2021新高考数学二轮总复习专题突破练25直线与圆及圆锥曲线含解析.docx

合集下载

新高考数学二轮总复习 专题突破练25 直线与圆及圆锥曲线(含解析)-人教版高三全册数学试题

新高考数学二轮总复习 专题突破练25 直线与圆及圆锥曲线(含解析)-人教版高三全册数学试题

专题突破练25 直线与圆及圆锥曲线1.(2020全国Ⅱ,理19)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.2.已知圆O:x2+y2=4,点A(√3,0),以线段AB为直径的圆内切于圆O,记点B的轨迹为Γ.(1)求曲线Γ的方程;(2)直线AB交圆O于C,D两点,当B为CD的中点时,求直线AB的方程.3.(2019全国Ⅰ,理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P.(1)若|AF|+|BF|=4,求l 的方程; (2)若AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.4.(2020山东威海一模,20)已知椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,点P (-1,32)是椭圆上一点,|F 1F 2|是|PF 1|和|PF 2|的等差中项. (1)求椭圆的标准方程;(2)若A 为椭圆的右顶点,直线AP 与y 轴交于点H ,过点H 的另一条直线与椭圆交于M ,N 两点,且S △HMA =6S △PHN ,求直线MN 的方程.5.(2020重庆名校联盟高三二诊,19)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0),F 1,F 2为椭圆的左、右焦点,P (1,√22)为椭圆上一点,且|PF 1|=3√22. (1)求椭圆的标准方程;(2)设直线l :x=-2,过点F 2的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 、直线AB 于M ,N 两点,当∠MAN 最小时,求直线AB 的方程.6.(2020天津河北一模,19)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为12,直线x+y-√6=0与圆x 2+y 2=b 2相切.(1)求椭圆C 的方程;(2)过点P (4,0)的直线l 与椭圆C 交于不同两点A ,B ,线段AB 的中垂线为l 1,若l 1在y 轴上的截距为413,求直线l 的方程.专题突破练25 直线与圆及圆锥曲线1.解(1)由已知可设C 2的方程为y 2=4cx ,其中c=√a 2-b2.不妨设A ,C 在第一象限,由题设得A ,B 的纵坐标分别为b 2a ,-b 2a ;C ,D 的纵坐标分别为2c ,-2c ,故|AB|=2b 2a,|CD|=4c.由|CD|=43|AB|得4c=8b 23a ,即3×ca =2-2(c a )2,解得c a =-2(舍去),c a =12.所以C 1的离心率为12. (2)由(1)知a=2c ,b=√3c ,故C 1:x 24c 2+y 23c 2=1.设M (x 0,y 0),则x 024c 2+y 023c 2=1,y 02=4cx 0,故x 024c 2+4x 03c=1. ①由于C2的准线为x=-c,所以|MF|=x0+c,而|MF|=5,故x0=5-c,代入①得(5-c)24c2+4(5-c)3c=1,即c2-2c-3=0,解得c=-1(舍去),c=3.所以C1的标准方程为x236+y227=1,C2的标准方程为y2=12x.2.解(1)设AB的中点为M,切点为N,连接OM,MN,则|OM|+|MN|=|ON|=2,|AB|=|ON|-(|OM|-|MN|)=2-|OM|+12|AB|,即|AB|+2|OM|=4.取A关于y轴的对称点A',连接A'B,则|A'B|=2|OM|,故|AB|+2|OM|=|AB|+|A'B|=4.所以点B的轨迹是以A',A为焦点,长轴长为4的椭圆.其中a=2,c=√3,b=1,则曲线Γ的方程为x 24+y2=1.(2)因为B 为CD 的中点,所以OB ⊥CD ,则OB ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ . 设B (x 0,y 0),则x 0(x 0-√3)+y 02=0. 又x 024+y 02=1,解得x 0=√3,y 0=±√2√3.则k OB =±√22,k AB =∓√2,则直线AB 的方程为y=±√2(x-√3), 即√2x-y-√6=0或√2x+y-√6=0. 3.解设直线l :y=32x+t ,A (x 1,y 1),B (x 2,y 2).(1)由题设得F (34,0), 故|AF|+|BF|=x 1+x 2+32,由题设可得x 1+x 2=52.由{y =32x +t ,y 2=3x ,可得9x 2+12(t-1)x+4t 2=0,则x 1+x 2=-12(t -1)9.从而-12(t -1)9=52,得t=-78.所以l 的方程为y=32x-78. (2)由AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ 可得y 1=-3y 2. 由{y =32x +t ,y 2=3x 可得y 2-2y+2t=0. 所以y 1+y 2=2.从而-3y 2+y 2=2,故y 2=-1,y 1=3. 代入C 的方程得x 1=3,x 2=13. 故|AB|=4√133. 4.解(1)因为|F 1F 2|是|PF 1|和|PF 2|的等差中项,所以a=2c ,得a 2=4c 2,则b 2=a 2-c 2=3c 2.又P (-1,32)在椭圆上,所以14c 2+94b 2=1,即14c 2+34c 2=1,所以c=1. 则a 2=4,b 2=3, 椭圆的标准方程为x 24+y 23=1.(2)因为P (-1,32),由(1)计算可知A (2,0),H (0,1), 当直线MN 与x 轴垂直时,易验证,不合题意.当直线MN 与x 轴不垂直时,设直线MN 的方程为y=kx+1, 联立直线与椭圆的方程{y =kx +1,x 24+y 23=1,消去y ,可得(4k 2+3)x 2+8kx-8=0,设M (x 1,y 1),N (x 2,y 2),由韦达定理可得{x 1+x 2=-8k4k 2+3,x 1x 2=-84k 2+3.① 由S △HMA =6S △PHN ,可得|AH||MH|=6|NH||PH|,又|AH|=2|PH|, 所以|MH|=3|NH|,得x 1=-3x 2, 代入①,可得{-2x 2=-8k4k 2+3,-3x 22=-84k 2+3, 所以3×16k 2(4k 2+3)2=84k 2+3,解得k=±√62,所以直线MN 的方程为y=±√62x+1.5.解(1)设椭圆的左焦点F 1(-c ,0)(c>0),则|PF 1|=√(1+c )2+12=3√22,解得c=1,所以|PF 2|=√22,则由椭圆定义|PF 1|+|PF 2|=2a=2√2,∴a=√2,b=1. 故椭圆的标准方程为x 22+y 2=1.(2)由题意直线AB 的斜率必定不为零,于是可设直线AB :x=ty+1, 联立方程{x =ty +1,x 22+y 2=1,得(t 2+2)y 2+2ty-1=0,∵直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2), ∴Δ=4t 2+4(t 2+2)=8(t 2+1)>0,由韦达定理得y 1+y 2=-2tt 2+2,y 1y 2=-1t 2+2,则y N =-tt 2+2,∴x N =ty N +1=-t 2t 2+2+1=2t 2+2.∵MN ⊥AB ,∴k MN =-t ,∴|MN|=√1+t 2·-2-2t 2+2=√1+t 2·2t 2+6t 2+2.又|AN|=12|AB|=12√1+t 2·|y 1-y 2|=√1+t 2·√2√1+t 2t 2+2, ∴tan ∠MAN=|MN ||AN |=√2(2√t 2+1=√2(√t 2+1√t 2+1)≥√2·2√2=4.当且仅当√t 2+1=√t 2+1,即t=±1时取等号.此时直线AB 的方程为x+y-1=0或x-y-1=0. 6.解(1)由题意得,{e =ca =12,b =√6|√1+1=√3,又a 2=b 2+c 2,∴a=2.∴椭圆C 的方程为x 24+y 23=1.(2)由题意,直线l 的斜率k 存在且不为零. 设直线l 的方程为y=k (x-4),k ≠0. 设A (x 1,y 1),B (x 2,y 2),AB 的中点Q (x 0,y 0). 由{y =k (x -4),x 24+y 23=1,消去y ,整理得(3+4k 2)x 2-32k 2x+64k 2-12=0. 由Δ=(-32k 2)2-4(3+4k 2)(64k 2-12)>0, 解得-12<k<12,且k ≠0,∴x 1+x 2=32k 23+4k 2.∴x 0=16k 23+4k 2,y 0=k (x 0-4)=-12k3+4k 2. ∴Q (16k 23+4k 2,-12k3+4k 2).由题意可知,l 1:y-y 0=-1k(x-x 0),即y+12k3+4k 2=-1k (x -16k 23+4k 2). 化简得,y=-1kx+4k3+4k 2.令x=0,4k3+4k 2=413.解得k=14或k=3.∵-12<k<12,且k ≠0,∴k=14.故直线l 的方程为y=14(x-4),即x-4y-4=0.。

2021版新高考数学:圆锥曲线含答案

2021版新高考数学:圆锥曲线含答案
理由如下:
设M(x、y)、由已知得⊙M的半径为r=|x+2|、|AO|=2.
由于 ⊥ 、【关键点5:圆的几何性质向量化】
故可得x2+y2+4=(x+2)2、化简得M的轨迹方程为y2=4x.
因为曲线C:y2=4x是以点P(1、0)为焦点、以直线x=-1为准线的抛物线、所以|MP|=x+1.
因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1、所以存在满足条件的定点P.
由题设知 =1、 =m、于是k=- .①
由于点M(1、m)(m>0)在椭圆 + =1内、
∴ + <1、解得0<m< 、故k<- .
(2)由题意得F(1、0).设P(x3、y3)、
则(x3-1、y3)+(x1-1、y1)+(x2-1、y2)=(0、0).
由(1)及题设得
x3=3-(x1+x2)=1、y3=-(y1+y2)=-2m<0.【关键点2、设出点P、借助向量的建立变量间的关系、达到设而不求的目的】
【点评】从本题可以看出、圆的几何性质与数量关系的转化涵盖在整个解题过程中、向量在整个其解过程中起了“穿针引线”的作用、用活圆的几何性质可以达到事半功倍的效果.
途径四 设而不求、化繁为简
高考示例
方法与思维
(20xx·全国卷Ⅲ)已知斜率为k的直线l与椭圆C: + =1交于A、B两点、线段AB的中点为M(1、m)(m>0).
所以l的方程为y=-x+ 、代入C的方程、并整理得7x2-14x+ =0.
故x1+x2=2、x1x2= 、
代入②解得|d|= .【关键点3:借用根与系数的关系、达到设而不求的目的】
所以该数列的公差为 或- .
【点评】本题(1)涉及弦的中点坐标、可以采用“点差法”求解、设出点A、B的坐标、代入椭圆方程并作差、再将弦AB的中点坐标代入所得的差、可得直线AB的斜率;对于(2)圆锥曲线中的证明问题、常采用直接法证明、证明时常借助等价转化思想、化几何关系为数量关系、然后借助方程思想给予解答.

压轴25 直线的方程 备战2021年高考数学二轮必刷压轴题精选精炼(解析版)

压轴25 直线的方程 备战2021年高考数学二轮必刷压轴题精选精炼(解析版)

压轴25 直线的方程一、单选题1. 若椭圆x 29+y 24=1的弦AB 被点P (1,1)平分,则AB 所在直线的方程为A. 9x +4y −13=0B. 4x +9y −13=0C. x +2y −3=0D. x +3y −3=0 【答案】B【解析】解:设过点A(1,1)的直线与椭圆相交于两点,E(x 1,y 1),F(x 2,y 2),由中点坐标公式可知:{x 1+x 22=1y 1+y22=1, 则{x 129+y 124=1x 229+y 224=1,两式相减得:(x 1+x 2)(x 1−x 2)9+(y 1+y 2)(y 1−y 2)4=0,∴y 1−y2x 1−x 2=−49,∴直线EF 的斜率k =y 1−y 2x 1−x 2=−49,∴直线EF 的方程为:y −1=−49(x −1),整理得:4x +9y −13=0, 故选B .2. 已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F(−c,0),上顶点为A ,离心率为√32,直线FA 与抛物线E:y 2=4cx 交于M ,N 两点,则|MA|+|NA|=A. 2√3aB. 5aC. 4√3aD. 10a【答案】D 【解析】解:如图,离心率为√32,即c a =√32,解得a =2b ,c =√3b ,由F(−c,0),A(0,b),则k AF =bc =√33,∴直线FA 的方程y =√33x +b ,又y2=4cx,即y2=4√3bx与y=√33x+b联立消去y得,x2−10√3bx+3b2=0,设M(x1,y1),N(x2,y2),∴x1+x2=10√3b,则|MA|+|NA|=(√33)1+x2)=√310√3b=20b=10a.故选D.3.下列四个命题:①经过定点P0(x0,y0)的直线都可以用方程y−y0=k(x−x0)表示;②经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(x2−x1)(x−x1)=(y2−y1)(y−y1)表示;③不经过原点的直线都可以用方程xa +yb=1表示;④经过定点A(0,b)的直线都可以用方程y=kx+b表示.其中正确命题的个数是A. 0B. 1C. 2D. 3【答案】A【解析】解:经过定点P0(x0,y0),且斜率存在的直线都可以用方程y−y0=k(x−x0)表示,①故为假命题;把直线的两点式方程变形,即(x2−x1)(y−y1)=(y2−y1)(x−x1),故②为假命题;不经过原点,且与坐标轴不垂直的直线都可以用方程xa +yb=1表示,故③为假命题;经过定点A(0,b),且斜率存在的直线都可以用方程y=kx+b表示,故④为假命题;故选A.4.已知直线l1:mx−y+m=0与直线l2:x+my−1=0的交点为P,若点Q为直线l3:x−y+3=0上的一个动点,则|PQ|的最小值为A. B. C. D.【答案】B【解析】解:易知直线l1:mx−y+m=0过定点A(−1,0),直线l2:x+my−1=0过定点B(1,0),当m=0时l1⊥l2,当m≠0时,l1与l2斜率乘积为m·(−1m)=−1,所以l1⊥l2,所以点P 在以AB 为直径的圆上,圆的方程为x 2+y 2=1, 圆心(0,0)到直线x −y +3=0的距离为√2=3√22, 所以|PQ|的最小值为圆心到直线x −y +3=0的距离减去半径,即32√2−1, 故选B .5. 如已知点A(−1,0),B(1,0),C(0,1),直线y =kx +b(k >0)将三角形ABC 分割成面积相等的两个部分,则b 的取值范围是A. (1−√22,12) B. (1−√22,12] C. [13,12)D. (0,12]【答案】A【解析】解:由题意可得,三角形ABC 的面积为12⋅AB ⋅OC =1, 由于直线y =kx +b(k >0)与x 轴的交点为M(−b k ,0),由直线y =kx +b(k >0)将△ABC 分割为面积相等的两部分,可得b >0, 故−bk <0,故点M 在射线OA 上.设直线y =kx +b 和BC 的交点为N ,则由{y =kx +b x +y =1可得点N 的坐标为(1−b k+1,k+bk+1).①若点M 和点A 重合,则点N 为线段BC 的中点,故N (12,12), 把A 、N 两点的坐标代入直线y =kx +b ,求得k =b =13.②若点M 在点O 和点A 之间,此时b >13,点N 在点B 和点C 之间, 由题意可得三角形NMB 的面积等于12,即12⋅MB ⋅y N =12,即 12×(1+bk )·k+bk+1=12,可得k =b 21−2b >0,求得b <12 , 故有13<b <12.③若点M 在点A 的左侧,则b <13,由点M 的横坐标−bk <−1,求得b >k . 设直线y =kx +b 和AC 的交点为P ,则由{y =kx +b y =x +1求得点P 的坐标为(1−b k−1,k−b k−1),此时,由题意可得,△CPN 的面积等于12,即12⋅(1−b)⋅|x N −x P |=12, 即12(1−b )·|1−bk+1−1−bk−1|=12,化简可得2(1−b)2=|k 2−1|. 由于此时b >k >0,0<k <1,∴2(1−b)2=|k 2−1|=1−k 2 .两边开方可得√2(1−b )=√1−k 2<1,∴1−b <√2,化简可得b >1−√22,故有1−√22<b <13.再把以上得到的三个b 的范围取并集,可得b 的取值范围应是(1−√22,12) ,故选A .6. 在平面直角坐标系xOy 中,过点P(1,4)向圆C:(x −m)2+y 2=m 2+5(1<m <6)引两条切线,切点分别为A ,B ,则直线AB 过定点A. (−12,1)B. (−1,32)C. (−12,32)D. (−1,12)【答案】B【解析】解:在平面直角坐标系xOy 中,过点P(1,4),向圆C :(x −m)2+y 2=m 2+5(1<m <6)引两条切线,则切线长为√PC 2−r 2=√42+(m −1)2−(m 2+5)=√12−2m ,∴以点P 为圆心,切线长为半径的圆的方程为(x −1)2+(y −4)2=12−2m , ∴直线AB 的方程为[(x −m)2+y 2]−[(x −1)2+(y −4)2]=(m 2+5)−(12−2m), 整理得:(x +4y −5)−m(1+x)=0. 令{x +4y −5=0x +1=0,解得{x =−1,y =32. 所以直线AB 过定点(−1,32). 故答案为(−1,32). 故选B .7. 已知直线2x +y +2+λ(2−y)=0与两坐标轴围成一个三角形,该三角形的面积记为S(λ),当λ∈(0,+∞)时,S(λ)的最小值是A. 12B. 10C. 8D. 4【答案】C【解析】解:如图,由直线2x +y +2+λ(2−y)=0,分别可得与坐标轴的交点(−1−λ,0),(0,2+2λλ−1),λ∈(0,+∞),则S(λ)=12(1+λ)×2+2λλ−1=λ−1+4λ−1+4≥2×2+4=8,当且仅当λ=3时取等号.故选C .8. 已知直线(3+2λ)x +(3λ−2)y +5−λ=0恒过定点P ,则与圆C:(x −2)2+(y +3)2=16有公共的圆心且过点P 的圆的标准方程为A. (x −2)2+(y +3)2=36B. (x −2)2+(y +3)2=25C. (x −2)2+(y +3)2=18D.(x −2)2+(y +3)2=9【答案】B【解析】解:因为(3+2λ)x +(3λ−2)y +5−λ=0,所以λ(2x +3y −1)+3x −2y +5=0, {2x +3y −1=03x −2y +5=0,解得{x =−1y =1,即P(−1,1),C:(x −2)2+(y +3)2=16的圆心为(2,−3), 则所求圆的半径为√(2+1)2+(1+3)2=5, 故所求圆的方程为,故选B .9. 已知点A(−2,0),B(2,0),C(1,1),D(−1,1),直y =kx +m (k >0)将四边形ABCD 分割为面积相等的两部分,则m 的取值范围是A. (0,1)B. (13,12]C. (13,4−√102] D.【答案】D【解析】解:∵点A(−2,0),B(2,0),C(1,1),D(−1,1), 如图,四边形的面积为12×(4+2)×1=3,①若直线在第一象限与CD 相交,设交点为F , 则直线必与OA 交于一点,设为E , 连接BF ,DE ,要使直线平分梯形, 只须CF +BE =DF +AE =3,设BE =t ,则E 点坐标为(2−t,0),F 点坐标为(t −2,1),EF 关于(0,12)对称,此时m=12②若直线与梯形在第一象限的交点在BC上,设交点为F,BC所在直线的方程为x+y=2.此时直线与AB相交,或者与AD相交,(1)若与AB相交,设交点为E点坐标为(t,0),则BE=2−t,∴三角形BEF在BE边上的高为32−t ≤1,F点横坐标为(2−32−t,32−t),其中−2≤t≤−1,经计算,m=3(−t−1t)+4(−2≤t≤−1),当t=−1时,m有最大值12,t=−2时,m有最小值613,(2)若两交点分别在AD和BC上,如图,此时,过A点时,m最大,为617,当斜率k→0时,有最小值(取不到)4−√102,综上,m∈(4−√102,1 2 ]故选D.二、填空题10.在平面直角坐标系xOy中,已知点A(−4,0),B(0,4),从直线AB上一点P向圆x2+y2=4引两条切线PC,PD,切点分别为C,D.设线段CD的中点为M,则线段AM长的最大值为______.【答案】3√2【解析】解:因为点A(−4,0),B(0,4), 所以直线AB 的方程为x −y +4=0. 设P (x 0,y 0),因为P 是直线AB 上一点,所以y 0=x 0+4.①又因为以AP 为直线的圆的方程为:x (x −x 0)+y (y −y 0)=0, 即x 2+y 2−xx 0−yy 0=0.由{x 2+y 2=4x 2+y 2−xx 0−yy 0=0两式相减得xx 0+yy 0=4,② 即直线CD 的方程为xx 0+yy 0=4.又因为线段CD 的中点为M ,所以直线OM 的方程为:xy 0−yx 0=0.③ 联立①②③消去x 0,y 0得点M 的轨迹方程为(x +12)2+(y −12)2=12.又因为 A(−4,0),所以|AM |max =√(−4+12)2+(12)2+√22=3√2.故答案为3√2.11. 等差数列{a n }的前n 项和为S n ,a 4=72,且2√S n+1=√S n +√S n+2(n ∈N ∗),直线√S n+1x +√S n y =1与两坐标轴围成的三角形的面积为T n ,则T 1+T 2+T 3+...+T 2159的值为__________. 【答案】21592160【解析】解:由2√S n+1=√S n +√S n+2(n ∈N ∗)可得, √S n+2−√S n+1=√S n+1−√S n ,则{√S n }为等差数列, 又 S n =na 1+n(n−1)2d =d 2n 2+(a 1−d2)n ,∵√S n 为等差数列,∴a 1=d2,又a 4=72,a 4=a 1+3d , 则a 4=a 1+3d =d2+3d =72d =72, 故d =1,S n =n 22,√S n =√n 22,√S n ⋅S n+1=√n 22⋅(n+1)22=n⋅(n+1)2,因直线√S n+1x +√S n y =1, 当x =0时,y =S , 当y =0时,x =S ,T n=2S√S =12⋅1n⋅(n+1)2=1n⋅(n+1)=1n−1n+1,T1+T2+T3+⋯+T2159=1−12+12−13+13−14+⋯+12159−12160=1−12160=21592160.12.若动点P在直线a:x−2y−2=0上,动点Q在直线b:x−2y−6=0上,记线段PQ的中点为M(x0,y0),且(x0−2)2+(y0+1)2≤5,则x02+y02的取值范围为________.【答案】[165,16]【解析】解:由题意知,直线a:x−2y−2=0与直线b:x−2y−6=0平行,因为动点P在直线a上,动点Q在直线b上,所以PQ的中点M在与a,b平行,且到a,b的距离相等的直线上,设该直线为l,则直线l的方程为x−2y−4=0.因为线段PQ的中点为M(x0,y0),且(x0−2)2+(y0+1)2≤5,所以点M(x0,y0)在圆(x−2)2+(y+1)2=5的内部或在圆上,设直线l交圆于点A,B,则点M在线段AB上运动.联立直线l与圆的方程,得{x−2y−4=0,(x−2)2+(y+1)2=5,解得A(4,0),B(0,−2).因为x02+y02=|OM|2,x02+y02表示的几何意义为线段上的点到原点的距离的平方,所以原点到直线的距离的平方为最小,所以x02+y02的最小值为(()22=165,当M与A重合时,x02+y02取得最大值,且最大值为42+02=16,即x02+y02的最大值为16,所以x02+y02的取值范围是[165,16].13.已知直线l:恒过定点A,点B,C为圆O:上的两动点,满足,则弦BC长度的最大值为______.【答案】4√5【解析】解:直线l:,即为,可得时,,即直线l恒过定点,取BC的中点M,连接AM,OM,OB,圆O:的半径,设,则,由,可得, 由,可得,设,则,再由cosα⩽1,即,,解得5⩽a 2⩽20,即√5⩽a ⩽2√5,可得a 的最大值为2√5,此时A ,M ,O 三点共线, 则弦长BC 的最大值为4√5, 故答案为:4√5.三、解答题14. 已知椭圆C:x 2a 2+y2b 2=1的右焦点为(1,0),且经过点A(0,1). (1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t(t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =1.求证:直线l 经过定点. 【答案】(1)解:设椭圆的焦距为2c , 则{c =11b 2=1a 2=b 2+c 2,解得{a =√2b =1c =1,∴椭圆C 的方程为x 22+y 2=1.(2)证明:设P(x 1,y 1),Q(x 1,x 2), 由{x 22+y 2=1y =kx +t, 消去y 得:(2k 2+1)x 2+4ktx +2t 2−2=0,由韦达定理得: x 1+x 2=−4kt2k 2+1,x 1x 2=2t 2−22k 2+1,……① ∵A(0,1),P(x 1,y 1), ∴直线AP 的方程为:y =y 1−1x 1x +1,∴M(−x 1y 1−1,0),同理:N(−x 2y 2−1,0),∵OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =1, ∴x 1x 2y 1−1y 2−1=1,化简得x 1x 2−y 1y 2+(y 1+y 2)−1=0,∴(1−k 2)x 1x 2+(k −kt )(x 1+x 2)−t 2+2t −1=0, 将①代入并化简有:t 2+2t −3=0, ∴t =−3或t =1(舍),∴直线l 的方程为:y =kx −3,经过定点(0,−3).15. 在平面直角坐标系中,A(−1,0),B(1,0),设△ABC 的内切圆分别与边AC ,BC ,AB 相切于点P ,Q ,R ,已知|CP|=1,记动点C 的轨迹为曲线E . (1)求曲线E 的方程;(2)过G(2,0)的直线与y 轴正半轴交于点S ,与曲线E 交于点H ,HA ⊥x 轴,过S 的另一直线与曲线E 交于M 、N 两点,若S △SMG =6S △SHN ,求直线MN 的方程. 【答案】解:(1)由题意可知,|CA |+|CB |=|CP |+|CQ |+|AP |+|BQ |=2|CP |+|AB |=4>|AB |, ∴曲线E 是以A ,B 为焦点,长轴长为4的椭圆(除去与x 轴的交点), 设曲线E 方程为:x 2a 2+y 2b 2=1(a >b >0,y ≠0),则c =1,2a =4, ∴a =2,b 2=a 2−c 2=3, 即曲线E 的方程为:x 24+y 23=1(y ≠0);(2)∵HA ⊥x 轴,∴H (−1,32),设S(0,y 0),则−y 0−2=−323,∴y 0=1,即S(0,1). ∵a =2c ,∴|SG |=2|SH |,∴S △SMGS △SHN=12|SM ||SG |sin∠MSG 12|SN ||SH |sin∠NSH =2|SM ||SN |=6,∴|SM ||SN |=3,即SM ⃗⃗⃗⃗⃗⃗ =−3SN⃗⃗⃗⃗⃗ , 设M(x 1,y 1),N(x 2,y 2),则SM ⃗⃗⃗⃗⃗⃗ =(x 1,y 1−1),SN⃗⃗⃗⃗⃗ =(x 2,y 2−1),∴x1=−3x2.①当直线MN的斜率不存在时,MN的方程为x=0,此时|SM||SN|=√3+1√3−1=2+√3,不符合条件;②当直线MN的斜率存在时,设直线MN的方程为y=kx+1.联立{y=kx+1x24+y23=1,整理得:(3+4k2)x2+8kx−8=0,∴{x1+x2=−8k3+4k2x1x2=−83+4k2,将x1=−3x2代入得:{−2x2=−8k3+4k2−3x22=−83+4k2,∴3(4k3+4k2)2=83+4k2,解得:k=±√62,故直线MN的方程为y=√62x+1或y=−√62x+1.16.在平面直角坐标系xOy中,已知点A(−1,0),B(1,2),直线l与AB平行.(1)求直线l的斜率;(2)已知圆C:x2+y2−4x=0与直线l相交于M,N两点,且MN=AB,求直线l的方程;(3)在(2)的圆C上是否存在点P,使得PA2+PB2=12?若存在,求点P的个数;若不存在,说明理由.【答案】解:(1)∵点A(−1,0),B(1,2),直线l与AB平行,∴直线l的斜率k=k AB=2−01−(−1)=1.(2)∵圆C:x2+y2−4x=0,∴圆C的标准方程为:(x−2)2+y2=4,圆心C(2,0),半径为2,由(1)知直线l的斜率k=1,设直线l的方程为x−y−m=0,则圆心C到直线l的距离d=√2=√2,∵MN=AB=√22+22=2√2,而CM2=d2+(MN2)2,∴4=(2+m)22+2,解得m=0或m=−4,故直线l的方程为x−y=0或x−y+4=0.(3)假设圆C上存在点P,设P(x,y),则(x−2)2+y2=4,PA2+PB2=(x+1)2+(y−0)2+(x−1)2+(y−2)2=12,整理,得x2+y2−2y−3=0,即x2+(y−1)2=4,∵|2−2| <√(2−0)2+(0−1)2<2+2,∴圆(x −2)2+y 2=4与圆x 2+(y −1)2=4相交,∴点P 的个数为2.17. 如图,在平面直角坐标系xOy 中,已知点P(2,4),圆O :x 2+y 2=4与x 轴的正半轴的交点是Q ,过点P 的直线l 与圆O 交于不同的两点A ,B .(1)若直线l 与y 轴交于D ,且DP ⃗⃗⃗⃗⃗ ·DQ⃗⃗⃗⃗⃗⃗ =16,求直线l 的方程; (2)设直线QA ,QB 的斜率分别是k 1,k 2,求k 1+k 2的值;(3)设AB 的中点为M ,点N(43,0),若MN =√133OM ,求△QAB 的面积. 【答案】解:(1)若直线l 垂直于x 轴,则其方程为x =2,与圆只有一个交点,不合题意. 故l 存在斜率,设直线l 的方程为:y −4=k(x −2),即:kx −y −2k +4=0, 则圆心到直线l 的距离:d =√k 2+1,因为直线l 与圆O 交于不同的两点A ,B ,所以d =√k 2+1<2,解得k >34. 又D(0,−2k +4),Q(2,0),所以DQ⃗⃗⃗⃗⃗⃗ =(2,2k −4),DP ⃗⃗⃗⃗⃗ =(2,2k), 所以DP ⃗⃗⃗⃗⃗ ·DQ⃗⃗⃗⃗⃗⃗ =4+2k(2k −4)=16, 解得k =3或k =−1(舍去),所以直线l 的方程为:y =3x −2;(2)由题意可知,联立{y −4=k(x −2),x 2+y 2=4,, 得(1+k 2)x 2−4k(k −2)x +(2k −4)2−4=0,设A(x 1,y 1),B(x 2,y 2),则{x 1+x 2=4k(k−2)1+k 2,x 1·x 2=(2k−4)2−41+k 2,,所以k 1+k 2=y 1x 1−2+y2x 2−2 =k(x 1−2)+4x 1−2+k(x 2−2)+4x 2−2=2k +4x 1−2+4x 2−2 =2k +4(x 1+x 2−4)x 1x 2−2×(x 1+x 2)+4=2k +4×[4k(k −2)1+k 2−4](2k −4)2−41+k 2−2×4k(k −2)1+k 2+4 =2k −4×(8k +4)16 =2k −2k −1=−1.即k 1+k 2的值是−1;(3)设中点M(x 0,y 0),则由(2)知{x 0=x 1+x 22=2k(k−2)1+k 2,y 0=k(x 0−2)+4=−2(k−2)1+k 2,(∗) 又由MN =√133OM ,得(x 0−43)2+y 02=139(x 02+y 02), 化简得:x 02+y 02+6x 0−4=0, 将(∗)代入上式并解得:k =3. 因为圆心到直线l 的距离:d =√k 2+1=10, 所以AB =2√4−d 2=65√10,Q 到直线l 的距离:ℎ=25√10, 所以S △ABQ =12AB ·ℎ=125,即△QAB 的面积为125.。

2021年高考数学二轮复习专题六直线、圆、圆锥曲线6.2椭圆、双曲线、抛物线课件文

2021年高考数学二轮复习专题六直线、圆、圆锥曲线6.2椭圆、双曲线、抛物线课件文
由题设可得
1
2× |b-a|
2
1
1 2
=
所以 x1=0(舍去),x1=1.
设满足条件的 AB 的中点为 E(x,y).
(分类讨论)
2
+
当 AB 与 x 轴不垂直时,由 kAB=kDE 可得

+
=y,所以 y2=x-1(x≠1).
2
当 AB 与 x 轴垂直时,E 与 D 重合.
所以,所求轨迹方程为 y2=x-1.
5
1
于是 x0=x0+ ,解得 x0=1.故选
4
4
பைடு நூலகம்
A.
-6命题热点一
命题热点二
命题热点三
命题热点四
求圆锥曲线的离心率
【思考】 求圆锥曲线离心率的根本思路是什么?
(
2 2
-y =1
例2假设a>1,那么双曲线
2
)
A.(
2,+∞)
C.(1, 2)
解析
因为
C
的离心率的取值范围是
B.( 2,2)
D.(1,2)
命题热点二
命题热点三
命题热点四
2
2
3c,故椭圆方程可以表示为 2 + 2=1.
4
3
②由 a=2c,可得 b=
由①得直线 FP 的方程为 3x-4y+3c=0,
3-4 + 3 = 0,
与椭圆方程联立 2
7x2+6cx-13c2=0,
2
+ 2
42
3
= 1,
消去 y,整理得
13
(舍去)或 x=c.
将 y=kx+m 代入椭圆 E 的方程,

直线和圆、圆锥曲线综合测试卷(新高考专用)(原卷版)—2025年高考数学一轮复习

直线和圆、圆锥曲线综合测试卷(新高考专用)(原卷版)—2025年高考数学一轮复习

直线和圆、圆锥曲线综合测试卷专练
(考试时间:120分钟;满分:150分)
注意事项:
1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷(选择题)
一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。

三、填空题:本题共3小题,每小题5分,共15分。

四、解答题:本题共5小题,共77分,解答应写出必要的文字说明、证明过程及验算步骤。

2021高考数学二轮专题训练2.52课时突破解析几何高考小题第1课时直线与圆课件

2021高考数学二轮专题训练2.52课时突破解析几何高考小题第1课时直线与圆课件
5
3.(2020·天津高考)已知直线x- 3 y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若 |AB|=6,则r的值为________.
【解析】因为圆心(0,0)到直线x-
y3 +8=0的距离d=
8 =4,
1 3
由|AB|=2 r2 d可2 得6=2 r2,解 4得2 r=5.
答案:5
素养考查
直观想象、逻辑推理
【解析】选C.设P(x,y),则
x y
scxions2+,,y2=1.即点P在单位圆上,点P到直线x-my-
2=0的距离可转化为圆心(0,0)到直线x-my-2=0的距离加上(或减去)半径,所以距
离最大为d=1 2 1. 2
1m2
1m2
当m=0时,dmax=3.
2.(2020·海淀一模)如图,半径为1的圆M与直线l相切于点A,圆M沿着直线l滚动. 当圆M滚动到圆M′时,圆M′与直线l相切于点B,点A运动到点A′,线段AB的长度 为 3 ,则点M′到直线BA′的距离为( )
【解析】根据题意,设点P1(a,b)与点P(1,0)关于直线AB对称,则P1在反射光线所
在直线上,又由A(4,0),B(0,4),则直线AB的方程为x+y=4,
则有
a
b
1
1,解得
a
1 2
b 2
4
,即 aPb 1(344,3),
反射光线所在直线的斜率k=
4
(3 02),
1 2
则其方程为y-0= 1 (x+2),即x-2y+2=0;
149D7EF 0,
取y=0,得x2-2x-20=0,
所以|MN|=|x1-x2|=( x 1 x 2 ) 2 4 x 1 x 2 2 2 4 ( 2 0 ) 2 2 1 .

2021年高考数学二轮复习专题七解析几何7.3.1直线与圆及圆锥曲线课件文

2021年高考数学二轮复习专题七解析几何7.3.1直线与圆及圆锥曲线课件文

-8解题策略一
解题策略二
解题策略三
难点突破 (1)设圆C1:x2+y2=R2,根据圆C1与直线l1相切,求出圆
的方程为x2+y2=12,由此利用相关点法能求出曲线C的方程.
2
2
(2)将直线l2:y=kx+m代入曲线C的方程4 + 3 =1 中,得
(4k2+3)x2 +8kmx+4m2-12=0,由此利用根的判别式、根与系数的
难点突破 (1)利用AC是直径,所以BA⊥BC,或C,B均在坐标原点,
由此求点C轨迹E的方程;
(2)设直线AC的方程为y=kx+2,由
得x2-8kx-16=0,利
= + 2,
用根与系数的关系及导数的几何意义,证明QC⊥PQ,即可证明结
2 = 8,
论.
-3解题策略一
解题策略二
解题策略三
1.
||+||
-11解题策略一
解题策略二
解题策略三
∵m2=4k2+3,∴当 k≠0 时,|m|> 3,
1
∵函数 y=x+在(1,+∞)内是增函数,
1
∴|m|+|| > 3 +
1
3
=
4 3
,
3
∴(d1+d2)d3<4 3.
2°当 k=0 时,四边形 F1F2PQ 为矩形,此时 d1=d2= 3,d3=2,
(1)求C的方程;
(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当
圆P的半径最长时,求|AB|.
难点突破 (1)将圆的位置关系转化为圆心连线的关系,从而利用

2021年高考数学二轮复习 直线与圆训练题 理

2021年高考数学二轮复习 直线与圆训练题 理

2021年高考数学二轮复习直线与圆训练题理1.已知直线l1:k1x+y+1=0与直线l2:k2x+y-1=0,那么“k1=k2”,是“l1∥l2”的( )A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知点P(3,2)与点Q(1,4)关于直线l对称,则直线l的方程为( )A.x-y+1=0 B.x-y=0C.x+y+1=0 D.x+y=03.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,半径为5的圆的方程为( )A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0D.x2+y2-2x-4y=04.(xx·重庆高考)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为( ) A.52-4 B.17-1C.6-2 2 D.175.(xx·海南质检)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x +y+3=0相切,则圆C的方程为( )A.(x+1)2+y2=2 B.(x-1)2+y2=1C.(x+1)2+y2=4 D.(x-2)2+y2=46.(xx·山东潍坊一中模拟)若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆所作的切线长的最小值是( )A.2 B.3C.4 D.67.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是________.8.(xx·浙江省名校联考)设圆C:(x-3)2+(y-5)2=5,过圆心C作直线l交圆于A,B两点,交y轴于点P,若A恰好为线段BP的中点,则直线l的方程为________.9.(xx·四川高考)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.10.已知点A(3,3),B(5,2)到直线l的距离相等,且直线l经过两直线l1:3x-y-1=0和l2:x+y-3=0的交点,求直线l的方程.11.(xx·江苏高考)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.12.(xx·广东佛山一模)已知A(-2,0),B(2,0),C(m,n).(1)若m=1,n=3,求△ABC的外接圆的方程;(2)若以线段AB 为直径的圆O 过点C(异于点A ,B),直线x =2交直线AC 于点R ,线段BR 的中点为D ,试判断直线CD 与圆O 的位置关系,并证明你的结论.1.选C 由k 1=k 2,1≠-1,得l 1∥l 2;由l 1∥l 2知k 1×1-k 2×1=0,所以k 1=k 2.故“k 1=k 2”是“l 1∥l 2”的充要条件.2.选A 由题意知直线l 与直线PQ 垂直,所以k l =-1k PQ =-14-21-3=1.又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0.3.选C 将方程分离参数a 可得a(x +1)-(x +y -1)=0,方程表示过两直线的交点,由⎩⎪⎨⎪⎧x +1=0,x +y -1=0,得交点为(-1,2),故圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x-4y =0.4.选A 两圆的圆心均在第一象限,先求|PC 1|+|PC 2|的最小值,作点C 1关于x 轴的对称点C ′1(2,-3),则(|PC 1|+|PC 2|)min =|C ′1C 2|=52,所以(|PM|+|PN|)min =52-(1+3)=52-4.5.选A 令y =0得x =-1,所以直线x -y +1=0与x 轴的交点为(-1,0).因为直线x +y +3=0与圆C 相切,所以圆心到直线x +y +3=0的距离等于半径,即r =|-1+0+3|2=2,所以圆C 的方程为(x +1)2+y 2=2.6.选C 圆的标准方程为(x +1)2+(y -2)2=2,所以圆心为(-1,2),半径为 2.因为圆关于直线2ax +by +6=0对称,所以圆心在直线2ax +by +6=0上,所以-2a +2b +6=0,即b =a -3,点(a ,b)到圆心的距离为d =a +12+b -22=a +12+a -3-22=2a 2-8a +26=2a -22+18. 所以当a =2时,d 有最小值18=32,此时切线长最小,为 322-22=16=4.7.解析:所求直线过圆:x 2+2x +y 2=0的圆心C(-1,0),斜率为1,故方程为x -y +1=0.答案:x -y +1=08.解析:如图,A 为PB 的中点,而C 为AB 的中点,因此,C 为PB 的四等分点.而C(3,5),P 点的横坐标为0,因此,A ,B 的横坐标分别为2、4,将A 的横坐标代入圆的方程中,可得A(2,3)或A(2,7),根据直线的两点式得到直线l 的方程为2x -y -1=0或2x +y -11=0.答案:2x -y -1=0或2x +y -11=09.解析:取四边形ABCD 对角线的交点,这个交点到四点的距离之和就是最小值.可证明如下:假设在四边形ABCD 中任取一点P ,在△APC 中,有AP +PC >AC ,在△BPD 中,有PB +PD >BD ,而如果P 在线段AC 上,那么AP +PC =AC ;同理,如果P 在线段BD 上,那么BP +PD =BD.如果同时取等号,那么意味着距离之和最小,此时P 就只能是AC 与BD 的交点.易求得P(2,4). 答案:(2,4)10.解:解方程组⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0,得交点P(1,2).(1)若点A ,B 在直线l 的同侧,则l ∥AB.而k AB =3-23-5=-12,由点斜式得直线l 的方程为y -2=-12(x -1),即x +2y -5=0;(2)若点A ,B 分别在直线l 的异侧,则直线l 经过线段AB 的中点⎝ ⎛⎭⎪⎫4,52, 由两点式得直线l 的方程为y -2x -1=52-24-1,即x -6y +11=0.综上所述,直线l 的方程为x +2y -5=0或x -6y +11=0.11.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方程为y =kx +3,由题意,|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a)2+[y -2(a -2)]2=1. 设点M(x ,y),因为|MA|=2|MO|,所以x 2+y -32=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x ,y)在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤|CD|≤2+1,即1≤a 2+2a -32≤3.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a≤0,得0≤a≤125.所以点C 的横坐标a 的取值范围为.12.解:(1)法一:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,由题意可得⎩⎨⎧4-2D +F =0,4+2D +F =0,1+3+D +3E +F =0,解得D =E =0,F =-4,∴△ABC 的外接圆方程为x 2+y 2-4=0,即x 2+y 2=4.法二:线段AC 的中点为⎝ ⎛⎭⎪⎫-12,32,直线AC 的斜率为k 1=33, ∴线段AC 的中垂线的方程为y -32=-3⎝ ⎛⎭⎪⎫x +12. 线段AB 的中垂线方程为x =0,∴△ABC 的外接圆圆心为(0,0),半径为r =2.∴△ABC 的外接圆方程为x 2+y 2=4. (2)直线CD 与圆O 相切.证明如下:由题意可知以线段AB 为直径的圆的方程为x 2+y 2=4,半径r =2, 设点R 的坐标为(2,t), ∵A ,C ,R 三点共线,∴∥, 而=(m +2,n),=(4,t),则4n =t(m +2),∴t =4nm +2,∴点R 的坐标为⎝ ⎛⎭⎪⎫2,4n m +2,点D 的坐标为⎝ ⎛⎭⎪⎫2,2n m +2, ∴直线CD 的斜率为k =n -2n m +2m -2=m +2n -2n m 2-4=mn m 2-4, 而m 2+n 2=4,∴m 2-4=-n 2,∴k =mn -n 2=-m n,∴直线CD 的方程为y -n =-mn(x -m),化简得mx +ny -4=0,∴圆心O 到直线CD 的距离d =4m 2+n 2=44=2=r ,∴直线CD 与圆O 相切.!29784 7458 瑘E36035 8CC3 賃/27998 6D5E 浞^26574 67CE 柎38099 94D3 铓t]!&,。

2021年高考数学二轮复习 直线与圆专题训练(含解析)

2021年高考数学二轮复习 直线与圆专题训练(含解析)

2021年高考数学二轮复习直线与圆专题训练(含解析)A级——基础巩固组一、选择题1.已知点P(3,2)与点Q(1,4)关于直线l对称,则直线l的方程为( ) A.x-y+1=0 B.x-y=0C.x+y+1=0 D.x+y=0解析由题意知直线l与直线PQ垂直,所以k l=-1k PQ =-14-21-3=1.又直线l经过PQ的中点(2,3),所以直线l的方程为y-3=x-2,即x-y+1=0.答案 A2.(xx·四川成都二模)已知圆C1:(x+1)2+(y-1)2=1,圆C2与C1关于直线x-y-1=0对称,则圆C2的方程为( )A.(x+2)2+(y-2)2=1B.(x-2)2+(y+2)2=1C.(x+2)2+(y+2)2=1D.(x-2)2+(y-2)2=1解析C1:(x+1)2+(y-1)2=1的圆心为(-1,1),它关于直线x-y-1=0对称的点为(2,-2),对称后半径不变,所以圆C2的方程为(x-2)2+(y+2)2=1.答案 B3.(xx·山东潍坊一模)若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为( ) A.(x-2)2+(y±2)2=3B.(x-2)2+(y±3)2=3C.(x-2)2+(y±2)2=4D.(x-2)2+(y±3)2=4解析因为圆C经过(1,0),(3,0)两点,所以圆心在直线x=2上,又圆与y轴相切,所以半径r=2,设圆心坐标为(2,b),则(2-1)2+b2=4,b2=3,b=±3,选D.答案 D4.(xx·山东青岛一模)过点P (1,3)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长|AB |=( )A. 3 B .2 C. 2 D .4解析如图所示,∵PA ,PB 分别为圆O :x 2+y 2=1的切线, ∴OA ⊥AP .∵P (1,3),O (0,0), ∴|OP |=1+3=2.又∵|OA |=1,在Rt △APO 中,cos ∠AOP =12,∴∠AOP =60°,∴|AB |=2|AO |sin ∠AOP = 3.故选A. 答案 A5.(xx·北京朝阳一模)直线y =x +m 与圆x 2+y 2=16交于不同的两点M ,N ,且|MN →|≥3|OM →+ON →|,其中O 是坐标原点,则实数m 的取值范围是( )A .(-22,-2)∪[2,22)B .(-42,-22)∪[22,42)C .[-2,2]D .[-22,2 2 ]解析 设MN 的中点为D ,则OM →+ON →=2OD →,|MN →|≥23|OD →|,由|OD →|2+12|MN →|2=16,得16=|OD→|2+14|MN →|2≥|OD →|2+14(23|OD →|)2,从而得|OD →|≤2,由点到直线的距离公式可得|OD →|=|m |2≤2,解得-22≤m ≤2 2.答案 D6.(xx·江西卷)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A.45π B.34π C .(6-25)πD.54π 解析 ∵∠AOB =90°,∴点O 在圆C 上.设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上, ∴当且仅当O ,C ,D 共线时,圆的直径最小为|OD |. 又|OD |=|2×0+0-4|5=45,∴圆C 的最小半径为25,∴圆C 面积的最小值为π⎝ ⎛⎭⎪⎫252=45π. 答案 A 二、填空题7.(xx·山东卷)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.解析 ∵圆心在直线x -2y =0上, ∴可设圆心为(2a ,a ). ∵圆C 与y 轴正半轴相切, ∴a >0,半径r =2a .又∵圆C 截x 轴的弦长为23,∴a 2+(3)2=(2a )2,解得a =1(a =-1舍去). ∴圆C 的圆心为(2,1),半径r =2. ∴圆的方程为(x -2)2+(y -1)2=4. 答案 (x -2)2+(y -1)2=48.(xx·重庆卷)已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.解析 由题意,得圆心C 的坐标为(-1,2),半径r =3.因为AC ⊥BC ,所以圆心C 到直线x -y+a =0的距离d =|-1-2+a |2=22r =322,即|-3+a |=3,所以a =0或a =6.答案 0或69.直线2ax +by =1(a ,b 是实数)与圆x 2+y 2=1相交于A ,B 两点,且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间的距离的最大值为________.解析 易知△AOB 为等腰直角三角形,且点O 到直线距离为22,可得2a 2+b 2=2⇒-2≤b ≤2,a 2+b -12=2-b22+b -12≤ 2+1.答案2+1三、解答题10.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程; (2)若点P 到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r . 则y 2+2=r 2,x 2+3=r 2. ∴y 2+2=x 2+3,即y 2-x 2=1. ∴P 点的轨迹方程为y 2-x 2=1. (2)设P 的坐标为(x 0,y 0), 则|x 0-y 0|2=22,即|x 0-y 0|=1.∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3.∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1. ∴⎩⎪⎨⎪⎧x 0=0,y 0=-1,∴r 2=3.∴圆P 的方程为x 2+(y +1)2=3. 综上所述,圆P 的方程为x 2+(y ±1)2=3.11.(xx·课标全国卷Ⅰ)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解 (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0, 即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由|OP |=|OM |,故O 在线段PM 的垂直平分线上, 又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=22,O 到l 的距离为4105,|PM |=4105,所以△POM 的面积为165.B 级——能力提高组1.(xx·河南南阳联考)动圆C 经过点F (1,0),并且与直线x =-1相切,若动圆C 与直线y =x +22+1总有公共点,则圆C 的面积( )A .有最大值8πB .有最小值2πC .有最小值3πD .有最小值4π解析 设圆心为C (a ,b ),半径为r ,r =|CF |=|a +1|,即(a -1)2+b 2=(a +1)2,即a =14b 2,∴圆心为⎝ ⎛⎭⎪⎫14b 2,b ,r =14b 2+1,圆心到直线y =x +22+1的距离为d =⎪⎪⎪⎪⎪⎪b 24-b +22+12≤b24+1,∴b ≤-2(22+3)或b ≥2,当b =2时,r min =14×4+1=2,∴S min =πr 2=4π.答案 D2.过圆x 2+y 2=1上一点作圆的切线与x 轴、y 轴的正半轴交于A ,B 两点,则|AB |的最小值为________.解析 假设直线l AB :x a +y b =1.由于圆心(0,0)到l 的距离为1,可得a 2b 2=a 2+b 2.又a 2b 2≤⎝ ⎛⎭⎪⎫a 2+b 222,所以a 2+b 2≥4.又因为|AB |=a 2+b 2≥2,当且仅当a =b =2时等号成立.答案 23.(xx·江苏卷)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?解 (1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0,60),C (170,0),直线BC 的斜率k BC =-tan ∠BCO =-43.又因为AB ⊥BC ,所以直线AB 的斜率k AB =34.设点B 的坐标为(a ,b ), 则k BC =b -0a -170=-43,k AB =b -60a -0=34.解得a =80,b =120. 所以BC =170-802+0-1202=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m ,OM =d m(0≤d ≤60). 由条件知,直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即r =|3d -680|42+32=680-3d5. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -60-d≥80,即⎩⎪⎨⎪⎧680-3d 5-d ≥80,680-3d 5-60-d≥80.解得10≤d ≤35.故当d =10时,r =680-3d 5最大,即圆面积最大.所以当OM =10 m 时,圆形保护区的面积最大.23405 5B6D 孭39756 9B4C 魌39310 998E 馎_35376 8A30 訰5?40649 9EC9 黉m736800 8FC0 迀25106 6212 戒#21703 54C7 哇P。

新高中数学二轮核心突破专五 解析几何 直线与圆配套精选

新高中数学二轮核心突破专五 解析几何 直线与圆配套精选

专题五解析几何第1讲直线与圆高考定位考查重点是直线间的平行和垂直的条件、与距离有关的问题、直线与圆的位置关系特别是弦长问题,此类问题难度属于中低档,一般以选择题、填空题的形式出现真题感悟12021·全国Ⅲ卷在平面内,A,B是两个定点,-2=0与直线m+2+4=0平行,那么m的值是B-2 或-2 D-错误!2直线1:-+4=0与直线2:+-3=0≠0分别过定点A,B,又1,2相交于点M,那么|MA|·|MB|的最大值为________解析1由题意知m1+m-2×1=0,解得m=1或-2,当m=-2时,两直线重合,舍去;当m=1时,满足两直线平行,所以m=12由题意可知,直线1:-+4=0经过定点A0,4,直线2:+-3=0经过定点B3,0,注意到直线1:-+4=0和直线2:+-3=0始终垂直,点M又是两条直线的交点,那么有MA⊥MB,所以|MA|2+|MB|2=|AB|2=25故|MA|·|MB|≤错误!当且仅当|MA|=|MB|=错误!时取“=〞答案1A2错误!探究提高1求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性2求直线方程时应根据条件选择适宜的方程形式利用待定系数法求解,同时要考虑直线斜率不存在的情况是否符合题意【训练1】1多项选择题光线自点2,4射入,经倾斜角为135°的直线:=+1反射后经过点5,0,那么反射光线还经过以下哪个点A14,2C13,2 D13,121,2是分别经过A1,1,B0,-1两点的两条平行直线,当1,2间的距离最大时,那么直线1的方程是________解析1因为直线的倾斜角为135°,所以直线的斜率=-1,设点2,4关于直线:=-+1的对称点为m,n,那么错误!解得错误!所以反射光线经过点-3,-1和点5,0,那么反射光线所在直线的方程为=错误!-5=错误!-5,当=13时,=1;当=14时,=错误!应选BD2当直线AB与1,2垂直时,1与2间的距离最大由A1,1,B0,-1得AB=错误!=2∴两平行直线的斜率=-错误!∴直线1的方程是-1=-错误!-1,即+2-3=0答案1BD2+2-3=0热点二圆的方程【例2】12021·石家庄模拟古希腊数学家阿波罗尼斯在其巨著?圆锥曲线论?中提出“在同一平面上给出三点,假设其中一点到另外两点的距离之比是一个大于零且不等于1的常数,那么该点轨迹是一个圆〞现在,某电信公司要在甲、乙、丙三地搭建三座5G信号塔来构建一个特定的三角形信号覆盖区域,以实现5G 商用,甲、乙两地相距4 m,丙、甲两地距离是丙、乙两地距离的错误!倍,那么这个三角形信号覆盖区域的最大面积单位:m2是2圆C的圆心在直线+=0上,圆C与直线-=0相切,且在直线--3=0上截得的弦长为错误!,那么圆C的方程为________解析1以甲、乙两地所在直线为轴,线段甲乙的垂直平分线为轴建立平面直角坐标系,设甲、乙两地的坐标分别为-2,0,2,0,丙地坐标为,≠0,那么错误!=错误!·错误!,整理得-42+2=12,可知丙地所在的圆的半径为r=2错误!所以三角形信号覆盖区域的最大面积为错误!×4×2错误!=4错误!2∵所求圆的圆心在直线+=0上,∴设所求圆的圆心为a,-a又∵所求圆与直线-=0相切,∴半径r=错误!=错误!|a|又所求圆在直线--3=0上截得的弦长为错误!,圆心a,-a到直线--3=0的距离d=错误!,∴d2+错误!错误!错误!错误!错误!-错误!=1的左、右顶点,in=错误!-1=2∵-错误!=1,解得m=1,那么B1,0,A-1,0,∴-2与轴交于A,B两点,点C的坐标为0,1当m变化时,解答以下问题:1能否出现AC⊥BC的情况?说明理由;2证明过A,B,C三点的圆在轴上截得的弦长为定值1解不能出现AC⊥BC的情况,理由如下:设A1,0,B2,0,那么1,2满足方程2+m-2=0,所以12=-的坐标为0,1,故AC的斜率与BC的斜率之积为错误!·错误!=-错误!,所以不能出现AC⊥BC的情况2证明BC的中点坐标为错误!,可得BC的中垂线方程为-错误!=2错误!由1可得1+2=-m,所以AB的中垂线方程为=-错误!联立错误!又错误!+m2-2=0,③由①②③解得=-错误!,=-错误!所以过A,B,C三点的圆的圆心坐标为错误!,半径r=错误!故圆在轴上截得的弦长为2错误!错误!错误!错误!错误!错误!错误!in=错误!=错误!此时,|=2,命题q:直线m-1-+m-12=0与直线m+2-3m=0垂直,那么-1×m+-1×2=0,解之得m=2或m=-1∴,即2-+m=0,那么圆心M到直线的距离d=错误!=错误!因为|BC|=|OA|=错误!=2错误!,又|MC|2=d2+错误!错误!错误!+5,解得m=5或m =-15故直线的方程为2-+5=0或2--15=0。

2021新高考数学二轮总复习专题突破练21 直线与圆及圆锥曲线 Word版含解析

2021新高考数学二轮总复习专题突破练21 直线与圆及圆锥曲线 Word版含解析

专题突破直线与圆及圆锥曲线1.(2020全国Ⅱ,理19)已知椭圆C1:x2a +y2b=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.2.已知圆O:x2+y2=4,点A(√3,0),以线段AB为直径的圆内切于圆O,记点B的轨迹为Γ.(1)求曲线Γ的方程;(2)直线AB交圆O于C,D两点,当B为CD的中点时,求直线AB的方程.3.(2019全国Ⅰ,理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P. (1)若|AF|+|BF|=4,求l 的方程; (2)若AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.4.(2020山东威海一模,20)已知椭圆x 2a +y 2b =1(a>b>0)的左、右焦点分别为F 1,F 2,点P (-1,32)是椭圆上一点,|F 1F 2|是|PF 1|和|PF 2|的等差中项. (1)求椭圆的标准方程;(2)若A 为椭圆的右顶点,直线AP 与y 轴交于点H ,过点H 的另一条直线与椭圆交于M ,N 两点,且S △HMA =6S △PHN ,求直线MN 的方程.5.(2020重庆名校联盟高三二诊,19)已知椭圆C :x 2a +y 2b =1(a>b>0),F 1,F 2为椭圆的左、右焦点,P (1,√22)为椭圆上一点,且|PF 1|=3√22. (1)求椭圆的标准方程;(2)设直线l :x=-2,过点F 2的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 、直线AB 于M ,N 两点,当∠MAN 最小时,求直线AB 的方程.6.(2020天津河北一模,19)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为12,直线x+y-√6=0与圆x 2+y 2=b 2相切. (1)求椭圆C 的方程;(2)过点P (4,0)的直线l 与椭圆C 交于不同两点A ,B ,线段AB 的中垂线为l 1,若l 1在y 轴上的截距为413,求直线l 的方程.答案及解析1.解(1)由已知可设C 2的方程为y 2=4cx ,其中c=22.不妨设A ,C 在第一象限,由题设得A ,B 的纵坐标分别为b 2a ,-b 2a ;C ,D 的纵坐标分别为2c ,-2c ,故|AB|=2b 2a,|CD|=4c.由|CD|=43|AB|得4c=8b 23a ,即3×ca =2-2(c a )2,解得ca =-2(舍去),ca =12.所以C 1的离心率为12.(2)由(1)知a=2c ,b=√3c ,故C 1:x 24c +y 23c =1. 设M (x 0,y 0),则x 024c 2+y 023c 2=1,y 02=4cx 0,故x 024c 2+4x 03c=1.① 由于C 2的准线为x=-c ,所以|MF|=x 0+c ,而|MF|=5,故x 0=5-c ,代入①得(5-c )24c 2+4(5-c )3c=1,即c 2-2c-3=0,解得c=-1(舍去),c=3.所以C 1的标准方程为x 236+y 227=1,C 2的标准方程为y 2=12x. 2.解(1)设AB 的中点为M ,切点为N ,连接OM ,MN ,则|OM|+|MN|=|ON|=2,|AB|=|ON|-(|OM|-|MN|)=2-|OM|+12|AB|,即|AB|+2|OM|=4.取A 关于y 轴的对称点A',连接A'B ,则|A'B|=2|OM|, 故|AB|+2|OM|=|AB|+|A'B|=4.所以点B 的轨迹是以A',A 为焦点,长轴长为4的椭圆. 其中a=2,c=√3,b=1,则曲线Γ的方程为x 24+y 2=1. (2)因为B 为CD 的中点,所以OB ⊥CD ,则OB ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ .设B (x 0,y 0),则x 0(x 0-√3)+y 02=0. 又x 024+y 02=1,解得x 0=√3,y 0=±√2√3.则k OB =±√22,k AB =∓√2,则直线AB 的方程为y=±√2(x-√3), 即√2x-y-√6=0或√2x+y-√6=0. 3.解设直线l :y=32x+t ,A (x 1,y 1),B (x 2,y 2).(1)由题设得F (34,0), 故|AF|+|BF|=x 1+x 2+32, 由题设可得x 1+x 2=52.由{y =32x +t ,y 2=3x ,可得9x 2+12(t-1)x+4t 2=0,则x 1+x 2=-12(t -1)9.从而-12(t -1)9=52,得t=-78.所以l 的方程为y=32x-78. (2)由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ 可得y 1=-3y 2. 由{y =32x +t ,y 2=3x可得y 2-2y+2t=0.所以y 1+y 2=2.从而-3y 2+y 2=2,故y 2=-1,y 1=3. 代入C 的方程得x 1=3,x 2=13. 故|AB|=4√133. 4.解(1)因为|F 1F 2|是|PF 1|和|PF 2|的等差中项,所以a=2c ,得a 2=4c 2,则b 2=a 2-c 2=3c 2.又P (-1,32)在椭圆上,所以14c 2+94b 2=1,即14c 2+34c 2=1,所以c=1. 则a 2=4,b 2=3,椭圆的标准方程为x 24+y 23=1.(2)因为P (-1,32),由(1)计算可知A (2,0),H (0,1), 当直线MN 与x 轴垂直时,易验证,不合题意.当直线MN 与x 轴不垂直时,设直线MN 的方程为y=kx+1, 联立直线与椭圆的方程{y =kx +1,x 24+y 23=1,消去y ,可得(4k 2+3)x 2+8kx-8=0, 设M (x 1,y 1),N (x 2,y 2),由韦达定理可得{x 1+x 2=-8k4k +3,x 1x 2=-84k 2+3.①由S △HMA =6S △PHN ,可得|AH||MH|=6|NH||PH|,又|AH|=2|PH|, 所以|MH|=3|NH|,得x 1=-3x 2, 代入①,可得{-2x 2=-8k4k +3,-3x 22=-84k 2+3,所以3×16k 2(4k 2+3)2=84k 2+3,解得k=±√62,所以直线MN 的方程为y=±√62x+1. 5.解(1)设椭圆的左焦点F 1(-c ,0)(c>0),则|PF 1|=√(1+c )2+12=3√22,解得c=1,所以|PF 2|=√22,则由椭圆定义|PF 1|+|PF 2|=2a=2√2,∴a=√2,b=1. 故椭圆的标准方程为x 22+y 2=1.(2)由题意直线AB 的斜率必定不为零,于是可设直线AB :x=ty+1, 联立方程{x =ty +1,x 22+y 2=1,得(t 2+2)y 2+2ty-1=0,∵直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2), ∴Δ=4t 2+4(t 2+2)=8(t 2+1)>0, 由韦达定理得y 1+y 2=-2tt 2+2,y 1y 2=-1t 2+2, 则y N =-tt +2,∴x N =ty N +1=-t 2t +2+1=2t +2.∵MN ⊥AB ,∴k MN =-t ,∴|MN|=√1+t 2·-2-2t 2+2=√1+t 2·2t 2+6t 2+2.又|AN|=12|AB|=12√1+t 2·|y 1-y 2|=√1+t 2·√2√1+t 2t 2+2, ∴tan ∠MAN=|MN ||AN |=√2(2√t 2+1=√2(√t 2+1+√t 2+1≥√2·2√2=4.当且仅当2+1=√2,即t=±1时取等号.此时直线AB 的方程为x+y-1=0或x-y-1=0. 6.解(1)由题意得,{e =ca =12,b =√6|√1+1=√3,又a 2=b 2+c 2,∴a=2.∴椭圆C 的方程为x 24+y 23=1.(2)由题意,直线l 的斜率k 存在且不为零. 设直线l 的方程为y=k (x-4),k ≠0. 设A (x 1,y 1),B (x 2,y 2),AB 的中点Q (x 0,y 0). 由{y =k (x -4),x 24+y 23=1,消去y ,整理得(3+4k 2)x 2-32k 2x+64k 2-12=0. 由Δ=(-32k 2)2-4(3+4k 2)(64k 2-12)>0, 解得-12<k<12,且k ≠0,∴x 1+x 2=32k 23+4k 2.∴x 0=16k 23+4k 2,y 0=k (x 0-4)=-12k3+4k 2. ∴Q (16k 23+4k 2,-12k3+4k 2).由题意可知,l 1:y-y 0=-1k (x-x 0),即y+12k3+4k 2=-1k (x -16k 23+4k 2).化简得,y=-1k x+4k3+4k 2. 令x=0,4k3+4k 2=413. 解得k=14或k=3.∵-12<k<12,且k ≠0,∴k=14.故直线l 的方程为y=14(x-4),即x-4y-4=0.。

2021年高考数学总复习7.2直线、圆、圆锥曲线小综合题专项练课件理

2021年高考数学总复习7.2直线、圆、圆锥曲线小综合题专项练课件理

2
(2)已知双曲线标准方程 2 − 2 =1(a>0,b>0),其焦点为
F1(-c,0),F2(c,0),e 为双曲线的离心率.
那么焦半径为|PF1|=|ex+a|,|PF2|=|ex-a|.(对任意x而言)
具体来说:当点P(x,y)在右支上时,|PF1|=ex+a,|PF2|=ex-a;
当点P(x,y)在左支上时,|PF1|=-(ex+a),|PF2|=-(ex-a).
(2)过圆(x-a)2+(y-b)2=r2上一点M(x0,y0)的切线方程为(x0-a)(xa)+(y0-b)(y-b)=r2;
2
(3)过椭圆
0
2
2
+
2
2
0
=1(a>b>0)上一点 M(x0,y0)的切线方程为
2
+
=1;
2
2
(4)过双曲线 2 − 2 =1(a>0,b>0)上一点 M(x0,y0)的切线方程为

解析
答案
-8-


2.(2021全国Ⅰ,理8)设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜
2
率为 的直线与 C 交于 M,N 两点,则 ·=(
3
A.5
B.6
C.7
)
D.8
关闭
2
2
3
3
由题意知 F(1,0),过点(-2,0),且斜率为 的直线方程为 y= (x+2).与抛
物线方程 y2=4x 联立,得
∴|MF2|=2b,A 为 F2M 的中点,又 O 是 F1F2 的中点,∴OA∥F1M,∴∠

2021新高考数学二轮总复习学案:7.4.1 直线与圆及圆锥曲线含解析

2021新高考数学二轮总复习学案:7.4.1 直线与圆及圆锥曲线含解析

7.4压轴题大题2直线与圆锥曲线7.4.1直线与圆及圆锥曲线必备知识精要梳理1.解答直线与圆锥曲线相交问题的一般步骤:设线、设点,联立、消元,韦达定理、代入、化简.第一步:讨论直线斜率的存在性,斜率存在时,设直线的方程为y=kx+b(或斜率不为零时,设x=my+n);第二步:设直线与圆锥曲线的两个交点为M(x1,y1),N(x2,y2);第三步:联立方程组消去y得关于x的方程Ax2+Bx+C=0;第四步:由判别式和韦达定理列出直线与曲线相交于两个点满足的条件第五步:把所要解决的问题转化为含x1+x2,x1x2的形式,然后代入、化简.2.弦中点问题的特殊解法——点差法:即若已知弦AB的中点为M(x0,y0),先设两个交点为A(x1,y1),B(x2,y2);分别代入圆锥曲线的方程,得f(x1,y1)=0,f(x2,y2)=0,两式相减、分解因式,再将x1+x2=2x0,y1+y2=2y0代入其中,即可求出直线的斜率.3.弦长公式:|AB|=|x1-x2|=(k为弦AB所在直线的斜率).关键能力学案突破热点一求轨迹方程【例1】(2020北京顺义二模,21节选)设线段AB的两个端点A,B分别在x轴、y轴上滑动,且|AB|=5,(O为坐标原点),求点M的轨迹方程.解题心得1.如果动点运动的条件是一些几何量的等量关系,设出动点坐标,直接利用等量关系建立x,y之间的关系F(x,y)=0,就得到轨迹方程.2.若动点的轨迹符合某已知曲线的定义,可直接设出相应的曲线方程,用待定系数法或题中所给几何条件确定相应系数,从而求出轨迹方程.3.如果动点P的运动是由另外某一点Q的运动引发的,而该点坐标满足某已知曲线方程,则可以设出P(x,y),用(x,y)表示出相关点Q的坐标,然后把Q的坐标代入已知曲线方程,即可得到动点P的轨迹方程.【对点训练1】设抛物线C1的方程为x2=4y,点M(x0,y0)(x0≠0)在抛物线C2:x2=-y上,过M作抛物线C1的切线,切点分别为A,B,圆N是以线段AB为直径的圆.(1)若点M的坐标为(2,-4),求此时圆N的半径长;(2)当M在x2=-y上运动时,求圆心N的轨迹方程.热点二直线与圆的综合【例2】(2020陕西榆林高三模拟,理20)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B 两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解题心得直线与圆相交问题的求法(1)弦长的求解方法①根据半径、弦心距、半弦长构成的直角三角形,构成三者间的关系R2=d2+(其中l为弦长,R为圆的半径,d为圆心到直线的距离);②根据公式l=|x1-x2|求解(其中l为弦长,x1,x2为直线与圆相交所得交点的横坐标,k为直线的斜率);③求出交点坐标,用两点间距离公式求解.(2)定点、定值问题的求解步骤①设:设出直线方程,并代入圆的方程整理成关于x(或y)的一元二次方程;②列:用参数表示出需要证明的直线方程或者几何性质的等式;③解:判断直线是否过定点或对表示出的代数式进行化简求解.【对点训练2】已知圆C经过点A(0,2),B(2,0),圆C的圆心在圆x2+y2=2的内部,且直线3x+4y+5=0被圆C所截得的弦长为2.点P为圆C上异于A,B的任意一点,直线PA与x轴交于点M,直线PB与y轴交于点N.(1)求圆C的方程;(2)若直线y=x+1与圆C交于A1,A2两点,求;(3)求证:|AN|·|BM|为定值.热点三直线与圆锥曲线的综合【例3】(2020江西南康中学第一次联考,21)已知椭圆C:=1(a>b>0)的右焦点为(,0),且经过点,点M是x轴上的一点,过点M的直线l与椭圆C交于A,B两点(点A在x轴的上方).(1)求椭圆C的方程;(2)若=2,且直线l与圆O:x2+y2=相切于点N,求|MN|.解题心得本题是直线与椭圆、圆的综合问题,对于(1),由题意,列关于a,b的方程组,解方程组可得a,b的值进而求得椭圆的方程;对于(2),设出点M,A,B的坐标及直线l的方程x=ty+m,与椭圆方程联立,再结合根与系数的关系,得m与t的关系,由直线与圆相切,得另一关系式,联立可得点M的坐标,进而求得|MN|,考查了数学运算这一核心素养.【对点训练3】(2020四川成都高三模拟,理21)已知椭圆E:=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.(1)求椭圆E的方程及点T的坐标;(2)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.7.4压轴题大题2直线与圆锥曲线7.4.1直线与圆及圆锥曲线关键能力·学案突破【例1】解设M(x,y),A(x0,0),B(0,y0),由,得(x,y)=(x0,0)+(0,y0),则由|AB|=5,得=25,则有=25,化简,得=1.对点训练1解(1)设N(x,y),A x1,,B x2,,x1≠x2,切线MA,MB的方程分别为y=(x-x1)+,y=(x-x2)+,得MA,MB的交点M(x0,y0)的坐标为x0==2,y0==-4.又k AB==1,|AB|==4,∴r=|AB|=2(2)∵N为线段AB的中点,∴x=,y=点M在C2上,即=-y0.由(1)得2=-,则2=-∴x2=-,x≠0,即x2=y(x≠0).∴圆心N的轨迹方程为x2=y(x≠0).【例2】解(1)证明:设A(x1,y1),B(x2,y2),l:x=my+2,由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为=-1,所以OA⊥OB,故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4,故圆心M的坐标为(m2+2,m),圆M的半径r=由于圆M过点P(4,-2),因此=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可知y1y2=-4,x1x2=4,所以2m2-m-1=0,解得m=1或m=-当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为,-,圆M的半径为,圆M的方程为对点训练2解(1)易知圆心C在线段AB的中垂线y=x上,故可设C(a,a),圆C的半径为r,因为直线3x+4y+5=0被圆C所截得的弦长为2,且r=,所以C(a,a)到直线3x+4y+5=0的距离d=,由r2=d2+3得,()2=2+3,即a2-170a=0,所以a=0或a=170.又圆C的圆心在圆x2+y2=2的内部,所以a=0,圆C的方程为x2+y2=4.(2)将y=x+1代入x2+y2=4得2x2+2x-3=0.设A1(x1,y1),A2(x2,y2),则x1+x2=-1,x1x2=-所以=(x1-2)(x2-2)+y1y2=x1x2-2(x1+x2)+4+(x1+1)(x2+1)=2x1x2-(x1+x2)+5=-3+1+5=3.(3)证明:当直线PA的斜率不存在时,|AN|·|BM|=8,当直线PA与直线PB的斜率都存在时,设P(x0,y0),显然x0≠0,且x0≠2.直线PA的方程为y=x+2,令y=0得M直线PB的方程为y=(x-2),令x=0得N0,.所以|AN|·|BM|==4+4=4+4=4+4=4+4=8,故|AN|·|BM|为定值8.【例3】解(1)由题意知得(a2-4)(4a2-3)=0,又a2=3+b2>3,故a2=4,则b2=1,所以椭圆C的方程为+y2=1.(2)设M(m,0),直线l:x=ty+m,A(x1,y1),B(x2,y2),由=2,得y1=-2y2.由得(t2+4)y2+2tmy+m2-4=0.Δ=4t2m2-4(t2+4)(m2-4)>0,即t2>m2-4.则y1+y2=-,y1y2=由y1y2=-2,y1+y2=-2y2+y2=-y2, 得y1y2=-2[-(y1+y2)]2=-2(y1+y2)2,所以=-2-2,化简得(m2-4)(t2+4)=-8t2m2.易知原点O到直线l的距离d=,又直线l与圆O:x2+y2=相切,所以,即t2=m2-1.由得21m4-16m2-16=0,即(3m2-4)(7m2+4)=0,解得m2=,此时t2=,满足Δ>0,所以M在Rt△OMN中,|MN|=对点训练3解(1)由已知,得a=b,则椭圆E的方程为=1.由方程组得3x2-12x+(18-2b2)=0.①方程①的判别式为Δ=24(b2-3),由Δ=0,得b2=3,此时方程①的解为x1=x2=2,所以椭圆E的方程为=1.点T的坐标为(2,1).(2)证明:由已知可设直线l'的方程为y=x+m(m≠0),由方程组可得所以P点坐标为,则|PT|2=m2.设点A,B的坐标分别为A(x1,y1),B(x2,y2).由方程组可得3x2+4mx+(4m2-12)=0.②方程②的判别式为Δ=16(9-2m2),由Δ>0,解得-<m<由②得x1+x2=-,x1x2=所以|PA|=2--x1,同理,|PB|=2--x2.所以|PA|·|PB|==(x1+x2)+x1x2==m2.故存在常数λ=,使得|PT|2=λ|PA|·|PB|.。

【2021新高考数学二轮复习】第1讲 直线与圆

【2021新高考数学二轮复习】第1讲 直线与圆

【2021新高考数学二轮复习】[学生用书P69]第1讲 直线与圆考点一 直线的方程[学生用书P70][自主练透]1.设a ∈R ,则“a =-2”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件解析:选A.当a =-2时,l 1:-2x +2y -1=0,l 2:x -y +4=0,显然l 1∥l 2.当l 1∥l 2时,由a (a +1)=2且a +1≠-8,得a =1或a =-2.所以“a =-2”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的充分不必要条件.2.(多选)(2020·福建三明一中期中)下列说法正确的是( )A .直线x -y -2=0与两坐标轴围成的三角形的面积是2B .点(0,2)关于直线y =x +1的对称点为(1,1)C .过两点(x 1,y 1),(x 2,y 2)的直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1D .经过点(1,1)且在x 轴和y 轴上的截距都相等的直线方程为x +y -2=0 解析:选AB.A 中,直线x -y -2=0在x 轴、y 轴上的截距分别为2,-2,则直线与两坐标轴围成的三角形的面积是2,所以A 正确.B 中,点⎝ ⎛⎭⎪⎫0+12,2+12在直线y =x +1上,且点(0,2),(1,1)连线的斜率为-1,所以B 正确.C 中,直线方程成立需要条件y 2≠y 1,x 2≠x 1,所以C 错误.D 中,还有一条截距都为0的直线y =x ,所以D 错误.故选AB.3.已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则直线l 的方程为__________________.解析:由⎩⎨⎧x -2y +3=0,2x +3y -8=0,得⎩⎨⎧x =1,y =2,所以直线l 1与l 2的交点为(1,2).显然直线x =1不符合,即所求直线的斜率存在,设所求直线的方程为y -2=k (x -1),即kx -y +2-k =0,因为点P (0,4)到直线l 的距离为2,所以|-4+2-k |1+k 2=2,所以k =0或k =43.所以直线l 的方程为y =2或4x -3y +2=0.答案:y =2或4x -3y +2=04.设点P 为直线l :x +y -4=0上的动点,点A (-2,0),B (2,0),则|P A |+|PB |的最小值为________.解析:设点B (2,0)关于直线l 的对称点为B 1(a ,b ),则由题意得⎩⎪⎨⎪⎧b -0a -2×(-1)=-1,a +22+b 2-4=0,解得⎩⎨⎧a =4,b =2,所以B 1(4,2).因为|P A |+|PB |=|P A |+|PB 1|,所以当A ,P ,B 1三点共线时,|P A |+|PB |最小,最小值为|AB 1|=(4+2)2+(2-0)2=210.答案:210(1)求直线方程的两种方法①直接法:根据已知条件,找出直线方程的确定条件,选择适当的直线方程的形式,直接求出直线方程.②待定系数法:其具体步骤为:〈1〉设出直线方程的恰当形式(点斜式、斜截式、两点式、截距式和一般式);〈2〉根据题设条件列出关于待定系数的方程或方程组;〈3〉解方程或方程组得到待定系数;〈4〉写出直线方程;〈5〉验证所得直线方程是否为所求直线方程,如果有遗漏需要补加.(2)两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断.考点二圆的方程[学生用书P70][典型例题](1)(多选)(2020·日照模拟)设圆A:x2+y2-2x-3=0,则下列说法正确的是()A.圆A的半径为2B.圆A截y轴所得的弦长为2 3C.圆A上的点到直线3x-4y+12=0的最小距离为1D.圆A与圆B:x2+y2-8x-8y+23=0相离(2)已知圆C截两坐标轴所得弦长相等,且圆C过点(-1,0)和(2,3),则圆C的半径为()A.22B.8C.5 D. 5(3)已知圆心在直线x-y-1=0上的圆与y轴的两个交点的坐标分别为(0,4),(0,-2),则该圆的方程为________.【解析】(1)把圆A的方程x2+y2-2x-3=0化成标准方程为(x-1)2+y2=4,所以圆A的圆心坐标为(1,0),半径为2,A正确;圆A截y轴所得的弦长为2×4-1=23,B正确;圆心(1,0)到直线3x-4y+12=0的距离为3,故圆A上的点到直线3x-4y+12=0的最小距离为3-2=1,C正确;圆B:x2+y2-8x-8y+23=0的圆心为(4,4),半径为3,根据(4-1)2+42=5可知,圆A与圆B相切,D错误.故选ABC.(2)因为圆C截两坐标轴所得弦长相等,所以圆心C在直线y=x或y=-x上.①当圆心C在直线y=x上时,设C(m,m),半径为R,则(m+1)2+m2=(m -2)2+(m-3)2=R2,可得m=1,R2=5,所以R= 5.②当圆心C在直线y=-x上时,设C(m,-m),半径为R,则(m+1)2+(-m)2=(m-2)2+(-m-3)2=R2,该方程组无解.所以圆C 的半径为5,故选D.(3)因为圆与y 轴的两个交点的坐标分别为(0,4),(0,-2),所以圆心在点(0,4),(0,-2)连线的垂直平分线y =1上,又因为圆心在直线x -y -1=0上,所以由⎩⎨⎧y =1,x -y -1=0得圆心的坐标为(2,1),圆的半径为22+(1-4)2=13,所以圆的方程为(x -2)2+(y -1)2=13.【答案】 (1)ABC (2)D (3)(x -2)2+(y -1)2=13求圆的方程的2种方法几何法 通过研究圆的性质、直线和圆、圆与圆的位置关系,从而求得圆的基本量和方程代数法用待定系数法先设出圆的方程,再由条件求得各系数,从而求得圆的方程1.已知圆C :x 2+y 2-4x +3=0,则圆C 关于直线y =-x -4对称的圆的方程是( )A .(x +4)2+(y +6)2=1B .(x +6)2+(y +4)2=1C .(x +5)2+(y +7)2=1D .(x +7)2+(y +5)2=1解析:选A.设所求圆的圆心为C ′(a ,b ).圆C :x 2+y 2-4x +3=0,即(x -2)2+y 2=1,故其圆心为(2,0),半径r =1.因为C 与C ′关于直线y =-x -4对称,所以⎩⎪⎨⎪⎧b -0a -2=1,b 2=-a -22-4,解得⎩⎨⎧a =-4,b =-6,所以所求圆的圆心坐标为(-4,-6),半径r ′=1,其方程为(x +4)2+(y +6)2=1,故选A.2.经过原点且与直线x +y -2=0相切于点(2,0)的圆的标准方程是( )A .(x -1)2+(y +1)2=2B.(x+1)2+(y-1)2=2C.(x-1)2+(y+1)2=4D.(x+1)2+(y-1)2=4解析:选A.设所求圆的圆心坐标为(a,b),则a2+b2=r2①,(a-2)2+b2=r2②,ba-2=1③,联立①②③解得a=1,b=-1,r2=2.故所求圆的标准方程是(x-1)2+(y+1)2=2.故选A.3.(多选)(2020·淄博模拟)已知圆C过点M(1,-2)且与两坐标轴均相切,则下列叙述正确的是()A.满足条件的圆C的圆心在一条直线上B.满足条件的圆C有且只有一个C.点(2,-1)在满足条件的圆C上D.满足条件的圆C有且只有两个,它们的圆心距为4 2解析:选ACD.因为圆C和两个坐标轴都相切,且过点M(1,-2),所以设圆心坐标为(a,-a)(a>0),故圆心在y=-x上,A正确;圆C的方程为(x-a)2+(y+a)2=a2,把点M的坐标代入可得a2-6a+5=0,解得a=1或a=5,则圆心坐标为(1,-1)或(5,-5),所以满足条件的圆C有且只有两个,故B错误;圆C的方程分别为(x-1)2+(y+1)2=1,(x-5)2+(y+5)2=25,将点(2,-1)代入可知满足(x-1)2+(y+1)2=1,(x-5)2+(y+5)2=25,故C正确;它们的圆心距为(5-1)2+(-5+1)2=42,D正确.考点三直线与圆的位置关系[学生用书P71][典型例题]命题角度1圆的切线问题(1)(2020·高考全国卷Ⅲ)若直线l与曲线y=x和圆x2+y2=15都相切,则l的方程为()A.y=2x+1B.y=2x+1 2C .y =12x +1D .y =12x +12 (2)设点M (x 0,y 0)为直线3x +4y =25上一动点,过点M 作圆x 2+y 2=2的两条切线,切点为B ,C ,则四边形OBMC 面积的最小值为________.【解析】 (1)易知直线l 的斜率存在,设直线l 的方程为y =kx +b ,则|b |k 2+1=55 ①,设直线l 与曲线y =x 的切点坐标为(x 0,x 0)(x 0>0),则y ′|x =x 0=12x 0-12=k ②,x 0=kx 0+b ③,由②③可得b =12x 0,将b =12x 0,k =12x 0-12代入①得x 0=1或x 0=-15(舍去),所以k =b =12,故直线l 的方程为y =12x +12.(2)圆心O 到直线3x +4y =25的距离d =259+16=5, 则|OM |≥d =5,所以切线长|MB |=|OM |2-2≥d 2-2=23,所以S 四边形OBMC =2S △OBM ≥2×12×23×2=46.所以四边形OBMC 面积的最小值为46.【答案】 (1)D (2)46直线与圆相切问题的解题策略(1)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.(2)过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.命题角度2 圆的弦长问题(1)(2020·高考全国卷Ⅰ)已知圆x 2+y 2-6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .4 (2)已知直线l :x -3y -a =0与圆C :(x -3)2+(y +3)2=4交于点M ,N ,点P 在圆C 上,且∠MPN =π3,则实数a 的值等于( ) A .2或10B .4或8C .6±2 2D .6±2 3【解析】 (1)将圆的方程x 2+y 2-6x =0化为标准方程(x -3)2+y 2=9,设圆心为C ,则C (3,0),半径r =3.设点(1,2)为点A ,过点A (1,2)的直线为l ,因为(1-3)2+22<9,所以点A (1,2)在圆C 的内部,则直线l 与圆C 必相交,设交点分别为B ,D .易知当直线l ⊥AC 时,直线l 被该圆所截得的弦的长度最小,设此时圆心C 到直线l 的距离为d ,则d =|AC |=(3-1)2+(0-2)2=22,所以|BD |min =2r 2-d 2=232-(22)2=2,即弦的长度的最小值为2,故选B.(2)由∠MPN =π3,可得∠MCN =2∠MPN =2π3.在△MCN 中,CM =CN =2,∠CMN =∠CNM =π6,可得点C (3,-3)到直线MN ,即直线l :x -3y -a =0的距离为2sin π6=1.所以|3-3×(-3)-a |1+3=1,解得a =4或a =8.故选B. 【答案】 (1)B (2)B求解圆的弦长的3种方法关系法 根据半径,弦心距,弦长构成的直角三角形,构成三者间的关系r 2=d 2+l 24(其中l 为弦长,r 为圆的半径,d 为圆心到直线的距离)公式法 根据公式l =1+k 2|x 1-x 2|求解(其中l 为弦长,x 1,x 2为直线与圆相交所得交点的横坐标,k 为直线的斜率)距离法联立直线与圆的方程,解方程组求出两交点坐标,用两点间距离公式求解命题角度3 直线与圆的综合问题已知圆C 经过点A (0,2),B (2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x +4y +5=0被圆C 所截得的弦长为2 3.点P 为圆C 上异于A ,B 的任意一点,直线P A 与x 轴交于点M ,直线PB 与y 轴交于点N .(1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求BA 1→·BA 2→. 【解】 (1)易知圆心C 在线段AB 的中垂线y =x 上,故可设C (a ,a ),圆C 的半径为r .因为直线3x +4y +5=0被圆C 所截得的弦长为23,且r =a 2+(a -2)2, 所以C (a ,a )到直线3x +4y +5=0的距离d =|7a +5|5=r 2-3=2a 2-4a +1,所以a =0或a =170.又圆C 的圆心在圆x 2+y 2=2的内部,所以a =0,此时r =2,所以圆C 的方程为x 2+y 2=4.(2)将y =x +1代入x 2+y 2=4得2x 2+2x -3=0.设A 1(x 1,y 1),A 2(x 2,y 2),则x 1+x 2=-1,x 1x 2=-32.所以BA 1→·BA 2→=(x 1-2)(x 2-2)+y 1y 2=x 1x 2-2(x 1+x 2)+4+(x 1+1)(x 2+1)=2x 1x 2-(x 1+x 2)+5=-3+1+5=3.讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.[对点训练]1.(2020·高考全国卷Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A.55 B .255C.355 D .455解析:选B.因为圆与两坐标轴都相切,点(2,1)在该圆上,所以可设该圆的方程为(x -a )2+(y -a )2=a 2(a >0),所以(2-a )2+(1-a )2=a 2,即a 2-6a +5=0,解得a =1或a =5,所以圆心的坐标为(1,1)或(5,5),所以圆心到直线2x -y -3=0的距离为|2×1-1-3|22+(-1)2=255或|2×5-5-3|22+(-1)2=255,故选B. 2.已知圆O :x 2+y 2=1,点P 为直线y =2x -1上的一个动点.若线段OP 的垂直平分线与圆有交点,则|OP |的最大值为( )A .1B .2C .3D .4解析:选B.设P (a ,2a -1),则线段OP 的中点的坐标为⎝ ⎛⎭⎪⎫a 2,a -12.若线段OP 的垂直平分线与圆有交点,则由图可知点⎝ ⎛⎭⎪⎫a 2,a -12在圆O :x 2+y 2=1内部(包括边界).所以⎝ ⎛⎭⎪⎫a 22+⎝ ⎛⎭⎪⎫a -122≤1,整理得5a 2-4a ≤3.所以|OP |=a 2+(2a -1)2=5a 2-4a +1≤3+1=2.所以|OP |的最大值为2.故选B.3.已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,则当△OPQ 的面积最大时,直线l 的方程为________.解析:当直线l 的斜率不存在时,l 的方程为x =2,则P (2,5),Q (2,-5),所以S △OPQ =12×2×25=25,当直线l 的斜率存在时,设l 的方程为y -1=k (x-2)⎝ ⎛⎭⎪⎫k ≠12,则圆心到直线l 的距离d =|1-2k |1+k 2,所以|PQ |=29-d 2,S △OPQ =12×|PQ |×d =12×29-d 2×d =(9-d 2)d 2≤9-d 2+d 22=92,当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92,因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0.答案:x +y -3=0或7x +y -15=0[学生用书(单独成册)P145]1.已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( ) A .(3,3) B .(2,3) C .(1,3) D .⎝⎛⎭⎪⎫1,32 解析:选C.直线l 1的斜率k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以直线l 2的斜率k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2),联立⎩⎨⎧y =33(x +2),y =-3(x -2),解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( )A .相离B .相交C .外切D .内切解析:选B.圆O 1:x 2+y 2-2x =0,即(x -1)2+y 2=1,圆心O 1(1,0),半径r 1=1,圆O 2:x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心O 2(0,2),半径r 2=2,因为|O 1O 2|=5,故|r 1-r 2|<|O 1O 2|<|r 1+r 2|,所以两圆的位置关系是相交.3.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0解析:选B.依题意知,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点.因为圆心(1,0)与切点(3,1)连线的斜率为12,所以切线的斜率k =-2. 故圆的切线方程为y -1=-2(x -3),即2x +y -7=0.4.直线l :kx +y +4=0(k ∈R )是圆C :x 2+y 2+4x -4y +6=0的一条对称轴,过点A (0,k )作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为( )A.22B . 2 C. 6 D .2 6解析:选 C.圆C :x 2+y 2+4x -4y +6=0,即(x +2)2+(y -2)2=2,表示以C (-2,2)为圆心,2为半径的圆.由题意可得,直线l :kx +y +4=0经过圆心C (-2,2).所以-2k +2+4=0,解得k =3,所以点A (0,3),故直线m 的方程为y =x +3,即x -y +3=0,则圆心C 到直线m 的距离d =|-2-2+3|2=12.所以直线m 被圆C 所截得的弦长为2× 2-12= 6.故选C.5.(多选)(2020·辽宁葫芦岛普通高中质量监测)若P 是圆C :(x +3)2+(y -3)2=1上任一点,则点P 到直线y =kx -1距离的值可以为( )A .4B .6C .32+1D .8解析:选ABC.由题意,知圆C :(x +3)2+(y -3)2=1的圆心坐标为(-3,3),半径为1,直线y =kx -1过定点(0,-1).由图可知,圆心C 到直线y =kx -1距离的最大值为(-3-0)2+(3+1)2=5,则点P 到直线y =kx -1距离的最大值为5+1=6,因此A ,B ,C 正确,只有D 不正确.故选ABC.6.(多选)(2020·山东枣庄滕州一中期中)已知圆C 1:x 2+y 2=r 2,圆C 2:(x -a )2+(y -b )2=r 2(r >0)交于不同的A (x 1,y 1),B (x 2,y 2)两点,则下列结论正确的是( )A .a (x 1-x 2)+b (y 1-y 2)=0B .2ax 1+2by 1=a 2+b 2C .x 1+x 2=aD .y 1+y 2=2b解析:选ABC.圆C 2的方程可化为x 2+y 2-2ax -2by +a 2+b 2-r 2=0,则将圆C 1与圆C 2的方程相减可得直线AB 的方程为2ax +2by -a 2-b 2=0,即2ax +2by =a 2+b 2.将A (x 1,y 1),B (x 2,y 2)两点代入直线AB 的方程可得⎩⎨⎧2ax 1+2by 1=a 2+b 2,2ax 2+2by 2=a 2+b 2,两式相减可得2a (x 1-x 2)+2b (y 1-y 2)=0,即a (x 1-x 2)+b (y 1-y 2)=0,所以选项A ,B 是正确的.由圆的性质可得,线段AB 与线段C 1C 2互相平分,所以x 1+x 2=a ,y 1+y 2=b ,所以选项C 是正确的,选项D 是不正确的.故选ABC.7.在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=________.解析:由题意知P (0,1),Q (-3,0),因为过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以MP ⊥MQ ,所以|MP |2+|MQ |2=|PQ |2=9+1=10.答案:108.已知圆O :x 2+y 2=4到直线l :x +y =a 的距离等于1的点至少有2个,则实数a 的取值范围为________.解析:由圆的方程可知圆心为(0,0),半径为2.因为圆O 到直线l 的距离等于1的点至少有2个,所以圆心到直线l 的距离d <r +1=2+1,即d =|-a |12+12=|a |2<3,解得a ∈(-32,32). 答案:(-32,32)9.已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP→的最大值为________,|OA→+OP →|的最大值为________. 解析:设P (x ,y ),则x 2+y 2=1,所以AO →·AP →=(2,0)·(x +2,y )=2(x +2).因为点P 在圆x 2+y 2=1上,所以-1≤x ≤1,所以AO →·AP →∈[2,6].所以AO →·AP→的最大值为6. 因为OA→+OP →=(-2,0)+(x ,y )=(x -2,y ), 所以|OA→+OP →|=(x -2)2+y 2=(x -2)2+1-x 2=5-4x ,又-1≤x ≤1.故1≤5-4x ≤9,所以1≤|OA →+OP →|≤3,从而|OA →+OP →|max=3. 答案:6 310.已知圆(x -1)2+y 2=25,直线ax -y +5=0与圆相交于不同的两点A ,B .(1)求实数a 的取值范围;(2)若弦AB 的垂直平分线l 过点P (-2,4),求实数a 的值.解:(1)把直线ax -y +5=0代入圆的方程,消去y 整理,得(a 2+1)x 2+2(5a -1)x +1=0,由于直线ax -y +5=0交圆于A ,B 两点,故Δ=4(5a -1)2-4(a 2+1)>0,即12a 2-5a >0,解得a >512或a <0,所以实数a 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫512,+∞. (2)由于直线l 为弦AB 的垂直平分线,且直线AB 的斜率为a ,则直线l 的斜率为-1a, 所以直线l 的方程为y =-1a (x +2)+4,即x +ay +2-4a =0,由于l 垂直平分弦AB ,故圆心M (1,0)必在l 上,所以1+0+2-4a =0,解得a =34,由于34∈⎝ ⎛⎭⎪⎫512,+∞,所以a =34.11.已知点M (-1,0),N (1,0),曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍.(1)求曲线E 的方程;(2)已知m ≠0,设直线l 1:x -my -1=0交曲线E 于A ,C 两点,直线l 2:mx +y -m =0交曲线E 于B ,D 两点.当CD 的斜率为-1时,求直线CD 的方程.解:(1)设曲线E 上任意一点的坐标为(x ,y ), 由题意得(x +1)2+y 2=3·(x -1)2+y 2,整理得x 2+y 2-4x +1=0,即(x -2)2+y 2=3为所求.(2)由题意知l 1⊥l 2,且两条直线均恒过点N (1,0).设曲线E 的圆心为E ,则E (2,0),设线段CD 的中点为P ,连接EP ,ED ,NP ,则直线EP :y =x -2.设直线CD :y =-x +t ,由⎩⎨⎧y =x -2,y =-x +t ,解得点P ⎝ ⎛⎭⎪⎫t +22,t -22, 由圆的几何性质,知|NP |=12|CD |=|ED |2-|EP |2,而|NP |2=⎝ ⎛⎭⎪⎫t +22-12+⎝ ⎛⎭⎪⎫t -222,|ED |2=3, |EP |2=⎝ ⎛⎭⎪⎫|2-t |22, 所以⎝ ⎛⎭⎪⎫t 22+⎝ ⎛⎭⎪⎫t -222=3-(t -2)22,整理得t 2-3t =0,解得t =0或t =3, 所以直线CD 的方程为y =-x 或y =-x +3.12.在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程.(2)若直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点Q ,使得OQ→=OA →+OB →?若存在,求出此时直线l 的斜率;若不存在,说明理由. 解:(1)设圆O 的半径为r .因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)存在,直线l 的斜率为±2 2.因为直线l :y =kx +3与圆O 相交于A ,B 两点,所以圆心O 到直线l 的距离d =|3|1+k 2<2. 所以k >52或k <-52.假设存在点Q ,使得OQ→=OA →+OB →. 因为A ,B 在圆上,且OQ→=OA →+OB →. 同时|OA→|=|OB →|,连接AQ ,BQ ,由向量加法的平行四边形法则可知四边形OAQB 为菱形,所以OQ 与AB 互相垂直且平分.所以原点O 到直线l :y =kx +3的距离d =12|OQ |=1,即|3|1+k 2=1. 解得k 2=8,则k =±22,经验证满足条件.所以存在点Q ,使得OQ →=OA →+OB →,此时直线l 的斜率为±2 2.。

高考数学压轴题突破训练——圆锥曲线(含详解)

高考数学压轴题突破训练——圆锥曲线(含详解)
14. 已知双曲线 的左右两个焦点分别为 ,点P在双曲线右支上.
(Ⅰ)若当点P的坐标为 时, ,求双曲线的方程;
(Ⅱ)若 ,求双曲线离心率 的最值,并写出此时双曲线的渐进线方程.
15. 若F 、F 为双曲线 的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足; .
(1)求该双曲线的离心率;
(Ⅱ)若直线 与(Ⅰ)中所求点Q
的轨迹交于不同两点F,H,O是坐标原点,
且 ,求△FOH的面积的取值范围。
18. 如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中 。
(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)D分有向线段 的比为 ,A、D同在以B、C为焦点的椭圆上,
当 ―5≤ ≤ 时,求椭圆的离心率e的取值范围.
29.在直角坐标平面中, 的两个顶点 的坐标分别为 , ,平面内两点 同时满足下列条件:
① ;② ;③ ∥
(1)求 的顶点 的轨迹方程;
(2)过点 的直线 与(1)中轨迹交于 两点,求 的取值范围
由 消去 得: ①


由方程①知 > <
, < < , .
7.解:解:令
则 即

又∵ ∴
所求轨迹方程为
(Ⅱ)解:由条件(2)可知OAB不共线,故直线AB的斜率存在
设AB方程为

∵OAPB为矩形,∴OA⊥OB
∴ 得
所求直线方程为 …
8.解:(I)由题意,抛物线顶点为(-n,0),又∵焦点为原点∴m>0
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.

2021年高考数学二轮复习专题六直线、圆、圆锥曲线6.1直线与圆课件文

2021年高考数学二轮复习专题六直线、圆、圆锥曲线6.1直线与圆课件文

5
3
4
关闭
D
解析
答案
-5命题热点一
命题热点二
命题热点三
命题热点四
题后反思1.在设直线的截距式解题时,要注意防止由于“零截距
〞而造成丢解的情况.
2.在设直线的点斜式、斜截式解题时,要注意检验斜率不存在的
情况,防止丢解.
3.求直线方程的主要方法是待定系数法.在使用待定系数法求直
线方程时,要注意方程的选择、分类讨论思想的应用.
(1,1),(2,0)的圆的方程为
.
答案 x2+y2-2x=0
解析 设点O,A,B的坐标分别为(0,0),(1,1),(2,0),那么AO=AB,所
以点A在线段OB的垂直平分线上.又因为OB为该圆的一条弦,所以
圆心在线段OB的垂直平分线上,可设圆心坐标为(1,y),所以(y1)2=1+y2,解得y=0,所以该圆的半径为1,其方程为(x-1)2+y2=1,即
法进展运算求解往往会减少运算量.
-17命题热点一
命题热点二
命题热点三
命题热点四
对点训练4过原点的动直线l与☉C1:x2+y2-6x+5=0相交于不同的两
点A,B.
(1)求☉C1的圆心坐标;
(2)求线段AB的中点M的轨迹C的方程;
(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?假
该圆的圆心为 C
其方程为
3
,0
2
命题热点四
1
2
1
2
3 2 2 3 2
+y =
,
2
2
即 x2+y2-3x=0.
又因为点 M 为线段 AB 的中点,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题突破练25 直线与圆及圆锥曲线
1.(2020全国Ⅱ,理19)已知椭圆C 1:
x 2a
+
y 2b =1(a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心
与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|=4
3|AB|. (1)求C 1的离心率;
(2)设M 是C 1与C 2的公共点.若|MF|=5,求C 1与C 2的标准方程. 2.
已知圆O :x 2+y 2=4,点A (√3,0),以线段AB 为直径的圆内切于圆O ,记点B 的轨迹为Γ. (1)求曲线Γ的方程;
(2)直线AB 交圆O 于C ,D 两点,当B 为CD 的中点时,求直线AB 的方程.
3.(2019全国Ⅰ,理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为3
2的直线l 与C 的交点为A ,B ,与x 轴的交点为P.
(1)若|AF|+|BF|=4,求l 的方程; (2)若AP
⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.
4.(2020山东威海一模,20)已知椭圆x2
a2+y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,点P(-1,3
2
)是椭圆上
一点,|F1F2|是|PF1|和|PF2|的等差中项.
(1)求椭圆的标准方程;
(2)若A为椭圆的右顶点,直线AP与y轴交于点H,过点H的另一条直线与椭圆交于M,N两点,且S△HMA
=6S△PHN,求直线MN的方程.
5.(2020重庆名校联盟高三二诊,19)已知椭圆C:x2
a2+y2
b2
=1(a>b>0),F1,F2为椭圆的左、右焦点,P(1,√2
2
)
为椭圆上一点,且|PF1|=3√2
2
.
(1)求椭圆的标准方程;
(2)设直线l:x=-2,过点F2的直线交椭圆于A,B两点,线段AB的垂直平分线分别交直线l、直线AB于M,N两点,当∠MAN最小时,求直线AB的方程.
6.(2020天津河北一模,19)已知椭圆C :x 2
a +
y 2b =1(a>b>0)的离心率为1
2
,直线x+y-√6=0与圆x 2+y 2=b 2
相切.
(1)求椭圆C 的方程;
(2)过点P (4,0)的直线l 与椭圆C 交于不同两点A ,B ,线段AB 的中垂线为l 1,若l 1在y 轴上的截距为4
13,求直线l 的方程.
专题突破练25 直线与圆及圆锥曲线
1.解(1)由已知可设C 2的方程为y 2=4cx ,其中c=√a 2-b
2.
不妨设A ,C 在第一象限,由题设得A ,B 的纵坐标分别为b 2a ,-b 2
a ;C ,D 的纵坐标分别为2c ,-2c ,故|AB|=
2b 2a
,|CD|=4c.
由|CD|=4
3|AB|得4c=8b 2
3a ,即3×c
a =2-2(c a )2
,解得c
a =-2(舍去),c
a =1
2.所以C 1的离心率为1
2. (2)由(1)知a=2c ,b=√3c ,故C 1:x 2
4c
2+
y 23c 2
=1. 设M (x 0,y 0),则
x 024c
2+
y 0
23c 2=1,y 02
=4cx 0,故x 024c
2+
4x 03c
=1.

由于C 2的准线为x=-c ,所以|MF|=x 0+c ,而|MF|=5,故x 0=5-c ,代入①得(5-c )24c 2
+
4(5-c )3c
=1,即c 2-2c-3=0,
解得c=-1(舍去),c=3.
所以C 1的标准方程为x 2
36+y 2
27=1,C 2的标准方程为y 2=12x. 2.解。

相关文档
最新文档