两个三角形相似,AE=BE=2时,两个三角形相似,同样是两个点可以满足要求,综上所述,△BDE与△ACE相似,若这样的点E有且仅有两个,则a的值为7或4,故答案为:7或4.22.解:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BAD.23.解:如图1中,设AB=AC=BC=a,∵△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠M+∠CAM,∠M=30°,∴∠M=∠CAM=30°,∴AC=CM=a,∴OM=2a,即2a=6,∴a=3,如图2﹣1中,设OB=m,则PB=2m,∵△PEF∽△NOM,∴∠EPF=∠N=90°﹣30°=60°,∴∠APF=∠ABC=60°,∴PF∥BC,∴∠AFP=∠ACP=60°,∴△APF的等边三角形,∵∠M+∠EBM=90°,∴∠FEP=90°,∴FE⊥AP,∴AE=EP,∴BM=6﹣m,∴BE=BM=(6﹣m),∴AE=EP=(6﹣m)﹣2m,∵AP+PB=3,∴6﹣m﹣4m+2m=3,解得m=1,∴OB=1,当点P与A重合时,△PEF∽△NOM,∵BP=2OB,∴OB=,综上所述,满足条件的OB的值为1或.24.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△AEF∽△CBF,∴,∵AE:AD=2:3,∴,∴,又∵AC=20,∴AF=8,故答案为:8.25.解:∵AB∥CD,∴△ABE∽△DCE,∴==.∵EF∥CD,∴△BEF∽△BCD,∴==,即=,∴EF=2.故答案为:2.三.解答题(共5小题,满分45分)26.解:∵AC=3,BC=4,∠ACB=90°,由勾股定理得:AB=5,∵Rt△ABC∽Rt△ACD,∴,即:,解得:AD=,∴AD的长为.27.解:设两个三角形的面积分别为x,y,则有,解得x=20,y=45答:较小三角形面积为20.28.证明:∵将△ABC绕点A旋转得到△ADE,∴AC=AE,AB=AD,∠CAE=∠BAD,∴,∴△ADB∽△AEC.29.证明:∵AB=4,BC=8,BD=2,∴.∵∠ABD=∠CBA,∴△ABD∽△CBA.30.解:(1)①如图1,过点D作DH⊥BC交BC延长线于H,∴∠H=90°,∵四边形ABCD是平行四边形,∴BC=AD=6,CD=AB=3,CD∥AB,∴∠DCH=∠ABC=45°,在Rt△CHD中,CH=DH=CD=3,∴BH=BC+CH=9,在Rt△BHD中,BD===3;②∵AG⊥BD,∴∠AEB=∠AED=90°,由①知,BD=3,设BE=x,则DE=BD﹣BE=3﹣x,在RtAEB中,AE2=AB2﹣BE2=(3)2﹣x2=18﹣x2,在RtAED中,AE2=AD2﹣DE2=62﹣(3﹣x)2=﹣x2+6x﹣54,∴18﹣x2=﹣x2+6x﹣54,∴x=,∴BE=,DE=3﹣=,四边形ABCD是平行四边形,∴AD∥BC,∴△BEG∽△DEA,∴,∴,∴BG=4,故答案为:4;(2)①当点F在点A左侧时,如图2,过点A作AM⊥BC于M,过点B作BN⊥AD于N,∴∠ANB=∠AMB=90°,在Rt△ABM中,∠ABC=45°,AB=3,∴BM=AM=AB=3,∵AD∥BC,∴∠MBN+∠ANB=180°,∴∠MBN=90°,∴∠FBN+∠MBH=90°,∠F+∠FBN=90°,∴∠F=∠HBG,∵∠HBG+∠H=∠GAM+∠AMB,∴∠HBG+90°=∠GAM+90°,∴∠HBG=∠GAM,∴∠F=∠GAM,∵∠BNF=∠GMA,∴△BNF∽△GMA,∴,∴=,∴GM=,∴BG=BM﹣GM=3﹣=,②当点F在点A右侧时,如图3,同①的方法得,GM=,∴BG=BM+GM=3+=,即线段BG的长为或.。

人教版九年级数学下册 第二十七章 相似 27.2 相似三角形 同步练习(含答案)

人教版九年级数学下册 第二十七章 相似 27.2 相似三角形  同步练习(含答案)

人教版九年级数学下册第二十七章相似27.2 相似三角形同步练习一、选择题1、能判定与相似的条件是()A. B.,且C.且D.,且2、如图,下列条件中不能判定的是()A. B.C. D.3、.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠CB.∠ADB=∠ABCC.D.4、如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有()A.①②③ B.①②④ C.①③④ D.②③④5、如图,△ABC中,点D、E分别在AB、AC边上,则下列条件中,不一定能使△AED∽△ABC的是()A.∠2=∠B B.∠1=∠C C.D.6、如图,△ABC中,BD是∠ABC的平分线,DE∥AB交BC于E,EC=6,BE=4,则AB长为()A. 6 B. 8 C.D.7、如图,DE是△ABC的中位线,已知△ABC的面积为8,则△ADE的面积为().A. 2 B. 4 C. 6 D. 88、如图所示,在河的一岸边选定一个目标A,再在河的另一岸边选定B和C,使AB⊥BC,然后选定E,使EC⊥BC,用视线确定BC和AE相交于D,此时测得BD=120米,CD=60米,为了估计河的宽度AB,还需要测量的线段是()A.CEB.DEC.CE或DED.无法确定9、已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对B.2对C.3对D.4对10、某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是()A.12米 B.11米 C.10米 D.9米11、.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值为()A. B. C. D.12、如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是( )A. 4.5秒B.3秒C. 3秒或4.8秒D.4.5秒或4.8秒二、填空题13、如图,是的中位线,的面积为,则四边形的面积为.14、如图,已知零件的外径为25,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)量零件的内孔直径AB.若OC∶OA=1∶2,量得CD=10,则零件的厚度.15、如图,AC与BD交于点E,AB∥CD∥EF,AB=10,CD=15,则EF的长为16、已知△ABC∽△A′B′C′,且,△ABC的周长比△A′B′C′的周长少8cm,则△A′B′C′的周长为 cm 。

初三数学下册《27.2相似三角形同步练习》(附答案)【人教版教材适用】

初三数学下册《27.2相似三角形同步练习》(附答案)【人教版教材适用】

∵ ∠HFG=∠B,∴ ∠GFD=∠BHF,∴△ BFH∽△ DGF,∴ BF DG
2
∴BH?G=DBF.
BH

DF
( 2)证明:∵ AG∥CE,∴ ∠FAG∥∠C. ∵ ∠CFE=∠CEF,∴ ∠AGF=∠CFE,∴ AF=AG.
∵ ∠BAD=∠C,∴ ∠BAF=∠DAG, △ABF≌△ ADG,∴ FB=DG,∴ FD+DG=D,B
AE
1
,即
AE ,解得 AE= 2 2 .
AC
3 62
AD 若 △ADE∽△ ACB时,
AC
AE
1
,即
AE ,解得 AE=
2
.
AB
62 3
4
∴当 AE= 2 2 或 2 时,以点 A、D、E 为顶点的三角形与△ ABC相似. 4
2.解:( 1)△ ADE∽△ ACB,△ CEF∽ △DBF,△EFB∽ △ CFD( 不唯一 ).
CN
GF

AB
12
x
设 正方形的边长为
x,则
5 12
x ,解得 x
5
60
.所以正方形的边长为
37
5
12 x
( 2)同( 1),有 5 12
2x ,解得 x
5
60

49
5
12 x ( 3)同( 1),有 5
12
3 x ,解得 x
5
60

61
5
12 x
( 4)同( 1),有 5 12
nx ,解得 x
5
方法二:证明:如图,延长 AD交 BC于 H ,则 ∠ADO∠= AHC.
∵ ∠AHC=∠B +∠BAD,∴ ∠ADO= ∠B+ ∠BAD. ∵OA=O,D∴ ∠DAO∠= B +∠BAD.

人教版数学九年级下册 27.2.2相似三角形的性质 同步练习(包含答案)

人教版数学九年级下册 27.2.2相似三角形的性质 同步练习(包含答案)
A. 2 B. 3 C. 6 D. 54
3.如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是()
A. AB2=BC•BD B. AB2=AC•BD C. AB•AD=BD•BC D. AB•AD=AD•CD
4.已知△ABC∽△A′B′C′, ,AB边上的中线CD长4cm,△ABC的周长20cm,则△A′B′C′的周长和A′B′边上的中线C′D′分别长()
它们的面积比为:4:9,
设此两个三角形的面积分别为 , ,
它们的面积之差为 ,

解得: ,
它们的面积之和是: .
故答案为:B.
【分析】根据两个相似三角形的周长比等于相似比、等于面积的比的平方即可求解。
二、填空题
10.【答案】
【解析】【解答】解:∵△ABC∽△DEF,且相似比为3:4
∴S△ABC:S△DEF=9:16
∴ = = ,即 = = ,
∴ABC=8+5+6=19,
即△ABC的周长为19
【解析】【分析】通过相似三角形的对应边成比例,求得边长和周长。
18.【答案】(1)证明:∵四边形ABCD是长方形,
∴AD∥BC,∠ABE=90°.
∴∠DAF=∠AEB.
又∵DF⊥AE,
∴∠AFD=90°
∴此两个三角形的相似比为:3:4,
∴对应中线长的比为:3:4.
故答案为:A.
【分析】两个相似三角形对应中线比等于三角形的相似比。
6.【答案】C
【解析】【解答】解:因为面积扩大了5倍,
所以边长扩大了 倍,边长扩大5倍,则面积扩大25倍.
故答案为:C
【分析】根据两个相似三角形的面积比为边长比的平方进行求解即可。

人教版数学九年级下册第27章相似相似三角形相似三角形同步训练含答案

人教版数学九年级下册第27章相似相似三角形相似三角形同步训练含答案

人教版数学九年级下册第27章相似相似三角形相似三角形同步训练含答案1. 如下图,△ABC 与△A′B′C′相似,那么以下记法中正确的选项是( ) A .△ACB∽△A′B′C′ B .△BAC∽△C′B′A′ C .△BCA∽△B′C′A′D .△ABC∽△C′A′B′2.△ABC ∽△A 1B 1C 1,且∠A =60°,∠B =95°,那么∠C 1的度数为( ) A .60° B .95° C.25° D .15°3.如图,在△ABC 中,点D 、E 区分在AB 、AC 上,DE ∥BC ,假定BD =2AD ,那么( )A.AD AB =12 B .AE EC =12 C.AD EC =12 D .DE BC =124. 如图,△ABC ∽△DEF ,相似比为1∶2.假定BC =1,那么EF 的长是( ) A .1 B .2 C .3 D .45. 如图,在△ABC 中,DE ∥BC ,AD AB =13,BC =12,那么DE 的长是( )A .3B .4 C.5 D .6 6. 以下命题不正确的选项是( ) A .相似三角形一定全等 B .两个等腰直角三角形相似C .两个全等三角形一定相似D .在△ABC ∽△A′B′C′,那么∠A =∠A′,∠B =∠B′7. 如图,在△ABC 中,D 、E 区分为AB 、AC 边上的点,DE ∥BC ,点F 为BC 边上一点,衔接AF 交DE 于点G ,那么以下结论中一定正确的选项是( ) A.AD AB =AE EC B .AG GF =AE BD C.BD AD =CE AE D .AG AF =AC EC8.如图,在△ABC 中,DE ∥BC ,,∠ADE =∠EFC ,AD ∶BD =5∶3,CF =6,那么DE 的长为( )A .6B .8C .10D .129. 假定△ABC ∽△A 1B 1C 1,AB =2,A 1B 1=3;那么△A 1B 1C 1与△ABC 的相似比为 .10. 如图,点F 是▱ABCD 的边CD 上一点,直线BF 交AD 的延伸线于点E ,那么以下结论错误的选项是( )A.ED EA =DF AB B .DE BC =EF FB C.BC DE =BF BE D .BF BE =BC AE11.如图,在△ABC 中,点D 、E 区分在AB 、AC 上,DE ∥BC ,AD AB =13,AD +DE +AE AB +BC +AC = .12. 如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,在BA 的延伸线上取一点E ,衔接OE 交AD 于点F.假定CD =5,BC =8,AE =2,那么AF = .13. 如下图,△ABC 是等边三角形,P 是BC 上一点,且△ABP ∽△PCD.求∠APD 的度数.14. 在平行四边形ABCD 中,E 为BC 边上的一点.衔接AE. (1)假定AB =AE ,求证:∠DAE =∠D ;(2)假定点E 为BC 的中点,衔接BD ,交AE 于F ,求EF ∶FA 的值.15.如图,梯形ABCD 中,AB ∥CD ,点F 在BC 上,DF 与AB 的延伸线交于点G. (1)求证:△CDF ∽△BGF ;(2)当点F 是BC 的中点时,过F 作EF ∥CD 交AD 于点E ,假定AB =6cm ,EF =4cm ,求CD 的长. 参考答案:1---8 CCBDB ACC 9. 3∶2 10. C11. 1312. 16913. 解:△ABP ∽△PCD ,∴∠BAP =∠CPD.∵△ABC 是等边三角形,∴∠B =60°,∴∠BAP +∠BPA =180°-60°=120°,∴∠BPA +∠CPD =120°,∴∠APD =180°-(∠BPA +∠CPD)=180°-120°=60°.14. 解:(1)证明:∵四边形ABCD 为平行四边形,∴∠B =∠D ,AD ∥BC ,∴∠AEB =∠EAD ,又∵AE =AB ,∴∠B =∠AEB ,∴∠B =∠EAD ,∴∠EAD =∠D ; (2)∵AD ∥BC ,∴∠FAD =∠FEB ,∠ADF =∠EBF ,∴△ADF ∽△EBF ,∴EF ∶FA =BE ∶AD =BE ∶BC =1∶2.15. 解:(1)证明:∵梯形ABCD 中,AB ∥CD ,即CD ∥BG ,∴△CDF ∽△BGF ; (2)由(1)得△CDF ∽△BGF ,且F 是BC 中点,∴DF =FG ,CD =BG.又∵EF ∥CD ,AB ∥CD ,∴EF ∥AG ,∴△DEF ∽△DAG.∴EF AG =DF DG =12,∴AG =8cm ,∴CD =BG =AG-AB =2cm.。

人教版初中数学九年级下册《27.2 相似三角形》同步练习卷(含答案解析

人教版初中数学九年级下册《27.2 相似三角形》同步练习卷(含答案解析

人教新版九年级下学期《27.2 相似三角形》同步练习卷一.选择题(共13小题)1.如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,∠ACD=∠B,那么下列判断中,不正确的是()A.△ADE∽△ABC B.△CDE∽△BCD C.△ADE∽△ACD D.△ADE∽△DBC 2.如图,点E为平行四边形ABCD边BC延长线上的一点,连结AE与CD相交于点F.则图中相似三角形共有()A.1对B.2对C.3对D.4对3.如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B②=③=,使△ADE与△ACB一定相似()A.①②B.②C.①③D.①②③4.如图,下列四个选项不一定成立的是()A.△COD∽△AOB B.△AOC∽△BOD C.△DCA∽△BAC D.△PCA∽△PBD 5.身高1.6米的小明利用影长测量学校旗杆的高度,如图,当他站在点C处时,他头顶端的影子正好与旗杆顶端的影子重合在点A处,测量得到AC=2米,CB=18米,则旗杆的高度是()A.8米B.14.4米C.16米D.20米6.两个相似六边形的相似比为3:5,它们周长的差是24cm,那么较大的六边形周长为()A.40cm B.50cm C.60cm D.70cm7.若△ABC∽△DEF,△ABC与△DEF的面积之比为4:25,则△ABC与△DEF周长之比为()A.4:25B.2:5C.5:2D.25:48.如果两个相似三角形对应高的比是4:9,那么它们的面积比是()A.4:9B.2:3C.16:81D.9:49.已知△ABC∽△DEF,相似比为2,且△ABC的周长为16,则△DEF的周长为()A.2B.4C.8D.3210.如图,在△ABC中,∠B=80°,∠C=40°,直线l平行于BC.现将直线l绕点A逆时针旋转,所得直线分别交边AB和AC于点M、N,若△AMN与△ABC 相似,则旋转角为()A.20°B.40°C.60°D.80°11.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是()A.B.C.D.12.如图,在正方形ABCD中,以BC为边作等边△BPC,延长BP,CP分别交AD 于点E,F,连接BD、DP、BD与CF相交于点H,给出下列结论:①AE=CF;②∠BPD=135°;③△PDE∽△DBE;④ED2=EP•EB其中正确的是()A.①②③④B.②③C.①②④D.①③④13.如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则NM:MC等于()A.1:2B.1:3C.1:4D.1:5二.填空题(共15小题)14.如图,在▱ABCD中,F为AD上一点,连结CF并交BA的延长线于一点E,则图中相似三角形共有对.15.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是.16.有一块三角形的余料△ABC,它的高AH=40mm,边BC=80mm,要把它加工成一个矩形,使矩形的一边EF落在BC上,其余两个顶点DG分别在AB,AC 上,且DG=2DE,则矩形的面积为mm2.17.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树AB的树根7.2m的点E处,然后观测者沿着直线BE后退到点D,这时恰好在镜子里看到树稍顶点A,再用皮尺量得DE=2.4m,观测者目高CD=1.6m,则树高AB约是.18.如图是用卡钳测量容器内径的示意图,现量的卡钳上A、D两端的距离为4cm,,则容器的内径BC=.19.两个相似五边形,一组对应边的长分别为1cm和2cm,如果它们的面积之和是50cm2,则较大的五边形面积是cm2.20.若一个矩形截去两个以短边长为边长的正方形后得到的矩形与原矩形相似,则这个矩形的长与宽之比为.21.如图,菱形ABCD的周长为12,∠DAB=60°,对角线AC上有两点E和F(点E在点F的左侧),且要使四边形DEBF与菱形ABCD相似,则AE的长为.22.沿一张矩形纸较长两边的中点将纸折叠,所得的两个矩形仍然与原来的矩形相似,则原矩形纸的长、宽之比是.23.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则点D到线段AB的距离等于(结果保留根号).24.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1、B1D1相交于点O,以点O为坐标原点,分别以OB1,OA1所在直线为x轴、y轴建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在y轴的正半轴上得到点A1,A2,A3,…,A n,则点A2018的坐标为25.如图,△ABC的顶点在1×3的正方形网格的格点上,在图中画出一个与△ABC相似但不全等的△DEF(△DEF的顶点在格点上),则△DEF的三边长分别是.26.如图,Rt△ABC中,∠BAC=90°,AD⊥BC,若BD=1,AD=3,则CD=.27.如图,CD是Rt△ABC中斜边上的高,已知AD=6,BD=3,则CD=.28.已知CD是Rt△ABC斜边上的高,若AB=25,BC=15,则BD的长为.三.解答题(共7小题)29.在正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P.(1)求PD的长;(2)点E在DC上,点F在DP上,且∠DFE=45°.若PF=,求CE的长.30.在Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB,垂足为D.求BD的长.31.如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.32.如图在Rt△ABC中,∠C=90°,在AB边上求作一点P,使得△BPC∽△BCA (用尺规作图,不写作法,保留作图痕迹)33.网格中每个小正方形的边长都是1.(1)将图①中的格点三角形ABC平移,使点A平移到点A',画出平移后的三角形;(2)在图②中画一个格点三角形DER,使△DER∽△ABC且相似比为2:1;(3)在图③中画一个格点三角形PQR,使△PQR∽△ABC且面积之比2:1.34.如图,AD是Rt△ABC斜边上的高.若AB=4cm,BC=10cm,求BD的长.35.如图,在△ABC中,BD=3,CD=6,∠BAC=90°,AD⊥BC,垂足为点D,求AD的长.人教新版九年级下学期《27.2 相似三角形》同步练习卷参考答案与试题解析一.选择题(共13小题)1.如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,∠ACD=∠B,那么下列判断中,不正确的是()A.△ADE∽△ABC B.△CDE∽△BCD C.△ADE∽△ACD D.△ADE∽△DBC 【分析】若是两个三角形中两组角对应相等,那么这两个三角形相似,根据此判定作判断即可.【解答】解:∵点D、E分别在边AB、AC上,DE∥BC,∴△ADE∽△ABC.故A正确;∵DE∥BC∴∠BCD=∠EDC∵∠B=∠DCE,∴△CDE∽△BCD.故B正确;∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴△ADE∽△ACD,故C正确;△ADE与△DBC不一定相似,故D不正确;本题选择不正确的,故选:D.【点评】本题考查相似三角形的判定定理,要熟记这些判定定理才能灵活运用.2.如图,点E为平行四边形ABCD边BC延长线上的一点,连结AE与CD相交于点F.则图中相似三角形共有()A.1对B.2对C.3对D.4对【分析】根据平行四边形的对边平行,利用“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”找出相似三角形,然后即可选择答案.【解答】解:在平行四边形ABCD中,AB∥CD,BC∥AD,所以,△ABE∽△FCE,△FCE∽△ADF,△ADF∽△ABE,共3对.故选:C.【点评】本题考查了相似三角形的判定,平行四边形的对边互相平行的性质,要注意全等三角形是相似三角形的特殊情况.3.如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B②=③=,使△ADE与△ACB一定相似()A.①②B.②C.①③D.①②③【分析】根据相似三角形的判定方法即可一一判断;【解答】解:∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,故①正确,∵∠A=∠A,=,∴△AED∽△ABC,故③正确,由②无法判定△ADE与△ACB相似,故选:C.【点评】本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定方法,属于中考常考题型.4.如图,下列四个选项不一定成立的是()A.△COD∽△AOB B.△AOC∽△BOD C.△DCA∽△BAC D.△PCA∽△PBD 【分析】利用圆周角定理、园内接四边形的性质一一判断即可;【解答】解:∵∠OCD=∠OAB,∠COD=∠AOB,∴△COD∽△AOB.同法可证:△AOC∽△BOD.∵∠PCA+∠ACD=180°,∠ACD+∠ABD=180°,∴∠PCA=∠PBD,∵∠P=∠P,∴△PCA∽△PBD,故选:C.【点评】本题考查相似三角形的判定、圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.身高1.6米的小明利用影长测量学校旗杆的高度,如图,当他站在点C处时,他头顶端的影子正好与旗杆顶端的影子重合在点A处,测量得到AC=2米,CB=18米,则旗杆的高度是()A.8米B.14.4米C.16米D.20米【分析】因为人和旗杆均垂直于地面,所以构成相似三角形,利用相似比解题即可.【解答】解:设旗杆高度为h,由题意得=,解得:h=16米.故选:C.【点评】本题考查了考查相似三角形的性质和投影知识,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.6.两个相似六边形的相似比为3:5,它们周长的差是24cm,那么较大的六边形周长为()A.40cm B.50cm C.60cm D.70cm【分析】由于相似多边形的周长比等于相似比,可设未知数,表示出两多边形的周长;然后根据它们的周长差为4cm,求出未知数的值.进而可求出较大多边形的周长.【解答】解:由题意,可设较小多边形的周长为3x,则较大多边形的周长为5x,则有:5x﹣3x=24,解得x=12,∴5x=60,故选:C.【点评】本题考查的是相似多边形的性质,即相似多边形对应边的比相等、应面积的比等于相似比的平方.7.若△ABC∽△DEF,△ABC与△DEF的面积之比为4:25,则△ABC与△DEF周长之比为()A.4:25B.2:5C.5:2D.25:4【分析】根据相似三角形的面积的比等于相似比的平方先求出△ABC与△DEF的相似比,然后根据相似三角形的周长的比等于相似比解答即可.【解答】解:∵相似三角形△ABC与△DEF面积的比为4:25,∴它们的相似比为2:5,∴△ABC与△DEF的周长比为2:5.故选:B.【点评】本题主要考查了相似三角形面积的比等于相似比的平方,周长的比等于相似比的性质,熟记性质是解题的关键.8.如果两个相似三角形对应高的比是4:9,那么它们的面积比是()A.4:9B.2:3C.16:81D.9:4【分析】相似三角形对应高的比等于相似比,再根据相似三角形的面积比等于相似比的平方即可解决问题;【解答】解:∵两个相似三角形对应高之比为4:9,∴它们的相似比为4:9,∴面积比=()2=16:81.故选:C.【点评】本题考查对相似三角形性质的理解.相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方,相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.9.已知△ABC∽△DEF,相似比为2,且△ABC的周长为16,则△DEF的周长为()A.2B.4C.8D.32【分析】根据相似三角形面积的比等于相似比求解即可.【解答】解:设△DEF的周长为x,∵△ABC∽△DEF,相似比为2,∴16:x=2:1,解得,x=8.故选:C.【点评】本题考查了相似三角形的性质,熟记性质是解题的关键.10.如图,在△ABC中,∠B=80°,∠C=40°,直线l平行于BC.现将直线l绕点A逆时针旋转,所得直线分别交边AB和AC于点M、N,若△AMN与△ABC 相似,则旋转角为()A.20°B.40°C.60°D.80°【分析】若△AMN∽△ACB,则∠AMN=∠C=40°,再根据直线l平行于BC,可得∠ADE=∠B=80°,进而得到∠DFM=∠ADE﹣∠AMN=80°﹣40°=40°,即可得出旋转角的大小.【解答】解:如图,直线l绕点A逆时针旋转,所得直线分别交边AB和AC于点M、N,若△AMN∽△ACB,则∠AMN=∠C=40°,又∵直线l平行于BC,∴∠ADE=∠B=80°,∴∠DFM=∠ADE﹣∠AMN=80°﹣40°=40°,即直线l旋转前后的夹角为40°,∴旋转角为40°,故选:B.【点评】本题主要考查了相似三角形的性质以及旋转的性质,解题时注意:相似三角形的对应角相等,对应边的比相等.对应点与旋转中心所连线段的夹角等于旋转角.11.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是()A.B.C.D.【分析】作AH⊥BC于H,交GF于M,如图,先利用三角形面积公式计算出AH=3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,再证明△AGF∽△ABC,则根据相似三角形的性质得=,然后解关于x的方程即可.【解答】解:解:作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是6,∴BC•AH=6,∴AH==3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,∵GF∥BC,∴△AGF∽△ABC,∴=,即=,解得x=,即正方形DEFG的边长为.故选:A.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在应用相似三角形的性质时,主要利用相似比计算相应线段的长.也考查了正方形的性质.12.如图,在正方形ABCD中,以BC为边作等边△BPC,延长BP,CP分别交AD 于点E,F,连接BD、DP、BD与CF相交于点H,给出下列结论:①AE=CF;②∠BPD=135°;③△PDE∽△DBE;④ED2=EP•EB其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质、等边三角形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴AE=BE=CF;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠EDP=∠EBD,∵∠DEP=∠DEP,∴△DEP∽△BED,∴=,即ED2=EP•EB,故④正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PBD=15°,∠PBD=30°,∴∠BPD=135°,故②正确;故选:C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.13.如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则NM:MC等于()A.1:2B.1:3C.1:4D.1:5【分析】根据中位线定理证明△NDM∽△NBC后求解.【解答】解:∵DE是△ABC的中位线,M是DE的中点,∴DM∥BC,DM=ME=BC.∴△NDM∽△NBC,==.∴=.故选:B.【点评】本题考查了三角形中位线定理及相似三角形的性质.本题关键是找准相似三角形,利用相似三角形的性质求解.二.填空题(共15小题)14.如图,在▱ABCD中,F为AD上一点,连结CF并交BA的延长线于一点E,则图中相似三角形共有3对.【分析】根据平行四边形的性质、相似三角形的判定定理判断.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△AEF∽△BEC,△EBC∽△CDF,△AEF∽△DCF,故答案为3.【点评】本题考查的是平行四边形的性质、相似三角形的判定,掌握相似三角形的判定定理是解题的关键.15.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是100米.【分析】先可证明△ADB∽△EDC,然后依据相似三角形的性质求解即可.【解答】解:∵AB⊥BC,EC⊥BC,∴∠B=∠C=90°.又∵∠ADB=∠EDC,∴△ADB∽△EDC.∴,即.解得:AB=100米.故答案为:100米【点评】本题主要考查的是相似三角形的性质与判定,依据相似三角形的性质列出比例式是解题的关键.16.有一块三角形的余料△ABC,它的高AH=40mm,边BC=80mm,要把它加工成一个矩形,使矩形的一边EF落在BC上,其余两个顶点DG分别在AB,AC 上,且DG=2DE,则矩形的面积为800mm2.【分析】如图,设AH交DG于点K.设DE=x,则DG=2x,利用相似三角形的性质构建方程即可解决问题.【解答】解:如图,设AH交DG于点K.设DE=x,则DG=2x,∵DG∥BC,∴△ADG∽△ABC,∴=,∴=,∴x=20,∴DE=20,DG=40,∴矩形EFGD的面积为40×20=800mm2故答案为800【点评】本题考查相似三角形的性质和判定,矩形的性质等知识,解题的关键是熟练掌握基本知识,学会构建方程解决问题.17.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树AB的树根7.2m的点E处,然后观测者沿着直线BE后退到点D,这时恰好在镜子里看到树稍顶点A,再用皮尺量得DE=2.4m,观测者目高CD=1.6m,则树高AB约是 4.8m.【分析】如图容易知道CD⊥BD,AB⊥BE,即∠CDE=∠ABE=90°.由光的反射原理可知∠CED=∠AEB,这样可以得到△CED∽△AEB,然后利用对应边成比例就可以求出AB.【解答】解:由题意知∠CED=∠AEB,∠CDE=∠ABE=90°,∴△CED∽△AEB.∴=,∴=,∴AB=4.8米.故答案为:4.8m.【点评】考查了相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.18.如图是用卡钳测量容器内径的示意图,现量的卡钳上A、D两端的距离为4cm,,则容器的内径BC=8cm.【分析】连接AD,BC,依题意得:△AOD∽△BOC,则其对应边成比例,由此求得BC的长度.【解答】解:如图,连接AD,BC,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴==又AD=4cm,∴BC=2AD=8cm.故答案是:8cm.【点评】本题考查相似三角形的判定与性质的实际应用及分析问题、解决问题的能力.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.19.两个相似五边形,一组对应边的长分别为1cm和2cm,如果它们的面积之和是50cm2,则较大的五边形面积是40cm2.【分析】根据相似多边形相似比即对应边的比,面积的比等于相似比的平方,即可解决.【解答】解:设较大五边形与较小五边形的面积分别是m,n.则.因而n=m.根据面积之和是50cm2.得到m+m=50.解得:m=40cm2.故答案为;40【点评】本题考查相似多边形的性质.面积之比等于相似比的平方.20.若一个矩形截去两个以短边长为边长的正方形后得到的矩形与原矩形相似,则这个矩形的长与宽之比为1+.【分析】利用相似多边形的相似比相等列出方程求解.【解答】解:设矩形的长是a,宽是b,则AE=EH=b,DH=a﹣2b,∵矩形ABCD∽矩形HDCG,∴=,即=,整理得:a2﹣2ab﹣b2=0,两边同除以b2,得()2﹣﹣1=0,解得,=1+或=1﹣(舍去)∴长与宽的比为1+,故答案为:1+.【点评】本题考化成了相似多边形的性质,根据相似得到方程,解方程是解决本题的关键.21.如图,菱形ABCD的周长为12,∠DAB=60°,对角线AC上有两点E和F(点E在点F的左侧),且要使四边形DEBF与菱形ABCD相似,则AE的长为.【分析】如图连接BD交AC于O.解直角三角形求出OA、OE即可解决问题.【解答】解:如图连接BD交AC于O.∵四边形ABCD是菱形,周长为12,∴AB=BC=CD=AD=3,BD⊥AC,∵∠DAB=60°,∴∠DAO=∠DAB=30°,∴OD=AD=,AO=OD=,∵四边形DEBF与菱形ABCD相似,∴∠EDF=∠DAB=60°,∴∠EDO=∠EDF=30°,∴OE=OD=,∴AE=OA﹣OE=﹣=,故答案为.【点评】本题考查菱形的性质、相似多边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.沿一张矩形纸较长两边的中点将纸折叠,所得的两个矩形仍然与原来的矩形相似,则原矩形纸的长、宽之比是:1.【分析】先表示出对折后的矩形的长和宽,再根据相似矩形对应边成比例列出比例式,然后求解.【解答】解:设原来矩形的长为x,宽为y,则对折后的矩形的长为y,宽为,∵得到的两个矩形都和原矩形相似,∴x:y=y:,解得x:y=:1.故答案为::1.【点评】本题主要利用相似多边形对应边成比例的性质,需要熟练掌握.23.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则点D到线段AB的距离等于(结果保留根号).【分析】先根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,再根据等边三角形的面积公式求出其边长,进而求出点D到线段AB的距离.【解答】解:∵△ABC∽△ADE,AB=2AD,∴=()2=4,=,∵S△ABC=,∴S△ADE∵△ABC是等边三角形,△ABC∽△ADE,∴△ADE是等边三角形,∴AD2=,∴AD=1.如图,过点D作DH⊥AB于H.在△ADH中,∵∠HAD=45°,∴DH=AD•sin∠HAD=1×=.故答案为.【点评】此题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,解此题的关键是根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,求出边长AD.24.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1、B1D1相交于点O,以点O为坐标原点,分别以OB1,OA1所在直线为x轴、y轴建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在y轴的正半轴上得到点A1,A2,A3,…,A n,则点A2018的坐标为(0,32017)【分析】先根据菱形的性质求出A1的坐标,根据勾股定理求出OB1的长,再由锐角三角函数的定义求出OA2的长,故可得出A2的坐标,同理可得出A3的坐标,找出规律即可得出结论.【解答】解:∵菱形A1B1C1D1的边长为2,∠A1B1C1=60°,∴OA1=A1B1•sin30°=2×=1,OB1=A1B1•cos30°=2×=,∴A1(0,1).∵1C2D1A2∽菱形A1B1C1D1,∴OA2===3,∴A2(0,3).同理可得A3(0,9)…∴A2018(0,32017).故答案为:(0,32017).【点评】本题考查的是相似多边形的性质,熟知相似多边形的对应角相等是解答此题的关键.25.如图,△ABC的顶点在1×3的正方形网格的格点上,在图中画出一个与△ABC相似但不全等的△DEF(△DEF的顶点在格点上),则△DEF的三边长分别是,2,.【分析】直接利用网格结合勾股定理以及相似三角形的判定方法得出答案.【解答】解:如图所示:△ABC∽△DEF,DE=,ED=2,EF=.故答案为:,2,.【点评】此题主要考查了相似变换,正确得出对应边的比值是解题关键.26.如图,Rt△ABC中,∠BAC=90°,AD⊥BC,若BD=1,AD=3,则CD=9.【分析】先根据题意得出△ABD∽△CAD,然后根据相似三角形的性质解答即可.【解答】解:∵Rt△ABC中,∠BAC=90°,∴∠B+∠C=90°.∵AD⊥BC于点D,∴∠B+∠BAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∠B=∠CAD,∴△ABD∽△CAD,∴AD2=BD•CD,∵BD=1,AD=3,∴CD=9,故答案为:9【点评】本题考查了相似三角形的判定与性质,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应变成比例求边长.27.如图,CD是Rt△ABC中斜边上的高,已知AD=6,BD=3,则CD=3.【分析】根据同角的余角相等证明∠DCB=∠CAD,利用两角对应相等证明△ADC ∽△CDB,列比例式可得结论.【解答】解:∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵CD是高,∴∠ADC=∠CDB=90°,∴∠ACD+∠CAD=90°,∴∠DCB=∠CAD,∴△ADC∽△CDB,∴,∴CD2=AD•BD,∵AD=6,BD=3,∴CD=故答案为:3【点评】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.28.已知CD是Rt△ABC斜边上的高,若AB=25,BC=15,则BD的长为9.【分析】根据射影定理计算即可.【解答】解:由射影定理得,BC2=BD•AB,则BD==9,故答案为:9.【点评】本题考查的是射影定理,直接三角形每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.三.解答题(共7小题)29.在正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P.(1)求PD的长;(2)点E在DC上,点F在DP上,且∠DFE=45°.若PF=,求CE的长.【分析】(1)如图作FK⊥AD于K,FH⊥AB于H.利用勾股定理求出DM,再证明==2即可解决问题;(2)由△AMP∽△FDE,推出=,即可解决问题;【解答】解:(1)如图作FK⊥AD于K,FH⊥AB于H.∵四边形ABCD是正方形,∴∠PAD=∠PAB=45°,∵PK⊥AD,PH⊥AB,∴PK=PH,∴===,∴AB=AD=2,AM=BM=1,∴DM=,∴=2,∴PD=×=.(2)∵PF=,PD=,DM=,∴DF=,PM=,∵DE∥AM,∴∠AMP=∠EDF,∵∠DFE=∠MAP=45°,∴△AMP∽△FDE,∴=,∴=,∴DE=,∴EC=2﹣=.【点评】本题考查相似三角形的判定和性质、正方形的性质、角平分线的性质定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,利用面积法探究线段之间的关系,属于中考常考题型.30.在Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB,垂足为D.求BD的长.【分析】先证明△ADE∽△ACB,得出对应边成比例,可求出AD的长解决问题;【解答】解:∵ED⊥AB,∴∠ADE=90°=∠C,∵∠A=∠A,∴△ADE∽△ACB,∴=,即=,解得:AD=4,∴BD=AB﹣AD=6.【点评】本题考查了相似三角形的判定与性质;熟练掌握相似三角形的判定方法,证明三角形相似得出比例式是解决问题的关键.31.如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.【分析】依据格点△ABC的三边长分别为,2、,将该三角形的各边扩大一定倍数,即可画出与△ABC相似但不全等的格点三角形,进而得出与△ABC 相似的格点三角形的最大面积.【解答】解:如图所示:如图所示,格点三角形的面积最大,S=2×8﹣×2×3﹣×1×5﹣×1×8=6.5【点评】本题主要考查了相似三角形的性质,利用相似三角形的判定方法得出是解题关键.把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形.32.如图在Rt△ABC中,∠C=90°,在AB边上求作一点P,使得△BPC∽△BCA (用尺规作图,不写作法,保留作图痕迹)【分析】如图,以点B为圆心、BC为半径画弧,以点A为圆心,AC为半径画弧,两条弧的交点K与点C的连线交AB于P,点P即为所求.【解答】解:如图,以点B为圆心、BC为半径画弧,以点A为圆心,AC为半径画弧,两条弧的交点K与点C的连线交AB于P,点P即为所求.理由:由作图可知:AK=AC,BK=BC,∴AB垂直平分线段KC,∵∠CPB=∠ACB=90°,∠B=∠B,∴△BPC∽△BCA【点评】本题考查作图﹣相似变换,线段的垂直平分线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.33.网格中每个小正方形的边长都是1.(1)将图①中的格点三角形ABC平移,使点A平移到点A',画出平移后的三角形;(2)在图②中画一个格点三角形DER,使△DER∽△ABC且相似比为2:1;(3)在图③中画一个格点三角形PQR,使△PQR∽△ABC且面积之比2:1.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用相似三角形的性质得出对应点长度进而得出答案;(3)直接利用相似三角形的性质得出对应点长度进而得出答案.【解答】解:(1)如图①所示:△A′B′C′即为所求;(2)如图②所示:△DER即为所求;(3)如图③所示:△PQR即为所求.【点评】此题主要考查了相似变换以及平移变换,正确得出对应边长是解题关键.34.如图,AD是Rt△ABC斜边上的高.若AB=4cm,BC=10cm,求BD的长.【分析】根据射影定理列出算式,代入数据计算即可.【解答】解:∵AD是Rt△ABC斜边上的高,∴根据射影定理可知,AB2=BD•BC,代入数据得:.【点评】本题考查的是射影定理的应用,射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.35.如图,在△ABC中,BD=3,CD=6,∠BAC=90°,AD⊥BC,垂足为点D,求AD的长.【分析】根据射影定理得到AD2=CD•BD,代入计算即可得到答案.【解答】解:∵∠BAC=90°,AD⊥BC,∴AD2=CD•BD=18,∴AD=3,【点评】本题考查的是射影定理的应用,直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.。

人教版 九年级数学下册 第27章 相似 同步训练(含答案)

人教版 九年级数学下册  第27章 相似 同步训练(含答案)

人教版 九年级数学 第27章 相似 同步训练一、选择题1. 如图,在平面直角坐标系中,以原点O 为中心,将△ABO 扩大到原来的2倍,得到△A ′B ′O .若点A 的坐标是(1,2),则点A ′的坐标是( )A .(2,4)B .(-1,-2)C .(-2,-4)D .(-2,-1)2. (2020·绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2︰5,且三角板的一边长为8cm .则投影三角板的对应边长为( )A .20cmB .10cmC .8cmD .3.2cm3. (2019•沈阳)已知△ABC ∽△A'B'C',AD 和A'D'是它们的对应中线,若AD =10,A'D'=6,则△ABC 与△A'B'C'的周长比是 A .3∶5 B .9∶25 C .5∶3 D .25∶94. (2020·内江)如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=( )A. 30B. 25C. 22.5D. 205. (2020·哈尔滨)如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF ∥BC ,交AD 于点F,过点E 作EG ∥AB ,交BC 于点G,则下列式子一定正确的是( )A .CDEF ECAE = B .ABEG CDEF = C .GCBG FDAF = D .AD AF BCCG =6. (2020·广西北部湾经济区)如图,在△ABC中,BC =120,高AD =60,正方形EFGH 一边在BC 上,点E ,F 分别在AB ,AC 上,AD 交EF 于点N ,则AN 的长为( )A .15B .20C .25D .307. (2020·昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC 是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE ∽△ABC(同一位置的格点三角形△ADE 只算一个),这样的格点三角形一共有( ) 个 D.7个AB二、填空题8. (2020·吉林)如图,////AB CD EF .若12=AC CE ,5BD =,则DF =______.9. (2020·南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF 的顶点都在网格线的交点上,设△ABC 的周长为C 1,△DEF 的周长为C 2,则12C C 的值等于 ▲ . ABCDEF10. (2019•郴州)若32x y x +=,则yx=__________.11. (2019•永州)如图,已知点F 是△ABC 的重心,连接BF 并延长,交AC 于点E ,连接CF 并延长,交AB 于点D ,过点F 作FG ∥BC ,交AC 于点G .设三角形EFG ,四边形FBCG 的面积分别为S 1,S 2,则S 1:S 2=__________.12.如图,在R t △ABC 中,∠ACB =90°,AC =3, BC =4, CD ⊥AB ,垂足为D ,E 为BC 的中点,AE 与CD 交于点F ,则DF 的长为_________.FE DB CA13. (2020·苏州)如图,在平面直角坐标系中,点A 、B 的坐标分别为()4,0-、()0,4,点()3,C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n =_________.14. (2020湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知R t△ABC是6×6网格图形中的格点三角形,则该图中所有与R t△ABC相似的格点三角形中.面积最大的三角形的斜边长是.三、解答题15. 在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.(1)如图①,当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;(2)如图②,连接A′A、B′B,设△ACA′和△BCB′的面积分别为S△ACA′和S△BCB′.求证:S△ACA′∶S△BCB′=1∶3;(3)如图③,设AC中点为E,A′B′中点为P,AC=a,连接EP,当θ=________°时,EP长度最大,最大值为________.图①图②图③16. (2020·江苏徐州)我们知道:如图①,点B把线段AC分成两部分,如果BC AB AB AC=,那么称点B为线段AC的黄金分割点.51-.(1)在图①中,若AC=20cm,则AB的长为cm;(2)如图②,用边长为20cm的正方形纸片进行如下操作:对折正方形ABCD得折痕EF,连接CE,将CB折叠到CE上,点B的对应点H,得折痕CG.试说明:G是AB的黄金分割点;(3)如图③,小明进一步探究:在边长为a的正方形ABCD的边AD上任取点E (AE>DE),连接BE,作CF⊥BE,交AB于点F,延长EF、CB交于点P.他发现当PB与BC满足某种关系时,E、F恰好分别是AD、AB的黄金分割点.请猜想小明的发现,并说明理由.A CBHGB CA DPEFDA图①图②图③17. 如图,在平面直角坐标系xOy中,直线y=-x+3与x轴交于点C,与直线AD交于点A(43,53),点D的坐标为(0,1).(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD 与△BCE相似时,求点E的坐标.人教版九年级数学第27章相似同步训练-答案一、选择题1. 【答案】C解析:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以-2,故点A的坐标是(1,2),则点A′的坐标是(-2,-4).2. 【答案】A【解析】本题考查了相似三角形的性质.相似三角形的对应边之比等于相似比,所以8︰(投影三角形的对应边长)=2︰5,则投影三角形的对应边长是20 cm.因此本题选A.3. 【答案】C【解析】∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,∴△ABC与△A'B'C'的周长比=AD∶A′D′=10∶6=5∶3.故选C.4. 【答案】D【解析】本题考查了相似三角形的判定与性质,解答本题的关键是得出DE 是中位线,从而判断△ADE ∽△ABC ,然后掌握相似三角形的面积比等于相似比的平方即可求解本题.首先判断出△ADE ∽△ABC ,然后根据相似三角形的面积比等于相似比的平方即可求出△ABC 的面积.根据题意,点D 和点E 分别是AB 和AC 的中点,则DE ∥BC 且DE=12BC ,故可以判断出△ADE ∽△ABC,根据相似三角形的面积比等于相似比的平方,可知ADE S ∆:ABC S ∆=1:4,则BCED S 四边形:ABC S ∆=3:4,题中已知15BCED S =四边形,故可得ADE S ∆=5,ABC S ∆=20,因此本题选D .5. 【答案】C 【解析】本题考查了平行线分线段成比例和由平行判定相似,∵EF ∥BC ,∴EC AE FD AF =,∵EF ∥BC ,∴ECAE GC BG =,∴GC BGFD AF =因此本题选C .6. 【答案】B【解析】设正方形EFGH 的边长EF =EH =x , ∵四边EFGH 是正方形,∴∠HEF =∠EHG =90°,EF ∥BC , ∴△AEF ∽△ABC , ∵AD 是△ABC的高,∴∠HDN =90°, ∴四边形EHDN 是矩形, ∴DN =EH =x , ∵△AEF ∽△ABC , ∴(相似三角形对应边上的高的比等于相似比),∵BC =120,AD =60, ∴AN =60﹣x , ∴,解得:x =40,∴AN =60﹣x =60﹣40=20.因此本题选B .7. 【答案】A【解析】本题考查了相似三角形的判定.符合条件的三角形有四个,如图所示:C因此本题选A.二、填空题 8. 【答案】10【解析】∵////AB CD EF ,∴AC BDCE DF=, 又∵12=AC CE ,5BD =,∴512DF =,∴10DF =,故答案为:10.9. 【答案】2【解析】由图形易证△ABC 与△DEF 相似,且相似比为1:1:2.10. 【答案】12【解析】∵32x y x +=,∴223x y x +=, 故2y =x ,则12y x =,故答案为:12.11. 【答案】18【解析】∵点F 是△ABC 的重心,∴BF =2EF ,∴BE =3EF , ∵FG ∥BC ,∴△EFG ∽△EBC ,∴13EF BE =,1EBC S S =△(13)219=, ∴S 1∶S 2,故答案为:18.12. 【答案】5485【解析】本题考查平行线分线段成比例定理,相似三角形的判定与性质.已知∠ACB =90°,AC =3, BC =4,由勾股定理,得AB =5.CD ⊥AB ,由三角形的面积,得CD =AC BC AB ⋅=125.易得△ABC ∽△ACD ∽△CBD ,由相似三角形对应边成比例,得AD =AC AC AB ⋅=95,BD =BC BC AB ⋅=165.过点E 作EG ∥AB 交CD于点G ,由平行线分线段成比例,得DG =12CD =65,EG =85,所以DF ADGF EG=,即956855DFDF =-,所以DF =,故答案为5485. GF E DB CA13. 【答案】145或2.8【解析】本题考查了平面直角坐标系中点的坐标特征,等腰三角形的性质,相似三角形的判定和性质,过点C 作CD ⊥y 轴于点D ,设AC 交y 轴于点E ,∴CD ∥x 轴,∴∠CAO=∠ACD, △DEC ∽△OEA ,∵2BCA CAO ∠=∠,∴∠BCD=∠ACD, ∴BD=DE,设BD=DE=x ,则OE=4-2x ,∴DC AO =DE EO ,即34=x4-2x ,解得x =1.2.∴OE=4-2x =1.6,∴n =OD=DE+OE=1.2+1.6=2.8.14. 【答案】解:∵在R t △ABC 中,AC =1,BC =2,∴AB ,AC :BC =1:2,∴与R t △ABC 相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE ,EF =2,DF =5的三角形, ∵,∴△ABC ∽△DEF ,∴∠DEF =∠C =90°,∴此时△DEF 的面积为:22=10,△DEF 为面积最大的三角形,其斜边长为:5.故答案为:5.三、解答题15. 【答案】(1)证:∵AB ∥CB ′,∴∠BCB ′=∠ABC =30°, ∴∠ACA ′=30°;又∵∠ACB =90°,∴A ′CD =60°,又∠CA ′B ′=∠CAB =60°. ∴△A ′CD 是等边三角形.(2)证:∵AC =A ′C ,BC =B ′C ,∴AC BC =A ′CB ′C.又∠ACA ′=∠BCB ′,∴△ACA ′∽△BCB ′. ∵AC BC =tan30°=33,∴S △ACA ′∶S △BCB ′=AC 2∶BC 2=1∶3.(3)120,3a2.16. 【答案】解: (1)10.解:∵ABAC=,AC=20,∴AB=10.(2)延长CG 交DA 的延长线于点J ,由折叠可知:∠BCG=∠ECG ,∵AD ∥BC ,∴∠J=∠BCG=∠ECG ,∴JE=CE.由折叠可知:E 、F 为AD 、BC 的中点,∴DE=AE=10,由勾股定理可得:==∴EJ=AJ=JE-AE=,∵AJ ∥BC ,∴△AGJ ∽△BGC,∴AG AJ BG BC ==,∴G 是AB 的黄金分割点.J(3)PB=BC ,理由如下:∵E 为AD 的黄金分割点,且AE>DE ,∴ a.∵CF ⊥BE ,∴∠ABE+∠CBE=∠CBE+∠BCF=90˚,∴∠ABE=∠FCB,在△BEA 和△CFB 中,∵90ABE FCB AB BC A FBC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△BEA ≌△CFB ,∴a.∴AF BF BF AB==,∵AE ∥BP ,∴△AEF ∽△BPF,∴AE AF BF PB BF AB ==, ∵AE=BF,∴PB=AB ,∴PB=BC.17. 【答案】解:(1)设直线AD 的解析式为y =kx +b(k≠0),将D(0,1)、A(43,53)代入解析式得⎩⎪⎨⎪⎧b =143k +b =53, 解得⎩⎪⎨⎪⎧b =1k =12,解图∴直线AD 的解析式为y =12x +1.(3分)(2)直线AD 的解析式为 y =12x +1,令y =0,得x =-2, ∴B(-2,0),即OB =2.∵直线AC 的解析式为y =-x +3,令y =0,得x =3, ∴C(3,0),即BC =5,设E(x ,12x +1),①当E 1C ⊥BC 时,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC , ∴△BOD ∽△BCE 1,此时点C 和点E 1的横坐标相同,将x =3代入y =12x +1,解得:y =52,∴E 1(3,52).(6分)②当CE 2⊥AD 时,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C ,如解图,过点E 2作E 2F ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. ∵∠E 2BF +∠BE 2F =90°, ∠CE 2F +∠BE 2F =90°, ∴∠E 2BF =∠CE 2F ,∴△E 2BF ∽△CE 2F ,则E 2F BF =CFE 2F ,即E 2F 2=CF·BF , (12x +1)2=(3-x)(x +2),解得:x1=2,x2=-2(舍去),∴E2(2,2);(9分)③当∠EBC=90°时,此情况不存在.综上所述,点E的坐标为E1(3,52)或E2(2,2).(10分)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.2相似三角形同步练习一.选择题1.如图,△ABC∽△DCA,∠B=33°,∠D=117°,则∠BAD的度数是()A.150°B.147°C.135°D.120°2.两个相似三角形对应角平分线的比为4:3,那么这两个三角形的面积的比是()A.2:3B.4:9C.16:36D.16:93.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.且∠B=∠DC.D.且∠A=∠D4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中能判断△ABC∽△AED 的是()①∠AED=∠B;②∠ADE=∠C;③=;④=.A.①②B.①②③C.①②④D.①②③④5.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=5:2,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.5:7B.10:4C.25:4D.25:496.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A.若△AEF与△ABC相似,则EF∥BCB.若AE×BE=AF×FC,则△AEF与△ABC相似C.若,则△AEF与△ABC相似D.若AF•BE=AE•FC,则△AEF与△ABC相似7.如图,在△ABC,D是BC上一点,BD:CD=1:2,E是AD上一点,DE:AE=1:2,连接CE,CE的延长线交AB于F,则AF:AB为()A.1:2B.2:3C.4:3D.4:78.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1:4B.1:5C.1:6D.1:79.如图,AD∥BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△P AD 与△PBC相似,则这样的点P有()A.1 个B.2 个C.3 个D.4 个10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于F,连接DF,若BF=,BC =3,则DF=()A.4B.3C.2D.二.填空题11.已知△ABC∽△A′B′C′,且AB=3cm,A′B′=5cm,则相似比为.12.如图,△ABC中,CA=CB,点E在BC边上,点D在AC边上,连接AE、DE,若AB =AE,2∠AEB+∠ADE=180°,BE=8,CD=,则CE=.13.如图,在△ABC中,若DE∥BC,EF∥CD,AE=2EC,则AF:FD:DB=.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值是.15.如图,在矩形ABCD中,AD=2,AB=4,E、F分别是AB、CD边上的动点,EF⊥AC,则AF+CE的最小值为.三.解答题16.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.17.如图,在△ABC中,点D、E分别在AB、AC上,DE、BC的延长线相交于点F,且EF•DF=CF•BF.求证:△CAB∽△DAE.18.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.参考答案一.选择题1.解:∵△ABC∽△DCA,∴∠BAC=∠D=117°,∠DAC=∠B=33°,∴∠BAD=∠BAC+∠DAC=150°,故选:A.2.解:∵两个相似三角形对应角平分线的比为4:3,∴它们的相似比为4:3,∴它们的面积比为16:9.故选:D.3.解:A、∠A=∠D,∠B=∠F,可以得出△ABC∽△DFE,故此选项不合题意;B、=且∠B=∠D,不是两边成比例且夹角相等,故此选项符合题意;C、==,可以得出△ABC∽△DEF,故此选项不合题意;D、=且∠A=∠D,可以得出△ABC∽△DEF,故此选项不合题意;故选:B.4.解:∵∠A=∠A,∴∠AED=∠B或∠ADE=∠C时,△ABC∽△AED.∵=,∴=∵∠A=∠A,∴△ABC∽△AED,故①②③可以判断三角形相似,故选:B.5.解:设DE=5k,EC=2k,则CD=7k,∵四边形ABCD是平行四边形,∴AB=CD=7k,DE∥AB,∴△DEF∽△BAF,∴===,故选:D.6.解:选项A错误,∵△AEF与△ABC相似,可能是∠AEF=∠C,推不出EF∥BC.选项B错误,由AE×BE=AF×FC,推不出△AEF与△ABC相似.选项C错误,由,推不出△AEF与△ABC相似.选项D正确.理由:∵AF•BE=AE•FC,∴=,∴EF∥BC,∴△AEF∽△ABC.故选:D.7.解:过D作DH∥AB交CF于H,如图,∵DH∥BF,∴=,∵BD:CD=1:2,∴CD:BC=2:3,∴BF=DH,∵DH∥AF,∴==2,∴AF=2DH,∴AF:BF=2DH:DH=4:3,∴AF:AB=4:7.故选:D.8.解:∵四边形ABCD是平行四边形,∴BO=DO,AB∥CD,∵E为OD的中点,∴DE=EO=DO,∴BO=2EO,BE=3DE,∵DF∥AB,∴△DFE∽△BAE,∴=()2=,设S△DEF=x,则S△BEA=9x,∵BO=2OE,∴S△AOB=6x=S△DOC,∴四边形EFCO的面积=5x,∴△DEF与四边形EFCO的面积比=1:5,故选:B.9.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.设DP的长为x,则CP长为6﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则DP:CP=AD:BC,即x:(6﹣x)=3:4,解得:x=②若△APD∽△BPC,则DP:PC=AD:BC,即x:4=3:(6﹣x),整理得:x2﹣6x+12=0,∵△<0,这种情形不存在,∴满足条件的点P的个数是1个,故选:A.10.解:如图,连接BD,∵∠AEF=∠BEA,∠AFE=∠BAE=90°,∴△AEF∽△BEA,∴=,∵AE=ED,∴=,又∵∠FED=∠DEB,∴△FED∽△DEB,∴∠EFD=∠EDB,∵∠EFD+∠DFC=90°,∠EDB+∠ODC=90°,∴∠DFC=∠ODC,∵在矩形ABCD中,OC=AC,OD=BD,AC=BD,∴OD=OC,∴∠OCD=∠ODC,∴∠DFC=∠OCD,∴DF=DC,在Rt△BCF中,FC===2,∵AD∥BC,∴△AEF∽△CBF,∴==,∴AF=FC=,∴AB===3,∴DF=3,故选:B.二.填空题11.解:由题意得,=,∵△ABC∽△A′B′C′,∴△ABC与△A′B′C′的相似比为=,故答案为:.12.解:如图,过点A作AM⊥BE于E,过点D作DN⊥EC于N,∵CA=CB,AB=AE,∴∠B=∠CAB,∠B=∠AEB,∴∠B=∠CAB=∠AEB,∵∠B+∠BAC+∠C=180°,∠B+∠AEB+∠BAE=180°,∴∠C=∠BAE,∴2∠AEB+∠C=180°,又∵2∠AEB+∠ADE=180°,∴∠C=∠ADE,又∵∠ADE=∠C+∠DEC,∴∠C=∠DEC,∴DE=DC=,∵AB=AE,AM⊥BE,DE=CC,DN⊥EC,∴BM=ME=BE=4,EN=NC=EC,AM∥DN,∴△CDN∽△CAM,∴,∴,∴EC=12,EC=﹣5(不合题意舍去),故答案为:12.13.解:∵EF∥CD,AE=2EC,∴==2,∵DE∥BC,∴==2,设DF=m,则AF=2m,AD=3m,DB=m,∴AF:DF:DB=2m:m:m=4:2:3.故答案为:4:2:3.14.解:∵DE∥AC,∴△DOE∽△COA,∴=()2=,∴=,∵DE∥AC,∴△BDE∽△BAC,∴=,∴=,故答案为:.15.解:如图所示:设DF=x,则FC=4﹣x;过点C作CG∥EF,且CG=EF,连接FG,当点A、F、G三点共线时,AF+FG的最值小;∵CG∥EF,且CG=EF,∴四边形CEFG是平行四边形;∴EC∥FG,EC=FG,又∵点A、F、G三点共线,∴AF∥EC,又∵四边形ABCD是矩形,∴AE∥DC,∠D=90°,∴四边形AECF是平行四边形,∴OA=OC,OE=OF,又∵EF⊥AC,AF=CF=4﹣x,在Rt△ADF中,由勾股定理得:AD2+DF2=AF2,又∵AD=2,DF=x,则FC=4﹣x,∴22+x2=(4﹣x)2,解得:x=,∴AF=,在Rt△ADC中,由勾股定理得:AD2+DC2=AC2,∴AC=,∴AO=,又∵OF∥CG,∴△AOF∽△ACG,∴=,∴AG=5,又∵AG=AF+FG,FG=EC,∴AF+EC=5,故答案为5.三.解答题16.证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.17.证明:∵EF•DF=CF•BF.∴,∵∠EFC=∠BFD,∴△EFC∽△BFD,∴∠CEF=∠B,∴∠B=∠AED,∵∠CAB=∠DAE,∴△CAB∽△DAE.18.(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.。

相关文档
最新文档