高中数学必修五试卷北师大版

合集下载

北师大版高中数学必修五第一章《数列》测试题(答案解析)

北师大版高中数学必修五第一章《数列》测试题(答案解析)

一、选择题1.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51012.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .43.某食品加工厂2019年获利20万元,经调整食品结构,开发新产品.计划从2020年开始每年比上一年获利增加20%,则从( )年开始这家加工厂年获利超过60万元.(已知lg 20.3010=,lg30.4771=) A .2024年B .2025年C .2026年D .2027年4.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知222,,a b c 成等差数列,则cos B 的最小值为( )A .12B .22C .34D .325.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466485~年间,其记臷着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同. 已知第一天织布5尺,30天其织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( ) A .1629B .1627C .1113D .13296.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .27.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ).A .12B .11C .10D .98.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1niii x y =+=∑( )A .0B .nC .2nD .3n9.已知椭圆2222x y a b +=1(a>b>0)与双曲线2222x y m n-=1(m>0,n>0)有相同的焦点(-c ,0)和(c ,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是 ( ) ABC .14D .1210.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,下列说法错误的是( ) A .0d <B .110S >C .120S <D .67a a >11.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-212.设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log ||n a .其中一定为等比数列的是( ) A .①③B .②④C .②③D .①②二、填空题13.已知数列{}n a 的前n 项和为n S ,若11a =,22a =,0n a ≠,()111122n n n n n a n S a S nS +++--=-,其中2n ≥,且*n ∈N .设21n n b a -=,数列{}n b 的前n 项和为n T ,则100T =______.14.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 15.已知等差数列{}n a 的首项是19-,公差是2,则数列{}n a 的前n 项和n S 的最小值是_______.16.设n S 是数列{}n a 的前n 项和,且112a =,110n n n a S S +++=,则2020S =______. 17.在数列{}n a 中,11a =()*1n =∈N;等比数列{}nb 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.18.若数列}{n a2*3()n n n N =+∈,则n a =_______.19.已知下列结论:①若数列{}n a 的前n 项和21n S n =+,则数列{}n a 一定为等差数列.②若数列{}n a 的前n 项和21nn S =-,则数列{}n a 一定为等比数列.③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111,,a b c可能构成等差数列. ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111,,a b c一定构成等比数列. 则其中正确的结论是_______.20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若2125,2,log a log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11n n n b b a ++⎧⎫-⎨⎬⎩⎭的前n 项和为232n n+ (1)求{}n a 的公比q 的值;(2)求{}n b 的通项公式.22.已知{}n a 是公差不为0的等差数列,若1313,,a a a 是等比数列{}n b 的连续三项. (1)求数列{}n b 的公比; (2)若11a =,数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 和为n S 且99200nS >,求n 的最小值. 23.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列. (1)求数列{}n a 的通项公式; (2)若0d <,93n n na b -=,求数列{}n b 的前n 项和n S . 24.已知数列n A :1a ,2a ,…,()2n a n ≥满足:①11a =;②()121,2,,1k ka k n a +==-.记()12n n S A a a a =+++.(1)直接写出()3S A 的所有可能值; (2)证明:()0n S A >的充要条件是0n a >; (3)若()0n S A >,求()n S A 的所有可能值的和.25.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.26.已知n S 为等差数列{}n a 的前n 项和,59a =,13169S =. (1)求数列{}n a 的通项公式; (2)设3nn na b =,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.2.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.3.C解析:C 【分析】本题根据题意各年获利构成一个等比数列,然后得到通项公式,根据题意可得出关于n 的不等式,解出n 的值,注意其中对数式的计算. 【详解】由题意,设从2019年开始,第n 年的获利为()n a n *∈N 万元,则数列{}n a 为等比数列,其中2019年的获利为首项,即120a =.2020年的获利为()2620120%205a =⋅+=⋅万元,2021年的获利为()223620120%205a ⎛⎫=⋅+=⋅ ⎪⎝⎭万元,∴数列{}n a 的通项公式为()16205n n n N a *-⎛⎫⋅⎪⎝⎭∈= ,由题意可得1620605n n a -⎛⎫=⋅> ⎪⎝⎭,即1635n -⎛⎫> ⎪⎝⎭,()65lg3lg3lg3lg30.47711log 3610lg6lg52lg 2lg3120.30100.47711lg lg 23lg 52n ∴->=====-+-⨯+-⨯-6.03166=>,8n ∴≥,∴从2026年开始这家加工厂年获利超过60万元.故选:C . 【点评】本题主要考查等比数列在实际生活中的应用,考查了等比数列的通项公式,不等式的计算,对数运算.属于中档题.4.A解析:A 【解析】分析:用余弦定理推论得222cos 2a c b B ac +-=.由222,,a b c 成等差数列,可得2222a c b += ,所以22222cos 24a c b a c B ac ac+-+==,利用重要不等式可得2221cos 442a c ac B ac ac +=≥=.详解:因为222,,a b c 成等差数列,所以2222a cb += . 由余弦定理推论得2222221cos 2442a cb ac ac B ac ac ac +-+==≥=当且仅当a c =时,上式取等号. 故选A .点睛:本题考查等差中项、余弦定理的推论、重要不等式等知识,考查学生的运算能力及转化能力.利用重要不等式、基本不等式求最值时,一定要判断能否取相等,不能相等时,应转化为函数求最值.5.A解析:A 【解析】由题设可知这是一个等差数列问题,且已知13030,390a S ==,求公差d .由等差数列的知识可得30293053902d ⨯⨯+=,解之得1629d =,应选答案A . 6.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =,且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.7.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.8.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124n i n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.9.D解析:D 【解析】由题意可知2n 2=2m 2+c 2. 又m 2+n 2=c 2, ∴m=2c . ∵c 是a ,m 的等比中项, ∴2c am =,∴22ac c =, ∴12c e a ==.选D . 10.C解析:C 【分析】根据{}n a 是等差数列,且675S S S >>,变形为7666555567,,a a S S S S S a S a ++>++>>判断即可.【详解】数列{}n a 是等差数列675S S S >>,7666555567,,a a S S S S S a S a ++>++>>, 76670,0,0a a a a <>+>,所以0d <,()111116111102a a S a +==>, ()()11267121212022a S a a a ++==>,67a a >,故选:C 【点睛】本题主要考查等差数列的通项与前n 项和的关系及应用,还考查了转化求解问题的能力,属于中档题.11.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.12.D解析:D 【分析】 设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】 设11n n a a q-=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列;③,11112111211222=2,222n nn n n n n n a a q a a q a q a q a a q-------==不是一个常数,所以数列{}2n a 不是等比数列; ④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列.故选D 【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题13.【分析】根据已知条件推导出数列从第三项开始奇数项成等差数列且公差为然后利用等差数列的求和公式可求得的值【详解】当且时由可得即可得①所以②②①得所以则则所以数列从第三项开始奇数项成等差数列且公差为故答 解析:9901【分析】根据已知条件推导出数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,然后利用等差数列的求和公式可求得100T 的值. 【详解】当2n ≥且*n ∈N 时,0n a ≠, 由()111122n n n n n a n S a S nS +++--=-,可得()()11112n n n n n a S S n S S ++-+-=-,即()1112n n n n a a a na ++++=, 可得12n n a a n ++=,①,所以,()2121n n a a n +++=+,②, ②-①得22n n a a +-=,所以,32224a a +=⨯=,则32a =,则3112a a -=≠, 所以,数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,21n n b a -=,10099982199299012T ⨯⨯=+⨯+=. 故答案为:9901. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.14.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】 由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711ab b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.15.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数解析:100-. 【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值. 【详解】解:∵等差数列{}n a 的首项是19-,公差是2, ∴()()22119220101002n n n S n n n n -=-+⨯=-=--,∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-. 故答案为:100-. 【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.16.【分析】代入再证明为等差数列继而求得的通项公式再计算即可【详解】因为所以两边同除以得:所以数列是以为首项1为公差的等差数列所以所以所以故答案为:【点睛】本题主要考查了根据递推公式证明等差数列的方法属 解析:12021【分析】代入11n n n a S S ++=-,再证明1n S ⎧⎫⎨⎬⎩⎭为等差数列,继而求得1n S ⎧⎫⎨⎬⎩⎭的通项公式再计算2020S 即可.【详解】因为110n n n a S S +++=,所以,11n n n n S S S S ++-=-, 两边同除以1n n S S +-得:1111n nS S +-=, 所以数列1n S ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列, 所以()1211n n n S =+-=+,所以11n S n =+, 所以202012021S = 故答案为:12021【点睛】本题主要考查了根据递推公式证明等差数列的方法,属于中档题.17.【分析】分别求出的通项再构建新数列求出最大项后可得实数的最小值【详解】因为故是以1为首项以1为公差的等差数列所以当时是等比数列也适合故即又恒成立等价于恒成立令则当时当时故【点睛】方法点睛:含参数的数解析:94【分析】分别求出{}n a 、{}n b 的通项,再构建新数列212n n n c -=,求出{}n c 最大项后可得实数λ的最小值. 【详解】()*1n=∈N,故是以1为首项,以1为公差的等差数列,()11n n=-⨯=,2*()na n n N∴=∈.当2n≥时,111(2)(2)2n n nn n nb S S m m---=-=---=,{}nb是等比数列,112b S m∴==-也适合12nnb-=,故21m-=即1m=,1*2()nnb n N-∴=∈.又n nb aλ≥恒成立等价于212nnλ-≥恒成立,2max max1()()2nnna nbλ-∴≥=,令212n nnc-=,则()2221121142222n n n n nnn n nc c--------=-=,当23n≤≤时,1-->n nc c,当4n≥时,1n nc c--<,故max39()4nc c==,94λ∴≥.【点睛】方法点睛:含参数的数列不等式的恒成立,可利用参变分离将参数的取值范围问题转化新数列的最值问题,后者可利用数列的单调性来处理.18.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题解析:()241n+【分析】有已知条件可得出116a=,2n≥时()()2*131()n n n N⋅⋅⋅=-+-∈,与题中的递推关系式相减即可得出()241na n=+,且当1n=时也成立.【详解】数列}{na2*3()n n n N=+∈4=,即116a=2n≥()()2*131()n n n N⋅⋅⋅+=-+-∈22n=+,所以()241na n=+(2n≥)当1n=时,116a=适合上式,所以()241na n=+【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.19.②④【分析】①先求出再当时求出判断当时有判断①错误;②先求出再当时求出判断数列是以1为首项以2为公比的等比数列判断②正确;③先建立方程组再整理得与非零实数不全相等矛盾判断③错误;④先得方程整理得判断解析:②④ 【分析】①先求出12a =,再当2n ≥时求出21n a n =-,判断当1n =时有11n a a =≠,判断①错误;②先求出11a =,再当2n ≥时求出12n na ,判断数列{}n a 是以1为首项以2为公比的等比数列,判断②正确;③先建立方程组2112a c b a c ac a c b +⎧=+=⎪⎨⎪+=⎩,再整理得a b c ==与非零实数,,a b c 不全相等矛盾,判断③错误;④先得方程2b ac =,整理得2111()b a c=⨯,判断④正确. 【详解】①:数列{}n a 的前n 项和21n S n =+,当1n =时,211112a S ==+=,当2n ≥时,221(1)(1)121n n n a S S n n n -⎡⎤=-=+--+=-⎣⎦,当1n =时,11n a a =≠, 故①错误;②:数列{}n a 的前n 项和21n n S =-,当1n =时,111211a S ==-=, 当2n ≥时,111(21)(21)2nn n n n n a S S ---=-=---=,当1n =时,11n a a ==,且12nn a a -= 所以数列{}n a 是以1为首项,以2为公比的等比数列, 故②正确;③:若111,,a b c是等差数列,则211a c b a c ac+=+=, 因为,,a b c 成等差数列,则2a c b +=,则2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,整理得a b c ==,与非零实数,,a b c 不全相等矛盾, 故③错误;④:因为非零实数,,a b c 不全相等,且,,a b c 成等比数列,所以2b ac =,则21111b ac a c==⨯, 则111,,a b c一定构成等比数列. 故④正确. 故答案为:②④. 【点睛】本题考查等差数列和等比数列的判断,是基础题.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题 解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+. 故答案为:1m + 【点睛】本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)2q ;(2)()121n n b n =-⋅+.【分析】(1)对正项的等比数列{}n a ,利用基本量代换,列方程组,解出公比q ; (2)设11n nn n b b d a ++-=,由题意分析、计算得 1n d n =+,从而得到()112n n n b b n +-=+⋅,用累加法和错位相减法求出 n b .【详解】(1)∵2125log ,2,log a a 成等差数列,∴ ()225215log log log 4a a a a +==,即132516a a a ==,又0,n a >34a ∴=,又37,S =21211147a q a a q a q ⎧=∴⎨++=⎩ 解得2q 或23q =-(舍).()2记11n n n n b b d a ++-=,当2n ≥时,()()221313122n n n n n d n -+-+=-=+又12d =也符合上式,1n d n ∴=+.而31322n n n a a --=⋅=,()112n n n b b n +∴-=+⋅,()()()21121321122322,)2(n n n n b b b b b b b b n n --∴=+-+-+⋯+-=+⋅+⋅+⋯+⋅≥, ()231222232122n n n b n n -∴=+⋅+⋅+⋅⋅⋅+-⋅+⋅两式相减得()2112222121n n n n b n n --=+++⋯+-⋅=-⋅-,()2)2(11,n n b n n ∴=-⋅+≥.而11b =也符合上式, 故()121nn b n =-⋅+.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换; (2)数列求和常用方法:①公式法;②倒序相加法;③裂项相消法;④错位相减法. 22.(1)5;(2)50. 【分析】(1)利用基本量代换,求出12d a =,直接求出公比; (2)裂项相消法求出n S ,解不等式即可. 【详解】(1)设等差数列{}n a 的公差为d ,由1313,,a a a 是等比数列{}n b 的连续三项,得23113a a a =⋅,即()()2111212a d a a d +=⋅+,化简得2148d a d =.10,2d d a ≠∴=.设数列{}n b 的公比的公比为q ,则3111111245a a d a a q a a a ++====. (2)若11a =,则1111112,21,(21)(21)22121n n n d a n a a n n n n +⎛⎫==-==- ⎪-+-+⎝⎭,111112133557(21)(21)n S n n ⎫⎛=++++⎪ ⨯⨯⨯-⨯+⎝⎭111111111111233557212122121nn n n n ⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 由99200n S >,得9999,212002n n n >∴>+,故n 的最小值为50.【点睛】(1)等差(比)数列问题解决的基本方法:基本量代换;(2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法.23.(1) 11n a n =-+或46,n a n n N *=+∈;(2)51112423n n n S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【分析】(1)由123,22,5a a a +成等比数列求得公差后可得通项公式n a ; (2)对23n b b b +++用错位相减法求和.【详解】解:(1)∵123,22,5a a a +成等比数列,∴()2231225a a a +=⋅,整理得2340d d --=,解得1d =-或4d =,当1d =-时,10(1)11n a n n =--=-+; 当4d =时,104(1)46n a n n =+-=+.所以11n a n =-+或46,n a n n N *=+∈.(2)设数列{}n a 前n 项和为n S , ∵0d <,∴1d =-,11n a n =-+23n nnb -=当1n =时,13n S =, 当2n ≥时,2341012233333n n n S -=++++⋅⋅⋅+ 令34122333n n T -=+++,则45111223333n n T +-=+++ 两式相减可得32345111112111122331333333313n n n n n n T -++⎛⎫- ⎪--⎝⎭=+++⋯+-=--整理可得11112423nn T ⎛⎫=+-⨯ ⎪⎝⎭, 则511,212423n n n S n ⎛⎫=+-⨯≥ ⎪⎝⎭ 且113S =满足上式, 综上所述:51112423n n n S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【点睛】本题考查求等差数列的通项公式,分组(并项)求和法,错位相减法.数列求和的常用方法:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.24.(1)所有可能值是7-,5-,3-,1-,1,3,5,7;(2)证明见解析;(3)222n -.【分析】(1)根据递推关系式以及求和式子即可得出结果.(2)充分性:求出数列的通项公式,再利用等比数列的前n 和公式可证;必要性:利用反证法即可证明.(3)列出n A 中的项,得出数列的规律:每一个数列前1n -项与之对应项是相反数的数列,即可求解. 【详解】解:(1)()3S A 的所有可能值是7-,5-,3-,1-,1,3,5,7. (2)充分性:若0n a >,即12n n a .所以满足12n na ,且前n 项和最小的数列是1-,2-,4-,…,22n --,12n -.所以()211212422n n n a a a --++⋅⋅⋅+≥-+++⋅⋅⋅++211222112n n ---⋅=-+=-.所以()0n S A >.必要性:若()0n S A >,即120n a a a ++⋅⋅⋅+>.假设0n a <,即12n n a -=-.所以()()21121242210n n n n S A a a a --=++⋅⋅⋅+≤+++⋅⋅⋅+-=-<, 与已知()0n S A >矛盾. 所以()0n S A >.综上所述,()0n S A >的充要条件是0n a >.(3)由(2)知,()0n S A >可得0n a >.所以12n na .因为数列n A :1a ,2a ,…,()2n a n ≥中1a 有1-,1两种,2a 有2-,2两种,3a 有4-,4两种,…,1n a -有22n --,22n -两种,n a 有12n -一种,所以数列n A :1a ,2a ,…,()2n a n ≥有12n -个,且在这12n -个数列中,每一个数列都可以找到前1n -项与之对应项是相反数的数列. 所以这样的两数列的前n 项和是122n -⨯. 所以这12n -个数列的前n 项和是1122122222n n n ---⨯⨯⨯=. 所以()n S A 的所有可能值的和是222n -. 【点睛】关键点点睛:本题考查了等比数列的通项公式、求和公式,解题的关键是根据递推关系式得出数列n A 的通项公式,注意讨论,此题也考查了数列不等式、反证法在数列中的应用. 25.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1nn a b a =即可求出; (2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】 (1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212ab a ==,3313a b a ==, (2)设1n a k +=,nn nA bB =, 若n k B ≤,则+1nn n n nk A A b b B =≥=, 若n n B k A <<,则+1nn nn A b b B ==, 若n k A ≥,则+1n n n nn A kb b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=;(3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n nn A b q B -==, 由(2)可得1n n b b +≥,则1q ≥, 当1q =时,1nnA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列;当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =,此时01n n nn n n A a b q B a -===,即01n n n a a q -=,故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列.【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.26.(1)21n a n =-;(2)113n nn T +=-. 【分析】(1)根据59a =,13169S =,利用等差数列的通项公式以及前n 项和公式求解. (2)由(1)得到2133n n n n a n b -==,利用数列求和的错位相减法求解. 【详解】 (1)因为()11313713131692a a S a +===,所以77513,24a d a a ==-=, 解得2d =,所以9(5)221n a n n =+-⋅=-. (2)由(1)得213n nn b -=, 则()231111135213333n nT n =⋅+⋅+⋅++-⋅, ()()23411111111352321333333n n n T n n +=⋅+⋅+⋅++-⋅+-, 两式相减得:()231211111221333333n nn T n +⎛⎫=++++-- ⎪⎝⎭,1111112193213313n n n -+⎛⎫- ⎪-⎝⎭=+--, 122233n n ++=-, 所以113n n n T +=-. 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.。

【北师大版】高中数学必修五期末试卷带答案

【北师大版】高中数学必修五期末试卷带答案

一、选择题1.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-2.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6543.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2C .a 3>b 3D .a b b a> 4.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( ) A .1a <1bB .a 2>b 2C .21a c +>21b c + D .a |c |>b |c |5.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC边上的中线BD =△ABC 的周长为( ) A .15B .14C .16D .12 6.在△ABC 中,AC =BC =1,∠B =45°,则∠A =( )A .30°B .60°C .30°或150°D .60°或120°7.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若tan C =cos 8A =,b =ABC 的面积为( ) A.BCD8.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C.D.9.已知数列{}n a 的前n 项和为n S ,且0n a >,n *∈N ,若数列{}n a 和{}n S 都是等差数列,则下列说法不正确的是( ) A .{}n n a S +是等差数列B .{}n n a S ⋅是等差数列C .{}2na 是等比数列D .{}2nS 是等比数列10.已知等差数列{}n a 的前n 和为n S ,若1239a a a ++=,636S =,则12(a = ) A .23B .24C .25D .2611.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-12.等差数列{}n a 的前n 项和为n S ,已知32110S a a =+,534a =,则1a =( ) A .2B .3C .4D .5二、填空题13.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.14.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.15.已知ABC 的面积为4,2tan 3B =,AB AC >,设M 是边BC的中点,若AM =,则BC =___________.16.在ABC 中,6B π=,D 为边AB 上的一点,且满足2CD =,4AC =,锐角三角形ACDBC =_____________.17.已知ABC 中,D 是BC 上的点,AD 平分BAC ∠,且2ABD ADC S S =△△,1AD =,12DC =,则AC =_________. 18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,23ABC π∠=,ABC ∠的平分线交AC 于点D ,且2BD =,则3a c +的最小值为___________.19.在数列{}n a 中,11a =,0n a ≠,曲线3y x =在点()3,n n a a 处的切线经过点()1,0n a +,下列四个结论:①223a =;②313a =;③416527i i a ==∑;④数列{}n a 是等比数列;其中所有正确结论的编号是______. 20.已知下列结论:①若数列{}n a 的前n 项和21n S n =+,则数列{}n a 一定为等差数列.②若数列{}n a 的前n 项和21nn S =-,则数列{}n a 一定为等比数列.③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111,,a b c 可能构成等差数列. ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111,,a b c一定构成等比数列. 则其中正确的结论是_______.三、解答题21.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围. 22.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.23.在ABC 中,已知角A ,B ,C 的对边分别为a ,b ,c ,若2b =,sin B b B =-.(1)求角B 的大小;(2)若BAC ∠的平分线AD 交BC 于点D ,△ACD BD 的长度. 24.已知ABC 的内角,,A B C 的对边分别为,,a b c ,2cos cos cos aA b C c B=+.(1)求角A 的大小;(2)若a =11b c+的取值范围. 25.已知等差数列{}n a ,且55a =,515S =,首项为1的数列{}n b 满足112n n n n b a b a ++= (1)求数列{}n a 的通项公式及前n 项和n S ; (2)求数列{}n b 前n 项和n T .26.已知数列{}n a 的前n 项和为n S ,且11a =,()121n n a S n N *+=+∈,等差数列{}n b 满足39b =,15272b b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 的前n 项和为n T ,且n n n c a b =⋅,求n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-, 故选:A. 【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.2.A解析:A根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=.因为11611161161()()(17)17)5555n m m n m n m n m n +=++=++≥=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.3.C解析:C 【解析】根据题意,依次分析选项:对于A ,当2a =,2b =-时,11a b>,故A 错误;对于B ,当1a =,2b =-时,22a b <,故B 错误;对于C ,由不等式的性质可得C 正确;对于D ,当1a =,1b =-时, a bb a=,故D 错误;故选C. 4.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的;当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.5.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =, 若AC边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.6.A解析:A 【分析】直接利用正弦定理求出sin A 的大小,根据大边对大角可求A 为锐角,即可得解A 的值. 【详解】因为:△ABC 中,BC =1,AC =∠B =45°,所以:BC AC sinA sinB=,sinA 112BC sinB AC ⨯⋅===. 因为:BC <AC ,可得:A 为锐角, 所以:A =30°. 故选:A . 【点评】本题考查正弦定理在解三角形中的应用,考查计算能力,属于基础题.7.B解析:B 【分析】结合同角三角函数的基本关系可求出sin 4C =,cos 4C =,sin 8A =,由两角和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】因为sin tan cos C C C ==,且22sin cos 1C C +=,解得sin C =,cos C =,又cos A =,所以sin A ==,故sin sin[()]sin()sin cos cos sin B A C A C A C A C π=-+=+=+=.因为sin sin a bA B =,b =,故sin 2sin b A a B==,故11sin 2224ABC S ab C =⨯=⨯⨯=△. 故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.8.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+,平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.9.D解析:D 【分析】由题意,判断出数列{}n a 是公差为0的等差数列,然后分别利用等差数列的定义与等比数列的定义判断每个选项即可. 【详解】因为数列{}n a 和{}n S 都是等差数列,1n n n a S S -=-,所以可判断n a 为定值,所以数列{}n a 是公差为0的等差数列,即10n n a a --=.对A ,()()1111----++-=-+-=n n n n n n n n n a S a S S S a a a ,所以数列{}n n a S +是等差数列;对B ,1121----=⋅⋅⋅⋅-=n n n n n n n n n a S a S a S a S a ,所以数列{}n n a S ⋅是等差数列;对C ,222211-==n n n n a a a a ,所以数列{}2n a 是等比数列;对D ,设n a a =,则222,==n n S na S n a ,则221222222(1)(1)-==--n n n a n n a n S S ,所以数列{}2n S 不是等比数列.故选:D 【点睛】解答本题的关键在于判断出数列{}n a 是公差为0的等差数列,然后结合等差数列的定义,等比数列的定义列式判断是否为等差或者等比数列.10.A解析:A 【解析】等差数列{}n a 的前n 和为n S ,1239a a a ++=,636S =,11339656362a d a d +=⎧⎪∴⎨⨯+=⎪⎩,解得1a 1,d 2,12111223a =+⨯=,故选A.11.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.12.A解析:A 【解析】设等差数列{a n }的公差为d ,∵S 3=a 2+10a 1,a 5=34, ∴3a 1+3d =11a 1+d ,a 1+4d =34, 则a 1=2. 本题选择A 选项.二、填空题13.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可. 【详解】 由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分):平移直线1122y x z =-,,1122y x z =-,的截距最小, 此时z 最大,由2222x y x y -⎧⎨+⎩== ,得A (1,0).代入目标函数z=x-2y , 得z=1-2×0=1, 故答案为1. 【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.14.【解析】由题意知且2和3是方程的两个根即答案为7【点睛】本题考查一元二次不等式的解法与应用问题解题的关键是根据一元二次不等式与对应方程之间的关系求出的值 解析:7【解析】由题意知0a > 且2和3是方程250ax x b -+=的两个根,5321,7632a a a b b b a=,=⎧+⎪=⎧⎪∴∴+=⎨⎨=⎩⎪⨯⎪⎩. 即答案为7.【点睛】本题考查一元二次不等式的解法与应用问题,解题的关键是根据一元二次不等式与对应方程之间的关系,求出a b ,的值15.4【分析】首先利用余弦定理和三角形面积公式建立关于的方程再分别求根据余弦定理求结合条件求得的值【详解】得:解得:①中利用余弦定理②由①②可得解得:或即当时得此时不成立当时得此时成立故故答案为:4【点解析:4 【分析】首先利用余弦定理和三角形面积公式,建立关于,a c 的方程,再分别求,a c ,根据余弦定理求b ,结合条件AB AC >,求得BC 的值. 【详解】2tan 3B =,得:sin 13B =,cos 13B =11sin 422ABCSac B ac ===,解得:ac =① ABM中,利用余弦定理222252cos 542413a a a c c B c ac =+-⋅⋅=+-= ②由①②可得22174ac a c ⎧=⎪⎨+=⎪⎩,解得:2a c ⎧=⎪⎨=⎪⎩4a c =⎧⎪⎨=⎪⎩, AB AC >,即c b >当2a c ==时,2222cos 32b a c ac B =+-=,得b =c b <,不成立,当4,a c == 2222cos 5b a c ac B =+-=,得b =c b >,成立,故4BC a ==. 故答案为:4 【点睛】易错点点睛:本题的易错点是求得,a c 后,还需满足条件AB AC >这个条件,否则会增根.16.【分析】先由面积公式求出即得再由余弦定理求出进而利用正弦定理求出再在中利用正弦定理即可求出【详解】在中解得是锐角三角形则由余弦定理可得即则在中由正弦定理可得即则则在中即解得故答案为:【点睛】本题考查【分析】先由面积公式求出sin ACD ∠,即得cos ACD ∠,再由余弦定理求出AD ,进而利用正弦定理求出sin A ,再在ABC 中利用正弦定理即可求出. 【详解】 在ACD △中,11sin 42sin 22ACDS AC CD ACD ACD =⨯⨯⨯∠=⨯⨯⨯∠=解得sin ACD ∠=ACD △是锐角三角形,1cos 4ACD ∴∠=,则由余弦定理可得222142242164AD =+-⨯⨯⨯=,即4AD =, 则在ACD △中,由正弦定理可得sin sin AD CDACD A=∠2sin A =,则sin A =则在ABC 中,sin sin BC ACA B=412=,解得BC =.【点睛】本题考查正余弦定理和三角形面积公式的应用,解题的关键是先在ACD △中,利用面积公式和正余弦定理解出sin A .17.【分析】由面积比得得由角平分线定理得在和中应用余弦定理结合可求得【详解】由已知则又平分所以设则中同理中因为所以解得(负的舍去)故答案为:【点睛】本题考查三角形面积公式三角形内角平分线定理余弦定理通过【分析】 由面积比得2BD DC =,得1BD =,由角平分线定理得2ABAC=,在ABD △和ACD △中应用余弦定理结合cos cos ADB ADC ∠=-∠可求得AC . 【详解】由已知1sin 221sin 2ABD ACD BD AD ADBS BD S CD CD AD ADC ⋅∠===⋅∠△△,12CD =,则1BD =, 又AD 平分BAC ∠,所以2AB BDAC CD==,2AB AC =,设AC x =,则2AB x =, ABD △中,22222114cos 1222BD DA AB x ADB x BD AD +-+-∠===-⋅, 同理,ACD △中,221154cos 14212x ADC x +-∠==-⨯⨯, 因为180ADB ADC ∠+∠=︒,所以225cos cos 1204ADB ADC x x ∠+∠=-+-=,解得x (负的舍去),故答案为:32. 【点睛】本题考查三角形面积公式,三角形内角平分线定理,余弦定理,通过180ADB ADC ∠+∠=︒,cos cos 0ADBADC ∠+∠=,把两个三角形联系起来达到求解的目的.18.【分析】根据面积关系建立方程关系结合基本不等式1的代换进行求解即可【详解】如图所示则的面积为即∴∴当且仅当即时取等号所以a+3c 的最小值为8+4故答案为:8+4【点睛】本题考查基本不等式的应用考查三 解析:843+【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可. 【详解】如图所示,则ABC 的面积为111sin1202sin 602sin 60222ac a c =⋅+⋅︒︒︒, 即22ac a c =+,∴1112a c +=. ∴3(3)a c a c +=+1132242(423)843c a a c a c ⎛⎫⎛⎫+⨯=⨯++≥+=+⎪ ⎪⎝⎭⎝⎭.当且仅当33843c a a c a c ⎧=⎪⎨⎪+=+⎩即2232233a c ⎧=+⎪⎨=+⎪⎩时取等号. 所以,a +3c 的最小值为8+43. 故答案为:8+43.【点睛】本题考查基本不等式的应用,考查三角形的面积公式和角平分线性质的应用,考查分析和计算能力,属于基础题.19.①③④【分析】先利用导数求得曲线在点处的切线方程由此求得与的递推关系式进而证得数列是等比数列由此判断出四个结论中正确的结论编号【详解】∵∴曲线在点处的切线方程为则∵∴则是首项为1公比为的等比数列从而解析:①③④ 【分析】先利用导数求得曲线3y x =在点()3,n n a a 处的切线方程,由此求得1n a +与n a 的递推关系式,进而证得数列{}n a 是等比数列,由此判断出四个结论中正确的结论编号. 【详解】∵2'3y x =,∴曲线3y x =在点()3,n n a a 处的切线方程为()323n n n y a a x a -=-,则()3213n n n n a a a a +-=-.∵0n a ≠,∴123n n a a +=, 则{}n a 是首项为1,公比为23的等比数列, 从而223a =,349a =,4412165322713i i a =⎛⎫- ⎪⎝⎭==-∑. 故所有正确结论的编号是①③④. 故答案为:①③④ 【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前n 项和公式,属于基础题.20.②④【分析】①先求出再当时求出判断当时有判断①错误;②先求出再当时求出判断数列是以1为首项以2为公比的等比数列判断②正确;③先建立方程组再整理得与非零实数不全相等矛盾判断③错误;④先得方程整理得判断解析:②④ 【分析】①先求出12a =,再当2n ≥时求出21n a n =-,判断当1n =时有11n a a =≠,判断①错误;②先求出11a =,再当2n ≥时求出12n na ,判断数列{}n a 是以1为首项以2为公比的等比数列,判断②正确;③先建立方程组2112a c b a c ac a c b +⎧=+=⎪⎨⎪+=⎩,再整理得a b c ==与非零实数,,a b c 不全相等矛盾,判断③错误;④先得方程2b ac =,整理得2111()b a c =⨯,判断④正确. 【详解】①:数列{}n a 的前n 项和21n S n =+,当1n =时,211112a S ==+=,当2n ≥时,221(1)(1)121n n n a S S n n n -⎡⎤=-=+--+=-⎣⎦,当1n =时,11n a a =≠,故①错误;②:数列{}n a 的前n 项和21nn S =-, 当1n =时,111211a S ==-=,当2n ≥时,111(21)(21)2n n n n n n a S S ---=-=---=,当1n =时,11n a a ==,且12nn a a -= 所以数列{}n a 是以1为首项,以2为公比的等比数列, 故②正确;③:若111,,a b c是等差数列,则211a c b a c ac+=+=, 因为,,a b c 成等差数列,则2a c b +=,则2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,整理得a b c ==,与非零实数,,a b c 不全相等矛盾, 故③错误;④:因为非零实数,,a b c 不全相等,且,,a b c 成等比数列, 所以2b ac =,则21111b ac a c==⨯, 则111,,a b c一定构成等比数列. 故④正确. 故答案为:②④. 【点睛】本题考查等差数列和等比数列的判断,是基础题.三、解答题21.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦.【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果.【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3. (2)①当0a =时,()30f x =-≤恒成立; ②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩ 解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<.综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦. 【点睛】研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果. 22.(1)2()2f x x =-,()g x x =;(2)答案见解析. 【解析】试题分析:(1)根据函数奇偶性的性质利用方程组法即可求f (x )和g (x )的解析式;(2)()()h x g x < 即()23130mx m x +--<,讨论当0m =时,当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m =,23x =-,比较1m与-3的大小,进行讨论; 试题(1)由题意()()22f x g x x x -+-=--,即()()22f x g x x x -=--,又()()22f x g x x x +=+-联立得()22f x x =-,()g x x =.(2)由题意不等式即()23130mx m x +--<,当0m =时,即30x --<,解得3x >-;当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m=,23x =-, 故当0m >时,易知13m >-,不等式的解为13x m-<<; 当0m <时,若13m >-,即13m <-时,不等式的解为3x <-或1x m>; 若13m =-,即13m =-时,不等式的解为3x ≠-; 若13m <-,即13m >-时,不等式的解为1x m<或3x >-; 综上所述,当13m <-时,不等式的解为1|3x x x m 或⎧⎫-⎨⎬⎩⎭;当103m -≤<时,不等式的解集为1|3x x x m ⎧⎫-⎨⎬⎩⎭或;当0m =时,不等式的解集为{}3x x -; 当0m >时,不等式的解集为1|3x x m ⎧⎫-<<⎨⎬⎩⎭. 点睛:本题主要考查根据奇偶性的定义利用方程组法求函数解析式及求含参的一元二次不等式解集;在讨论时从二次项系数等于0,不等于0入手,当不等于0时,往往先对式子进行因式分解得出对应二次方程的根,然后比较根的大小,讨论要不重不漏. 23.(1)6B π=;(2)BD =【分析】(1)有已知条件,结合正弦定理边角关系、辅助角公式得sin 13B π⎛⎫+= ⎪⎝⎭,根据三角形内角的性质,即可求角B .(2)由题设,应用正弦定理得1sin 2AD BD θ⋅=,结合三角形面积公式有sin AD θ=BD 的长度.【详解】(1)由2b =sin B b B =-,∴sin 2B B +=,即1sin 12B B =,得sin 13B π⎛⎫+= ⎪⎝⎭,又()0,B π∈,∴4,333B πππ⎛⎫+∈ ⎪⎝⎭,可知32B ππ+=,解得6B π=. (2)设BAD θ∠=,由AD 是BAC ∠的平分线,有CAD θ∠=,在△ABD 中,由正弦定理得sin sin 6BD ADπθ=,所以1sin 2AD BD θ⋅=. 又△ACD,所以1sin sin 2b AD AD θθ⋅==,∴12BD =BD = 【点睛】 关键点点睛:(1)综合应用正弦定理边角互化,辅助角公式,三角形内角的性质求角; (2)应用正弦定理及三角形面积公式求边长.24.(1)3A π=;(2)⎫+∞⎪⎪⎣⎭. 【分析】(1)利用正弦定理边化角可化简已知关系式求得cos A ,结合A 的范围可求得结果;(2)解法一:利用正弦定理边化角可整理得到1161sin 262B b c B ππ⎛⎫+ ⎪⎝⎭+=⎛⎫-+⎪⎝⎭,利用B 的范围可求得sin 6B π⎛⎫+⎪⎝⎭的范围,代入整理可求得结果; 解法二:利用余弦定理和基本不等式可求得3bc ≤,整理得到11b c +=合二次函数的性质可求得所求的范围. 【详解】(1)由正弦定理得:()sin sin 2cos sin cos sin cos sin A AA B C C B B C ==++.B C A π+=-,()sin sin B C A ∴+=,2cos 1A ∴=,即1cos 2A =,()0,A π∈,3A π∴=.(2)解法一:由正弦定理知,2sin sin sin sin 3a b c A B C π====,sin sin 1111sin sin 3612sin 2sin 2sin sin 2sin sin sin 2362B B B B C b c B C B C B B B ππππ⎛⎫⎛⎫+++ ⎪ ⎪+⎝⎭⎝⎭∴+=+===⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭.3A π=,20,3B π⎛⎫∴∈ ⎪⎝⎭. 令6B πθ=+,则5,66ππθ⎛⎫∈⎪⎝⎭,则1sin ,12θ⎛⎤∈ ⎥⎝⎦.则11cos 24sin sin 22sin 22b cθθθθ⎫+====+∞⎪⎪⎣⎭-+--+⎪⎝⎭. 解法二:3a =,3A π=,∴由余弦定理知:2232b c bc bc bc +-=≥-(当且仅当b c =时取等号),3bc ∴≤,()233b c bc +=+,则113bc ≥,11b c b c bc +∴+===.11b c ∴+的取值范围为⎫+∞⎪⎪⎣⎭. 【点睛】方法点睛:求解与边长相关的取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;将所求式子化为符合基本不等式的形式或配凑成函数的形式来进行求解;应用此方法时,需注意基本不等式等号成立的条件.25.(1)n a n =,(1)2n n n S +=;(2)1242n n n T -+=-. 【分析】(1)设等差数列{}n a 的公差为d ,结合55a =,515S =列出关于首项与公差的方程组,求出首项和公差,可得数列{}n a 的通项公式及其前n 项和n S ; (2)先求得()11112n n b b n n n +=⋅≥+,得到n b n ⎧⎫⎨⎬⎩⎭是111b =为首项,12为公比的等比数列,可得数列{}n b 的通项公式:12n n nb -=,再用错位相减法可得数列{}n b 的前n 项和n T . 【详解】(1)依题意,设数列{}n a 的公差为d 因为53515S a ==,所以33a =,故35153a a d -==-. 故()33n a a n d n =+-=,(1)2n n n S +=(2)依题意,112n n n n b a b a ++=,()11112n nb b n n n+=⋅≥+ 所以n b n ⎧⎫⎨⎬⎩⎭是111b =为首项,12为公比的等比数列,112n n b n -⎛⎫= ⎪⎝⎭,从而12n n nb -=01221123122222n n n n n T ---=+++⋅⋅⋅++ 123111*********n n n n n T --=+++++⋅⋅⋅ 12111112122121222222212n n n n n n n n n T --+=+++⋅⋅⋅+-=-=-- 所以1242n n n T -+=-.【点睛】关键点点睛:本题考查的知识点是等差数列通项公式与求和公式、等比数列前n 项和公式、错位相减求和,综合性强,难度中档.“错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:(1)掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列对应项的积构成的新数列);(2)相减时注意最后一项的符号; (3)求和时注意项数别出错;(4)最后结果一定不能忘记等式两边同时除以1q -. 26.(1)13-=n n a ,3n b n =;(2)1321344n n n T +-=+⋅. 【分析】(1)由数列的递推关系式求出等比数列{}n a 的通项公式,利用等差数列的基本量运算得出{}n b 的通项公式; (2)利用错位相减法求出n T . 【详解】(1)1211n n a S n +=+≥①1212n n a S n -=+≥②①-②得:13n n a a +=,2n ≥ 又因为11a =,23a =所以数列{}n a 是以1为首项,3为公比的等比数列 所以13-=n n a因为{}n b 为等差数列且39b =,15272b b +=所以有:()111292724b d b b d +=⎧⎨+=+⎩解得:13b =,3d =,所以3n b n =(2)由(1)知3nn c n =⋅213233n n T n =⋅+⋅+⋅①()23131323133n n n T n n +=⋅+⋅+-⋅+⋅②①-②得:2312333...33n n n T n +-=++++-⋅()11131333233132n n n n n T n n +++---=-⋅=-⋅-1321344n n n T +-=+⋅【点睛】方法点睛:本题考查数列的通项公式,考查数列的求和,数列求和的方法总结如下:1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.。

(常考题)北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)(3)

(常考题)北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)(3)

一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且CD =,3a b =,则c 的值为( )A .72B .3C .3D .2.在ABC 中,内角,A ,B C 的对边分别为,a ,b c ,已知b =22cos c a b A -=,则a c +的最大值为( )A B .C .D3.在△ABC 中,若222a c b -+=,则C =( ). A .45° B .30°C .60°D .120°4.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,60b c C ===︒D .4,3,30b c C ===︒5.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin sin A C B A C +-=,1b =,则2a -的最小值为( )A .4-B .-C .2-D .6.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形7.在ABC 中,内角,,A B C 所对应的边分别为,,a b c ,若sin cos 0b A B =,且2b ac =,则a cb+ 的值为( )A BC .2D .48.在直角梯形ABCD 中,//AB CD ,90ABC ∠=,22AB BC CD ==,则cos DAC ∠=( )A B C D .109.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且1a =,cos si 3n 3b c C B -=,则B 的值是( )A .6π B .3π C .23π D .56π 10.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若3a =,2b =,45B =︒,则A =( )A .30B .30或150︒C .60︒或120︒D .60︒11.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .1712.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,13a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 二、填空题13.已知ABC 的面积为4,2tan 3B =,AB AC >,设M 是边BC 的中点,若5AM =,则BC =___________.14.在ABC 中,点M 是边BC 的中点,3AM =2BC =,则2AC AB +的最大值为___________.15.某小区拟将如图的一直角三角形ABC 区域进行改建:在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知207m AB =,107m AC =,则DEF 区域面积(单位:2m )的最小值大约为______2m .7 2.65≈;3 1.73≈)16.如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75︒,距灯塔68海里的M 处,下午2时到达这座灯塔的东南方向N 处,则该船航行的速度为__________海里/小时.17.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.18.在ABC 中,若3b =3c =,30B ︒=,则a 等于________.19.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin 22sin sin b C c B a B C +=,2226b c a +-=,则ABC 的面积为_______. 20.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________. 三、解答题21.在ABC 中,已知边长是5,7,8BC AC AB ===. (1)求角B ;(2)求ABC 的面积; (3)求ABC 外接圆面积.22.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且()()()sin sin sin 3a b A B C c b -+=.(1)求角A ;(2)若ABC 的面积23ABC S =△a 的取值范围.23.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程22320x x -+=的两根,()2cos 1A B +=.(1)求角C 的度数; (2)求AB 的长.24.ABC 是等边三角形,点D 在边AC 的延长线上,且AD =3CD ,BD 7,求AD 的值和sin ∠ABD 的值25.在△ABC 中,BC =a ,AC =b ,a 、b 是方程22320x x -+=的两个根,且120A B +=︒,求ABC 的面积及AB 的长.26.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知2b ac =,且a 2-c 2=ac -bc ,求∠A 的大小及sin b Bc的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值. 【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 3c a b ab C =+--==+. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.B解析:B 【分析】由正弦定理化边角,利用诱导公式两角和的正弦公式化简可得B 角,然后用余弦定理得2()33a c ac +-=,再利用基本不等式变形后解不等式得a c +的最大值.【详解】因为22cos c a b A -=,所以由正弦定理得,2sin sin 2sin cos C A B A -=,因为A B C π+=-,所以sin sin()sin cos cos sin C A B A B A B =+=+,所以2sin cos 2cos sin sin 2sin cos A B A B A B A +-=,化简得(2cos 1)sin 0B A -=,因为sin 0A ≠,所以2cos 10B -=,解得1cos 2B =,因为(0,)B π∈,所以3B π=,因为b =222232cos a c ac B a c ac =+-=+-,所以2()33a c ac +-=,所以222313()()()44a c a c a c ≥+-+=+,当且仅当a c =时取等号,所以a c +≤a c +的最大值为故选:B . 【点睛】方法点睛:本题考查主要正弦定理、余弦定理,在三角形问题中出现边角关系时可用正弦定理化边为角,然后由利用三角函数恒等变换公式如诱导公式,两角和与差的正弦公式等化简变形得出所要结论.3.B解析:B 【分析】根据余弦定理,可以求出C 角的余弦值,进而根据C 为三角形内角,解三角方程可以求出C 角.【详解】∵222a c b -+=,∴22222a b c cosC ab +-==. 又∵C 为三角形内角∴30C =︒. 故选B . 【点睛】本题考查余弦定理的应用,属基础题.4.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin a b B A B =⇒=,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.5.A解析:A 【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴2222a c b ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B ac π====,∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<,所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.6.D解析:D 【分析】根据cos cos a A b B =,利用正弦定理将边转化为角得到sin cos sin cos A A B B =,然后再利用二倍角的正弦公式化简求解. 【详解】因为cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.7.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb+∴====. 故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.8.C解析:C 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=,在Rt ADE ∆中,AD ==AC在ACD ∆中,由余弦定理得2222cos2AC AD CD DAC AC AD +-∠===⋅, 故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.9.C解析:C 【分析】cos sin sin 33B C C B A =-,再由三角恒等变换化简可得sin 3=-B B ,进而可得tan 3B =.【详解】 因为1a =cos si 3n 3b c C B -=3cos sin 3b C c B a -=,cos sin sin 33B C C B A =-, 又()sin sin sin cos cos sin A B C B C B C =+=+,33in n co c s s os in s 3s n n i i B C B C C B B C =-, 化简得sin sin 3sin C B B C =-, 因为()0,C π∈,()0,B π∈,所以sin 0C ≠, 所以sin 3=B B 即tan 3B = 所以23B π=. 故选:C. 【点睛】本题考查了三角恒等变换及正弦定理的综合应用,考查了运算求解能力与转化化归思想,属于中档题.10.C解析:C 【解析】 ∵3,2,45a b B ===︒∴根据正弦定理sin sin a b A B=,即sin sin a B A b ===∵a b =>=∴()45,135A ∈︒︒ ∴60A =︒或120︒ 故选C11.D解析:D 【分析】由题意得出点D 为AF的中点,由余弦定理得出AB =,结合三角形面积公式得出正确答案. 【详解】2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+解得:AB =)22ABC1()sin 601217sin 602DEFAD S S ︒︒∴== 故选:D 【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.12.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-== ∴cos 2B =,又()0,πB ∈∴6B π=.故选:B .【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.二、填空题13.4【分析】首先利用余弦定理和三角形面积公式建立关于的方程再分别求根据余弦定理求结合条件求得的值【详解】得:解得:①中利用余弦定理②由①②可得解得:或即当时得此时不成立当时得此时成立故故答案为:4【点 解析:4【分析】首先利用余弦定理和三角形面积公式,建立关于,a c 的方程,再分别求,a c ,根据余弦定理求b ,结合条件AB AC >,求得BC 的值.【详解】2tan 3B =,得:sin 13B =,cos 13B =11sin 422ABC S ac B ac ===,解得:ac =① ABM中,利用余弦定理222252cos 5424a a a c c B c =+-⋅⋅=+= ② 由①②可得22174ac a c ⎧=⎪⎨+=⎪⎩,解得:2a c ⎧=⎪⎨=⎪⎩4a c =⎧⎪⎨=⎪⎩, AB AC >,即c b >当2a c ==时,2222cos 32b a c ac B =+-=,得b =c b <,不成立,当4,a c == 2222cos 5b a c ac B =+-=,得b =c b >,成立,故4BC a ==.故答案为:4【点睛】易错点点睛:本题的易错点是求得,a c 后,还需满足条件AB AC >这个条件,否则会增根. 14.【分析】用余弦定理表示出求出后利用余弦函数性质可得最大值【详解】记则在中同理在中可得∴设则其中是锐角显然存在使得∴的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理考查换元法求最值解题方法是用解析:【分析】用余弦定理表示出,AC AB ,求出2AC AB +后利用余弦函数性质可得最大值.【详解】记AMC α∠=,则AMB πα∠=-,在AMC中,2222cos 314AC AM MC AM MC ααα=+-⋅=+-=-, 同理在AMB中可得24AB α=+,∴228AB AC +=,设AB x =,AC x =,(0,)2x π∈.则12cos )cos )2AC AB x x x x x x +=+=+=+)x θ=+,其中cos θθ==θ是锐角, 显然存在0(0,)22x ππθ=-∈,使得0sin()1x θ+=, ∴2AC AB +的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理,考查换元法求最值.解题方法是用余弦定理表示出,AB AC ,得出228AB AC +=,利用三角换元法AB x =,AC x =,(0,)2x π∈.这里注意标明x 的取值范围.在下面求最值时需确认最值能取到,然后结合三角函数的性质求最值.15.【分析】设那么在中利用正弦定理求出关于的函数并求出其最大值即可求解【详解】在中可得所以设那么在中由正弦定理可得其中所以当时取到最小值最小值为故面积的最小值故答案为:【点睛】本题考解三角形的实际应用考 解析:130【分析】设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=,在BEF 中,利用正弦定理,求出x 关于θ的函数,并求出其最大值,即可求解.【详解】在Rt ABC △中,AB =,AC =,可得CB =. 所以6ABC π∠=设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=.在BFE △中,由正弦定理,可得sin sin 66xπθ=+ ⎪⎝⎭,132(cos sin )cos 1021,(3sin 2cos )102122x x xθθθθθ++=+=, 2121101010sin()3sin 2cos 7s 3in()x θαθθθα===+++,其中23tan α=, 所以当sin()1θα+=时,x 取到最小值,最小值为103, 故DEF 面积的最小值21sin 75375 1.73129.7513023S x π=⨯=≈⨯=≈. 故答案为:130【点睛】本题考解三角形的实际应用,考查正弦定理,三角恒等变换,以及三角函数的性质,属于中档题.本题解题的关键在于设CED θ∠=,m DE x =,进而在BFE △中,得1021cos sin sin 66xx θππθ-=⎛⎫+ ⎪⎝⎭,进而将问题转化为求边x 的最小值问题. 16.【解析】如图在△MNO 中由正弦定理可得则这艘船的航行速度(海里/小时)点睛:(1)测量两个不可到达的点之间的距离问题一般是把求距离问题转化为应用余弦定理求三角形的边长的问题然后把求未知的另外边长问题解析:176 【解析】如图,在△MNO 中,由正弦定理可得,68sin120686346sin 45MN === 则这艘船的航行速度6642v ==(海里/小时). 点睛:(1)测量两个不可到达的点之间的距离问题,一般是把求距离问题转化为应用余弦定理求三角形的边长的问题.然后把求未知的另外边长问题转化为只有一点不能到达的两点距离测量问题,然后运用正弦定理解决.(2)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知两个角和一条边解三角形的问题,从而运用正弦定理解决.17.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值.【详解】因为222a cb ac +-=,所以2221cos 222a c b ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C π====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+ ⎪⎝⎭()A ϕ=+,其中tan 2ϕ=. 所以2a c +的最大值为2A πϕ=-时取得.故答案为:【点睛】 本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.18.或【分析】由正弦定理求得得到或分类讨论即可求得的值【详解】由正弦定理可得所以因为所以或当时可得;当时此时综上可得或故答案为:或【点睛】本题主要考查了正弦定理的应用其中解答中利用正弦定理求得的值得出的解析:【分析】由正弦定理,求得sin C =,得到60C ︒=或120C ︒=,分类讨论,即可求得a 的值. 【详解】 由正弦定理,可得sin sin b c B C =,所以sin 3sin c B C b ⋅===, 因为(0,180)C ∈,所以60C ︒=或120C ︒=,当60C ︒=时,90A ︒=,可得a =;当120C ︒=时,30A ︒=,此时a b ==综上可得a =a =故答案为:.【点睛】本题主要考查了正弦定理的应用,其中解答中利用正弦定理求得sin C 的值,得出C 的大小是解答的关键,着重考查分类讨论,以及运算与求解能力. 19.【分析】由正弦定理得由平方关系和余弦定理可得再利用面积公式即可得解【详解】由已知条件及正弦定理可得易知所以又所以所以所以即所以的面积故答案为:【点睛】本题考查了正弦定理余弦定理和三角形面积公式的应用 解析:32【分析】由正弦定理得sin A =32bc =,再利用面积公式1sin 2S bc A =即可得解. 【详解】由已知条件及正弦定理可得2sin sin sin sin B C A B C =,易知sin sin 0B C ≠,所以sin 2A =, 又2226b c a +-=,所以2223cos 2b c a A bc bc+-==,所以cos 0A >,所以cos A =32bc =,bc =,所以ABC 的面积113sin 2222S bc A ==⨯=. 故答案为:32. 【点睛】本题考查了正弦定理、余弦定理和三角形面积公式的应用,属于中档题. 20.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为 解析:2π 【分析】 根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠,sin 1A ∴=,∴由于A 为三角形内角,可得2A π=. 故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦. 三、解答题21.(1)3π;(2)3)493π. 【分析】(1)由余弦定理,求得1cos 2B =,即可求得角B 的大小; (2)由三角形的面积公式,即可求得ABC S的面积; (3)由正弦定理,求得2sin AC R B ==. 【详解】 (1)由题意,在ABC 中,5BC =,7AC =,8AB =, 由余弦定理有2222225871cos 22582BC AB AC B BC AB +-+-===⋅⨯⨯, 因为(0,)B π∈,所以3B π=.(2)由三角形的面积公式,可得ABC S=11sin 8522AB BC B ⋅=⨯⨯= (3)由正弦定理,可得72sin sin 3AC R B π===,所以外接圆面积为2493ππ⨯=. 22.(1)30;(2)2a ≥【分析】(1)由正弦定理化角为边可得222b c a +-=,再利用余弦定理即可求出; (2)由面积公式可得8bc =+.(1)由已知结合正弦定理可得()()()3a b a b c c b -+=-,即2223b c a bc +-=, 则由余弦定理可得22233cos 2b c bc A bc a +===-, ()0,180A ∈,30A ∴=;(2)11sin 2324ABC S bc A bc ===+△,则843bc =+, 由2223234a b c bc bc bc =+-≥-=,当且仅当b c =时等号成立,2a ∴≥.23.(1)23C π=;(2)10AB . 【分析】(1)利用诱导公式可得角C 的余弦值,从而可求C 的大小.(2)利用余弦定理和韦达定理可求AB 的长.【详解】(1)由题设可得()1cos 2C π-=即1cos 2C =-, 而C 为三角形内角,故23C π=. (2)由韦达定理可得23,2a b ab +==, 由余弦定理可得()2222222cos 10AB a b ab C a b ab a b ab =+-=++=+-=,故10AB. 24.6;32114. 【分析】在BCD 中,根据AD =3CD ,BD =27,利用余弦定理求解CD ,在A BD 中,利用正弦定理求解.【详解】如图所示:在等边ABC 中,AD =3CD ,所以AC =2CD .又BD 7所以BD 2=BC 2+CD 2-2BC ⋅CD ⋅cos ∠BCD ,即)2=(2CD )2+CD 2-2⋅2CD ⋅CD ⋅cos120°,解得CD =2,可得AD=6,由sin 60AD ABD =∠, 得6sin 60ABD =∠, 解得sin ∠ABD25.S AB == 【分析】 利用韦达定理求出,a b ab +,再利用余弦定理,得到关于c 的方程,解之可得AB 的长;再结合面积公式可得.【详解】,a b 是方程220x-+=的两个根, 2a b ab ∴+==,又因为120A B +=︒则60C =︒,所以由余弦定理得:()(22222222221cos 22222c a b ab c a b c C ab ab -⨯-+--+-====⨯,解得c= 所以AB =ABC的面积11sin 222S ab C ==⨯= 26.3A π=,sin b B c 2= 【分析】 由已知条件变形,结合余弦定理可求得A ,由2b ac =得=b a c b,结合正弦定理可求得sin b B c. 【详解】由2b ac =,且a 2-c 2=ac -bc ,得222b c a bc +-=,所以2221cos 22b c a A bc +-==,因为0A π<<,所以3A π=. 因为2b ac =,所以=b ac b ,所以sin sin sin 2b B a B A c b === 故3A π=,sinb Bc =【点睛】关键点点睛:利用正弦定理和余弦定理求解是解题关键.。

【北师大版】高中数学必修五期末试卷附答案

【北师大版】高中数学必修五期末试卷附答案

一、选择题1.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R2.设x ,y 满足约束条件22032600,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则22a b +的最小值为( ) A .254B .499C .14425D .225493.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-4.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭5.在ABC 中,a ,b ,c 分别为角A ,B ,C的对边,若a =b =45B =︒,则A =( )A .30B .30或150︒C .60︒或120︒D .60︒6.在ABC ∆中,30,10B AC =︒=,D 是AB边上的一点,CD =ACD ∠为锐角,ACD ∆的面积为20,则BC =( ) A.B.C.D.7.在△ABC 中,a 2tanB =b 2tanA ,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形8.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若tan C =cos 8A =,b =ABC 的面积为( ) A.BCD9.设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .5B .6C .7D .810.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .411.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .1212.已知1,1x ,2x ,7成等差数列,1,1y ,2y ,8成等比数列,点()11,M x y ,()22,N x y ,则直线MN 的方程是( )A .10x y -+=B .10x y --=C .70x y --=D .70x y +-=二、填空题13.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.14.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________. 15.在ABC 中,6B π=,D 为边AB 上的一点,且满足2CD =,4AC =,锐角三角形ACDBC =_____________.16.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________17.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.18.已知ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,AB 边上的高为CD ,且2CD AB =,则a bb a+的取值范围是___________. 19.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+⎪⎝⎭,则10S =______. 20.已知等比数列{a n }的前n 项和为S n ,且133,12n n a S a λ++==,则实数λ的值为_____三、解答题21.设矩形ABCD 的周长为20,其中AB AD >,如图所示,把它沿对角线AC 对折后,AB 交DC 于点P .设AD x =,DP y =.(1)将y 表示成x 的函数,并求定义域; (2)求ADP △面积的最大值.22.因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入90万元安装了一台新设备,并立即进行生产,预计使用该设备前(N )n n +∈年的材料费、维修费、人工工资等共为(2552n n +)万元,每年的销售收入55万元.设使用该设备前n 年的总盈利额为()f n 万元.(1)写出()f n 关于n 的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后,对该设备处理的方案有两种:案一:当总盈利额达到最大值时,该设备以10万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以50万元的价格处理;问哪种方案处理较为合理?并说明理由.23.在ABC 中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5a =,6c =,3sin 5B =.(1)求b 和sin A 的值;(2)求三角形BC 边的中线AD 长; (3)求πsin(2)4A +的值. 24.在①222b a c =+,②cos sin a B b A =,③sin cos B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,___________,3A π=,b =ABC 的面积.25.设数列{}n a 满足()*122222nn a a a n n +++=∈N . (1)求数列{}n a 的通项公式; (2)求数列21n n a ⎧⎫-⎨⎬⎩⎭的前n 项和n T . 26.已知数列{}n a 的前n 项和为n S .()*22n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①24b =,48b =;②2b 是1b 和4b 的等比中项,872T =.若公差不为0的等差数列{}n b 的前n 项和为n T ,且______,求数列n n T na ⎧⎫⎨⎬⎩⎭的前n 项和n A .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为122x xx--->+,即32x->+,即32x<+,则有20x+<,解得2x<-,所以不等式12xx->+的解集为{}|2x x<-,故选A.点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.2.C解析:C【分析】根据z的最大值求得,a b的关系式,结合点到直线的距离公式,求得22a b+的最小值.【详解】由2203260x yx y-+=⎧⎨--=⎩解得43xy=⎧⎨=⎩.画出可行域如下图所示,由于0,0a b>>,所以目标函数()0,0z ax by a b=+>>在点()4,3取得最大值4312a b+=.22a b+的最小值等价于原点到直线43120x y+-=的距离的平方,原点到直线43120x y+-=的距离为221212534-=+,所以22a b+的最小值为212144525⎛⎫=⎪⎝⎭.故选:C本小题主要考查根据线性规划的最值求参数,考查数形结合的数学思想方法,属于中档题.3.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.4.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()2233x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.5.C解析:C∵45a b B ===︒∴根据正弦定理sin sin a b A B=,即sin sin a B A b ===∵a b =>=∴()45,135A ∈︒︒ ∴60A =︒或120︒ 故选C6.C解析:C 【分析】先利用面积公式计算出sin ACD ∠,计算出cos ACD ∠,运用余弦定理计算出AD ,利用正弦定理计算出sin A ,在ABC ∆中运用正弦定理求解出BC . 【详解】解:由ACD ∆的面积公式可知,11sin 1025sin 2022ACAD ACD ACD ∠=∠=,可得sinACD ∠=,ACD ∠为锐角,可得cos ACD ∠==在ACD ∆中,21002021025805AD =+-=,即有AD =由sin sin AD CDACD A =∠可得sin sin CD ACD A AD ∠=,由sin sin AC BCB A=可知sin sin 2AC A BC B ===.故选C . 【点睛】本题考查正弦定理与余弦定理在解三角形中的应用,考查方程思想,属于中档题.7.D解析:D 【分析】根据正弦定理22tan ta in n s sin B B A A =⋅⋅,化简得到sin 2sin 2A B =,得到答案. 【详解】22tan tan a B b A =,故22tan ta in n s sin B B A A =⋅⋅,即sin 2sin 2A B =.故22A B =或22A B π+=,即A B =或2A B π+=.【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力.8.B解析:B 【分析】结合同角三角函数的基本关系可求出sin 4C =,cos 4C =,sin 8A =,由两角和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】因为sin tan cos C C C ==,且22sin cos 1C C +=,解得sin 4C =,cos 4C =,又cos A =,所以sin A ==,故sin sin[()]sin()sin cos cos sin B A C A C A C A C π=-+=+=+=.因为sin sin a bA B =,b =,故sin 2sin b A a B==,故11sin 2224ABC S ab C =⨯=⨯⨯=△. 故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.9.A解析:A 【分析】由等差数列的前n 和公式,求得1710a a +=,再结合等差数列的性质,即可求解. 【详解】由题意,根据等差数列的前n 和公式,可得1777()352a a S +==,解得1710a a +=, 又由等差数列的性质,可得17452a a a +==. 故选:A. 【点睛】熟记等差数列的性质,以及合理应用等差数列的前n 和公式求解是解答的关键10.C解析:C先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩, 又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.11.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D .本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.12.B解析:B 【分析】本题先根据题意求出1x 、2x 、1y 、2y ,再写出点M 、N 的坐标并求MN k ,最后求直线MN 的方程即可. 【详解】解:∵1,1x ,2x ,7成等差数列,∴12121721x x x x +=+⎧⎨=+⎩,解得1235x x =⎧⎨=⎩,∵1,1y ,2y ,8成等比数列,∴12212181y y y y ⋅=⨯⎧⎨=⨯⎩,解得1224y y =⎧⎨=⎩∴点()3,2M ,()5,4N ,42153MN k -==- ∴直线MN 的方程:41(5)y x -=⨯-,即10x y --=.故选:B. 【点睛】本题考查等差中项,等比中项,根据两点求直线的一般式方程,是基础题.二、填空题13.【分析】作出不等式组对应的平面区域利用目标函数的几何意义结合数形结合进行求解即可【详解】由得作出不等式组对应的平面区域如图(阴影部分平移直线由图象可知当直线经过点时直线的截距最小此时也最小由解得即代 解析:4-【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可. 【详解】由z y x =-得y =x+z ,作出不等式组对应的平面区域如图(阴影部分):ABC平移直线y =x+z 由图象可知当直线y =x+z 经过点B 时,直线y =x+z 的截距最小,此时z 也最小,由240280x y x y +-=⎧⎨--=⎩,解得40x y =⎧⎨=⎩,即(4,0)B .代入目标函数z y x =-,得044z =-=-. 所以z y x =-的最小值是4-. 故答案为:4- 【点睛】方法点睛:线性规划问题解题步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案.14.①③【分析】结合基本不等式对四个函数逐个分析可得出答案【详解】对于①函数是定义域为的偶函数当时当且仅当时等号成立根据对称性可知函数的最小值为2满足题意;对于②因为所以则当且仅当即时等号成立所以即函数解析:①③ 【分析】结合基本不等式,对四个函数逐个分析,可得出答案. 【详解】对于①,函数1y x x=+是定义域为()(),00,-∞+∞的偶函数,当()0,x ∈+∞时,12x x +≥=,当且仅当1x =时等号成立, 根据对称性可知,函数1y x x=+的最小值为2,满足题意; 对于②,11123214124212112y x x x x x x ⎛⎫=++=-++=--+- ⎪---⎝⎭, 因为12x <,所以120x ->,则11244212x x -+-≥=--,当且仅当11212x x -=-,即0x =时等号成立, 所以1124212y x x ⎛⎫=--+-≤ ⎪-⎝⎭,即函数1123212y x x x ⎛⎫=++< ⎪-⎝⎭的最大值为2,没有最小值,不满足题意;对于③,222114144141x x xy x x x x x +⎛⎫=++=+ ⎪++⎝⎭,因为1x >,所以2104x x+>,所以2214241x x y x x +=+≥=+,当且仅当221441x x x x +=+,即2x =所以()2114141xy x x x x ⎛⎫=++> ⎪+⎝⎭的最小值为2,符合题意; 对于④,22221sin cos sin cos y x x x x=+,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以sin cos 0x x >,所以22221sin cos 2sin cos x x x x +≥=,当且仅当22221sin cos sin cos x x x x=,即sin cos 1x x =时等号成立,因为11sin cos sin 222x x x =≤,所以sin cos 1x x ≠, 即函数22221sin cos sin cos y x x x x=+的最小值不是2,不符合题意;故答案为:①③. 【点睛】本题考查函数的最值,考查基本不等式的应用,考查学生的推理能力与计算能力,属于中档题.15.【分析】先由面积公式求出即得再由余弦定理求出进而利用正弦定理求出再在中利用正弦定理即可求出【详解】在中解得是锐角三角形则由余弦定理可得即则在中由正弦定理可得即则则在中即解得故答案为:【点睛】本题考查【分析】先由面积公式求出sin ACD ∠,即得cos ACD ∠,再由余弦定理求出AD ,进而利用正弦定理求出sin A ,再在ABC 中利用正弦定理即可求出. 【详解】 在ACD △中,11sin 42sin 22ACDS AC CD ACD ACD =⨯⨯⨯∠=⨯⨯⨯∠=解得sin ACD ∠=ACD △是锐角三角形,1cos 4ACD ∴∠=,则由余弦定理可得222142242164AD =+-⨯⨯⨯=,即4AD =, 则在ACD △中,由正弦定理可得sin sin AD CDACD A=∠2sin A =,则sin 8A =, 则在ABC 中,sin sin BC ACA B=412=,解得BC =.【点睛】本题考查正余弦定理和三角形面积公式的应用,解题的关键是先在ACD △中,利用面积公式和正余弦定理解出sin A .16.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角【分析】不妨令A α∠=,易知ACD BCD α∠==,3B πα∠=-,然后在ABC 中,利用正弦定理,求出sin α,cos α的值,最后在ABC 中,利用正弦定理,可求出AB 的值. 【详解】解:在ABC 中,角C 的平分线交AB 于D ,且CD AD =. 设A α∠=,则ACD BCD α∠==,3B πα∠=-, ∴sin sin AC BCB A=∠∠,即32sin(3)sin παα=-,整理得2sin33sin αα=,所以:2(sin cos2cos sin 2)3sin ααααα+=, 结合sin 0α≠得222(2cos 12cos )3αα-+=,即258cos α=,显然α是锐角,所以cos αα=∴sin 22sin cos ααα==.再由ABC 得:2sin sin 2ABαα=,∴=解得10AB .【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.17.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得;【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y +=所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题.18.【分析】由余弦定理得出由三角形的面积公式得出进而可得出利用正弦函数的有界性和基本不等式即可求得的取值范围【详解】如下图所示:由余弦定理得由三角形的面积公式得得则当时即当时取得最大值由基本不等式可得当解析:2,22⎡⎤⎣⎦【分析】由余弦定理得出2222cos a b c ab C =++,由三角形的面积公式得出22sin c ab C =,进而可得出22sin 4b a C a b π⎛⎫+=+ ⎪⎝⎭,利用正弦函数的有界性和基本不等式即可求得a bb a +的取值范围. 【详解】 如下图所示:由余弦定理得2222cos c a b ab C =+-,2222cos a b c ab C ∴+=+,1122CD AB c ==,由三角形的面积公式得11sin 222ABC cS ab C c ==⋅△,得22sin c ab C =,()222sin cos 22sin 4a b ab C C ab C π⎛⎫∴+=+=+ ⎪⎝⎭,则22224b a a b C a b ab π+⎛⎫+==+ ⎪⎝⎭,0C π<<,5444C πππ∴<+<,当42C ππ+=时,即当4C π时,b aa b+取得最大值由基本不等式可得2b a a b +≥=,当且仅当a b =时,等号成立, 因此,a bb a+的取值范围是2,⎡⎣.故答案为:2,⎡⎣.【点睛】本题考查三角形中代数式的取值范围的求解,考查了余弦定理、三角形的面积公式、基本不等式以及正弦函数有界性的应用,考查计算能力,属于中等题.19.【分析】先利用求出再利用时可知是首项为1公差为1的等差数列即可求出【详解】当时解得当时整理可得是首项为1公差为1的等差数列是正项数列故答案为:【点睛】本题考查等差数列的判断考查和的关系属于中档题【分析】先利用11a S =求出1S ,再利用2n ≥时1n n n a S S -=-可知{}2n S 是首项为1,公差为1的等差数列,即可求出10S . 【详解】 当1n =时,1111112S a a a ,解得11a =,11S = 当2n ≥时,11112nn n n nS S S S S ,整理可得2211n n S S --=,2n S 是首项为1,公差为1的等差数列, 2111n S n n ,{}n a 是正项数列,n S ∴=1010S .【点睛】本题考查等差数列的判断,考查n a 和n S 的关系,属于中档题.20.【分析】首先利用与的关系式得到求得公比首项和第二项再通过赋值求的值【详解】当时两式相减得即并且数列是等比数列所以当时解得故答案为:【点睛】关键点点睛:本题的关键是利用数列和的关系式求数列的通项解析:34-【分析】首先利用1n a +与n S 的关系式,得到14n n a a +=,求得公比,首项和第二项,再通过赋值2n =求λ的值. 【详解】当2n ≥时,1133n nnn a S a S λλ+-+=⎧⎨+=⎩,两式相减得()1133n n n n n a a S S a +--=-=,即14n n a a +=,并且数列{}n a 是等比数列, 所以4q =,312a =,2133,4a a ∴==, 当2n =时,()321233a S a a λ+==+, 解得34λ=-. 故答案为:34- 【点睛】关键点点睛:本题的关键是利用数列n a 和n S 的关系式,求数列的通项.三、解答题21.(1)501010y x=--,(0,5)x ∈;(2)75-【分析】(1)由题意得10AB CD x ==-,则10CP x y =--,根据ADP Rt CBP ≌,可得DP BP y ==,所以222+(10)y x x y =--,化简整理,即可求得y 与x 的关系,根据AB AD >,即可求得x 的范围,即可得答案;(2)由(1)可得501010y x=--,(0,5)x ∈,则ADP △的面积12505(10)75210S xy x x ==-++-,根据x 的范围,结合基本不等式,即可求得答案.【详解】(1)由题意得:10AB CD x ==-,则10CP x y =--,因为在Rt ADP 和Rt CBP 中,,APD CPB AD BC ∠==, 所以ADP Rt CBP ≌,即DP BP y ==, 所以在Rt CBP 中,222+(10)y x x y =--,所以2222+10020202y x x y x y xy =++--+, 化简可得501010y x=--, 因为AB AD >,所以100x x ->>,解得05x <<, 所以501010y x=--,(0,5)x ∈; (2)由(1)可得501010y x=--,(0,5)x ∈, 所以ADP △面积115025250(10)55(10)7522101010x S xy x x x x x x ==⋅-=-=-++---, 因为(0,5)x ∈,所以100x -<,所以2502505(10)[5(10)]1010x x x x -+=--+≤-=---当且仅当2505(10)10x x-=-,即10x =-时等号成立,此时面积250[5(10)]757510S x x=--++≤--即ADP △面积最大值为75-【点睛】解题的关键是根据条件,表示出各个边长,根据三角形全等,结合勾股定理,进行求解,易错点为:利用基本不等式求解时,需满足“①正”,“②定”,“③相等”,注意检验取等条件是否成立,考查分析理解,计算化简的能力,属中档题.22.(1)25()50902f n n n =-+-,3年;(2)第二种方案更合适,理由见解析.【分析】(1)利用n 年的销售收入减去成本,求得()f n 的表达式,由()0f n >,解一元二次不等式求得从第3年开始盈利.(2)方案一:利用配方法求得总盈利额的最大值,进而求得总利润;方案二:利用基本不等式求得6n =时年平均利润额达到最大值,进而求得总利润. 比较两个方案获利情况,作出合理的处理方案. 【详解】 (1)由题意得:2255()5590(5)509022f n n n n n n =--+=-+-由()0f n >得25509002n n -+->即220360n n -+<,解得218n <<由n ∈+N ,设备企业从第3年开始盈利(2) 方案一总盈利额25()(10)1602f n n =--+,当10n =时,max ()160f n =故方案一共总利润16010170+=,此时10n = 方案二:每年平均利润()536550()502022f n n n n =-+-⨯≤,当且仅当6n =时等号成立 故方案二总利润62050170⨯+=,此时6n =比较两种方案,获利都是170万元,但由于第一种方案只需要10年,而第二种方案需要6年,故选择第二种方案更合适. 【点睛】本小题主要考查一元二次不等式的解法,考查基本不等式求最值,属于中档题. 23.(12;(3. 【分析】(1)确定B 锐角,求得cos B ,由余弦定理求得b ,再由正弦定理得sin A ; (2)在ABD △中由余弦定理求得中线AD ,(3)确定A 是锐角,求得cos A ,由二倍角公式求得sin 2,cos 2A A ,然后由两角和的正弦公式求值. 【详解】(1)在ABC 中,因为a b >,故由3sin 5B =,可得cos 45B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b = 由正弦定理sin sin a b A B =,得sin sin 13a B Ab ==. 所以,bsin A的值为13(2)设BC 边的中点为D ,在ABD △中,cos 45B = 由余弦定理得:AD ===, (3)由(1)及a c <,得cos 13A =,所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 【点睛】关键点点睛:本题考查正弦定理、余弦定理解三角形,解题时根据已知条件选用正弦定理或余弦定理求解,注意在用平方关系求得角的余弦时,先确定角的范围,然后计算. 24.条件选择见解析;ABC【分析】选择①,用余弦定理求得B 角,选择②,用正弦定理化边为角后求得B 角,选择③用两角和的正弦公式变形后求得B 角,然后利用正弦定理求得a ,再由诱导公式与两角和的正弦公式求得sin C ,最后由面积公式计算出面积. 【详解】解:(1)若选择①,222b a c =+由余弦定理,222cos 222a cb B ac ac +-===, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭所以113sin 2244ABC S ab C +===△. (2)若选择②cos sin a B b A =,则sin cos sin sin A B B A =, 因为sin 0A ≠,所以sin cos B B =, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以113sin2244ABCS ab C+===△.(3)若选择③sin cosB B+=4Bπ⎛⎫+=⎪⎝⎭sin14Bπ⎛⎫+=⎪⎝⎭,因为()0,Bπ∈,所以5,444Bπππ⎛⎫+∈ ⎪⎝⎭,所以42Bππ+=,所以4Bπ=;由正弦定理sin sina bA B=,得sinsinsinb AaBπ===因为3Aπ=,4Bπ=,所以53412Cππππ=--=,所以5sin sin sin sin cos cos sin124646464Cπππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin22ABCS ab C===△.【点睛】关键点点睛:本题考查正弦定理、余弦定理、三角形的面积公式,解题中要注意条件与结论之间的联系,确定选用的公式与顺序.用正弦定理进行边角转换是一种重要技巧,它的目的是边角分离,公式应用明确.本题是求三角形面积,一般要知道两边和夹角的正弦,在已知一角和一边情况下还需要求得一条边长及两边夹角,这样我们可以采取先求B角,再求a边和sin C,从而得面积.25.(1)2nna=;(2)2332n nnT+=-.【分析】(1)当2n≥时,112211222nnaa an--+++=-与已知条件两式相减可得2nna=,再令1n=,计算1a即可求解;(2)由(1)得2nna=,所以22211nnn na--=,再利用乘公比错位相见即可求和.【详解】(1)数列{}n a满足122222nnaa an+++=当2n≥时,112211222nnaa an--+++=-两式作差有12nn a =,所以2n n a = 当1n =时,12a =,上式也成立所以2nn a =(2)22211n n n n a --= 则211113(21)222nn T n ⎛⎫⎛⎫=⨯+⨯++-⨯ ⎪ ⎪⎝⎭⎝⎭,231111113(21)2222n n T n +⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()2311111111111111131421221221231222222222212n n n n n n T n n n ++-+⎛⎫- ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=⨯+++⋯+--⨯=+⨯--=-+⨯⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-所以2332n nn T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.26.(1)2nn a =;(2)选择①:332n n +-;选择②:332nn +-. 【分析】(1)由数列n a 与n S 的关系转化条件为()122n n a a n -=≥,结合等比数列的性质即可得解;(2)设数列{}n b 的公差为d ,若选择①,由等差数列的通项公式列方程可得12b d ==,进而可得2n T n n =+,再结合错位相减法即可得解;若选择②,由等比中项的性质结合等差数列的通项公式、前n 项和公式可得12b d ==,再结合错位相减法即可得解. 【详解】(1)当1n =时,11122a S a ==-,可得12a =;当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,即()122n n a a n -=≥, 因为120a =≠,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n nn a -=⋅=;(2)设数列{}n b 的公差为d , 若选择①,由题意11438b d b d +=⎧⎨+=⎩,解得12b d ==;所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n n A n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯, 两式相减得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--,所以332n n n A +=-; 若选择②,有2214b b b =⋅,即()()21113b d b b d +=⋅+,即21b d d =,因为0d ≠,所以1b d =, 所以8187728362T b d d ⨯==+=,解得12b d ==, 所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯,()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯. 两式相减,得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n nn A +=-. 【点睛】 关键点点睛:(1)当条件中同时出现n a 与n S ,要注意n a 与n S 关系的应用; (2)要明确错位相减法的适用条件和使用方法,细心运算.。

北师大版高中数学必修5试卷及答案

北师大版高中数学必修5试卷及答案

高二数学高中数学必修5测试题宝鸡铁一中司婷一、选择题(每小题5分,共50分)1 .在△ ABC中,若a =2 , b = 2 .3 , A = 30°,则B 等于A. 60 B . 60 或120:C . 30 D . 30 或150;2 .在数列1,1,235,8, x,21,34,55 中,x等于()A. 11 B . 12 C . 13 D . 143. 等比数列中,a2 =9忌=243,则况啲前4项和为()A . 81B . 120C . 168D . 1924. 已知{an}是等差数列,且a2+ a3+ a$+ an=48,则a6+ a?二()A . 12B . 16C . 20D . 245. 等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和是()A.130B.170C.210D.2606. 已知等比数列{a n}的公比q—1,则a1貝a5 a等于()3 a? + a4 + a6 +A. -1B.-3C. 1D.3337.设a b, c d , 则下列不等式成立的是()。

A. a - c b-dB.ac bdC. - —D. b d :a cc b8 .如果方程x2(m-1)x • m2-2 =0的两个实根一个小于?1,另一个大于1, 那么实数m的取值范围是()A (- 2, 2) B. (-2, 0)C. (-2, 1)D . (0, 1)9. 已知点(3, 1 )和(-4 , 6)在直线3x-2y+a=0的两侧,则a的取值范围是()A. a<-7 或a>24B. a=7 或a=24C. -7< a<24D. -24< a<710. 有甲、乙两个粮食经销商每次在同一粮食生产地以相同的价格购进粮食,他们共购进粮食两次,各次的粮食价格不同,甲每次购粮10000千克,乙每次购粮食10000元,在两次统计中,购粮的平均价格较低的是()A. 甲B. 乙C. 一样低D. 不确定二、填空题(每小题5分,共20分)11 .在虫ABC中,若a=3,cosA = -丄,则MBC的外接圆的半径为 _____212 .在厶ABC中,若a2=b2+bc+c2,则A= ____________ 。

【北师大版】高中数学必修五期末试卷附答案(3)

【北师大版】高中数学必修五期末试卷附答案(3)

一、选择题1.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A .42B .32C .6D .82.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 3.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭4.在△ABC 中,若b =2,A =120°,三角形的面积3S =,则三角形外接圆的半径为A .3B .23C .2D .45.一艘游轮航行到A 处时看灯塔B 在A 的北偏东75︒,距离为126海里,灯塔C 在A 的北偏西30,距离为123海里,该游轮由A 沿正北方向继续航行到D 处时再看灯塔B 在其南偏东60︒方向,则此时灯塔C 位于游轮的( ) A .正西方向 B .南偏西75︒方向 C .南偏西60︒方向D .南偏西45︒方向6.如图所示,隔河可以看到对岸两目标A ,B ,但不能到达,现在岸边取相距4km 的C ,D 两点,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),则两目标A ,B 间的距离为( )km.A 85B .4153C .153D .57.已知a 、b 、c 分别是ABC 内角A 、B 、C 的对边,sin sin 3sin A B C +=,cos cos 2a B b A +=,则ABC 面积的最大值是( )A .2B .22C .3D .238.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .649.记n S 为数列{}n a 的前n 项和.若点(),n n a S ,在直线60x y +-=上,则4S =( ) A .92B .254C .458D .40910.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知222,,a b c 成等差数列,则cos B 的最小值为( )A .12B .22C .34D .3211.已知等差数列{}n a 中, 23a =,59a =,则数列{}n a 的前6项之和等于( ) A .11 B .12 C .24D .3612.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或二、填空题13.已知实数x ,y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为________.14.已知0a >,0b >,182+1a b +=,则2a b +的最小值为__________. 15.某小区拟将如图的一直角三角形ABC 区域进行改建:在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知207m AB =,107m AC =,则DEF 区域面积(单位:2m )的最小值大约为______2m .(保留到整数,参考数据:7 2.65≈;3 1.73≈)16.如图,A ,B 两点都在河的对岸(不可到达),在所在的河岸边选取相距30m 的C ,D两点,测得75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒,45ADB ∠=︒,其中A ,B ,C ,D 四点在同一平面内,则A ,B 两点之间的距离是_______m .17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则满足10a =,18b =,30A =︒的三角形解的个数是______.18.当x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩时,|2|x y a -≤恒成立,则实数a 的取值范围是________.19.已知数列{}n a 满足112a =,()*112n n a a n +=∈N .设2n n n b a λ-=,*n ∈N ,且数列{}n b 是递增数列,则实数λ的取值范围是________.20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________.三、解答题21.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 22.已知0a >,0b >且3a b +=.(Ⅰ)求311()a b +的最大值及此时a ,b 的值; (Ⅱ)求2231a b a b +++的最小值及此时a ,b 的值. 23.已知ABC 中,51tan 43A π⎫⎛-=⎪⎝⎭. (1)求2sin cos2A A +的值;(2)若ABC 的面积为4,4AB =,求BC 的值. 24.在ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.25.在①2*31,4(n S n kn n N k =-+∈为常数),②*1(,n n a a d n N d +=+∈为常数),③*1,,(0n n a qa q n N q +=>∈为常数)这三个条件中任选一个,补充到下面问题中,若问题中的数列存在,求数列()1*1n n n a N a +⎧⎫⎨⎭∈⎬⎩的前10项和;若问题中的数列不存在,说明理由.问题:是否存在数列{}*()∈n a n N ,其前n 项和为n S ,且131,4,a a ==___________?注:如果选择多个条件分别解答,按第一个解答计分.26.在①420S =,②332S a =,③3423a a b -=这三个条件中任选一个,补充在下面问题中,并作答.问题:已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,______,2138,34b b b =-=,是否存在正整数k ,使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34kT >?若存在,求k 的最小值;若不存在,说明理由, 注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】运用基本不等式2422x y +≥=【详解】因为20,40xy>>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”).故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.2.A解析:A先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题3.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()2233x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.4.C【解析】132sin1202S c ==⨯︒ ,解得c =2.∴a 2=22+22−2×2×2×cos 120°=12,解得23a = ,∴2324sin 3a R A === , 解得R =2.本题选择C 选项. 5.C解析:C 【分析】根据题设中的方位角画出,ABD ACD ∆∆,在ABD ∆中利用正弦定理可求出AD 的长,在ACD ∆中利用余弦定理求出CD 的长,利用正弦定理求CDA ∠的大小(即灯塔C 的方位角). 【详解】 如图,在ABD ∆中,45B =︒,由正弦定理有126242sin 45sin 6032AD AB ===︒︒,24AD =. 在ACD ∆中,余弦定理有2222cos30CD AC AD AC AD =+-⨯⨯︒,因3AC=,24AD =,12CD =,由正弦定理有sin 30sin CD AC CDA =︒∠,3sin CDA ∠=60CDA ∠=︒或者120CDA ∠=︒.因AD CD >,故CDA ∠为锐角,所以60CDA ∠=︒,故选C. 【点睛】与解三角形相关的实际问题中,我们常常碰到方位角、俯角、仰角等,注意它们的差别.另外,把实际问题抽象为解三角形问题时,注意分析三角形的哪些量是已知的,要求的哪些量,这样才能确定用什么定理去解决.6.B解析:B 【分析】由已知可求30CAD ∠=︒,120ACD ∠=︒,由正弦定理可求AD 的值,在BCD ∆中,60CBD ∠=︒,由正弦定理可求BD 的值,进而由余弦定理可求AB 的值. 【详解】由已知,ACD ∆中,30CAD ∠=︒,120ACD ∠=︒,由正弦定理,sin sin CD ADCAD ACD =∠∠,所以·sin 4?sin120sin sin30CD ACD AD CAD ∠︒===∠︒在BCD ∆中,60CBD ∠=︒,由正弦定理,sin sin CD BDCBD BCD =∠∠,所以·sin 4sin45sin sin60CD BCD BD CBD ∠︒===∠︒ 在ABD ∆中,由余弦定理,222802?·3AB AD BD AD BD ADB =+-∠=,解得:AB =所以A 与B 的距离AB = 故选B 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于中档题.7.B解析:B 【分析】由cos cos 2a B b A +=,利用余弦定理代入化简解得2c =,再根据sin sin 3sin A B C +=,利用正弦定理得到36a b c +==,即62CA CB AB +=>=,得到点C 的轨迹是以A ,B 为焦点的椭圆,再利用椭圆的焦点三角形求解. 【详解】∵cos cos 2a B b A +=,∴222222222a c b b c a a b ac bc+-+-⋅+⋅=,∴2c =,∵sin sin 3sin A B C += ∴36a b c +==,即62CA CB AB +=>=,∴点C 的轨迹是以A ,B 为焦点的椭圆,其中长半轴长3,短半轴长22, 以AB 为x 轴,以线段AB 的中点为原点,建立平面直角坐标系,其方程为22198x y ,如图所示:则问题转化为点C 在椭圆22198x y 上运动求焦点三角形的面积问题.当点C 在短轴端点时,ABC 的面积取得最大值,最大值为22故选:B . 【点睛】本题主要考查正弦定理,余弦定理以及椭圆焦点三角形的应用,还考查了转化求解问题的能力,属于中档题.8.D解析:D 【分析】先由不等式230ax bx a --≥的解集是[]4,1-求出a 、b ,再求b a 【详解】∵不等式230ax bx a --≥的解集是[]4,1-,∴23y ax bx a =--图像开口向下,即a <0,且23=0ax bx a --的两根为-4和1.∴12312034a b x x a a x x a ⎧⎪<⎪⎪+==-⎨⎪⎪-==-⎪⎩,解得:=26a b -⎧⎨=⎩ ∴()6=2=64b a -故选:D 【点睛】不等式的解集是用不等式对应的方程的根表示出来的.9.C解析:C 【分析】由题可得,S 60n n a +-=,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,可求得{}n a 为等比数列,进而可求得本题答案. 【详解】因为点(),n n a S 在直线60x y +-=上,所以S 60n n a +-=. 当1n =时,1160a S +-=,得13a =;当2n ≥时,S 60n n a +-=①,1160n n a S --+-=②,①-②得,112n n a a -=, 所以数列{}n a 为等比数列,且公比12q =,首项13a =, 则()4414131124511812a q S q⎡⎤⎛⎫⨯-⎢⎥⎪-⎝⎭⎢⎥⎣⎦===--. 故选:C 【点睛】本题主要考查根据,n n a S 的关系式求通项公式n a 的方法.10.A解析:A 【解析】分析:用余弦定理推论得222cos 2a c b B ac +-=.由222,,a b c 成等差数列,可得2222a c b += ,所以22222cos 24a c b a c B ac ac+-+==,利用重要不等式可得2221cos 442a c ac B ac ac +=≥=.详解:因为222,,a b c 成等差数列,所以2222a cb += . 由余弦定理推论得2222221cos 2442a cb ac ac B ac ac ac +-+==≥=当且仅当a c =时,上式取等号. 故选A .点睛:本题考查等差中项、余弦定理的推论、重要不等式等知识,考查学生的运算能力及转化能力.利用重要不等式、基本不等式求最值时,一定要判断能否取相等,不能相等时,应转化为函数求最值.11.D解析:D 【分析】根据等差数列的性质得162512a a a a +=+=,再根据等差数列前n 项和公式计算即可得答案. 【详解】解:因为等差数列{}n a 中, 23a =,59a =, 所以根据等差数列的性质得162512a a a a +=+=, 所以根据等差数列前n 项和公式()12n n n a a S +=得()16666123622a a S +⨯===. 故数列{}n a 的前6项之和等于36. 故选:D. 【点睛】本题考查等差数列的性质,前n 项和公式,考查运算能力,是中档题.12.B解析:B 【分析】结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.二、填空题13.【解析】作可行域如图则直线z=x+2y 过点A (20)时z 取最小值2点睛:线性规划的实质是把代数问题几何化即数形结合的思想需要注意的是:一准确无误地作出可行域;二画目标函数所对应的直线时要注意与约束条解析:【解析】作可行域,如图,则直线z=x+2y 过点A (2,0)时z 取最小值2.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.14.8【解析】由题意可得:则的最小值为当且仅当时等号成立点睛:在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正;二定——积或和为定值;三相等——等号能否取得若忽略了某个条件就会出解析:8 【解析】 由题意可得:()211182121116110211161102219,a b a b a b a b b a a b b a ++⎛⎫⎡⎤=++⨯+ ⎪⎣⎦+⎝⎭+⎛⎫=++ ⎪+⎝⎭⎛+≥+⨯ +⎝=则2a b +的最小值为918-=. 当且仅当3,52a b ==时等号成立.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.15.【分析】设那么在中利用正弦定理求出关于的函数并求出其最大值即可求解【详解】在中可得所以设那么在中由正弦定理可得其中所以当时取到最小值最小值为故面积的最小值故答案为:【点睛】本题考解三角形的实际应用考 解析:130【分析】设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=,在BEF 中,利用正弦定理,求出x 关于θ的函数,并求出其最大值,即可求解. 【详解】在Rt ABC △中,AB =,AC =,可得CB =. 所以6ABC π∠=设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=.在BFE △中,由正弦定理,可得sinsin 66xπθ=+ ⎪⎝⎭,12(cos )cos 2cos )2x x x θθθθθ++=+=,sin()x θα===+,其中tan α=,所以当sin()1θα+=时,x取到最小值,最小值为 故DEF面积的最小值21sin 75 1.73129.7513023S x π=⨯=≈⨯=≈. 故答案为:130 【点睛】本题考解三角形的实际应用,考查正弦定理,三角恒等变换,以及三角函数的性质,属于中档题.本题解题的关键在于设CED θ∠=,m DE x =,进而在BFE △中,得cos sinsin 66x x θππθ=⎛⎫+ ⎪⎝⎭,进而将问题转化为求边x 的最小值问题. 16.【分析】本题先在中得出得的值然后在中由正弦定理得出的长最后在中由余弦定理算出即可得到AB 之间的距离【详解】解:如图所示∵∴∴在中∴∵在中∴由正弦定理得可得在中由余弦定理得∴(米)即AB 之间的距离为米解析:1015. 【分析】本题先在ACD △中,得出30CAD ADC ∠=∠=︒,得CD 的值,然后在BCD 中由正弦定理得出BC 的长,最后在ABC 中由余弦定理,算出21500AB =,即可得到A ,B 之间的距离. 【详解】解:如图所示,∵75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒, ∴7545120ACD ACB BCD ︒︒∠=∠+∠=+=︒,∴在ACD △中,18030CAD ACD ADC ADC ∠=︒-∠-∠=︒=∠, ∴30AC CD ==.∵在BCD 中,60CBD ∠=︒, ∴由正弦定理,得30sin 75sin 60BC =︒︒,可得sin 7530203sin 75sin 60BC ︒=⋅=︒︒. 在ABC 中,由余弦定理,得()222222cos 30203sin 75230203sin 75cos 75AB AC BC AC BC ACB =+-⋅∠=+︒-⨯⨯︒︒1500=,∴1015AB =(米),即A ,B 之间的距离为1015米. 故答案为:1015.【点睛】本题考查利用正余弦定理解决实际应用问题,是中档题.17.2【分析】直接利用正弦定理得到答案【详解】根据正弦定理得到:故故满足条件的三角形共有个故答案为:【点睛】本题考查了利用正弦定理判断三角形的个数问题意在考查学生的应用能力解析:2 【分析】直接利用正弦定理得到答案. 【详解】根据正弦定理得到:sin sin a b A B=,故9sin 10B =,91sin sin 10B A >=>. 故满足条件的三角形共有2个.故答案为:2. 【点睛】本题考查了利用正弦定理判断三角形的个数问题,意在考查学生的应用能力.18.【分析】先根据条件作出可行域然后求出的取值范围由恒成立即即可得出答案【详解】由满足作出可行域如图设则表示直线在轴上的截距的相反数则由得当直线过点时有最大值4当直线过点时有最小值所以所以故答案为:【点解析:)4,⎡+∞⎣ 【分析】先根据条件作出可行域,然后求出2z x y =-的取值范围,由|2|x y a -≤恒成立,即max |2|x y a -≤,即可得出答案.【详解】由x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩,作出可行域,如图.设2z x y =-,则2y x z =-,z 表示直线2y x z =-在y 轴上的截距的相反数.则()()1,0,1,3A C ,由27010x y x y +-=⎧⎨--=⎩,得()3,2B .当直线2y x z =-过点()3,2B 时,z 有最大值4,当直线2y x z =-过点()1,3C 时,z 有最小值-1.所以|2|4x y -≤,所以4a ≤故答案为:[)4+∞,. 【点睛】本题考查简单的线性规划问题和恒成立求参数的问题,属于中档题.19.【分析】根据题意可得数列的通项公式代入表示根据数列是递增数列所以得恒成立参变分离以后计算【详解】由可得数列是首项和公比均为的等比数列所以则又因为是递增数列所以恒成立即恒成立所以所以故答案为:【点睛】解析:3,2⎛⎫-∞ ⎪⎝⎭【分析】根据题意可得数列{}n a 的通项公式,代入表示n b ,根据数列{}n b 是递增数列,所以得10n n b b +->恒成立,参变分离以后计算.【详解】 由()*112n n a a n +=∈N 可得,数列{}n a 是首项和公比均为12的等比数列,所以12n n a =,则()222n n nn b n a λλ-==-,又因为{}n b 是递增数列,所以()()()11122222220n n n n n b b n n n λλλ++=+---=+->-恒成立,即220n λ+->恒成立,所以()min 223n λ<+=,所以32λ<. 故答案为:3,2⎛⎫-∞ ⎪⎝⎭. 【点睛】关于数列的单调性应用的问题,一般需要计算1n n a a +-判断其正负,将不等式再转化为恒成立问题,通过参变分离的方法求解min ()a f n <或者max ()a f n >.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)()2111424f x x x =++;(2)答案见解析. 【分析】(1)由题得104a b -+=,20b a =-≤△且0a >,化简即得,a b 的值,即得函数的解析式;(2)由题得220cx x c -+<,再对c 分类讨论解不等式. 【详解】(1)()1104f a b -=-+=, 因为()0f x ≥恒成立,则20b a =-≤△且0a >,即221110,0,444a a a a ⎛⎫⎛⎫+-≤∴-≤∴= ⎪ ⎪⎝⎭⎝⎭,12b =, ()2111424f x x x ∴=++ (2)()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭, 即22111131424424x x c x x c ⎛⎫⎛⎫++>+-++ ⎪ ⎪⎝⎭⎝⎭ 220cx x c ∴-+<当0c时:解得0x >;当0c >时:244c =-故当1c ≥时:2440c =-≤,不等式无解;故当1c <时:2440c =->,不等式解为11x c c+<<综上所述,0c,不等式解集为0,;1c ≥时,不等式解集为∅;01c <<时,不等式解集为11c c ⎛⎫+ ⎪ ⎪⎝⎭【点睛】本题主要考查二次函数的解析式的求法,考查二次不等式的恒成立的问题,考查一元二次不等式的解法,意在考查学生对这些知识的理解掌握水平.22.(Ⅰ)32a b ==时,11a b ⎛⎫+ ⎪⎝⎭取得最大值为2-;(Ⅱ)6a =-,3b =-+,最小值为3+;【分析】(Ⅰ)利用“乘1法”与基本不等式的性质,对数函数的单调性即可得出;(Ⅱ)先对已知式子进行化简,然后结合基本不等式即可求解.【详解】解:(Ⅰ)1133224233333333333a b a b b a b aa b a b a b a b a b+++=+=+=+++=,当且仅当33b aa b=且3a b+=,即32a b==时取等号,311423loga b⎛⎫∴+=-⎪⎝⎭即最大值为2-,(Ⅱ)3a b+=,∴223313131(1)121111a ba b a ba b a b a b a b++=++-+=+-++=++++++3113(1)3(2()()332314444(1)4(1)a b ba ba b a b b++=+++=+++=++++,当且仅当3(1)44(1)b aa b+=+且3a b+=,即6a=-3b=-+时取等号,【点睛】本题考查了基本不等式的性质、方程的解法,考查了推理能力与计算能力,属于中档题.23.(1)45;(2)2.【分析】(1)首先利用两角差的正切公式求出tan A,再根据同角三角函数的基本关系及二倍角公式计算可得;(2)由(1)可知,1tan2A=,即可求出sin A,cos A,再利用余弦定理及面积公式计算可得;【详解】解:(1)5tan tan44A Aππ⎫⎫⎛⎛-=-⎪ ⎪⎝⎝⎭⎭1tan11tan3AA-==+,解得1tan2A=,故2222cossin cos2sin cosAAAA A+=+214tan15A==+.(2)由(1)可知,sin1tancos2AAA==①,且22sin cos1A A+=②;联立①②,解得sin5A=,cos5A=.又1sin42S bc A==,4c=,可得b=2222cos4a b c bc A=+-=,则2a=.即2BC=.24.ABC 为等腰三角形或直角三角形 【分析】设三角形外接圆半径为R ,根据a 2tan B =b 2tan A ,利用商数关系和正弦定理,变形为sin A cos A =sin B cos B ,再利用二倍角公式转化sin2A =sin2B ,得到角的关系判断. 【详解】设三角形外接圆半径为R , 因为a 2tan B =b 2tan A ,所以22sin sin cos cos a B b AB A=, 所以22224sin sin 4sin sin cos cos R A B R B AB A =,所以sin A cos A =sin B cos B , 所以sin2A =sin2B , 则2A =2B 或2A +2B =π, 所以A =B 或A +B =2π. 所以ABC 为等腰三角形或直角三角形. 25.答案见解析 【分析】选择①,由n S 求出1a 和3a ,常数k 不存在,数列不存在;选择②,得数列为等差数列,求出通项公式n a ,用裂项相消法结果; 选择③,得数列为等比数列,从而11{}n n a a +也是等比数列,由等比数列前n 项和公式可得结论. 【详解】解.如果选择①,由11332,,a S a S S =⎧⎨=-⎩即31142743324k k k ⎧=-+⎪⎪⎨⎪=--+⎪⎩解得3414k k ⎧=⎪⎪⎨⎪=-⎪⎩该方程组无解, 所以该数列不存在.如果选择*1,(n n a a d n N d +=+∈②为常数),即数列{}n a 为等差数列,由131,4==a a ,可得公差31322a a d -==, 所以3122n a n =- 所以12231011122310111112111111538a a a a a a a a a a a a ⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+-= ⎪⎝⎭ 如果选择*1(0,,n n a qa q n N q +=>∈③为常数),即数列{}n a 为等比数列,由131,4==a a,可得公比2q ==,所以11114(2)1n n n n n a a a a +-÷=≥, 所以数列11n n a a +⎧⎫⎨⎬⎩⎭是首项为12,公比为14的等比数列,所以其前10项和为1021134⎛-⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题考查由前n 项和n S 求通项公式n a ,解题时要注意1(2)n n n a S S n -=-≥,而11a S =,是两种不同的求法,如果要求通项公式,注意最后的结论能否统一,否则写成分段函数形式.26.选①k 的最小值为4;选②k 的最小值为4;选③k 的最小值为3; 【分析】先由条件求出11162n n b -⎛⎫=⨯ ⎪⎝⎭,得出142a b ==,若选①可得2d =,则2n a n =,从而1111n S n n =-+,由裂项相消法求出k T ,可得答案;若选②可得12a d ==,所以2n a n =,一下同选①;若选③可得43d =,从而131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,由裂项相消法求出k T ,可得答案. 【详解】设等比数列{}n b 的公比为q ,由2138,34b b b =-= 所以18b q =,则8384q q -⨯=,解得12q =或23q =-(舍) 则1816b q ==,所以11162n n b -⎛⎫=⨯ ⎪⎝⎭则142a b ==若选① 由4143486202S a d d ⨯=+=+=,则2d = 所以2n a n =, 则212nn a a S n n n +=⨯=+ 所以()111111n S n n n n ==-++ 则1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭由314k k T k =>+,则3k >,由k 为正整数,则k 的最小值为4. 若选② 由332S a =,即()11323222a d a d ⨯+=+ ,可得12a d == 所以2n a n =,一下同选①.若选③ 由3423a a b -=,可得()()113238a d a d +-+=,即43d = 所以()()14222233n n n S n n n -=+⨯=+ ()1313112242n S n n n n ⎛⎫=⨯=⨯- ⎪++⎝⎭ 12111311111311111432424212n n T S S S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=⨯-+-++-=+-- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦所以93118412n T n n ⎛⎫=-+ ⎪++⎝⎭所以9311124438k k k T ⎛⎫-+ ⎪++⎭>⎝=,即111122k k +<++,也即240k k --> 解得k >23<<,又k 为正整数,则k 的最小值为3. 【点睛】关键点睛:本题考查等差、等比数列求通项公式和等差数列的前n 项和以及用裂项相消法求和,解答本题的关键是将所要求和的数列的通项公式裂成两项的差,即1111n S n n =-+,131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,注意裂项和的系数和求和时相抵消的项以及最后余下的项,属于中档题.。

【北师大版】高中数学必修五期末试卷(及答案)(1)

【北师大版】高中数学必修五期末试卷(及答案)(1)

一、选择题1.已知实数x ,y 满足221x y x m -≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2B .3C .4D .8 2.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+3.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-4.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A .1a <1bB .a 2>b 2C .21a c +>21b c + D .a |c |>b |c |5.已知ABC ∆中,a =b =60B =,那么角A 等于( )A .135B .45C .135或45D .906.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、B 、C 成等差数列,且2sin 2sin a A c C+4ac =+,则ABC 的面积的最大值为( ) A.B.C.D7.设ABC 的三个内角,,A B C 的对边分别为,,a b c ,若6a =,8b =,12c =,若D 为AB 边的中点,则CD 的值为( ) A .7B .10CD.8.在ABC 中,tan sin 2A BC +=,若2AB =,则ABC 周长的取值范围是( ) A.(2,B.(4⎤⎦C.(4,2+D.(2⎤+⎦9.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =( ) A .21nn - B .21nn + C .221nn + D .42nn + 10.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .18911.设等差数列{}n a 的前n 项和为n S ,523S =,360n S =,5183n S -=,则n =( ) A .18B .19C .20D .2112.已知定义域为R 的函数f (x )满足f (x )=3f (x +2),且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,设f (x )在[2n -2,2n )上的最大值为*()n a n N ∈,且数列{a n }的前n 项和为S n ,若S n <k 对任意的正整数n均成立,则实数k 的取值范围为( ) A .27,8⎛⎫+∞⎪⎝⎭B .27,8⎡⎫+∞⎪⎢⎣⎭C .27,4⎛⎫+∞⎪⎝⎭D .27,4⎡⎫+∞⎪⎢⎣⎭二、填空题13.已知函数2()4f x x =+,()g x ax =,当[]1,4x ∈时,()f x 的图象总在()g x 图象的上方,则a 的取值范围为_________.14.已知,a b 为正实数,直线2y x a =-+与曲线1x b y e +=- 相切,则11a b+的最小值为________.15.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.16.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,sin sin B C +=bc 的值为______. 17.ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =.则sin sin BC=______. 18.在ABC ∆中,A ∠,B ,C ∠所对的边长分别为a ,b ,c .设a ,b ,c 满足222b c bc a +-=和12c b =,则tan B =______ 19.已知数列{}n a 的前n 项和n S ,且满足1n n a S +=,则39121239S S S S a a a a +++⋅⋅⋅+=___________. 20.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________.三、解答题21.解关于x 的不等式2(41)40ax a x -++>. 22.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围. 23.在ABC 中a ,b ,c 分别为内角A ,B ,C 所对的边,若()()2sin 2sin sin 2sin sin a A B C b C B c =+++.(1)求A 的大小; (2)求sin sin B C +的最大值.24.在△ABC 中,BC =a ,AC =b ,a 、b 是方程220x -+=的两个根,且120A B +=︒,求ABC 的面积及AB 的长.25.已知数列{}n a 的前n 项和为n S ,且233n n S a =-. (1)求数列{}n a 的通项公式;(2)设3log n n b a =,n T 为数列{}n b 的前n 项和,求数列1n T ⎧⎫⎨⎬⎩⎭的前n 项和.26.已知正项等比数列{}n a 的前n 项和为653,2,40n S a S S ==+. (1)求数列{}n a 的通项公式;(2)令2log 4n n b a =+,记数列{}n b 的前n 项和为n T ,求n T 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出不等式组221x y x m-≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6,此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.A解析:A 【分析】当x >0时,不等式x 2﹣mx +9>0恒成立⇔m <(x 9x+)min ,利用基本不等式可求得(x 9x +)min =6,从而可得实数m 的取值范围. 【详解】当x >0时,不等式x 2﹣mx +9>0恒成立⇔当x >0时,不等式m <x 9x+恒成立⇔m <(x 9x+)min ,当x >0时,x 9x +≥=6(当且仅当x =3时取“=”), 因此(x 9x+)min =6, 所以m <6, 故选A . 【点睛】本题考查函数恒成立问题,分离参数m 是关键,考查等价转化思想与基本不等式的应用,属于中档题.3.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.4.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的;当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.5.B解析:B 【分析】先由正弦定理求出sin A ,进而得出角A ,再根据大角对大边,大边对大角确定角A . 【详解】由正弦定理得:sin sin sin sin a b A B A B =⇒=,sin 2A B ==, ∴45A =或135,∵a b <,∴A B <,∴45A =,故选B. 【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.6.B解析:B 【分析】由等差数列性质得3B π=,应用正弦定理边角转换、余弦定理由已知可求得三角形外接圆半径R ,从而边,a c 可用角表示,最后用角表示出三角形面积,结合三角函数恒等变换、正弦函数性质得出最大值. 【详解】∵角A 、B 、C 成等差数列,∴2B A C =+,又A B C π++=,∴3B π=,23C A π=-,2(0,)3A π∈,由正弦定理2sin sin sin a b c R A B C===得sin ,sin ,sin 222a b cA B C R R R ===,∵2sin 2sin a A c C +4ac =,∴2sin 2sin 2sin 4a A c Cb B ac +-=,即222a b c R R R +-=2222cos a c b ac BR R +-==,∴R =,又由正弦定理得2sin ,33a R A A c C ===,∴112sin sin sin()2233333ABC S ac B A C A A ππ==⨯⨯⨯=-△21sin )cos 2sin )2A A A A A A =+=+21cos 2)A A =+-)6A π=-,∵2(0,)3A π∈,∴3A π=时,sin(2)16A π-=,即ABCS 取得最大值83434333+=. 故选:B . 【点睛】本题以我们熟知的三角形为背景,探究的是三角形面积的最大值,结合等差数列的性质,利用正弦定理进行边角转换,考查目的是让考生发现、揭示问题本质的关联点,从而有效的激发考生学习兴趣,本题同时考查了考生的逻辑推理能力、直观想象能力.本题属于中档题.7.C解析:C 【分析】由已知可求6AD BD ==,在ABC 中,由余弦定理可求cos B 的值,在BCD 中,利用余弦定理即可求得||CD 的值. 【详解】解:6a =,8b =,12c =,若D 为AB 边的中点, 6AD BD ∴==,∴在ABC 中,222222612829cos 2261236a cb B ac +-+-===⨯⨯,∴在BCD 中,可得222229||2cos 662661436CD BD BC BD CB B =+-=+-⨯⨯⨯=.故选:C . 【点睛】本题主要考查了余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.8.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭,则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:a b +≤△ABC的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC周长的取值范围是(4,2+. 本题选择C 选项.9.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【详解】已知数列{}n a 满足11a =,+121nn n a a a =+, 在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n n a a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-, ()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.10.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C 【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.11.A解析:A 【分析】根据题意,由等差数列的前n 项和公式可得()155355232a a S a+⨯===,变形可得3235a =,又由5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,变形可得21775n a -=,结合等差数列的性质分析可得答案. 【详解】根据题意,等差数列{}n a 中,523S =,则()155355232a a S a+⨯===,变形可得3235a =, 又由360n S =,5183n S -=,则5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,则21775n a -=, 又由360n S =,则()()()13223177203602210n n n a a n a a n n S n -+⨯+⨯+⨯=====,解可得18n =. 故选:A. 【点睛】本题考查利用等差数列求和公式求参数,同时也考查了等差数列基本性质的应用,考查计算能力,属于中等题.12.B解析:B 【分析】运用二次函数的最值和指数函数的单调性求得[0,2]x ∈的()f x 的最大值,由递推式可得数列{}n a 为首项为94,公比为13的等比数列,由等比数列的求和公式和不等式恒成立思想可得k 的最小值 【详解】解:当[0,2]x ∈时,且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩, 可得01x ≤<时,()f x 的最大值为(0)2f =,12x <≤时,()f x 的最大值为39()24f =,即当[0,2]x ∈时,()f x 的最大值为94, 当24x ≤<时,1()(2)3f x f x =-的最大值为912,当46x ≤<时,1()(2)3f x f x =-的最大值为936, ……可得数列{}n a 为首项为94,公比为13的等比数列, 所以91(1)2712743(1)183813n n nS -==-<-, 由S n <k 对任意的正整数n 均成立,可得278k ≥, 所以实数k 的取值范围为27,8⎡⎫+∞⎪⎢⎣⎭,故选:B 【点睛】此题考查分段函数的最值求法和等比数列的求和公式,以及不等式恒成立问题的解法,考查转化思想和运算能力,属于中档题二、填空题13.【分析】由参变量分离法可得知不等式对任意的恒成立利用基本不等式求出的最小值即可得出实数的取值范围【详解】由题意可得则从而有由基本不等式可得当且仅当时等号成立所以因此实数的取值范围是故答案为:【点睛】 解析:(),4-∞【分析】由参变量分离法可得知,不等式4a x x<+对任意的[]1,4x ∈恒成立,利用基本不等式求出4x x+的最小值,即可得出实数a 的取值范围. 【详解】由题意可得[]1,4x ∀∈,则24x ax +>,从而有4a x x<+,由基本不等式可得44x x +≥=,当且仅当2x =时,等号成立,所以,4a <. 因此,实数a 的取值范围是(),4-∞. 故答案为:(),4-∞. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.14.【分析】直线与曲线相切则切点在直线与曲线上且切点处的导数相等求出的关系再利用基本不等式求所求分式的最值【详解】解:由得;由得;因为直线与曲线相切令则可得代入得;所以切点为则所以故当且仅当时等号成立此 解析:2【分析】直线与曲线相切,则切点在直线与曲线上,且切点处的导数相等,求出a ,b 的关系,再利用基本不等式求所求分式的最值. 【详解】解:由2y x a =-+得1y '=;由1x by e +=-得x b y y e +'==;因为直线2y x a =-+与曲线1x by e+=-相切,令1x b e +=,则可得x b =-,代入1x by e +=-得0y =;所以切点为(,0)b -.则20b a --+=,所以2a b +=. 故11111()()112222222b a a a b a b a b a b b a+=++=+++=, 当且仅当1a b ==时等号成立,此时取得最小值2. 故答案为:2. 【点睛】本题主要考查导数的意义及基本不等式的综合应用.关于直线与曲线相切,求未知参数的问题,一般有以下几步:1、分别求直线与曲线的导函数;2、令两导数相等,求切点横坐标;3、代入两方程求参数关系或值,属于中档题.15.【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得化简得即可得解【详解】设不等式和不等式的解集分别为和则为方程的两个根为方程的两个根由韦达定理得所以即又所以所以即故答案 解析:56π 【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得2a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,化简得tan 2θ=即可得解. 【详解】设不等式()2220x x θ-+<和不等式()224sin 210x x θ++<的解集分别为(),a b 和11,b a⎛⎫ ⎪⎝⎭,则a ,b 为方程()2220x x θ-+=的两个根,1a ,1b为方程()224sin 210x x θ++=的两个根,由韦达定理得2a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,所以22sin 22θθ=-即tan 2θ= 又 ,2πθπ⎛⎫∈⎪⎝⎭,所以()2,2θππ∈, 所以523πθ=即56πθ=. 故答案为:56π. 【点睛】本题考查了一元二次不等式和一元二次方程之间的关系,考查了对于新概念的理解和三角函数的以值求角,属于中档题.16.40【分析】首先根据正弦定理求并表示最后根据余弦定理求的值【详解】根据正弦定理可知根据余弦定理可知得解得:故答案为:40【点睛】方法点睛:(1)在解有关三角形的题目时要有意识地考虑用哪个定理更适合或解析:40 【分析】首先根据正弦定理求2R ,并表示sin sin 22b c B C R R+=+,最后根据余弦定理求bc 的值. 【详解】22sin a R R A =⇒==,根据正弦定理可知1322b c b c R R +=⇒+=, 根据余弦定理可知()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-, 得249133bc =-,解得:40bc =. 故答案为:40 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.17.【分析】直接利用三角形的面积建立等量关系进一步利用正弦定理的应用求出结果【详解】解:中D 是边上的点满足所以又因为则则故答案为:【点睛】本题考查了正弦定理三角形面积计算公式及其性质考查了推理能力与计算 解析:12【分析】直接利用三角形的面积建立等量关系,进一步利用正弦定理的应用求出结果. 【详解】解:ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =,所以1sin 90221sin 302ABD ACD AB AD S AB S ACAC AD ⋅︒==⋅⋅︒△△, 又因为4ABD ACD S BDS CD ==△△,则24AB BD AC CD==, 则sin 1sin 2B AC C AB ==. 故答案为:12.【点睛】本题考查了正弦定理、三角形面积计算公式及其性质,考查了推理能力与计算能力,属于中档题.18.【分析】先利用余弦定理求得再由正弦定理结合已知条件求得的关系式求得即可【详解】由得又因为得由正弦定理得又因为所以所以故答案为:【点睛】本题考查了正余弦定理的综合运用属于中档题 解析:12【分析】先利用余弦定理求得3A π=,再由正弦定理()sin sin sin sin A B c C b B B+==结合已知条件,求得tan B 的关系式,求得tan B 即可.【详解】由222b c bc a +-=得2221cos 22b c a A bc +-==, 又因为()0A π∈,得3A π=.由正弦定理,得()sin sin sin sin A B c C b B B +==sin cos cos sin 31sin 2tan 2A B A B B B +==+ 又因为132c b =+31=2+132+1tan 2B =. 故答案为:12. 【点睛】本题考查了正余弦定理的综合运用,属于中档题.19.【分析】由推得得到数列表示首项为公比为的等比数列求得和进而得到再结合等比数列求和公式即可求解【详解】由数列的前项和且满足当时两式相减可得即令可得解得所以数列表示首项为公比为的等比数列所以则所以所以故 解析:1013【分析】由1n n a S +=,推得11(2)2n n a n a -=≥,得到数列{}n a 表示首项为12,公比为12的等比数列,求得n a 和 n S ,进而得到21n nnS a =-,再结合等比数列求和公式,即可求解. 【详解】由数列{}n a 的前n 项和n S ,且满足1n n a S +=, 当2n ≥时,111n n a S --+=,两式相减,可得()11120n n n n n n a a S S a a ----+-=-=,即11(2)2n n a n a -=≥, 令1n =,可得11121a S a +==,解得112a =, 所以数列{}n a 表示首项为12,公比为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭, 则11122111212nn nS ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-,所以1122112nn n n n S a ⎛⎫- ⎪⎝⎭==-⎛⎫ ⎪⎝⎭,所以()2939121239222(111)S S S S a a a a ++++=+++-+++()9102129211101312-=-=-=-.故答案为:1013. 【点睛】关键点睛:由1n na S +=,利用1,1=,2n n n n S n a S S n -=⎧⎨-≥⎩,推得11(2)2n n a n a -=≥从而证得数列{}n a 为等比数列是解答本题的关键.20.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+,又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.三、解答题21.答案见解析 【分析】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x -->,再对a 进行分类讨论,比较根的大小,即可得答案; 【详解】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x -->(1)当0a =时,不等式化为40x -<,解得4x <, (2)当10a <时,不等式化为()140x x a ⎛⎫--< ⎪⎝⎭,解得14x a <<,(3)当104a <<时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得1x a <或4x >,(4)当14a=时,不等式化为2(4)0x ->,解得4x ≠, (5)当14a >时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得4x <或1x a >,综上所述,0a =时,不等式的解集为(,4)-∞ 0a <时,不等式的解集为1,4a ⎛⎫⎪⎝⎭; 14a >时,不等式的解集为1,(4,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭;14a =时,不等式的解集为(,4)(4,)-∞+∞; 104a <<时,不等式的解集为1(,4),a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 【点睛】本题考查含参一元二次不等式的求解,考查函数与方程思想、转化与化归思想、分类讨论思想,考查运算求解能力,求解时注意讨论的依据是比较根的大小. 22.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦.【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果.【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3. (2)①当0a =时,()30f x =-≤恒成立; ②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩ 解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<.综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦. 【点睛】研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果. 23.(1)23π;(2)1. 【分析】(1)由题意利用正弦定理角化边,然后结合余弦定理可得∠A 的大小; (2)由题意结合(1)的结论和三角函数的性质可得sin sin B C +的最大值. 【详解】(1)由己知,根据正弦定理得()()2222a b c b c b c =+++即222a b c bc =++由余弦定理得2222cos a b c bc A =+-故1cos 2A =-,所以23A π=. (2)由(1)得:1sin sin sin sin sin sin 3223B C B B B B B ππ⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪⎝⎭⎝⎭故当6B π=时,sin sin B C +取得最大值1.【点睛】方法点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.24.S AB == 【分析】利用韦达定理求出,a b ab +,再利用余弦定理,得到关于c 的方程,解之可得AB 的长;再结合面积公式可得. 【详解】,a b是方程220x -+=的两个根, 2a b ab ∴+==,又因为120A B +=︒则60C =︒,所以由余弦定理得:()(22222222221cos 22222c a b ab c a b cC ab ab -⨯-+--+-====⨯,解得c =所以AB =ABC的面积11sin 222S ab C ==⨯=25.(1)3nn a =;(2)2+1nn 【分析】(1)利用1n n n a S S -=-可得{}n a 是首项为3,公比为3的等比数列,即可求出通项公式;(2)可得n b n =,则()1+2n n n T =,1112+1nT n n ⎛⎫=- ⎪⎝⎭,由裂项相消法即可求出前n 项和. 【详解】 (1)233n n S a =-,即3322n n S a =-,当1n =时,1113322S a a =-=,解得13a =, 当2n ≥时,1133332222n n n n n a a a S S --⎛⎫---== ⎝-⎪⎭, 整理得13n n a a -=,{}n a ∴是首项为3,公比为3的等比数列,1333n n n a -∴=⨯=;(2)33l 3log og nn n b a n ===,()1+2n n n T ∴=,则()12112+1+1nT n n n n ⎛⎫==- ⎪⎝⎭, 数列1n T ⎧⎫⎨⎬⎩⎭的前n 项和为11111221+++223+1+1nn n n ⎛⎫---= ⎪⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.(1)1322nn a -=;(2)最大值为64.【分析】(1)已知条件用1a 和公比q 表示后解得1,a q ,得通项公式;(2)由(1)求得n b ,由0n b ≥求得n T 最大时的n 值,再计算出最大的n T . 【详解】解:(1)设数列{}n a 的公比为(0)q q >,由62a =,有512a q =①,又由5340S S =+,有4540a a +=,得341140a q a q +=②,①÷②有21120q q =+,解得14q =或15q =-(舍去), 由14q =,可求得1112a =,有111113211224n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭,故数列{}n a 的通项公式为1322nn a -=; (2)1322log 24172nn b n -=+=-, 若0n b ,可得172n ,可得当18n 且*n ∈N 时0n b >;当9n 且*n ∈N 时0n b <, 故8T 最大,又由115b =,可得887158(2)642T ⨯=⨯+⨯-=, 故n T 的最大值为64. 【点睛】思路点睛:本题考查求等比数列通项公式,求等差数列前n 项和最大值,求等差数列前n 项和的最大值方法:数列{}n b 是等差数列,前n 项和为n T , (1)求出前n 项和n T 的表达式,利用二次函数的性质求得最大值;(2)解不等式0n b ≥,不等式的解集中最大的整数n 就是使得n T 最大的n 值,由此可计算出最大的n T (注意n b =0时,1n n T T -=).。

(常考题)北师大版高中数学必修五第一章《数列》测试卷(含答案解析)(3)

(常考题)北师大版高中数学必修五第一章《数列》测试卷(含答案解析)(3)

一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.在等比数列{}n a 中,有31598a a a =,数列{}n b 是等差数列,且99b a =,则711b b +等于( ) A .4B .8C .16D .243.已知数列{}n a 满足11a =,24a =,310a =,1{}n n a a +-是等比数列,则数列{}n a 的前8项和8S =( ) A .376B .382C .749D .7664.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N*-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .175.数列{}n a 中,11a =,113,3,3n n n n a N a n a N *+*-⎧+∉⎪⎪=⎨⎪∈⎪⎩,使2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为( ) A .1008B .2016C .2018D .20206.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51017.已知数列1a ,21a a ,…1nn a a -,…是首项为1,公比为2的等比数列,则2log n a =( )A . (1)n n +B .(1)4n n - C .(1)2n n + D .(1)2n n -8.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ). A .12B .11C .10D .99.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .1210.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .4511.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-12.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-二、填空题13.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________.14.数列{}n a 中,16a =,29a =,且{}1n n a a +-是以2为公差的等差数列,则n a =______.15.数列{}n a 满足11a =,22a =,且2221sin 2cos 22n nn n a a ππ+⎛⎫=+⋅+ ⎪⎝⎭(*n N ∈),则2020a =__.16.已知等差数列{}n a 的前n 项和为n S ,1a 为整数,213a =-,8n S S ≥,则数列{}n a 的通项公式为n a =________.17.设,n n S T 分别是等差数列{}{},n n a b 的前n 项和,已知()*2142n n S n n N T n +=∈-,则10317a b b =+_________.18.已知n S 为数列{}n a 的前n 项和,若112a =,且122n n a a +=-,则100S =________. 19.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____.20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________.三、解答题21.已知等差数列{}n a 满足()()()()*122312(1)n n a a a a a a n n n N +++++⋅⋅⋅++=+∈. (1)求数列{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .22.在①119n n a a +-=-,②113n n a a +=-③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.设n S 是数列{}n a 的前n 项和,且19a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值:若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分23.已知数列{}n a 的前n 项和为n S ,且11a =,()121n n a S n N *+=+∈,等差数列{}n b 满足39b =,15272b b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 的前n 项和为n T ,且n n n c a b =⋅,求n T . 24.已知递增等比数列{}n a 满足:12a =,416a = . (1)求数列{}n a 的通项公式;(2)若数列{}n b 为等差数列,且满足221b a =-,3358b a =,求数列{}n b 的通项公式及前10项的和;25.已知数列{}n a 满足11a =,1nn n a pa q +=+,(其中p 、q 为常数,*n N ∈).(1)若1p =,1q =-,求数列{}n a 的通项公式;(2)若2p =,1q =,数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .证明:22n T n <+,*n N ∈.26.设等差数列{}n a 的首项1a 为()0a a >,其前n 项和为n S . (Ⅰ)若1S ,2S ,4S 成等比数列,求数列{}n a 的通项公式;(Ⅱ)若对任意的*n ∈N ,恒有0n S >,问是否存在()*2,k k k ≥∈N ,使得ln k S 、1ln k S +、2ln k S +成等比数列?若存在,求出所有符合条件的k 值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272n nn c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n n n n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.C解析:C 【分析】根据等比数列性质求得9a ,再由等差数列性质求解. 【详解】∵{}n a 是等比数列,∴2931598a a a a ==,90a ≠,所以98a =,即998b a ==,∵{}n b 是等差数列,所以7119216b b b +==. 故选:C . 【点睛】关键点点睛:本题考查等差数列和等比数列的性质,掌握等差数列和等比数列的性质是解题关键,设,,,m n p l 是正整数,m n p l +=+,若{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =.p l =时,上述结论也成立.3.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式和分组求和法,求解8S 即可 【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,878128123(122)2831612S a a a -=++=⨯+++-⨯=⨯--83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项.4.C解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.5.C解析:C 【分析】根据数列的通项公式,列出各项,找数列的规律,判断到哪一项是大于2021,即可得答案. 【详解】由已知可得,数列{}n a :1,4,7,4,7,10,7,10,13,,可得规律为1,4,7,4,7,10,7,10,13……此时将原数列分为三个等差数列:1,4,7,n a n =,{}31,n n n m m N ∈=+∈;4,7,10,2n a n =+,{}32,n n n m m N ∈=+∈;7,10,13,4n a n =+,{}33,n n n m m N ∈=+∈,当673m =时,312020n m =+=,即2020202120222020,2023,2026a a a ===. 而672m =时,312017n m =+=,即2017201820192017,2020,2023a a a ===, 所以满足2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为2018.故选:C. 【点睛】关于数列的项的判断,一般有两种题目类型,一种是具有周期的数列,可以通过列出前几项找出数列的周期,利用周期判断;另一种是数列的项与项之间存在规律,需要通过推理判断项与项之间的规律从而得数列的通项.6.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.7.D解析:D 【分析】根据题意,求得1nn a a -,再利用累乘法即可求得n a ,再结合对数运算,即可求得结果.【详解】由题设有111122(2)n n nn a n a ---=⨯=≥, 而(1)1213221121122(2)n n n n n n a aa a a n a a a -+++--=⨯⨯⨯⨯=⨯=≥,当1n =时,11a =也满足该式,故(1)22(1)n n n a n -=≥,所以2(1)log 2n n n a -=, 故选:D. 【点睛】本题考查利用累乘法求数列的通项公式,涉及对数运算,属综合基础题.8.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.9.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==.故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.10.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ===1n n =-+. 12n n S a a a ∴=++⋯+122=-+1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.11.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.12.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.二、填空题13.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.14.【分析】由是以2为公差的等差数列可得:再利用累加求和方法等差数列的求和公式即可得出【详解】∵是以2为公差的等差数列∴∴故答案为:【点睛】本题考查了等差数列的通项公式与求和公式累加求和方法考查了推理能 解析:25n +【分析】由{}1n n a a +-是以2为公差的等差数列,可得:121n n a a n --=-,再利用累加求和方法、等差数列的求和公式即可得出. 【详解】∵{}1n n a a +-是以2为公差的等差数列, ∴()()1212221n n a a a a n n --=-+-=-,∴()()()12116321n n n a a a a a a n -=+-+⋯⋯+-=++⋯⋯+-()2121552n n n +-=+=+, 故答案为:25n +. 【点睛】本题考查了等差数列的通项公式与求和公式、累加求和方法,考查了推理能力与计算能力,属于中档题.15.2020【分析】当n 为偶数时可得出故偶数项是以2为首项公差为2的等差数列求出通项公式代值计算即可得解【详解】当n 为偶数时即故数列的偶数项是以2为首项公差为2的等差数列所以所以故答案为:2020【点睛解析:2020 【分析】当n 为偶数时,可得出22n n a a +=+,故偶数项是以2为首项,公差为2的等差数列,求出通项公式,代值计算即可得解. 【详解】 当n 为偶数时,2223cos 1sin 2cos 1cos 2222n n n n n n n a a a n a ππππ+-⎛⎫=+⋅+=⋅++=+ ⎪⎝⎭, 即22n n a a +=+,故数列{}n a 的偶数项是以2为首项,公差为2的等差数列, 所以2122n n a n ⎛⎫=+-⨯=⎪⎝⎭, 所以20202020a =. 故答案为:2020. 【点睛】本题考查数列的递推式,解题关键是得出当n 为偶数时,可得出2n a +与n a 的关系式,进而求出{}n a 的通项公式,考查逻辑思维能力和计算能力,属于常考题.16.【分析】设等差数列的公差为由等差数列的性质及前n 项和公式可得再由二次函数的图象与性质可得求得后再由等差数列的通项公式即可得解【详解】设等差数列的公差为则为整数所以由结合二次函数的图象与性质可得解得所 解析:217n -【分析】设等差数列{}n a 的公差为d ,由等差数列的性质及前n 项和公式可得231322n n d d S n ⎛⎫+ ⎝-⎪⎭=,再由二次函数的图象与性质可得313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯,求得d 后再由等差数列的通项公式即可得解. 【详解】设等差数列{}n a 的公差为d ,则1213a a d d =-=--,d 为整数, 所以()()()2131313112222n d S d n n n n d a n d d n n n --=+⎛⎫--++ ⎪⎝=⎭=-, 由8n S S ≥,结合二次函数的图象与性质可得0d >,313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯, 解得131376d ≤≤, 所以2d =,所以1215a a d =-=-,所以()()111521217n a a n d n n =+-=-+-=-. 故答案为:217n -. 【点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了利用二次函数的图象与性质解决等差数列前n 项和最值的问题,属于中档题.17.【分析】利用等差数列的性质得到再根据求解【详解】因为所以故答案为:【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用还考查了运算求解的能力属于中档题 解析:39148【分析】利用等差数列的性质得到1013171191912a a a b b b b =⨯+++191912S T =⨯,再根据2142n n S n T n +=-求解.【详解】因为()*2142n n S n n N T n +=∈-, 所以()()110113171119191991921912221a a a b b b a b b b a =⨯=⨯+++++,191911219139224192148S T ⨯+=⨯=⨯=⨯-, 故答案为:39148【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用,还考查了运算求解的能力,属于中档题.18.【分析】由递推公式依次计算出数列的前几项得出数列是周期数列从而可求和【详解】由题意∴数列是周期数列且周期为4故答案为:【点睛】本题考查数列的周期性考查求周期数列的和解题时可根据递推公式依次计算数列的解析:4256【分析】 由递推公式依次计算出数列的前几项,得出数列是周期数列,从而可求和. 【详解】 由题意2241322a ==-,33a =,42a =-,512a =, ∴数列{}n a 是周期数列,且周期为4.10012341442525()2532236S a a a a ⎛⎫=+++=⨯++-= ⎪⎝⎭.故答案为:4256. 【点睛】本题考查数列的周期性,考查求周期数列的和,解题时可根据递推公式依次计算数列的项,然后归纳出周期性.19.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数.7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)21n a n =-;(2)2332n nn S +=-. 【分析】(1)利用已知条件列出关于首项与公差的方程组,解方程组即得数列{}n a 的通项公式;(2)先由(1)得到n n n a 2n 122-=,再利用错位相减法求和即可. 【详解】(1)设等差数列{}n a 的公差为d ,由已知得()()121223412a a a a a a +=⎧⎨+++=⎩,即122348a a a a +=⎧⎨+=⎩,所以()()()1111428a a d a d a d ⎧++=⎪⎨+++=⎪⎩,解得112a d =⎧⎨=⎩,所以21n a n =-. (2)由(1)得n n n a 2n 122-=, 所以1212321223212n n n n n S ---=++⋯++,① 231123212222213n n n n n S +--=++⋯⋯++,② -①②得:21111112132322222222n n n n n n S ++-+⎛⎫=+⨯+⋯+-=- ⎪⎝⎭, 所以2332n nn S +=-.易错点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 22.答案见解析 【分析】选①:由等差数列通项公式得出通项n a 后,解0n a ≥,满足此不等式的最大的n 使得n S 最大,注意若n a 0=,则有两个值使得n S 最大,选②:由等比数列前n 项和公式得出n S ,由于公比是负数,因此按n 的奇偶性分类讨论求得n S 的最大值;选③:由累加法求得n a ,利用n a 的表达式是n 的二次函数形式,当15n ≥时,0n a >,确定n S 不存在最大值. 【详解】 选①因为119n n a a +-=-,19a =,所以{}n a 是首项为9,公差为19-的等差数列.所以()118291999n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭. 由182099n -+≥,得82n ≤,即820a ≥ 所以n S 存在最大值,且最大值为81S 或82S , 因为818180181936929S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为369. 选② 因为113n n a a +=-,19a =,所以{}n a 是首项为9,公比为13-的等比数列. 所以1311933n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.1︒当n 为奇数时,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为271143n ⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为19S =;2︒当n 为偶数的,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+, 且2712719434n n S ⎛⎫=-<< ⎪⎝⎭, 综上,n S 存在最大值,且最大值为9. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…,19n n a a n --=-, 以上1n -个等式相加得()()21791171622n n n n n a a -+---+-==, 因为19a =,所以()2173422n n n a n -+=≥,又19a =也满足上式,所以217342n n n a -+=. 当15n ≥时,0n a >,故n S 不存在最大值. 【点睛】关键点点睛:本题考查数列前n 项和的最大值问题,一种方法是求出n S 的表达式,由函数的性质确定n S 的最大值,一种是利用数列项的性质,如数列是递减的数列,10a >,则满足0n a ≥的最大的n 使得n S 最大. 23.(1)13-=n n a ,3n b n =;(2)1321344n n n T +-=+⋅. 【分析】(1)由数列的递推关系式求出等比数列{}n a 的通项公式,利用等差数列的基本量运算得出{}n b 的通项公式; (2)利用错位相减法求出n T . 【详解】(1)1211n n a S n +=+≥①1212n n a S n -=+≥②①-②得:13n n a a +=,2n ≥ 又因为11a =,23a =所以数列{}n a 是以1为首项,3为公比的等比数列所以13-=n n a因为{}n b 为等差数列且39b =,15272b b +=所以有:()111292724b d b b d +=⎧⎨+=+⎩解得:13b =,3d =,所以3n b n =(2)由(1)知3nn c n =⋅213233n n T n =⋅+⋅+⋅①()23131323133n n n T n n +=⋅+⋅+-⋅+⋅②①-②得:2312333...33n n n T n +-=++++-⋅()11131********2n n n n n T n n +++---=-⋅=-⋅-1321344n n n T +-=+⋅【点睛】方法点睛:本题考查数列的通项公式,考查数列的求和,数列求和的方法总结如下: 1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.24.(1)2nn a =;(2)21n b n =-,数列{}n b 前10项的和10100S =.【分析】(1)利用等比数列的通项公式,结合已知12a =,416a =,可以求出公比,这样就可以求出数列{}n a 的通项公式;(2)由数列{}n a 的通项公式,可以求出21a -和 358a 的值,这样也就求出2b 和 3b 的值,这样可以求出等差数列{}n b 的公差,进而可以求出通项公式,利用前n 项和公式求出数列{}n b 前10项的和.【详解】(1)设等比数列的公比为q ,由已知12a =,34121616q a a q =⇒⋅=⇒=,所以112n n n a q a -=⋅=,即数列{}n a 的通项公式为2n n a =;(2)由(1)知2nn a =,所以2221213b a =-=-=,333552588b a ==⨯=, 设等差数列{}n b 的公差为d ,则322d b b -==,12121n d b b n b =-=∴=-, 设数列{}n b 前10项的和为10S ,则11010910910101210022S d b ⨯⨯=+⋅=⨯+⨯=, 所以数列{}n b 的通项公式21n b n =-,数列{}n b 前10项的和10100S =. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.25.(1)()*1(1)2n n a n N --=∈;(2)证明见解析. 【分析】(1)1p =,1q =-,已知条件可得1(1)nn n a a +-=-,利用累加法及等比数列的求和公式,计算可求数列{}n a 的通项公式;(2)2p =,1q =,121n n a a +=+,化简可得1121n n a a ++=+,通过等比数列的通项公式求得()*21nn a n N =-∈,化简可得11212222n n nn a a +=+≤+-,放缩后,通过分组求和可证得结果. 【详解】(1)∵1p =,1q =-,∴1(1)n n n a a ++-=,即1(1)nn n a a +-=-,∴当2n ≥:12111221(1)(1)(1)n n n n n n a a a a a a ------+-++-=-+-++-,得1(1)12n n a a -+-=,∴11a =,∴1(1)2nn a --=,当1n =:11a =也符合上式,故()*1(1)2n n a n N --=∈(或1,0,nn a n ⎧=⎨⎩为奇数为偶数).(2)∵2p =,1q =,∴121n n a a +=+,∴()1121n n a a ++=+, 即1121n n a a ++=+,∴{}1n a +是以2为首项,2为公比的等比数列, ∴12nn a +=,即()*21nn a n N=-∈.又1112122122221112122n n n n n n n n a a +++--+===+≤+---, ∴11122221221212n n n T n n n -⎛⎫≤+=+-<+ ⎪⎝⎭-, 综上说述:()*22n T n n N <+∈.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和 (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 26.(Ⅰ)0d =时,n a a =;2d a =时,2n a an a =-;(Ⅱ)不存在,理由见解析. 【分析】(Ⅰ)根据等差数列写出(1)2n n n dS na -=+,利用等比中项性质列式代入求解;(2)设存在()*2,k k k ≥∈N ,根据等比中项列式,整理化简之后分类讨论0d =与0d >是否成立. 【详解】(Ⅰ)因为1S ,2S ,4S 成等比数列,所以2214S S S ,又因为数列{}n a 是等差数列,首项1a 为()0a a >,所以(1)2n n n d S na -=+,则()()2246a d a a d +=+,可得0d =或2d a =,当0d =时,n a a =;当2d a =时,2(1)2n a a n a an a =+-=-.(Ⅱ)设存在()*2,k k k ≥∈N,使ln kS、1ln k S +、2ln k S +成等比数列,则122ln l ln n k k k S S S ++=⋅,对任意的*n ∈N ,恒有0n S >,首项0a >,所以0d ≥因为()22222ln ln ln ln ln 22k k k k k k S S S S S S +++⋅⎡⎤+⎡⎤⋅<=⎢⎥⎢⎥⎣⎦⎣⎦()()()22211121112ln ln 22k k k k k k k k S dS a a S a S a ++++++++⎡⎤+--+⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦,当0d =时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k S dS a a S a S S +++++++⎡⎤⎡⎤⎡⎤+--⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即122ln l ln n k k k S S S ++>⋅,不成立;当0d >时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k k S dS a a S dS a S S +++++++⎡⎤⎡⎤⎡⎤+-+-⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即122ln l ln n k k k S S S ++>⋅,不成立;综上,不存在()*2,k k k ≥∈N ,使得ln kS、1ln k S +、2ln k S +成等比数列.【点睛】关于等比中项性质的运用,需要注意,,a b c 三个数成等比数列,列式得2b ac =,然后再根据数列是等差还是等比数列化为基本量1,a d 或1,a q 计算.。

新北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)

新北师大版高中数学必修五第二章《解三角形》测试题(包含答案解析)

一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC 的面积为3154,则a =( ) A .2B .3C .4D .52.在ABC ∆中,若sin (sin cos )sin 0A B B C +-=,sin cos 20B C +=,4a =,则ABC ∆的面积为( )A .243+B .43+C .623+D .843+3.如图,四边形ABCD 中,CE 平分ACD ∠,23AE CE ==,3DE =,若ABC ACD ∠=∠,则四边形ABCD 周长的最大值( )A .24B .1233+C .183D .(3534.2020年5月1日起,新版《北京市生活垃圾管理条例》实施,根据该条例:小区内需设置可回收垃圾桶和有害垃圾桶.已知李华要去投放这两类垃圾,他从自家楼下出发,向正北方向走了80米,到达有害垃圾桶,随后向南偏东60°方向走了30米,到达可回收物垃圾桶,则他回到自家楼下至少还需走( ) A .50米B .57米C .64米D .70米5.设,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=与sin sin 0b x y B C ⋅-⋅+=位置关系是( ) A .平行B .重合C .垂直D .相交但不垂直6.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,3a b ==B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒7.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin 3sin sin A C B A C +-=,1b =,则223a c -的最小值为( )A .4-B .23-C .2-D .3-8.已知锐角ABC 的内角,,A B C 的对边分别为,,a b c .若()2c a a b =+,则2cos cos()AC A -的取值范围是( )A .2,1⎛⎫⎪⎪⎝⎭B .13,2⎛⎫⎪⎪⎝⎭ C .23,⎛⎫⎪⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭9.在△ABC 中,a 2tanB =b 2tanA ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形10.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m11.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .4312.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( ) A .33B .332C .32D 3二、填空题13.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,133sin sin 14B C +=,则bc 的值为______. 14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则满足10a =,18b =,30A =︒的三角形解的个数是______.16.在ABC 中,2AB =,30C ︒=,则AB BC 的取值范围是________. 17.在锐角ABC ∆中,2AC =,22AB =D 在BC 边上,并且2BD DC =,6π∠=CAD ,则ABC ∆的面积为__________.18.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足22()a b c S --=,b +c =2,则S 的最大值是________19.在ABC 中,2AB =,4AC =.BC 边上的中线2AD =,则=ABC S △_____. 20.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若2b =,2a c =,则当角C 取最大值时,△ABC 的面积为__________.三、解答题21.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若1||2AB AC AC ⋅=,且1c =. 在①cos cos 2a C c A +=;② sin 3cos b C c B c =;③ sin 2sin a B c A =这三个条件中任选一个,补充在下面问题中,并解答问题. (1)求角A ;(2)若___________,角B 的平分线交AC 于点D ,求BD 的长. (注:如果选择多个条件分别解答,按第一个解答计分)22.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A 为锐角,22sin cos 2c a B C ab--=. (1)求A ;(2)若34b c =,且BC 边上的高为23ABC 的面积. 23.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积. 24.已知ABC 的内角,,A B C 的对边分别为,,a b c ,2cos cos cos aA b C c B=+.(1)求角A 的大小;(2)若a =11b c+的取值范围. 25.在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知1b =,面积28sin aS A=,再从以下两个条件中选择其中一个作为已知,求三角形的周长.(1)6B π=;(2)B C =.注:如果选择多个条件分别解答,按第一个解答计分.26.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin sin A C B A C +=+.(1)求角B 的大小;(2)若ABC 为锐角三角形,b =2a c -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A ,并利用1sin 2ABCS bc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,sin A ==,1131sin 2242ABCSbc A a a ==⨯⨯=,解得:4a =. 故选:C 2.C解析:C 【分析】在ABC ∆中,()sin sin B A C +=,化简sin (sin cos )sin 0A B B C +-=可得4A π=,又sin cos 20B C +=和34B C π+=,解得3B π=,512C π=,最后通过正弦定理求出1)c =,再根据三角形面积公式得到面积.【详解】由sin (sin cos )sin 0A B B C +-=得:sin sin sin cos sin cos cos sin sin sin cos sin 0A B A B A B A B A B A B ⋅+⋅-⋅-⋅=⋅-⋅=,∴sin cos A A =,又0()A π∈,,则4A π=,则34B C π+=, 又3sin cos 2sin 22B C C π⎛⎫=-=-⎪⎝⎭,则3222B C k ππ=-+或222B C k ππ=-+,(0)B C π∈、,,则322B C π+=或22C B π-=,又34B C π+=,则取22C B π-=,得3B π=,512C π=,又4a =,根据正弦定理,sin 1)sin a Cc A ⋅==,∴1sin 62ABC S ac B ∆=⋅=+ 故选C. 【点睛】思路点睛:在三角形中,由于A B C π++=,根据诱导公式,()sin sin A B C +=,()sin sin A C B +=,()sin sin C B A +=,()cos cos A B C +=-,()cos cos A C B +=-,()cos cos C B A +=-等,以上常见结论需要非常熟练. 3.D解析:D 【分析】ACD △和CDE △中,结合正弦定理可求得6ACE DCE π∠=∠=,这样可得,DC AC ,在ABC 中,由余弦定理得2222cos3AC AB BC AB BC π=+-⋅,应用基本不等式可得AB BC +的最大值,从而可得四边形ABCD 周长的最大值. 【详解】设ABC ACD ∠=∠2θ=,(0,)2πθ∈,∵CE 平分ACD ∠,∴DCE ACE θ∠=∠=, 又AE CE =,∴EAC ACE θ∠=∠=,AE CE ==DE =AD =ACD △中,由正弦定理得sin sin CD AD DAC ACD =∠∠,则CD ==, CDE △中,2DEC EAC ECA θ∠=∠+∠=,由正弦定理得sin sin CD DE CED DCE =∠∠,则CD θ==,∴θ=,解得cos θ=,6πθ=,∴3CD ==,ACD △中,由角平分线定理得AC AE CD DE ==236AC =⨯=. ABC 中,23ABC πθ∠==,由余弦定理得2222cos 3AC AB BC AB BC π=+-⋅,即2222223136()3()()()44AB BC AB BC AB BC AB BC AB BC AB BC AB BC =+-⋅=+-⋅≥+-+=+,当且仅当AB BC =时等号成立,12AB BC +≤,此时ABC 为等边三角形.∴AB BC CD DA +++的最大值为12315++=+ 故选:D . 【点睛】本题主要考查正弦定理、余弦定理的应用,考查基本不等式求最值,在平面图形中充分利用平面几何的知识可减少计算量.本题解题关键是求出6ACE π∠=.4.D解析:D 【分析】画出图形,在ABC 中,利用余弦定理,即可求解AC 的长,得到答案. 【详解】由题意,设李华家为A ,有害垃圾点为B ,可回收垃圾点为C , 则李华的行走路线,如图所示,在ABC 中,因为80,30,60AB BC B ===, 由余弦定理可得:70AC ===米, 即李华回到自家楼下至少还需走70米. 故选:D .【点睛】本题主要考查了解三角形的实际应用,以及余弦定理的应用,其中解答中作出示意图,结合余弦定理求解是解答的关键,着重考查推理与运算能力.5.C解析:C 【解析】,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=斜率为:sin Aa-, sin sin 0b x y B C ⋅-⋅+=的斜率为:sin bB, ∵sin sin A ba B-=﹣1,∴两条直线垂直.故选C .6.A解析:A 【详解】由题设可得060B =311sin sin 2A A =⇒=,则030A =或0150A =,但a b AB <⇔<,应选答案A .7.A解析:A 【分析】由222sin sin sin 3sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到223a c -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin 3sin sin A C B A C +-=,∴2223a c b ac +-=,∴2222a c b ac +-=∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B ac π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos 2C C ⎛⎫=- ⎪ ⎪⎝⎭4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<, 所以当3C ππ+=时,2a -取得最小值,且最小值为4-. 故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.8.C解析:C 【分析】由余弦定理和正弦定理进行边化角,结合诱导公式和两角和与差的正弦公式可得2C A =,由锐角三角形得出A 角范围,再代入化简求值式,利用余弦函数性质可得结论. 【详解】∵2()c a a b =+,∴22222cos c a ab a b ab C =+=+-,∴(12cos )b a C =+,由正弦定理得sin sin (12cos )B A C =+,∴sin()sin (12cos )sin cos cos sin A C A C A C A C +=+=+,整理得sin sin cos cos sin sin()A C A C A C A =-=-,∵,A C 是三角形的内角,∴A C A =-,即2C A =,又三角形是锐角三角形,∴2222A A A πππ⎧<⎪⎪⎨⎪--<⎪⎩,解得64A ππ<<,由2C A =得22cos cos cos cos()cos A A A C A A ==∈-⎝⎭. 故选:C . 【点睛】本题考查正弦定理和余弦定理的边角转换,考查两角与差的正弦公式,余弦函数的性质,考查学生分析问题解决问题的能力,属于中档题.9.D解析:D 【分析】根据正弦定理22tan ta in n s sin B B A A =⋅⋅,化简得到sin 2sin 2A B =,得到答案. 【详解】22tan tan a B b A =,故22tan ta in n s sin B B A A =⋅⋅,即sin 2sin 2A B =.故22A B =或22A B π+=,即A B =或2A B π+=.故选:D . 【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力.10.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBDsin 45BC302sin 45203BC3tan 3020320AB BC故选D 【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.11.A解析:A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C .【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan2CC C ⨯===---, 故选:A . 【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力.12.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a >0,c >0,∴12=2a +3c ≥ac ≤6.当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 62222ABCSac B =≤⨯⨯=, ∴△ABC故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.二、填空题13.40【分析】首先根据正弦定理求并表示最后根据余弦定理求的值【详解】根据正弦定理可知根据余弦定理可知得解得:故答案为:40【点睛】方法点睛:(1)在解有关三角形的题目时要有意识地考虑用哪个定理更适合或解析:40 【分析】首先根据正弦定理求2R ,并表示sin sin 22b c B C R R+=+,最后根据余弦定理求bc 的值. 【详解】22sin a R R A =⇒==,根据正弦定理可知1322b c b c R R +=⇒+=, 根据余弦定理可知()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-,得249133bc =-,解得:40bc =. 故答案为:40 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC AB θ=⋅⋅︒==OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=+13(sin )60)2θθθ==-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.2【分析】直接利用正弦定理得到答案【详解】根据正弦定理得到:故故满足条件的三角形共有个故答案为:【点睛】本题考查了利用正弦定理判断三角形的个数问题意在考查学生的应用能力解析:2 【分析】直接利用正弦定理得到答案. 【详解】根据正弦定理得到:sin sin a b A B=,故9sin 10B =,91sin sin 10B A >=>. 故满足条件的三角形共有2个. 故答案为:2. 【点睛】本题考查了利用正弦定理判断三角形的个数问题,意在考查学生的应用能力.16.【分析】首先根据正弦定理得化简得到再求其范围即可【详解】由正弦定理得:所以所以因为所以即故的取值范围是故答案为:【点睛】本题主要考查正弦定理的应用同时考查三角函数的值域问题属于中档题 解析:[6,2]-【分析】首先根据正弦定理得4sin =BC A ,化简得到()4sin 2302⋅=+-AB BC A ,再求其范围即可. 【详解】 由正弦定理得:4sin sin ==AB BCC A,所以4sin =BC A . 所以()cos 1808sin cos ⋅=⋅-=-AB BC AB BC B A B()()8sin cos 180308sin cos 30⎡⎤=--+=+⎣⎦AA A A 218sin sin cos 4sin 22⎛⎫=-=- ⎪⎪⎝⎭A A A A A A ()()221cos 24sin 2302=--=+-A A A因为0150<<A ,所以3030330<2+<A , 即()1sin 2301-≤+≤A ,()64sin 23022-≤+-≤A .故AB BC 的取值范围是[6,2]-. 故答案为:[6,2]- 【点睛】本题主要考查正弦定理的应用,同时考查三角函数的值域问题,属于中档题.17.【分析】在中由正弦定理可得到在中由正弦定理可得到由是锐角可知结合三角形的面积公式可得到答案【详解】在中由正弦定理得:则在中由正弦定理得:则因为所以由于三角形是锐角三角形故则故的面积为【点睛】本题考查 1【分析】在ADC ∆中,由正弦定理sin sin DC AC CAD ADC =∠∠,可得到1sin ADC DC∠=,在ADB ∆中,由正弦定理sin sin DB ABBAD ADB=∠∠,可得到12sin sin 2DCDB ADBDC BAD AB ∠∠===,由BAD ∠是锐角,可知4BAD π∠=,46BAC ππ∠=+,结合三角形的面积公式可得到答案.【详解】在ADC ∆中,由正弦定理得:sin sin DC ACCAD ADC=∠∠,则11sin 2sin6ADC DC DCπ∠=⨯⨯=, 在ADB ∆中,由正弦定理得:sin sin DB AB BAD ADB =∠∠,则sin sin DB ADBBAD AB ∠∠=,因为1sin sin ADB ADC DC∠=∠=,2BD DC =,所以122sin 22DCDC BAD ∠==,由于三角形是锐角三角形,故4BAD π∠=,则26sin sin 46BAC ππ+⎛⎫∠=+=⎪⎝⎭,故ABC ∆的面积为126222312+⨯⨯⨯=+.【点睛】本题考查了正弦定理在解三角形中的应用,考查了三角形的面积公式,属于中档题.18.【分析】结合余弦定理同角三角函数的基本关系式和基本不等式先求得然后求得的最大值【详解】由余弦定理得依题意所以由于是三角形的内角所以所以由解得所以当且仅当时等号成立所以的最大值为故答案为:【点睛】本小 解析:417【分析】结合余弦定理、同角三角函数的基本关系式和基本不等式,先求得sin A ,然后求得S 的最大值. 【详解】由余弦定理得2222cos a b c bc A =+-, 依题意221()sin 2a b c S bc A --==,2b c +=, ()()222212cos 221cos sin sin 41cos 2b c bc A b c bc bc A bc A A A +---+=-=⇒=-,所以1cos 1sin 4A A =-,221sin 1sin 14A A ⎛⎫+-= ⎪⎝⎭,2171sin sin 0162A A -=,由于A 是三角形ABC 的内角,所以sin 0A >,所以由2171sin sin 0162A A -=解得8sin 17A =.所以21444sin 21717217b c S bc A bc +⎛⎫==≤⨯= ⎪⎝⎭,当且仅当1b c ==时等号成立,所以S 的最大值为417. 故答案为:417【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值,属于中档题.19.【分析】中分别用余弦定理表示再利用解边长再根据余弦定理求角最后根据三角形面积公式求解【详解】设中中解得:中故答案为:【点睛】本题考查解三角形重点考查数形结合分析问题计算能力属于基础题型 解析:15【分析】ABD △,ADC 中,分别用余弦定理表示cos ADB ∠,cos ADC ∠,再利用cos cos 0ADB ADC ∠+∠=解边长BC ,再根据余弦定理求角BAC ∠,最后根据三角形面积公式求解. 【详解】 设BD DC x ==,ABD △中,22222cos 224x xADB x +-∠==⋅⋅,ADC 中,22222412cos 224x x ADC x x+--∠==⋅⋅ 180ADB ADC ∠+∠=,cos cos 0ADB ADC ∴∠+∠=,212044x x x -∴+=,解得:6x =26BC ∴=, ABC 中,(22224261cos 2244BAC +-∠==-⨯⨯,sin BAC ∴∠==1242ABCS∴=⨯⨯=【点睛】本题考查解三角形,重点考查数形结合分析问题,计算能力,属于基础题型.20.【分析】由余弦定理可得再利用基本不等式的性质可得的最大值再利用三角形面积计算公式即可得出【详解】解:在中由余弦定理可得:时取等号此时当取最大值时的面积故答案为:【点睛】本题考查了余弦定理基本不等式的【分析】由余弦定理可得cos C ,再利用基本不等式的性质可得C 的最大值,再利用三角形面积计算公式即可得出. 【详解】解:2b =,2a c =,∴在ABC ∆中,由余弦定理可得:22222441311cos ()22222242a b c c c c C ab c c +-+-===+⨯⨯⨯,(0,)C π∈,3c =时取等号.此时,3a =, 06Cπ∴<,∴当C 取最大值6π时,ABC 的面积11222S =⨯=.【点睛】本题考查了余弦定理、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)3A π=; (2 【分析】(1)由1||2AB AC AC ⋅=,得到1cos 2AB A =,进而求得1cos 2A =,即可求解;(2)分别选①②③,结合正弦定理和余弦定理,求得2B π=,得到4ABD π∠=,进而得到sin ADB ∠的值,在ABD △中结合正弦定理,即可求解. 【详解】 (1)由1||2AB AC AC ⋅=,可得1cos ||2AB AC A AC ⋅=,所以1cos 2AB A =,又由1c =,所以1cos 2A =, 因为(0,)A π∈,所以3A π=. (2)若选①:因为cos cos 2a C c A +=,由余弦定理可得222222222a b c b c a a c ab bc+-+-⋅+⋅=,整理得220b b,解得2b =,又由余弦定理可得2222212cos 2122132a b c bc A =+-=+-⨯⨯⨯=,即a = 因为222a c b +=,所以2B π=,又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 若选②:由sin cos bC B c =,根据正弦定理可得sin sin cos sin B C C B C =, 因为(0,)Cπ∈,可得sin 0C >,所以sin1B B =, 可得sin 2sin()13B B B π-=-=,即1sin()32B π-=,因为2333B πππ-<-<,所以36B ππ-=,可得2B π=又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 若选③:由sin 2sin a B c A =,根据正弦定理可得sin sin 2sin sin A B C A =, 因为(0,)C π∈,可得sin 0C >,可得sin 2sin B C =, 又由()()3C A B B πππ=-+=-+,可得sin 2sin 2sin()sin 3B C B B B π==+=+,所以cos 0B =,因为(0,)B π∈,所以2B π=.又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 【点睛】方法点睛:对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用. 22.(1)6π;(2) 【分析】(1)先用余弦定理化余弦为边,再用正弦定理化边为角从而求得A ;(2)由余弦定理用c 表示a ,然后把三角形的面积用两种方法表示求得c ,从而可计算出面积. 【详解】(1)由22sin cos 2c a B C ab--=得222sin 2cos ab B ab C c a -=-,由余弦定理得222222sin ab B c a b c a +--=-,所以2sin a B b =, 由正弦定理得2sin sin sin A B B =,B 是三角形内角,sin 0B ≠, 所以1sin 2A =,又A 为锐角,所以6A π=.(2)由(1)2222232cos 2cos 166a b c bc A c c c π=+-=+-⋅⋅2716c =,4a =,所以11sin 22ABC S bc A a ==⨯△2111222⨯=⨯c =b == 111sin 222ABC S bc A ===△【点睛】思路点睛:本题考查正弦定理、余弦定理、三角形面积公式.利用正弦定理和余弦定理进行边角互化是解题关键.三角形的面积采取了二次计算,通过不同的计算方法得出等式,从而求解.这是一种解题技巧.23.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b ac ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 22ABCSac B ===. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件. 24.(1)3A π=;(2)⎫+∞⎪⎪⎣⎭. 【分析】(1)利用正弦定理边化角可化简已知关系式求得cos A ,结合A 的范围可求得结果;(2)解法一:利用正弦定理边化角可整理得到1161sin 262B b c B ππ⎛⎫+ ⎪⎝⎭+=⎛⎫-+⎪⎝⎭,利用B 的范围可求得sin 6B π⎛⎫+⎪⎝⎭的范围,代入整理可求得结果; 解法二:利用余弦定理和基本不等式可求得3bc ≤,整理得到11b c +=合二次函数的性质可求得所求的范围. 【详解】(1)由正弦定理得:()sin sin 2cos sin cos sin cos sin A AA B C C B B C ==++. B C A π+=-,()sin sin B C A ∴+=,2cos 1A ∴=,即1cos 2A =, ()0,A π∈,3A π∴=.(2)解法一:由正弦定理知,2sin sin sin sin 3a b c A B C ====,sin sin 1111sin sin 3612sin 2sin 2sin sin 2sin sin sin 2362B B B B C b c B C B C B B B ππππ⎛⎫⎛⎫+++ ⎪ ⎪+⎝⎭⎝⎭∴+=+===⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭.3A π=,20,3B π⎛⎫∴∈ ⎪⎝⎭. 令6B πθ=+,则5,66ππθ⎛⎫∈ ⎪⎝⎭,则1sin ,12θ⎛⎤∈ ⎥⎝⎦.则11cos 24sin sin 22sin 22b cθθθθ⎫+====+∞⎪⎪⎣⎭-+--+⎪⎝⎭.解法二:3a =,3A π=,∴由余弦定理知:2232b c bc bc bc +-=≥-(当且仅当b c =时取等号), 3bc ∴≤,()233b c bc +=+,则113bc ≥,11b c b c bc +∴+===.11b c ∴+的取值范围为⎫+∞⎪⎪⎣⎭. 【点睛】方法点睛:求解与边长相关的取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;将所求式子化为符合基本不等式的形式或配凑成函数的形式来进行求解;应用此方法时,需注意基本不等式等号成立的条件.25.2+ 【分析】利用三角形的面积公式,结合已知面积变形可得1sin sin 4B C =,再利用所选条件结合正弦定理求出另外两边,可得三角形的周长. 【详解】由三角形的面积公式可知,1sin 2S ab C =, 21sin 28sin a ab C A∴=, 整理得4sin sin ,b A C a =由正弦定理得:4sin sin sin sin ,B A C A =因为sin 0A ≠,4sin sin 1,B C ∴=1sin sin 4B C ∴=, 若选择条件(1)由6B π=:得1sin 2B =,则1sin 2C =, 又,,A B C 为三角形的内角,6B C π∴==,2,3A π∴= 由正弦定理得sin sin sin a b c A B C ==代入1,b c ==解得a =∴三角形的周长为2若选择条件(2)B C =,则由B C =,得sin sin ,B C = 又1sin sin 4B C =,1sin sin 2B C ∴== 又,,A B C 为三角形的内角,,6B C π∴==23A π∴=. 由正弦定理得:sin sin sin a b c A B C ==,代入1,b c ==解得a =∴三角形的周长为2【点睛】关键点点睛:利用三角形的面积公式和正弦定理求出三角形的另外两边是解题关键. 26.(1)3B π=;(2)()0,3.【分析】(1)利用正弦定理边角互化,再利用余弦定理求出角B 的大小;(2)利用正弦定理结合三角恒等变换化简2a c -,再由锐角三角形得出C 的范围,进而得出答案.【详解】(1)由已知222sin sin sin sin sin A C B A C +=+,结合正弦定理,得222a c b ac +=+. 再由余弦定理,得2221cos 222a cb ac B ac ac +-===,又()0,B π∈,则3B π=.(2)由3B π=,b = 224sin 2sin 4sin 2sin 3a c AC C C π⎛⎫-=-=-- ⎪⎝⎭224sin cos cos sin 2sin 33C C C C ππ⎛⎫=--= ⎪⎝⎭因为ABC 为锐角三角形,则62C ππ<<,则0cos C << 所以2a c -的取值范围为()0,3.。

北师大版数学必修5试题及答案

北师大版数学必修5试题及答案
2(1 2n ) n …………………… 12 分 1 2
2n1 n 2 ……………… 14 分

17.在△ABC 中,∠ABC=155o-125o=30o,…………1 分
125o 155o
B
∠BCA=180o-155o+80o=105o,
符合题目要求的)
1. 已知等差数列{an}中, a7 a9 16, a4 1,则a12 的值是
A 。 15
B 。 30
C. 31
D. 64
2。
若全集 U=R,集合 M=
x x2 4
,S=
x
3 x x 1
0
,则
M
ðU
S
=
A.{x x 2} B。 {x x 2或x 3} C。 {x x 3}
bn1 bn 2,即数列bn是等差数列,又b1=1,bn 2n 17分
(II)cn=(2n 1)2n ,
Tn=a1b1 a2b2 anbn 1 2 3 22 5 23 (2n 1)2n , ……9 分
④当 a=1 时,不等式的解为 .
………………………12 分
综上,当 a=0 时,不等式的解集为(1,+∞);当 a<0 时,不等式的解集为(-∞, 1 )∪(1,+
a
∞);当 0<a<1 时,不等式的解集为(1, 1 );当 a〉1 时,不等式的解集为( 1 ,1);当 a=1 时,
a
a
不等式的解集为 。
所以 log2 (an 1) 1 (n 1) 1 n, an 2n 1. ………………………………7 分 (2) an 2n 1. Sn a1 a2 an (2 1) (22 1) (2n 1) ………………9 分 (2 22 2n ) n

高中数学北师大版必修5测试卷含答案

高中数学北师大版必修5测试卷含答案

一、选择题(本大题共12小题,每小题3分,共36分)1.已知数列{a n }满足a 1=1,a n =1+11-n a (n >1,n ∈N ∗),则a 3=( )A 、2B 、23C 、35D 、58 2.已知a =2+7,b =3+6,则下列结论正确的是( )A 、a =bB 、a >bC 、a <bD 、不能确定3.已知集合A ={x|(x −3)(x +1)<0},B ={x|2x +1>0},则A ∩B =( )A 、(−3,21)B 、(−3,−21) C 、(21,3) D 、(−21,3) 4.在△ABC 中,若BC =23,AC =5,∠C =30°,则AB =( )A 、7B 、23C 、19D 、31037-5.已知等差数列{a n }的前n 项和S n ,若a 1=1,a 4+a 6=18,则S 5=( )A 、25B 、39C 、45D 、546.若a ,b ,c ∈R ,则下列结论正确的是( )A 、若a >b ,则ac 2>bc 2B 、若a <b ,则a 1>b1 C 、若a >b ,c >d ,则ac >bdD 、若a >b ,则a −c >b −c7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为21a 2t ,则t =( ) A 、C B A sin sin sin B 、BC A sin sin sin C 、A C B sin sin sinD 、A C B cos sin sin 8.设等比数列{a n }前n 项和为S n ,且S 1=18,S 2=24,则S 4等于( )A 、376B 、379C 、380D 、382 9.三角形的一个角为60°,夹这个角的两边之比为8:5,则这个三角形的最大角的正弦值为( )A 、23B 、734C 、1435D 、78 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若k A sin =3sin B =4sin C (k 为非零实数),则下列结论错误的是( )A 、当k =5时,△ABC 是直角三角形B 、当k =3时,△ABC 是锐角三角形C 、当k =2时,△ABC 是钝角三角形D 、当k =1时,△ABC 是钝角三角形11.已知正数a ,b 满足ab =a +b +3,则ab 的最小值是( )A 、9B 、10C 、11D 、1212.已知数列{a n }满足a 1=1,a 1 n •a n =2n (n ∈N*),S n 是数列{a n }的前n 项和,则( )A 、a 2019=22019B 、a 2019=21010C 、S 2019=21010−3 D 、S 2019=21011−3 二、填空题(本大题共4小题,每小题3分,共12分)13.若数列的前4项分别是21,41,81,161,则它的一个通项公式是___________. 14.在锐角△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若b =2asinB ,则角A 等于__________.15.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的71是较小的两份之和,则最小一份的量为_________.16.已知△ABC 中,BC =2,AB =2AC ,则△ABC 面积的最大值为___________三、解答题(本大题共7小题,共52分)17.如图,在△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°(1)求∠BAC 的度数;(2)求AD 的长度.18.已知等比数列{a n }的前n 项和为S n ,且S 1,S 3,S 2成等差数列,(1)求数列{a n }的公比q ;(2)若a 1−a 3=6,求数列{a n }的通项公式.19.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔20250m ,速度为1000km/h ,飞行员在A 处先看到山顶C 的俯角为18°30',经过150s 后又在B 处看到山顶C 的俯角为81°(1)求飞机在B 处与山顶C 的距离(精确到1m );(2)求山顶的海拔高度(精确到1m )参考数据:sin18.5≈0.32,cos18.5≈0.95,sin62.5≈0.89,cos62.5°≈0.46,sin81°≈0.99,cos81°≈0.1620.已知数列{a n }满足n a 1−11+n a =12+⋅n n a a ,数列{b n }满足S n +b n =2,其中S n 为{b n }的前n 项和,且a 1=b 1=1,n ∈N ∗(1)求数列{a n }和{b n }的通项公式(2)求数列{a n ⋅b n }的前n 项和S n .21.如图,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,点A ,B 分别在半径OP ,OQ 上,且OACB 是平行四边形,记∠COP =α,四边形OACB 的面积为S ,问当α取何值时,S 最大?S的最大值是多少?22.如图,某地三角工厂分别位于边长为2的正方形ABCD 的两个顶点A ,B 及CD 中点M 处.为处理这三角工厂的污水,在该正方形区域内(含边界)与A ,B 等距的点O 处建一个污水处理厂,并铺设三条排污管道AO ,BO ,MO ,记铺设管道总长为y 千米.(1)按下列要求建立函数关系式:(i )设∠BAO =θ,将y 表示成θ的函数;(ii )设MO =2−x ,将y 表示成x 的函数;(2)请你选用一个函数关系,确定污水厂位置,使铺设管道总长最短.参考答案1-5 BCDAA 6-10 DCCBD 11-12 AD 13.n n a 21=14.︒30 15.35 16.34 17.(1)︒120(2)218.(1)21(2)41)21()1(--⋅-n n 19.(1)14981 (2)5419 20.(1)12-=n a n 1)21(-=n n b (2)1)21()32(6-⋅+-n n 21.6π 63 22.33 32+。

【北师大版】高中数学必修五期末试卷(附答案)(1)

【北师大版】高中数学必修五期末试卷(附答案)(1)

一、选择题1.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .102.已知0,0x y >>,且21x y +=,则xy 的最大值是( ) A .14B .4C .18D .83.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-4.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <575.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D,且CD =,3a b =,则c 的值为( )A .72BC .3D.6.已知锐角ABC 的内角,,A B C 的对边分别为,,a b c .若()2c a a b =+,则2cos cos()AC A -的取值范围是( )A.⎫⎪⎪⎝⎭B.12⎛ ⎝⎭C.⎝⎭D .1,12⎛⎫⎪⎝⎭7.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”我国拥有世界上最深的海洋蓝洞,现要测量如图所示的蓝洞的口径A ,B 两点间的距离,在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠=∠=︒,120ACB ∠=︒,则A 、B 两点间的距离为( )A .80B .803C .160D .8058.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m9.已知数列{}n a 满足11a =,24a =,310a =,1{}n n a a +-是等比数列,则数列{}n a 的前8项和8S =( ) A .376B .382C .749D .76610.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--11.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-12.正整数数列{}n a 满足:1,2(*)22,21n n n k a k a k N k a k +=⎧=∈⎨+=-⎩,则( ) A .数列{}n a 中不可能同时有1和2019两项 B .n a 的最小值必定为1 C .当n a 是奇数时,2n n a a +≥D .n a 的最小值可能为2二、填空题13.已知实数,x y 满足约束条件1210320y x y x y c ≥⎧⎪-+≥⎨⎪+-≤⎩,若2z y x =-的最大值为11,则实数c的值为____.14.已知实数x ,y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为________.15.在ABC 中,2a =,3b =,1cos 3C =,则ABC 的外接圆半径为___________. 16.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos 2c B a b =+,且ABC的面积为223a c +的最小值为__________.17.在钝角ABC 中,已知2a =,4b =,则最大边c 的取值范围是__________. 18.设x ,y 满足约束条件33,1,0,x y x y y +≥⎧⎪-≥⎨⎪≥⎩则z x y =+的最小值为__________.19.给定*1log (2)()n n a n n N +=+∈,则使乘积12k a a a 为整数的()*k k ∈N 称为“和谐数”,则在区间内[1,2020]的所有“和谐数”的和为_______.20.已知{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,则10S 的值为__________.三、解答题21.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供([0,10])∈x x (万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅-⎪+⎝⎭(万件),其中k 为工厂工人的复工率([0.5,1]k ∈).A 公司生产t 万件防护服还需投入成本(20950)x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)在复工率为k 时,政府补贴多少万元才能使A 公司的防护服利润达到最大? (3)对任意的[0,10]x ∈(万元),当复工率k 达到多少时,A 公司才能不产生亏损?(精确到0.01).22.如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD ,公园由矩形的休闲区(阴影部分)1111D C B A 和环公园人行道组成,已知休闲区1111D C B A 的面积为1000平方米,人行道的宽分别为4米和10米,设休闲区的长为x 米.(1)求矩形ABCD 所占面积S (单位:平方米)关于x 的函数解析式; (2)要使公园所占面积最小,问休闲区1111D C B A 的长和宽应分别为多少米?23.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C ,现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量得4sin 5C =,63sin 65B =,B 为钝角.(1)求缆车线路AB 的长:(2)问乙出发多少min 后,乙在缆车上与甲的距离最短.24.已知角α,β(0α<,βπ<)的顶点与原点O 重合,始边与x 轴的非负半轴重合,点13,22A ⎛ ⎝⎭,26,26B 分别在角α,β的终边上.(Ⅰ)设函数()()2sin 2f x x α=-,3, 82x ππ⎛⎫∈⎪⎝⎭,求()f x 的最大值; (Ⅱ)若点C 在角β的终边上,且线段AC 的长度为63,求AOC △的面积. 25.从①1a 、2a 、5a 成等比数列,②525S =,③222n nS S n n+-=+,这三个条件中任选一个,补充在下面问题中并作答.已知等差数列{}n a 的前n 项和为n S ,47a =, ,122n a n nb a +=+,求数列{}n b 的前n 项和为n T .26.设数列{}n a 的前n 项和为n S ,______.从①数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列;②22n n S a =-;③122n n S +=-.这三个条件中任选一个,补充在下面问题中,并作答.(1)求数列{}n a 的通项公式; (2)若21log nn na b a +=,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】结合题意画出可行域,然后运用线性规划知识来求解 【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法2.C解析:C 【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18.故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;,0)2a b a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.3.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.4.D解析:D 【分析】将()4f x m <-+恒成立转化为g (x ) = mx 2-mx +m -5 < 0恒成立,分类讨论m 并利用一元二次不等式的解法,求m 的范围 【详解】若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立 即可知:mx 2-mx +m -5 < 0在x ∈{x |1 ≤ x ≤ 3}上恒成立 令g (x )=mx 2-mx +m -5,对称轴为12x = 当m =0时,-5 < 0恒成立当m < 0时,有g (x )开口向下且在[1,3]上单调递减∴在[1,3]上max ()(1)50g x g m ==-<,得m < 5,故有m < 0 当m >0时,有g (x ) 开口向上且在[1,3]上单调递增 ∴在[1,3]上max ()(3)750g x g m ==-<,得507m <<综上,实数m 的取值范围为57m < 故选:D 【点睛】本题考查了一元二次不等式的应用,将不等式恒成立等价转化为一元二次不等式在某一区间内恒成立问题,结合一元二次不等式解法,应用分类讨论的思想求参数范围5.B解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值. 【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 33c a b ab C =+--==+. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.6.C解析:C 【分析】由余弦定理和正弦定理进行边化角,结合诱导公式和两角和与差的正弦公式可得2C A =,由锐角三角形得出A 角范围,再代入化简求值式,利用余弦函数性质可得结论. 【详解】∵2()c a a b =+,∴22222cos c a ab a b ab C =+=+-,∴(12cos )b a C =+, 由正弦定理得sin sin (12cos )B A C =+,∴sin()sin (12cos )sin cos cos sin A C A C A C A C +=+=+,整理得sin sin cos cos sin sin()A C A C A C A =-=-,∵,A C 是三角形的内角,∴A C A =-,即2C A =,又三角形是锐角三角形,∴2222A A A πππ⎧<⎪⎪⎨⎪--<⎪⎩,解得64A ππ<<,由2C A =得22cos cos cos ,cos()cos 22A A A C A A ⎛==∈ -⎝⎭. 故选:C . 【点睛】本题考查正弦定理和余弦定理的边角转换,考查两角与差的正弦公式,余弦函数的性质,考查学生分析问题解决问题的能力,属于中档题.7.D解析:D 【分析】如图,BCD △中可得30CBD ∠=︒,再利用正弦定理得BD =ABD △中,由余弦定理,即可得答案; 【详解】如图,BCD △中,80CD =,15BDC ∠=︒,12015135BCD ACB DCA ∠=∠+∠=︒+︒=︒,∴30CBD ∠=︒,由正弦定理得80sin135sin 30BD =︒︒,解得BD =ACD △中,80CD =,15DCA ∠=︒,13515150ADC ADB BDC ∠=∠+∠=︒+︒=︒, ∴15CAD ∠=︒,∴==80AD CD , ABD △中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅⋅∠ 2280(802)280802cos135=+-⨯⨯⨯︒2805=⨯,∴805AB =,即A ,B 两点间的距离为805.故选:D. 【点睛】本题考查正余弦定理的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.8.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:302sin120sin 45BC302sin 45203BC3tan 30203203ABBC故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.9.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式和分组求和法,求解8S 即可 【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,878128123(122)2831612S a a a -=++=⨯+++-⨯=⨯--83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项.10.D解析:D 【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 【详解】因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列,所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确,()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.11.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.12.A解析:A 【分析】根据题意知,数列{}n a 中的任意一项都是正整数,利用列举法直接写出数列中的项,进而可得结论. 【详解】对于选项A ,假设:12019a =,则后面依次为:2022,1011,1014,507,510,255,258,129,132,66,33,36,18,9,12,6,3,6,3…循环; 假设:11a =,则后面依次为:4,2,1,4,2,1,4,2,1,4,2……循环, 综上,数列{}n a 中不可能同时有1和2019两项,故选项A 正确; 由选项A 知,选项B 、D 都不对;对于选项C ,令11a =,则24a =,32a =,所以13a a <,故选项C 不正确. 故选:A. 【点睛】本题考查数列中的项数的求法,考查数列的递推公式求通项公式,属于基础题.二、填空题13.23【分析】画出不等式组表示的平面区域数形结合判断出取最大值的点即可建立关系求出【详解】画出不等式组表示的平面区域如图阴影部分直线在轴上的截距为则由图可知即将化为观察图形可知当直线经过点时取得最大值解析:23 【分析】画出不等式组表示的平面区域,数形结合判断出2z y x =-取最大值的点,即可建立关系求出. 【详解】画出不等式组表示的平面区域,如图阴影部分,直线320x y c +-=在y 轴上的截距为2c,则由图可知12c≥,即2c ≥, 将2z y x =-化为122z y x =+, 观察图形可知,当直线122zy x =+经过点A 时,z 取得最大值, 由210320x y x y c -+=⎧⎨+-=⎩解得27237c x c y -⎧=⎪⎪⎨+⎪=⎪⎩,故23221177c c +-⨯-=,解得23c =. 故答案为:23. 【点睛】方法点睛:线性规划常见类型, (1)y bz x a-=-可看作是可行域内的点到点(),a b 的斜率; (2)z ax by =+,可看作直线a zy x b b=-+的截距问题; (3)()()22z x a y b =-+-可看作可行域内的点到点(),a b 的距离的平方.14.【解析】作可行域如图则直线z=x+2y 过点A (20)时z 取最小值2点睛:线性规划的实质是把代数问题几何化即数形结合的思想需要注意的是:一准确无误地作出可行域;二画目标函数所对应的直线时要注意与约束条解析:【解析】作可行域,如图,则直线z=x+2y 过点A (2,0)时z 取最小值2.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.15.【分析】利用余弦定理求出并求出再利用正弦定理可求得的外接圆半径【详解】由余弦定理可得则为锐角所以因此的外接圆半径为故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边和角但不能直接使用 92【分析】利用余弦定理求出c ,并求出sin C ,再利用正弦定理可求得ABC 的外接圆半径. 【详解】 由余弦定理可得222212cos 2322333c a b ab C =+-=+-⨯⨯⨯=, 1cos 3C =,则C 为锐角,所以,222sin 1cos 3C C =-=,因此,ABC 的外接圆半径为922sin 2223cr C===⨯. 故答案为:928. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.16.80【分析】由已知结合正弦定理以及三角形内角和性质有根据面积公式有再应用余弦定理可得结合目标式有利用基本不等式即可求最小值;【详解】由及正弦定理可得∴即又故故因为的面积为所以即故由余弦定理可得∴当且解析:80 【分析】由已知结合正弦定理,以及三角形内角和性质有23C π=,根据面积公式有16ab =,再应用余弦定理可得22216c a b =++,结合目标式有22223164a c a b +++=,利用基本不等式即可求最小值; 【详解】由2cos 2c B a b =+及正弦定理可得2sin cos 2sin sin C B A B =+,∴2sin cos 2sin()sin C B B C B =++,即2sin cos sin 0B C B +=,又sin 0B >, 故1cos 2C =-,故23C π=.因为ABC 的面积为1sin 2ab C =122ab ⨯=16ab =, 由余弦定理可得222222212cos 216162c a b ab C a b a b ⎛⎫=+-=+-⨯⨯-=++ ⎪⎝⎭, ∴2222233a c a a b +=++221641641680a b ab +=++≥+=,当且仅当2a b ==时等号成立,故223a c +的最小值为80. 故答案为:80. 【点睛】本题考查了正余弦定理,应用了三角形内角和性质、三角形面积公式以及基本不等式求最值;17.【分析】利用三角形三边大小关系余弦定理即可得出【详解】因为三角形两边之和大于第三边故解得故答案为:【点睛】本题考查了三角形三边大小关系余弦定理考查了推理能力与计算能力属于中档题解析:【分析】利用三角形三边大小关系、余弦定理即可得出. 【详解】因为三角形两边之和大于第三边,故6c a b <+=.22224cos 0224c C +-=<⨯⨯,解得c >(25,6)c ∴∈.故答案为:(25,6). 【点睛】本题考查了三角形三边大小关系、余弦定理,考查了推理能力与计算能力,属于中档题.18.2【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求得最优解的坐标把最优解的坐标代入目标函数得结论【详解】画出表示的可行域如图由可得将变形为平移直线由图可知当直经解析:2 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出3310x y x y y +≥⎧⎪-≥⎨⎪≥⎩约束条件表示的可行域,如图,由10330x y x y --=⎧⎪⎨⎪+-=⎩可得3212x y ⎧=⎪⎪⎨⎪⎪=⎩, 将z x y =+变形为y x z =-+,平移直线y x z =-+,由图可知当直y x z =-+经过点31,22⎛⎫⎪⎝⎭时,直线在y 轴上的截距最小,最大值为31222z =+=,故答案为2. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.19.2026【分析】根据换底公式把代入并且化简转化为为整数即可求得区间内的所有和谐数的和【详解】由换底公式:得为整数∴分别可取最大值则最大可取10故所有和谐数的和为故答案为:2026【点睛】考查数列的综解析:2026 【分析】根据换底公式把1log (2)n n a n +=+代入12k a a a ⋯并且化简,转化为lg(2)lg 2k +为整数,即22n k +=,n *∈N ,可求得区间[1,2020]内的所有“和谐数”的和.【详解】由换底公式:log log log b a b NN a=, 得()231241log 3log 4log 5log 2k k a a a k +=⋯+122lg3lg 4lg5lg(2)lg(2)log (2)lg 2lg3lg 4lg(1)lg 2==++⋯⋅⋅⋅⋅=++k k k a a a k k 为整数,∴22n k +=,n *∈N ,k 分别可取23422,22,22---,最大值222020n -≤,则n 最大可取10, 故所有“和谐数”的和为()923104122221818202612-++⋅⋅⋅+-=-=-.故答案为:2026. 【点睛】考查数列的综合应用及对数的换底公式,把12k a a a ⋯化简并且转化为对数的运算,体现了转化的思想,属中档题.20.110【分析】根据题意求出首项再代入求和即可得【详解】是与的等比中项解得故答案为:110【点睛】本题主要考查等差数列等比数列的通项公式及等差数列求和是基础题解析:110 【分析】根据题意,求出首项120a =,再代入求和即可得.【详解】31124a a d a =+=-,711612a a d a =+=-,911816a a d a =+=-,7a 是3a 与9a 的等比中项,()()2111(12)416a a a ∴-=--,解得120a =,()101102010921102S ∴=⨯+⨯⨯⨯-=.故答案为:110. 【点睛】本题主要考查等差数列、等比数列的通项公式及等差数列求和,是基础题.三、解答题21.(1)3601808204ky k x x =---+,[0,10]x ∈,[0.5,1]k ∈;(2)4-;(3)0.65 【分析】(1)根据已知条件列出关系式,即可得出答案; (2)由()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦,进而结合基本不等式求出()4544kx x +++的最小值,此时y 取得最大值,从而可求出答案; (3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,可知36018082004kk x x ---≥+在[0,10]x ∈上恒成立,利用参变分离,可得()()20841802x x k x ++≥+,求出()()20842x x x +++的最大值,令()()max20841802x x k x ++⎡⎤≥⎢⎥+⎣⎦,即可得出答案. 【详解】 (1)由题意,80(20950)y x t x t =+-++30820t x =--123068204k x x ⎛⎫=⋅--- ⎪+⎝⎭3601808204kk x x =---+,即3601808204ky k x x =---+,[0,10]x ∈,[0.5,1]k ∈. (2)()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦,因为[0,10]x ∈,所以4414x ≤+≤,所以()4544kx x ++≥=+4544k x x +=+,即4x =时,等号成立.所以()451801284180124k y k x k x ⎡⎤=+-++≤+-⎢⎥+⎣⎦故政府补贴为4万元才能使A 公司的防护服利润达到最大,最大为18012k +-.(3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,则36018082004kk x x ---≥+在[0,10]x ∈上恒成立,不等式整理得,()()20841802x x k x ++≥+,令2m x =+,则[]2,12m ∈,则()()()()208484288202x x m m m x mm++++==+++, 由函数()8820h m m m=++在[]2,12上单调递增,可得()()max 821281*********h m h ==⨯++=+, 所以21801163k ≥+,即211630.65180k +≥≈. 所以当复工率k 达到0.65时,对任意的[0,10]x ∈(万元),A 公司都不产生亏损.【点睛】本题考查函数模型及其应用,考查利用基本不等式求最值,考查不等式恒成立问题,考查学生分析问题、解决问题的能力,属于中档题. 22.(1)1000(20)(8),(0)S x x x=++>;(2)休闲区1111D C B A 的长和宽应分别为50米,20米. 【分析】(1)先表示休闲区的宽,再表示矩形ABCD 长与宽,最后根据矩形面积公式得函数解析式,注意求函数定义域;(2)根据基本不等式求S 最小值,再根据等号取法确定休闲区1111D C B A 的长和宽. 【详解】(1)因为休闲区的长为x 米,休闲区1111D C B A 的面积为1000平方米,所以休闲区的宽为1000x 米;从而矩形ABCD 长与宽分别为20x +米1000,8x+米,因此矩形ABCD 所占面积1000(20)(8),(0)S x x x=++>, (2)100020000(20)(8)1160811601960S x x x x =++=++≥+= 当且仅当200008,50x x x ==时取等号,此时100020x= 因此要使公园所占面积最小,休闲区1111D C B A 的长和宽应分别为50米,20米. 【点睛】本题考查函数应用、求函数解析式、利用基本不等式求最值,考查基本分析求解能力,属基础题.23.(1)1040m ;(2)3537min 【分析】(1)在ABC 中,根据4sin 5C =,63sin 65B =,由正弦定理sin sin AB ACC B=,可得AB ;(2)假设乙出发t 分钟时,甲,乙两游客距离为d ,此时,甲行走了()10050t m +,乙距离A 处()130t m ,由余弦定理得2d =235625200373737t ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪⎝⎭⎝⎭,再利用二次函数求解. 【详解】(1)在ABC 中,根据4sin 5C =,63sin 65B =, 由正弦定理得:sin sin AB ACC B=,得41260sin 5104063sin 65AC C AB B ⋅⋅===(m )所以缆车线路AB 的长为1040m(2)假设乙出发t 分钟时,甲,乙两游客距离为d ,此时,甲行走了()10050t m +,乙距离A 处()130t m ,由余弦定理得()()()222121005013021301005013d t t t t =++-⨯⨯+⨯()2200377050t t =-+235625200373737t ⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 又在AB 段的时间10400130t ≤≤,即08t ≤≤, 故3537t =时,甲,乙两游客的距离最短. 【点睛】关键点点睛:本题主要考查了解三角形的实际应用.实际应用题关键是构造三角形,将各个已知条件向这个主三角形集中,转化为数学模型,列出数学表达式,再通过正弦、余弦定理,勾股定理或其他基本性质建立条件之间的联系,列方程或列式求解. 24.(Ⅰ)2;(Ⅱ)312±. 【分析】(Ⅰ)由α终边上的点求出α三角函数,求出α,根据正弦函数的值域求函数()f x 的最值即可; (Ⅱ)由β过点B 求其正余弦值,求出cos AOC ∠后利用正弦或余弦定理求解即可. 【详解】(Ⅰ)由α过点12A ⎛ ⎝⎭知1cos 2α=,sin α=, ∴3πα=,()2sin 23f x x π⎛⎫=-⎪⎝⎭. ∵3,82x ππ⎛⎫∈⎪⎝⎭∴522,3123x πππ⎛⎫-∈ ⎪⎝⎭∴()f x ∈. ∴()max 2f x = (Ⅱ)由β过点B知sin β=cos β=,cos()cos cos sin sin βααβαβ-=+=,即cos AOC ∠=. <方法一>由余弦定理知2222cos AC OC OA OA OC AOC =+-⋅⋅∠,∴2213OC =+,∴OC =,∴AOC S ==△. <方法二>由正弦定理知sin sin OA ACACO AOC=∠∠,∴sin ACO ∠==,1cos 2ACO ∠=±,()1sin sin 22CAO ACO AOC ⎫∠=∠+∠=±=⎪⎪⎝⎭∴12||||sin 2AOC AOM S S OA AC OAC ==⋅⋅∠==△△ 【点睛】关键点点睛:利用角的终边上的点,根据三角函数的定义求出α,β的正余弦函数值,再由βα-AOC =∠,求出cos 2AOC ∠=是解题的关键,再由正弦定理或余弦定理求解,属于中档题. 25.答案见解析. 【分析】选①,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而可求得n T ;选②,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T ; 选③,设等差数列{}n a 的公差为d ,利用等差数列的求和公式求出d 的值,可求得1a 的值,求出数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T . 【详解】解:选①,设数列{}n a 的公差为d ,则由47a =可得137a d +=,由1a 、2a 、5a 成等比数列得()()21114a a d a d +=+,可得212d a d =,所以,121372a d d a d +=⎧⎨=⎩,解得170a d =⎧⎨=⎩或112a d =⎧⎨=⎩,若17a =,0d =,则7n a =,23n b =,23n T n =;若11a =,2d =,则()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选②,设数列{}n a 的公差为d ,则由47a =可得137a d +=, 由525S =得1545252a d ⨯+=,即125a d +=, 联立以上两式可得11a =,2d =,所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选③,设数列{}n a 的公差为d ,则由47a =可得137a d +=,()112n n n d S na -=+,()112n n d Sa n -∴=+,()21122n n d S a n ++∴=++, 由222n nS S n n+-=+得2d =,则11a =, 所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.26.(1)条件性选择见解析,2nn a =;(2)332n nn T +=-. 【分析】(1)选①:由题意可得32442a a a =+-,再利用等比数列的公比为2可求1a ,进而可求数列{}n a 的通项公式;选②:22n n S a =-,令1n =可求1a ,当2n ≥时,可得1122n n S a --=-,与已知条件两式相减可求得()122n n a a n -=≥,进而可求数列{}n a 的通项公式;选③:122n n S +=-,当1n =时,112S a ==,当2n ≥时,122nn S -=-,与已知条件两式相减可求得2nn a =,检验12a =也满足,进而可求数列{}n a 的通项公式;(2)由(1)知2nn a =,则221log 1log 2122n n n nn n a n b a +++===,利用乘公比错位相减即可求和. 【详解】(1)选①:因为2a ,3a ,44a -成等差数列, 所以32442a a a =+-,又因为数列{}n a 的公比为2,所以2311122242a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =,所以1222n nn a -=⨯=.选②:因为22n n S a =-,当1n =时,1122S a =-,解得12a =. 当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-. 即()122n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列.故1222n nn a -=⨯=.选③:因为122n n S +=-,所以当1n =时,112S a ==,当2n ≥时,122nn S -=-,所以()()1122222n n n n n n a S S +-=-=---=,当1n =时,1122a ==依然成立.所以2nn a =.(2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===, 所以2323412222n nn T +=++++, ① 231123122222n n n n n T ++=++++, ② ①-②得23111111122222n nn n T ++⎛⎫=++++- ⎪⎝⎭ 212111111111111121222211111222221122n n n n n n n n n -+++++⎛⎫-- ⎪+++⎝⎭=+-=+-=+----13322n n ++=-. 所以332n nn T +=-. 所以数列{}n b 的前n 项和332n nn T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.。

【北师大版】高中数学必修五期末试卷(及答案)(2)

【北师大版】高中数学必修五期末试卷(及答案)(2)

一、选择题1.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,22.当02x π<<时,函数21cos 28sin ()sin 2x xf xx++=的最小值为( )A .2B .23C .4D .433.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( ) A .7620+ B .7620- C .72620+ D .72620- 4.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭5.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106 m (如图),则旗杆的高度为( )A .10 mB .30 mC .103 mD .106 m6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC. D.7.已知△ABC 中,2cos =c b A ,则△ABC 一定是 A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形8.小华想测出操场上旗杆OA 的高度,在操场上选取了一条基线BC ,请从测得的数据①12m BC =,②B 处的仰角60°,③C 处的仰角45∘,④cos BAC ∠=⑤30BOC ∠=︒中选取合适的,计算出旗杆的高度为( ) A.B .12mC.D.9.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .3510.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-39211.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .202212.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.已知x ,y 满足041x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为________.15.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,ABC 的面积为24b c,且221sin ()(1)sin sin 2A B c B b A ++-=,则A =_______.16.在ABC 中,2AB =,30C ︒=,则AB BC 的取值范围是________. 17.在三角形ABC 中,D 为BC 边上一点,且2BD CD =,AD BD =,则2tan cos BAC B ∠⋅的最大值为__________.18.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.19.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈,若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和n T 为______.20.数列{}n a 满足:112a =,212n n a a a n a ++⋯+=⋅,则数列{}n a 的通项公式n a =___________.三、解答题21.现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为111623,,;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p (0<p <1),设乙项目产品价格在一年内进行两次独立的调整.记乙项目产品价格在一年内的下降次数为X ,对乙项目每投资10万元,X 取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量X 1、X 2分别表示对甲、乙两项目各投资10万元一年后的利润.(1)求X 1,X 2的概率分布和均值E (X 1),E (X 2); (2)当E (X 1)<E (X 2)时,求p 的取值范围. 22.设1x >,且4149(1)x x +--的最小值为m .(1)求m ;(2)若关于x 的不等式20ax ax m -+的解集为R ,求a 的取值范围.23.在ABC 中,角,,A B C 的对边分别为,,a b c ,若1sin cos sin cos 2a B C c B Ab +=,且c b >.(1)求角B 的值;(2)若6A π=,且ABC 的面积为BC 边上的中线AM 的长.24.在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin2sin .a B b A =(1)若3,a b ==,求c ;(2)求cos cos a C c Ab-的取值范围.25.已知{}n a 为等差数列,数列{}n b 的前n 和为1128,22,10n S a b a a ==+=,___________.在①112n n S b =-,②2n a n b λ=这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件分别解答,按第一个解答计分).(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T . 26.已知n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数且n *∈N 若.130n n a a ++⋅>恒成立,求: (1)数列{}n a 的通项公式; (2)数列{}n a 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意, 当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 2.C解析:C 【解析】0,tan 02xx π<∴,()21cos28sin sin2x x f x x++=2222cos 8sin 28tan 14tan 42sin cos 2tan tan x x x x x x x x ++===+≥=,当且仅当1tan 2x =时取等号,函数()21cos28sin sin2x x f x x ++=的最小值为4,选C.3.C解析:C 【分析】由题意可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),将所求式子化为b 的关系式,由基本不等式可得所求最小值. 【详解】直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点, 可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5), 则1216412311696a b b b+=+++-+ 120=[(11﹣6b )+(9+6b )](1611696b b +-+)120=(7()61169611696b b b b -+++-+)≥,当且仅当()61169611696b b b b -+=-+时,即b =,a =720+, 故选:C . 【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题.4.D解析:D 【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围. 【详解】 作出可行域如下:由221z x y =--得12zy x +=-, 平移直线12zy x +=-, 由平移可知当直线12zy x +=-,经过点C 时, 直线12zy x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -,此时2214215z x y =--=+-=, 可知当直线12zy x +=-,经过点A 时, 直线12zy y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3代入221z x y =--得125221333z =⨯-⨯-=-,故5[3z ∈-,5)故选:D . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.5.B解析:B 【分析】作图,分别求得∠ABC ,∠ACB 和∠BAC ,然后利用正弦定理求得AC ,最后在直角三角形ACD 中求得AD .【详解】 解:如图,依题意知∠ABC =30°+15°=45°,∠ACB =180°﹣60°﹣15°=105°, ∴∠BAC =180°﹣45°﹣105°=30°, 由正弦定理知BC ACsin BAC sin ABC=∠∠,∴AC BC sin BAC=∠•sin ∠ABC10622==3m ), 在Rt △ACD 中,AD 32=•AC 32=⨯3=30(m ) 即旗杆的高度为30m . 故选B . 【点睛】本题主要考查了解三角形的实际应用.结合了正弦定理等基础知识,考查了学生分析和推理的能力.6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=, 在ABP ∆中,利用正弦定理得30sin 30103sin120PB ==即这时船与灯塔的距离是103km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.8.D解析:D 【分析】设旗杆的高度OA h =.选①②③⑤,表示出OB OC ,,在BOC ∆中,由余弦定理列方程求解;选①②③④,表示出AB AC ,,在BAC ∆中,由余弦定理列方程求解. 【详解】设旗杆的高度OA h =.选①②③⑤,则OC h =,3OB =, 在BOC ∆中,由余弦定理得2222cos BC OB OC OB OC BOC =+-⋅⋅∠,即2223122233h h =+-⋅⋅⋅ ⎪⎝⎭,解得123h =; 选①②③④,则3AB h =,2AC h =, 在BAC ∆中,由余弦定理得2222cos BC AB AC AB AC BAC =+-⋅⋅∠, 即()2223612222833h h =+-⋅⋅⋅ ⎪⎝⎭,解得123h =. 故选:D .【点睛】本题主要考查了余弦定理在解三角形的应用,考查了仰角的概念,考查了学生对概念的理解和运算求解能力,属于中档题.9.B解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列,11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.10.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.11.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列.∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.12.B解析:B 【分析】结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝当且仅当22 22141b aa b+=+, 又2212a b+=,即2212ab⎧=⎪⎨⎪=⎩时,取得等号.故答案为:6【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.6【分析】作出不等式组所表示的平面区域结合图象确定目标函数的最优解即可得到答案【详解】由题意作出不等式组所表示的平面区域如图所示因为目标函数可化为直线当直线过点A时此时目标函数在轴上的截距最大此时目解析:6【分析】作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案.【详解】由题意,作出不等式组41x yx yx-≤⎧⎪+≤⎨⎪≥⎩所表示的平面区域,如图所示,因为目标函数2z x y=+,可化为直线2y x z=-+,当直线2y x z=-+过点A时,此时目标函数在y轴上的截距最大,此时目标函数取得最大值,又由4x yx y-=⎧⎨+=⎩,解得(2,2)A,所以目标函数2z x y=+的最大值为2226z=⨯+=.故答案为:6.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.15.【分析】先由的面积为得到再用正弦定理余弦定理化简已知得解【详解】由三角形的面积公式可知得由得由正弦定理得即所以所以又所以又故故答案为:【点睛】方法点睛:化简三角形中的三角恒等式时要注意观察等式再利用解析:4π【分析】先由ABC 的面积为24b c得到sin 2b A =,再用正弦定理余弦定理化简已知得解.【详解】由三角形的面积公式可知21sin 24b cS bc A ==,得sin 2b A =,由221sin ()(1)sin sin 2A B c B b A ++-=得222sin (1)sin sin C c B A +-=, 由正弦定理得222(1)c c b a +-=即2222c b a b c +-=, 所以2cos b A = , 所以sin cos A A =, 又2A π≠,所以tan 1A =,又0A π<<,故4A π=故答案为:4π 【点睛】方法点睛:化简三角形中的三角恒等式时,要注意观察等式,再利用正弦定理余弦定理角化边或边化角化简求解.16.【分析】首先根据正弦定理得化简得到再求其范围即可【详解】由正弦定理得:所以所以因为所以即故的取值范围是故答案为:【点睛】本题主要考查正弦定理的应用同时考查三角函数的值域问题属于中档题 解析:[6,2]-【分析】首先根据正弦定理得4sin =BC A ,化简得到()4sin 2302⋅=+-AB BC A ,再求其范围即可. 【详解】由正弦定理得:4sin sin ==AB BCC A,所以4sin =BC A . 所以()cos 1808sin cos ⋅=⋅-=-AB BC AB BC B A B()()8sin cos 180308sin cos 30⎡⎤=--+=+⎣⎦A AA A 218sin sin cos 4sin 2⎫=-=-⎪⎪⎝⎭A A A A A A ()()221cos 24sin 2302=--=+-A A A因为0150<<A ,所以3030330<2+<A , 即()1sin 2301-≤+≤A ,()64sin 23022-≤+-≤A .故AB BC 的取值范围是[6,2]-. 故答案为:[6,2]- 【点睛】本题主要考查正弦定理的应用,同时考查三角函数的值域问题,属于中档题.17.【分析】设则在△ABD 和△ACD 中由正弦定理化简可得由两角差的正弦公式化简可得根据正弦函数的值域即可求解的最大值【详解】如图由已知设则在△ABC 中由正弦定理可得:在△ACD 中由正弦定理可得:所以化简解析:32【分析】设,BD x =则,2xAD x CD ==,在△ABD 和△ACD 中,由正弦定理化简可得3sin 2sin cos 22sin sin()x x B B BBAC BAC B ⋅⋅=∠∠-,由两角差的正弦公式,化简可得23tan cos sin 22BAC B B ∠⋅=,根据正弦函数的值域即可求解2tan cos BAC B ∠⋅的最大值.【详解】如图,由已知,设,BD x =则,2x AD x CD ==, 在△ABC 中,由正弦定理可得: 32sin sin xb BAC B=∠, 在△ACD 中,由正弦定理可得: 2sin()sin 2xb BAC B B=∠-.所以3sin2sin cos2sin cos222=sin sin()sin cos cos sinx x xB B B B BBAC BAC B BAC B BAC B⋅⋅⋅=∠∠-∠-∠化简可得:tan cos3sinBAC B B∠⋅=,可得: 233tan cos sin222BAC B B∠⋅=≤.可得2tan cosBAC B∠⋅的最大值为32.【点睛】本题考查正弦定理在解三角形和化简中的应用,能借助公共边把两个三角形联系起来是解答本题的关键,属于中档题.18.【分析】由题中定义得出作差变形后得出对任意的恒成立结合得出由此可求得实数的取值范围【详解】因为函数是距增函数所以恒成立由所以因此实数的取值范围是故答案为:【点睛】本题考查函数新定义考查二次不等式恒成解析:(1,)+∞【分析】由题中定义得出()()f x a f x+>,作差变形后得出22313304ax a x a a++->对任意的x∈R恒成立,结合0a>得出∆<0,由此可求得实数a的取值范围.【详解】()()()()332231114433444f x a f x x a x a x x ax a x a a⎡⎤⎛⎫+-=+-++--+=++-⎪⎢⎥⎣⎦⎝⎭,因为函数()y f x=是“a距”增函数,所以22313304ax a x a a++->恒成立,由0a>,所以2210912014a a a⎛⎫∆<⇒--<⇒>⎪⎝⎭.因此,实数a的取值范围是()1,+∞.故答案为:()1,+∞.【点睛】本题考查函数新定义,考查二次不等式恒成立问题,考查运算求解能力,属于中等题. 19.【分析】首先利用方程组求出数列的通项公式进一步求出数列的通项公式进一步利用分类讨论思想的应用求出数列的和【详解】解:各项均为正数的等比数列中若所以由于公比解得所以解得所以由于所以则当时当时所以故答案解析:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【分析】首先利用方程组求出数列{}n a 的通项公式,进一步求出数列{}n b 的通项公式,进一步利用分类讨论思想的应用求出数列的和. 【详解】解:各项均为正数的等比数列{}n a 中,若355a a +=,264a a =, 所以35352654a a a a a a +=⎧⎨==⎩,由于公比()0,1q ∈,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =. 所以55512n n n a a q--⎛⎫=⋅= ⎪⎝⎭.由于5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==, 则()9292n n n n S n c nn--===, 当9n ≤时,()212171744n n n n n n T c c c --=+++==. 当9n >时,()()212910*********24n n n n n T c c c c c c c c c c -+=+++---=++-+++=. 所以()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩.故答案为:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【点睛】本题考查等比数列的通项公式,等差数列的前n 项和公式,考查分类讨论思想和数学运算能力,是中档题.20.【分析】当时作差即可得到再利用累乘法求出数列的通项公式即可;【详解】解:因为①;当时②;①减②得即所以所以所以所以……所以所以又所以当时也成立所以故答案为:【点睛】对于递推公式为一般利用累乘法求出数 解析:21n n+ 【分析】当2n ≥时,()212111n n a a a n a --++⋯+=-⋅,作差即可得到111n n a n a n --=+,再利用累乘法求出数列的通项公式即可; 【详解】解:因为212n n a a a n a ++⋯+=⋅①;当2n ≥时,()212111n n a a a n a --++⋯+=-⋅②;①减②得()2211n n n a n a n a -=⋅-⋅-,即()()22111n n n a n a -⋅-⋅-=,所以()()()21111n n n n a n a --+=⋅-⋅,所以()()111n n n a n a -⋅-⋅+=,所以111n n a n an --=+ 所以2113a a =,3224a a =,4335a a =,……,111n n a n a n --=+,所以324211312313451n n a a a a n a a a a n --⋅⋅⋅⨯⨯⨯=⨯+,所以()121n a a n n =+,又112a =,所以()11n a n n =+,当1n =时()11n a n n =+也成立,所以()11n a n n =+故答案为:()11n n +【点睛】 对于递推公式为()1nn a f n a -=,一般利用累乘法求出数列的通项公式,对于递推公式为()1n n a a f n --=,一般利用累加法求出数列的通项公式; 三、解答题21.(1)见解析(2)0<p <0.3 【解析】分析:(1)由题意可得随机变量X 1的分布列和期望;结合X ~B (2,p )可得随机变量X 2的分布列和期望.(2)由E (X 1)<E (X 2)可得关于p 的不等式,解不等式可得所求. 详解:(1)由题意得X 1的分布列为∴E (X 1)=1.2×6+1.18×2+1.17×3=1.18. 由题设得X ~B (2,p ),即X 的分布列为22=1.3×(1-2p +p 2)+2.5×(p -p 2)+0.2×p 2 =-p 2-0.1p +1.3.(2)由E (X 1)<E (X 2),得-p 2-0.1p +1.3>1.18, 整理得(p +0.4)(p -0.3)<0, 解得-0.4<p <0.3. 因为0<p <1, 所以0<p <0.3.即当E (X 1)<E (X 2)时,p 的取值范围是()0,0.3.点睛:(1)求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.(2)求解离散型随机变量X 的均值与方差时,只要在求解分布列的前提下,根据均值、方差的定义求EX ,DX 即可. 22.(1)47=m ;(2)160,7⎡⎤⎢⎥⎣⎦; 【分析】(1)直接利用基本不等式即可求得4149(1)x x +--的最小值;(2)不等式20ax ax m -+的解集为R ,分0a =与0a ≠进行分类讨论,再结合二次函数的图象与性质列不等式求解即可.【详解】解:(1)因为1x >,所以10x ->, 所以444411249(1)49(1)497x x x x +-=-+=--,当且仅当4149(1)x x -=-,即217x -=,也即97x =时等号成立,故47=m . (2)由(1)知4,7m =, 若不等式2407ax ax -+的解集为R ,则 当0a = 时,407恒成立,满足题意; 当0a ≠时,201607a a a >⎧⎪⎨∆=-⎪⎩, 解得1607a <, 综上,1607a, 所以a 的取值范围为160,7⎡⎤⎢⎥⎣⎦. 【点睛】本题考查基本不等式的应用,二次函数的图象及其性质,主要考查学生逻辑推理能力和计算能力,属于中档题. 23.(1)6π;(2) 【分析】(1)先由正弦定理边角互化,计算求得sin B ;(2)由(1)可知ABC 是等腰三角形,根据面积公式求边长a ,AMC 中,再根据余弦定理求中线AM 的长. 【详解】(1)∵1sin cos 2a B Ab =, 由正弦定理边角互化得1sin sin cos sin sin cos sin 2A B C C B A B +=, 由于(0,),sin 0B B π∈≠,∴1sin cos sin cos 2A C C A +=,即1sin()2A C +=,得1sin 2B =.又c b >,∴02B π<<,∴6B π=.(2)由(1)知6B π=,若6A π=,故a b =,则2112sin sin 223ABC S ab C a π∆=== ∴4a =,4a =-(舍)又在AMC 中,22222cos 3AM AC MC AC MC π=+-⋅, ∴222221121()2cos 42242()282232AM AC AC AC AC π=+-⋅⋅⋅=+-⋅⋅⋅-=,∴AM =24.(1)2c =;(2)()1,1-. 【分析】(1)由正弦定理及二倍角公式可得1cos 2B =,进而得解; (2)根据正弦定理边角互化可得cos cos 223a C c A A b π-⎛⎫∴=-⎪⎝⎭,结合锐角三角形的范围可得解. 【详解】(1)由sin 2sin a B b A =,得sin sin2sin sin A B B A =,得2sin sin cos sin sin A B A B A =,得1cos 2B =, 在ABC ,3B π∴=,由余弦定理2222cos b c a ac B =+-, 得27923cos3c c π=+-⨯,即2320c c -+=,解得1c =或2c =.当1c =时,22220,cos 0b c a A +-=-<< 即A 为钝角(舍), 故2c =符合. (2)由(1)得3B π=,所以23C A π=-,cos cos sin cos cos sin 22sin 3a C c A A C A C A b B π--⎛⎫∴===-⎪⎝⎭,ABC 为锐角三角形,62A ππ∴<<,22333A πππ∴-<-<,2sin 2232A π⎛⎫<-< ⎪⎝⎭, cos cos 11a C c Ab-∴-<<,故cos cos a C c Ab-的取值范围是()1,1-.【点睛】关键点点睛:本题的解题关键是熟练应用正余弦定理进行边角互化,正确分析锐角三角形中角的范围是解题的关键.25.条件选择见解析;(1)n a n =,2nn b =;(2)212222n n n n T +=-++.【分析】选①(1)由等差数列的基本量法求出公差d 后可得通项公式n a ,再利用1(2)n n n b S S n -=-≥确定数列{}n b 是等比数列,从而得出通项公式n b ;(2)用分组(并项)求和法求和.选②(1)由等差数列的基本量法求出公差d 后可得通项公式,由112a b λ=求得λ,从而得通项公式n b ,并并确定其是等比数列; (2)用分组(并项)求和法求和. 【详解】 解:选①解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==, 1(1)1n a n n ∴=+-⨯=,由112n n S b =-,得()21n n S b =-, 当2n ≥时,()()112121n n n n n b S S b b --=-=---,即12n n b b -=,所以{}n b 是一个以2为首项,2为公比的等比数列.1222n n n b -∴=⨯=.(2)由(1)知2nn n a b n +=+,()()()1212222n n T n ∴=++++++,()12(12)222n n T n =+++++++,()21212(1)2221222n n n n n n n T +-+∴=+=-++-. 选②解: (1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==,1(1)1n a n n ∴=+-⨯=.112,1,2n a n b a b λ===,令1n =,得112a b λ=,即22,1λλ=∴=, 22n a n n b ∴==.(2)解法同选①的第(2)问解法相同.【点睛】方法点睛:本题考查求等差数列和等比数列的通项公式,考查分组(并项)求和法. 数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.26.(1)*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩;(2)2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩. 【分析】(1)先令12n nx t =,根据所给方程,得到()()2312log 23n n n t n t n n ++=+,构造函数()()214log 2n g x x n x +=+,确定122n n n t +<<,再讨论n 为奇数和n 为偶数两种情况,结合题中条件,即可求出数列的通项;(2)根据(1)的结果,讨论n 为奇数和n 为偶数两种情况,利用分组求和的方法,结合等差数列的求和公式,即可求出结果.【详解】(1)因为n x 是关于x 的方程2121log 3n n x n n x+-=+的实数根,令12n n x t =,则12n nx t =, 所以()()2312log 23n n n t n t n n ++=+,记()()214log 2n g x x n x +=+,显然()g x 单调递增,且2221log 32n n g n n n n n n n +⎛⎫=+<+<+ ⎪⎝⎭,()()222111log 13132n n g n n n n n n n ++⎛⎫=+++=++>+ ⎪⎝⎭, 所以122n n n t +<<, 当*21()n k k N =-∈时,2112n k k t k --<<<,则[]11122n n n n a t k x ⎡⎤-===-=⎢⎥⎣⎦; 当*2()n k k N =∈时,21122n k k t k +<<=+,则[]122n n n n a t k x ⎡⎤====⎢⎥⎣⎦; 综上,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩; (2)由(1)可得,*1,212(),22n n n k a k N n n k -⎧=-⎪⎪=∈⎨⎪=⎪⎩, 当*21()n k k N =-∈时,()()1352461......n n n S a a a a a a a a -=+++++++++211121002412461122222 (222)22222224n n n n n n n +---⎛⎫⎛⎫++ ⎪ ⎪---⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭;当*2()n k k N =∈时,()()1351246......n n n S a a a a a a a a -=+++++++++2220024224622222 (222)22222224n n n n n n n -⎛⎫⎛⎫++ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭=+++++++++=+= ⎪ ⎪⎝⎭⎝⎭; 综上,2*21,214(),24n n n k S k N n n k ⎧-=-⎪⎪=∈⎨⎪=⎪⎩.【点睛】关键点点睛:求解本题的关键在于由n x 是关于x 的方程2121log 3n n x n n x +-=+的实数根,求出12n x 的范围,利用12n n a x ⎡⎤=⎢⎥⎣⎦,通过讨论n 的奇偶,得出数列通项,即可求解.。

北师大版(新课标)高中数学必修5期末试卷

北师大版(新课标)高中数学必修5期末试卷

必修5模块检测题(1)一、选择题1.点(3,1)和(4,6)-在直线320x y a -+=的两侧,则a 的取值范围是( ).A .[7,)-+∞B 。

(7,24)- C.(,7)(24,)-∞-+∞ D.(](0,1)2,41.B (3321)(3426)0a a ⨯-⨯+-⨯-⨯+<,即(7)(24)0a a +-<,得724a -<<.2。

若数列{}n a 中,*1111,()2n n a a a n N +==-∈,则n a =( ). A .11()2n -- B .11()2n -- C .1()2n - D .1()2n - 2.A112n n a a +=-,即数列{}n a 是以1为首项,以12-为公比的等比数列,得11()2n n a -=-. 3.如果a b >,那么下列不等式中正确的是( )。

A 。

lg lg ,(0)a x b x x >> B.22ax bx > C.22a b > D.22x x a b >3。

D 当0x >时,lg x 可正可负,而当x R ∈时,20x >恒成立.4.一货轮航行到M 处,测得灯塔S 在货轮的北偏东15,与灯塔S 相距20海里,随后货轮按北偏西30的方向航行30分钟后,又得灯塔在货轮的东北方向,则货轮的速度为( )。

A.海里/小时B. 海里/小时C。

海里/小时 D. 海里/小时4.B 设货轮按北偏西30的方向航行30分钟后N 处,20sin 30sin105MN =,得MN=,速度为 海里/小时.5.在数列{}n a 中,13a =且对于任意大于1的正整数n ,点1(,)n n a a -在直线60x y --=上,则357a a a -+的值为( ).A 。

27B .6C .81D .95.A 160n n a a ---=,即16n n a a --=,得数列{}n a 是等差数列,且首项13a =,公差6d =,而3577512434627a a a a d a a d -+=-==+=+⨯=。

(常考题)北师大版高中数学必修五第二章《解三角形》测试(包含答案解析)(4)

(常考题)北师大版高中数学必修五第二章《解三角形》测试(包含答案解析)(4)

一、选择题1.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos AOB ∠=-,则此山的高PO =( )A .1 kmB .2km 2C 3 kmD 2 km2.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12π C .12π D .3π3.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒4.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin 3sin sin A C B A C +-=,1b =,则23a c -的最小值为( )A .4-B .3-C .2-D .3-5.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2aB c=,21sin sin (2cos )sin 22A B C A -=+,则A =( )A .6π B .3π C .2π D .23π 6.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( )A .2+B 1C .2D 17.已知△ABC 中,2cos =c b A ,则△ABC 一定是A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形8.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin cos 0b A B -=,且三边a b c ,,成等比数列,则2a cb +的值为( )A .4B .2C .1D .29.在ABC 中,60A ∠=︒,1b =,ABCS =2sin 2sin sin a b cA B C++=++( )A .3B C D .10.正三棱锥P ABC -中,若6PA =,40APB ∠=︒,点E 、F 分别在侧棱PB 、PC 上运动,则AEF 的周长的最小值为( )A .36sin 20︒B .C .12D .11.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( )A .B .2C .32D 二、填空题13.已知ABC 的面积为4,2tan 3B =,AB AC >,设M 是边BC 的中点,若AM =,则BC =___________.14.在ABC 中,3B π=,2AC =,则4AB BC +的最大值为_______. 15.若A ,B ,C 为ABC 的内角,满足sin A ,sin C ,sin B 成等差数列,则cos C 的最小值是________.16.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC 面积的最大值为____________.17.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin 3sin C B =,则cos A =________.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.19.在钝角ABC 中,已知2a =,4b =,则最大边c 的取值范围是__________. 20.已知ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,AB 边上的高为CD ,且2CD AB =,则a bb a+的取值范围是___________. 三、解答题21.如图,在平面四边形ABCD 中,AD ⊥CD , ∠BAD =34π,2AB =BD =4.(1)求cos ∠ADB ; (2)若BC 22CD .22.在ABC 中,,,a b c 分别是角,,A B C 的对边.若272,cos b c C -==,再从条件①与②中选择一个作为已知条件,完成以下问题: (1)求,b c 的值;(2)求角A 的值及ABC 的面积. 条件①:7cos cos 14a B b A ac +=;条件②:72cos 27b C ac =-. 23.如图所示,某镇有一块空地OAB ,其中3km,60,90OA OAM AOB =∠=∠=.当地政府计划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖OMN ,其中,M N 都在边AB 上,且30MON ∠=,挖出的泥土堆放在OAM △地带上形成假山,剩下的OBN△地带开设儿童游乐场.为安全起见,需在OAN 的周围安装防护网.设AOM θ∠=.(1)当3km 2AM =时,求θ的值,并求此时防护网的总长度;(2)若=15θ,问此时人工湖用地OMN 的面积是堆假山用地OAM △的面积的多少倍?(3)为节省投入资金,人工湖OMN 的面积要尽可能小,问如何设计施工方案,可使OMN 的面积最小?最小面积是多少?24.请从下面三个条件中任选一个,补充在下面的横线上,并解答. ()3cos cos sin A c B b C a A +=; ②2cos 2b cC a-=③tan tan tan 3tan A B C B C ++=.已知ABC 的内角,,A B C 的对应边分别为,,a b c , . (1)求A ;(2)若2,10a b c =+=ABC 的面积. 25.已知ABC 中,632AB BC ==225AC AB +=. (1)求ABC ∠的值;(2)若P 是ABC 内一点,且53,64APB CPB ππ∠=∠=,求tan PBA ∠. 26.在△ABC 中,BC =a ,AC =b ,a 、b 是方程22320x x -+=的两个根,且120A B +=︒,求ABC 的面积及AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯, 所以)2222.5323338h h h h =+-⨯⎛⎫- ⎪ ⎝⎭⨯⎪,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.2.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-,所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,2R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.4.A解析:A 【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴22222a cb ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B a c π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<, 所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.5.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =.∵212cos sin sin (2cos )sin 222A ABC A --=+=,易知2cos 0A -≠, ∴1sin sin 2B C =,又sin sin B C =,∴2sin sin 2B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.6.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.7.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.8.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin 3cos 0b A a B =,由正弦定理边角互化的思想得sin sin 3cos 0A B A B =,sin 0A >,sin 30B B ∴=,tan 3B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.9.B解析:B 【分析】由三角形的面积公式可得,4c =,再由余弦定理可得a =,最后由正弦定理可得结果. 【详解】11c sin60=424︒=⋅⋅⋅=∴=ABCSc c由余弦定理可得:22212cos 1612413,2=+-=+-⨯⨯=∴=a b c bc A a由正弦定理可得:2sin sin sin 2sin sin 3++=====++a b c a b c sinA B C A B C 故选:B 【点睛】本题考查了正弦定理和余弦定理的应用,考查了运算求解能力,属于基础题目. 10.D解析:D 【分析】画出正三棱锥P ABC -侧面展开图,将问题转化为求平面上两点间的距离最小值问题,不难求得结果. 【详解】将三棱锥由PA 展开,如图,正三棱锥P ABC -中,40APB ∠=︒,则图中1120APA ∠=︒, 当点A 、E 、F 、1A 位于同一条直线上时,AEF ∆的周长最小, 故1AA 为AEF ∆的周长的最小值, 又1PA PA =,1PAA ∴∆为等腰三角形,6PA =,16PA ∴=,1AA ∴==,AEF ∴∆的最小周长为:63.故选:D . 【点睛】本题考查的知识点是棱锥的结构特征,其中将三棱锥的侧面展开,将空间问题转化为平面上两点之间的距离问题,是解答本题的关键.11.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.12.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a >0,c >0,∴12=2a +3c ≥ac ≤6. 当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 622ABCSac B =≤⨯=∴△ABC故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.二、填空题13.4【分析】首先利用余弦定理和三角形面积公式建立关于的方程再分别求根据余弦定理求结合条件求得的值【详解】得:解得:①中利用余弦定理②由①②可得解得:或即当时得此时不成立当时得此时成立故故答案为:4【点解析:4 【分析】首先利用余弦定理和三角形面积公式,建立关于,a c 的方程,再分别求,a c ,根据余弦定理求b ,结合条件AB AC >,求得BC 的值. 【详解】2tan 3B =,得:sin B =,cos B =11sin 42213ABCSac B ac ==⋅=,解得:ac =① ABM中,利用余弦定理222252cos 542413a a a c c B c ac =+-⋅⋅=+-= ②由①②可得22174ac a c ⎧=⎪⎨+=⎪⎩,解得:2a c ⎧=⎪⎨=⎪⎩4a c =⎧⎪⎨=⎪⎩, AB AC >,即c b >当2a c ==时,2222cos 32b a c ac B =+-=,得b =c b <,不成立,当4,a c == 2222cos 5b a c ac B =+-=,得b =c b >,成立,故4BC a ==. 故答案为:4 【点睛】易错点点睛:本题的易错点是求得,a c 后,还需满足条件AB AC >这个条件,否则会增根.14.【分析】利用正弦定理可将表示关于角的三角函数求出角的取值范围利用正弦型函数的基本性质可求得的最大值【详解】由正弦定理可得则则其中为锐角且所以当时取最大值故答案为:【点睛】求三角形有关代数式的取值范围【分析】利用正弦定理可将4AB BC +表示关于角A 的三角函数,求出角A 的取值范围,利用正弦型函数的基本性质可求得4AB BC +的最大值. 【详解】由正弦定理可得21sin sin sin sin 3BC AB ACA CB π====,则sin BC A =,sin AB C =,3B π=,203A π∴<<,则()14sin 4sin sin 4sin sin 4sin 2AB BC C A A B A A A A+=+=++=++()9sin 2A A A ϕ=+=+, 其中ϕ为锐角,且tan ϕ=,23A πϕϕϕ∴<+<+, 所以,当2A πϕ+=时,4AB BC +取【点睛】求三角形有关代数式的取值范围是一种常见的类型,主要方法有两类: (1)找到边与边之间的关系,利用基本不等式来求解;(2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解.15.【分析】根据成等差数列利用等差中项结合正弦定理得到然后由利用基本不等式求解【详解】因为成等差数列所以由正弦定理得所以当且仅当时取等号所以的最小值是故答案为:【点睛】本题主要考查正弦定理和余弦定理的应 解析:12【分析】根据sin A ,sin C ,sin B 成等差数列,利用等差中项结合正弦定理得到2c a b =+,然后由()22222cos 122a b c a b c C ab ab+-+-==-,利用基本不等式求解.【详解】因为sin A ,sin C ,sin B 成等差数列, 所以2sin sin sin C A B =+, 由正弦定理得2c a b =+,所以()22222cos 122a b c a b c C ab ab+-+-==-,()2222231112222a b c c c a b +-≥-=-=+⎛⎫⎪⎝⎭,当且仅当a b =时取等号,所以cos C 的最小值是12. 故答案为:12【点睛】本题主要考查正弦定理和余弦定理的应用以及等差数列和基本不等式的应用,还考查了运算求解的能力,属于中档题.16.【分析】先利用正弦定理将条件中的角转化为边的关系再利用余弦定理求解出角A 的值再利用边a 的余弦定理和均值不等式求出bc 的最大值后即可求解出面积的最大值【详解】因为所以根据正弦定理得:化简可得:即(A 为【分析】先利用正弦定理将条件()(sin sin )()sin a b A B c b C +-=-中的角转化为边的关系,再利用余弦定理求解出角A 的值,再利用边a 的余弦定理和均值不等式求出bc 的最大值后即可求解出面积的最大值. 【详解】因为()(sin sin )()sin a b A B c b C +-=-, 所以根据正弦定理得:(a b)()(c b)a b c +-=-, 化简可得:222b c a bc +-=,即2221cos 22b c a A bc +-==,(A 为三角形内角) 解得:60A ︒=,又224b c bc bc +-=≥,(b =c 时等号成立)故1sin 2ABC S bc A ∆=≤【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用,属于中档题目,解题的关键有两点,首先是利用正余弦定理实现边角之间的互化,其次是利用余弦定理和均值不等式求出三角形边的乘积的最大值.17.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正解析:3【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B =,根据正弦定理:sin sin b cB C=,∴=c , 根据余弦定理:2222cos a b c bc A =+-,又222a b =,故可联立方程:222222cos 2c a b c bc A a b ⎧=⎪=+-⎨⎪=⎩,解得:cos A =.故答案为:3. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.18.【分析】由题意利用正弦定理边化角求得∠B 的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力 解析:3-【分析】由题意利用正弦定理边化角,求得∠B 的值,然后结合数量积的定义求解AB BC ⋅的值即可. 【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+()2sinAcosB sin B C =+2sinAcosB sinA =12cosB ∴=, 60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=- ⎪⎝⎭故答案为3- 【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.19.【分析】利用三角形三边大小关系余弦定理即可得出【详解】因为三角形两边之和大于第三边故解得故答案为:【点睛】本题考查了三角形三边大小关系余弦定理考查了推理能力与计算能力属于中档题解析:【分析】利用三角形三边大小关系、余弦定理即可得出. 【详解】因为三角形两边之和大于第三边,故6c a b <+=.22224cos 0224c C +-=<⨯⨯,解得c >c ∴∈.故答案为:. 【点睛】本题考查了三角形三边大小关系、余弦定理,考查了推理能力与计算能力,属于中档题.20.【分析】由余弦定理得出由三角形的面积公式得出进而可得出利用正弦函数的有界性和基本不等式即可求得的取值范围【详解】如下图所示:由余弦定理得由三角形的面积公式得得则当时即当时取得最大值由基本不等式可得当解析:2,⎡⎣【分析】由余弦定理得出2222cos a b c ab C =++,由三角形的面积公式得出22sin c ab C =,进而可得出4b a C a b π⎛⎫+=+ ⎪⎝⎭,利用正弦函数的有界性和基本不等式即可求得a bb a +的取值范围. 【详解】 如下图所示:由余弦定理得2222cos c a b ab C =+-,2222cos a b c ab C ∴+=+,1122CD AB c ==,由三角形的面积公式得11sin 222ABC c S ab C c ==⋅△,得22sin c ab C =,()222sin cos 22sin 4a b ab C C ab C π⎛⎫∴+=+=+ ⎪⎝⎭,则22224b a a b C a b ab π+⎛⎫+==+ ⎪⎝⎭, 0C π<<,5444C πππ∴<+<,当42C ππ+=时,即当4C π时,b aa b+取得最大值2由基本不等式可得2b a b a a b a b+≥⋅=,当且仅当a b =时,等号成立, 因此,a bb a+的取值范围是2,22⎡⎤⎣⎦. 故答案为:2,22⎡⎣.【点睛】本题考查三角形中代数式的取值范围的求解,考查了余弦定理、三角形的面积公式、基本不等式以及正弦函数有界性的应用,考查计算能力,属于中等题.三、解答题21.(1)14cos 4ADB ∠=;(2)32CD =【分析】(1)ABD △中,利用正弦定理可得sin ADB ∠,进而得出答案; (2)BCD △中,利用余弦定理可得CD . 【详解】(1)ABD △中,sin sin AB BDADB BAD=∠∠,即2sin 2ADB =∠,解得sin 4ADB ∠=,故cos 4ADB ∠=; (2)sin cos ADB CDB ∠==∠ BCD △中,222cos 2BD CD BC CDB BD CD +-∠=⋅⋅,即2224424CD CD+-=⋅⋅,化简得(0CD CD -+=,解得CD =22.(1)6,4b c ==; (2)3A π=,S =【分析】(1)选用条件①:由正弦定理求得a =2b c -=,即可求解; 选用条件②:由正弦定理求得cos 14B =,得出sin 14B =,再由cos 7C =,求得得sin 7C =,结合正弦定理,即可求解; (2)由余弦定理求得A 的值,结合面积公式,即可求解. 【详解】(1)选用条件①:因为cos cos a B b A +=,由正弦定理得sin cos sin cos sin A B B A C +=,可得sin sin C C =, 又因为(0,)C π∈,所以sin 0C ≠,可得a =又由cos C =,由余弦定理得2222a b c ab +-=, 将2b c -=代入上式,解得6,4b c ==. 选用条件②:因为2cos 27b C a =-,由正弦定理得2sin cos 2sin B C A C =2sin()B C C =+-2(sin cos cos sin )B C B C C =+即2cos sin 0B C C =, 又因为(0,)C π∈,所以sin 0C ≠,可得cos B =,则sin 14B =,又由cos 7C =,可得221sin 1cos 7C C由正弦定理sin sin b cB C =,得sin 3sin 2b Bc C ==, 又由2b c -=,可得6,4b c ==.(2)由余弦定理得2221cos 22b c a A bc +-==, 因为0A π<<,所以3A π=.所以ABC的面积为11sin 6422S bc A ==⨯⨯= 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.23.(1)9km ;(23)15θ=︒时,OMN 的面积最小,最小面积为(2272km 4.【分析】(1)利用余弦定理求得 OM ,结合勾股定理求得θ,判断出OAN 是等边三角形,由此求得防护网的总长度. (2)结合正弦定理求得MNAM,由此求得人工湖用地OMN 的面积是堆假山用地OAM △的面积的倍数.(3)求得,OM ON ,由此求得三角形OMN 面积的表达式,结合三角函数最值的求法,求得当15θ=︒时,OMN 的面积最小为(2272km 4.【详解】(1)在三角形OAM中,由余弦定理得OM ==所以222279944OM AM OA +=+==,所以三角形OAM 是直角三角形,所以90,30OMA θ∠=︒=︒.由于30MON ∠=,所以60AON A ∠=∠=︒,所以OAN 是等边三角形,周长为339⨯=,也即防护网的总长度为9km . (2)15θ=︒时,在三角形OAM 中,由正弦定理得sin 60sin 60sin15sin15OM AM AM OM ⋅︒=⇒=︒︒︒,在三角形OMN 中,180********ONA ∠=︒-︒-︒-︒=︒,由正弦定理得sin 30sin 60sin 30sin 30sin 75sin 75sin 75sin15MN OM OM AM MN ⋅︒⋅︒⋅︒=⇒==︒︒︒︒︒.所以sin 60sin 30sin 60sin 30sin 60sin 302sin 601sin 75sin15cos15sin15sin 302MN AM ︒⋅︒︒⋅︒︒⋅︒====︒=︒︒︒︒︒以O 为顶点时,OMN 和OAM △的高相同,所以3OMN OMNOAMOAMS MNS SSAM===,即人工湖用地OMN 的面积是堆假山用地OAM △.(3)在三角形OAN 中,180603090ONA θθ∠=︒-︒-︒-=︒-,由正弦定理得()333sin 60sin 60sin 90cos cos ON ON θθθ⋅︒==⇒==︒︒-.在三角形OAM 中,18060OMA θ∠=︒-︒-,由正弦定理得()()()()333sin 60sin 60sin 18060sin 60sin 602sin 60OM OM θθθθ⋅︒==⇒==︒︒-︒-+︒+︒+︒.所以()()11271sin 30242cos 2sin 6016sin 60cos OMNSOM ON θθθθ=⋅⋅⋅︒=⋅⋅=⋅+︒+︒⋅ ()27116sin cos 60cos sin 60cos θθθ=⋅︒+︒⋅27271616==2727168==272784==.由于()0,60AOM θ∠=∈︒︒,所以当26090,15θθ+︒=︒=︒时,OMN S △最小值为(22722727km 444-==.【点睛】求面积最值的实际问题,可转化为三角函数求最值来求解.24.(1)3A π=;(2 【分析】第(1)小问:方案①中是利用正弦定理将边转化为角的关系,化简后求得3A π=;方案②首先利用正弦定理将边长之比转化为角的正弦之比,再化简求得3A π=;方案③利用两角和的正切公式将tan tan tan A B C ++化成tan tan()(1tan tan )A B C B C ++⋅-,再利用tan()tan B C A +=-对式子进行化简得到3A π=;第(2)小问:由余弦定理2222cos ,2,3a b c bc A a A π=+-==可以得到关于,b c 的关系式,再结合b c +=2bc =,最后求得三角形的面积即可.【详解】()1方案①()2sin cos sin cos sin A C B B C A +=()2sin sin A C B A +=,2sin sin A A A = 又()0,A π∈, 所以sin 0A ≠,所以tan A = 所以3A π=方案②:由已知正弦定理得()2cos sin 2sin sin 2sin sin 2sin cos 2cos sin sin C A B C A C C A C A C C =-=+-=+-所以2cos sin sin 0,A C C -= 即2cos sin sin ,A C C = 又()0,C π∈, 所以sin 0,C ≠ 所以1cos 2A = 所以3A π=方案③:因为tan tan tan tan A B C B C ++=所以tan tan tan tan tan tan()(1tan tan )A B C B C A B C B C ++==++⋅-()tan tan 1tan tan tan tan tan A A B C A B C =--=tan tan tan tan B C A B C =又()0A B C π∈,,,,所以tan 0,tan 0B C ≠≠,所以1tan ,2A A ==所以3A π=()2由余弦定理2222cos ,2,3a b c bc A a A π=+-==,得224b c bc =+- 即()243b c bc +=+,又因为b c +=所以2bc =所以1sin 2ABC S bc A ==【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.25.(1)4ABC π∠=;(2)tan PBA ∠=. 【分析】(1)由已知求得25AC =-cos 2ABC ∠=,即可求得ABC ∠;(2)由题可得PBA PCB ∠=∠,设PBA α∠=,由正弦定理可得2sin 6PB παα⎛⎫==- ⎪⎝⎭,化简即可求出. 【详解】解:(1)由AB BC ==,知AB BC ==,由225AC AB +=,知2525AC AB =-=-在ABC 中,由余弦定理得:222cos22BC AB AC ABC AB BC +-∠===⨯,0ABC π<∠<,4ABC π∴∠=; (2),44PBA PBC PCB PBC BPC πππ∠+∠=∠+∠=-∠=, PBA PCB ∴∠=∠,设PBA α∠=,则在PBC 中,由正弦定理得,2sin 3sin sin 4PB BC PB απα=∴=, 在APB △中,由正弦定理得:,56sin sin 66PBAB PB παππα⎛⎫=∴=- ⎪⎛⎫⎝⎭- ⎪⎝⎭,sin sin cos cos sin 666πππαααα⎛⎫⎫∴=-=- ⎪⎪⎝⎭⎭,化简可得:tan α=,故tan PBA ∠=. 【点睛】本题考查正余弦定理的应用,解题的关键是先得出PBA PCB ∠=∠,设PBA α∠=,由正弦定理可得2sin 6PB παα⎛⎫==- ⎪⎝⎭. 26.2S AB == 【分析】 利用韦达定理求出,a b ab +,再利用余弦定理,得到关于c 的方程,解之可得AB 的长;再结合面积公式可得.【详解】,a b是方程220x -+=的两个根, 2a b ab ∴+==,又因为120A B +=︒则60C =︒,所以由余弦定理得:()(22222222221cos 22222c a b ab c a b cC abab -⨯-+--+-====⨯,解得c =所以AB =ABC的面积11sin 222S ab C ==⨯=。

(word完整版)北师大版高中数学必修5测试题含答案解析,推荐文档

(word完整版)北师大版高中数学必修5测试题含答案解析,推荐文档

1. 2. 由a 1 A. )99 ABC 中, A. 3.已 a n 高二数学必修5测试题(每道4分,共计40分)3确定的等差数列a n ,当a n 298时,B. 1001,c 2,BB .三2等比数列 60 , C.1,且a n 序号n 等于C. 96D. 101则ABC 的面积为0 a 2a 4 D.2a 3a5 a 4a625,a 3a5( A. 5 B. 10 4.已知x 0,函数 C. 15 4D. 20 x 的最小值是 x4 5.数列 11,21,31,4 —,2 •- 一 A. 5 B 1 .1 4 8 16’前n 项的和为 1 A. —2n 6.不等式ax 2 bx c 0(a 0)的解集为 那么 A. a 0, B. 0, 0 C. 0, D.0,7.设x,y 满足约束条件3x y 的最大值为 A. 5 B. 3 C. 7 D. -88.在 ABC 中,a 80,b 100, A 45 ,则此三角形解的情况是A. 一解 9.在厶ABC 中,女口果 sinA:sin B:sinCB. 两解C. 一解或两解2:3: 4 ,那么COSC 等于 D .无解B. -23C. -13D.10. 一个等比数列{a n}的前n项和为48,前2n项和为60,则前3n项和为()A 63 B、108 C 、75 D 、83二、填空题(每道4分,共计16分)11. 在ABC 中,B 450,c 2^F,b 也,那么A= ;312. a克糖水中含有b克糖(a b 0),若在糖水中加入x克糖,则糖水变甜了。

试根据这个事实提炼出一个不等式:_____________13. 若x>0,y>0,且丄—1,则x+y的最小值是_______________x y14. 已知数列{a n}的前n项和S n n2 n,那么它的通项公式为a n= ______________三、解答题515. (6分)已知等比数列a n中,a1 a3 10® a6 -,求其第4项及前54项和.16. (6分)(1)求函数的定义域:(2)求解关于x的不等式x2(a 1)x a 017 . (8分)在厶ABC中, BO a,AO b,a,b是方程x2 2 3x 2 0的两个根, 且2coc(A B) 1。

(常考题)北师大版高中数学必修五第三章《不等式》测试(含答案解析)(3)

(常考题)北师大版高中数学必修五第三章《不等式》测试(含答案解析)(3)

一、选择题1.设0,0a b >>,若4a b +=.则49a b+的最小值为( ) A .254B .252 C .85D .1252.若实数x ,y 满足约束条件220103x y x y x y +-≥⎧⎪--≥⎨⎪+≤⎩,则()222x y +-的最小值为( )A .12B .45C .92D .4193.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .64.已知()()22log 1log 24a b -++=,则+a b 的最小值为( ) A .8B .7C .6D .35.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-16.已知0x >,0y >,21x y +=,若不等式2212m m x y+>+恒成立,则实数m 的取值范围是( ) A .4m ≥或2m ≤- B .2m ≥或4m ≤- C .24m -<< D .42m -<<7.若正数a ,b 满足111a b +=,则41611a b +--的最小值为( ) A .16 B .25C .36D .498.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R9.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A.B.C .6D .810.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<-11.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.已知2xy x =+,则42x y+的最小值为_________14.已知实数x y ,,正实数a b ,满足2x y a b ==,且213x y+=-,则2a b +的最小值为__________.15.已知变量x ,y 满足430401x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x y xy +的最大值为______.16.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.17.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 18.某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工1件甲产品所需工时分别为1h 、2h ,加工1件乙产品所需工时分别为2h 、1h ,A ,B 两种设备每月有效使用时数分别为400h 和500h .若合理安排生产可使收入最大为______元.19.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 20.已知函数()21f x x x =-+,若在区间[]1,1-上,不等式()2f x x m >+恒成立,则实数m 的取值范围是___________.三、解答题21.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值. 22.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1.(1)求f(x)的解析式; (2)解不等式f(x)>2x +5.23.已知函数f (x )=ax 2﹣(4a +1)x +4(a ∈R ).(1)若关于x 的不等式f (x )≥b 的解集为{x |1≤x ≤2},求实数a ,b 的值; (2)解关于x 的不等式f (x )>0.24.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?25.若实数0x >,0y >,且满足8x y xy +=-. (1)求xy 的最大值; (2)求x y +的最小值26.如果x ,y R ∈,比较()222+x y 与()2xy x y +的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】用“1”的代换凑配出定值后用基本不等式可得最小值. 【详解】0,0,4a b a b >>+=()(4914914912513134444b a a b a b a b a b ⎛⎫⎛⎫∴+=++=++≥⨯+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当49b aa b =,即812,55a b ==时取等号. 故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方2.C解析:C 【分析】作出可行域,利用()222x y +-的几何意义:表示可行域内点(,)x y 与定点(0,2)的距离的平方.可求得最小值. 【详解】作出可行域,如图ABC 内部(含边界),()222x y +-表示可行域内点(,)P x y 与定点(0,2)M 的距离的平方,由图可知min0213222PM--==,(点M 到直线BC 的距离) ∴()222x y +-的最小值是232922⎛⎫= ⎪ ⎪⎝⎭. 故选:C .【点睛】思路点睛:本题考查求简单的线性规划的非线性目标函数的最值.作出可行域是解题的基础.对非线性目标函数,常常利用其几何意义求解,主要有两种类型:(1)22()()x a y b -+-,两点间的距离公式;(2)y bx a--:两点连线斜率, 3.B解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.4.B解析:B 【分析】由对数运算可得出()()1216a b -+=,利用基本不等式可求得+a b 的最小值. 【详解】因为()()22log 1log 24a b -++=,即()()2log 124a b -+=⎡⎤⎣⎦, 所以,()()1216a b -+=且有10a ->,20b +>,由基本不等式可得()()128a b -++≥=,所以,7a b +≥,所以(1)(2)16a b -+=,且10a ->,20b +>, 当且仅当124a b -=+=时等号成立. 因此,+a b 的最小值为7. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】 作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值,解方程组2122x y x y -≤⎧⎨-≥⎩,求得1x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.6.D解析:D 【分析】先根据已知结合基本不等式得218x y+≥,再解不等式228m m +<即可得答案.【详解】解:由于0x >,0y >,21x y +=, 所以()21214424428y x y x x y x y x y x y x y⎛⎫+=++=++≥+⋅= ⎪⎝⎭, 当且仅当4y x x y =,即122x y ==时等号成立, 由于不等式2212m m x y+>+成立, 故228m m +<,解得:42m -<<. 故实数m 的取值范围是:42m -<<. 故选:D. 【点睛】本题考查利用基本不等式求最值,一元二次不等式的解法,考查运算能力,是中档题.7.A解析:A 【分析】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--化简,利用基本不等式可求函数最小值. 【详解】由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--得到:416416416(1)16111111a a ab a a a +=+=+-≥=------ 当且仅当:4=16(1)1a a --即32a =时取等号.故选:A 【点睛】本题考查了均值不等式在求最值问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.8.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.9.D解析:D 【分析】运用基本不等式2422x y +≥=【详解】因为20,40x y >>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”). 故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.10.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题11.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()2233x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.12.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.【分析】依题意可得再利用基本不等式计算可得;【详解】解:因为所以所以所以所以所以所以所以当且仅当即时取等号;故答案为:【点睛】在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正解析:【分析】依题意可得21x y +=,再利用基本不等式计算可得; 【详解】解:因为2xy x =+,2x xy =+-,所以()()()()2222221(1)42222x y x xy x x xy x y ⎡⎤+-+=+-=+-++⎣⎦, 所以2242144x y y x xy +-+=-, 所以()()222210x y x y +-++=, 所以()2210x y +-=,所以21x y +=,所以42x y +≥=42x y =,即14x =,12y =时取等号;故答案为:【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14.【分析】由条件化简可得利用均值不等式求最小值即可【详解】正实数满足取对数可得所以所以由均值不等式知当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(解析:2【分析】由条件化简可得218a b =,利用均值不等式求最小值即可.【详解】正实数a b ,满足2x y a b ==, 取对数可得log 2,log 2a b x y ==, 所以2222212log log log 3a b a b x y+=+==-, 所以218a b =,由均值不等式知,22a b +≥=,当且仅当2a b =,即a =,4b =时等号成立.故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:53【分析】 作出可行域,令yt x =,OA OB y k k x ≤≤,所以7,313t ⎡⎤∈⎢⎥⎣⎦,22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值. 【详解】由43040x y x y -+=⎧⎨+-=⎩解得:13575x y ⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A ⎛⎫ ⎪⎝⎭,由140x x y =⎧⎨+-=⎩解得:13x y =⎧⎨=⎩,所以()1,3B ,y x 表示可行域内的点与原点连线的斜率,所以OA OB yk k x ≤≤, 775131305OAk -==-,30310OB k -==-,令7,313y t x ⎡⎤=∈⎢⎥⎣⎦, 所以22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 1y t t =+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增,当3t =时,1713109213791y ⎛⎫=+=⎪⎝⎭,当75t=时,1153233y ⎛⎫=+= ⎪⎝⎭, 所以222x y xy +的最大值为53,故答案为:53. 【点睛】 思路点睛:非线性目标函数的常见类型及解题思路:1.斜率型:()0by ay b a a z ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的ac倍;2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)z Ax By C =++=(),x y 到直线0Ax By C ++=倍.16.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.17.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12-【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案. 【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭,实数m的最小值为:1 2-,故答案为12-.【点睛】本题考查二次函数的性质,关键是将x2+mx+m≥0在x∈[1,2]上恒成立转化为二次函数y=x2+mx+m在x∈[1,2]上的最值问题.18.800000【分析】设每月生产甲产品件生产乙产品件每月收入为元列出实际问题中xy所需满足的条件作出可行域数形结合求出目标函数的最大值【详解】设每月生产甲产品件生产乙产品件每月收入为元目标函数为需要满解析:800000【分析】设每月生产甲产品x件,生产乙产品y件,每月收入为z元,列出实际问题中x、y所需满足的条件,作出可行域,数形结合求出目标函数30002000z x y=+的最大值.【详解】设每月生产甲产品x件,生产乙产品y件,每月收入为z元,目标函数为30002000z x y=+,需要满足的条件是24002500x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,作出可行域如图所示,目标函数30002000z x y=+可转化直线3122000y x z=-+,数形结合知当直线经过点A时z取得最大值.解方程组24002500x yx y+=⎧⎨+=⎩,可得点()200,100A,则z 的最大值为30002002000100z =⨯+⨯=800000元. 故答案为:800000 【点睛】本题考查线性规划解决实际问题,属于基础题.19.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=,2(2)2(2)26m n s t s t ∴+=-+-=+-,而112223(2)()3(12)3(32)3(322)s t s ts t s t s t t s t s+=++=+++⨯+=+,当且仅当2s tt s=,即s =时,等号成立.2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+ 【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.20.【分析】由参变量分离法得出对任意的恒成立利用二次函数的基本性质可求得函数在区间上的最小值进而可求得实数的取值范围【详解】要使在区间上不等式恒成立只需恒成立设只需小于在区间上的最小值因为所以当时所以所 解析:(),1-∞-【分析】由参变量分离法得出231m x x <-+对任意的[]1,1x ∈-恒成立,利用二次函数的基本性质可求得函数()231g x x x =-+在区间[]1,1-上的最小值,进而可求得实数m 的取值范围.【详解】要使在区间[]1,1-上,不等式()2f x x m >+恒成立, 只需()2231m f x x x x <-=-+恒成立,设()231g x x x =-+,只需m 小于()y g x =在区间[]1,1-上的最小值,因为()22353124g x x x x ⎛⎫=-+=-- ⎪⎝⎭,所以当1x =时,()()min 11g x g ==-, 所以1m <-,所以实数m 的取值范围是(),1-∞-. 故答案为:(),1-∞-. 【点睛】本题考查利用二次不等式在区间上恒成立求参数,考查了参变量分离法的应用,考查计算能力,属于中等题.三、解答题21.(1)1;(2)9. 【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值; (2)先求得141b a+=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值. 【详解】 (1)不等式2122x x mx -+>可化为21(2)02x m x +-<,即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --, 又不等式的解集为{|02}x x <<, 所以2(2)2m --=,解得1m =; (2)由正实数a ,b 满足4a b mab +=, 所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号, 所以+a b 的最小值为9. 【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 22.(1)2()1f x x x =-+;(2)()(),14,-∞-+∞【分析】(1) 设二次函数f (x )=ax 2+bx+c ,利用待定系数法即可求出f (x ); (2) 利用一元二次不等式的解法即可得出. 【详解】(1).设二次函数f (x )=ax 2+bx+c , ∵函数f (x )满足f (x+1)﹣f (x )=2x ,∴ f(x +1)-f(x)=()()211a x b x c ++++-()2ax bx c ++=2ax+a+b=2x ∴ 220a a b =⎧⎨+=⎩ ,解得11a b =⎧⎨=-⎩.且f (0)=1.∴ c=1∴f (x )=x 2﹣x+1.(2) 不等式f (x )>2x+5,即x 2﹣x+1>2x+5,化为x 2﹣3x ﹣4>0. 化为(x ﹣4)(x+1)>0,解得x >4或x <﹣1. ∴原不等式的解集为()(),14,-∞-⋃+∞ 【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题. 23.(1)-1,6;(2)答案见详解 【分析】(1)由f (x )≥b 的解集为{x |1≤x ≤2}结合韦达定理即可求解参数a ,b 的值;(2)原式可因式分解为()()()14f x ax x =--,再分类讨论即可0,0,0a a a =<>,对0a >再细分为111,0,,,444a a a ⎛⎫⎛⎫=∈∈+∞ ⎪ ⎪⎝⎭⎝⎭即可求解.【详解】(1)由f (x )≥b 得()24140ax a x b -++-≥,因为f (x )≥b 的解集为{x |1≤x ≤2},故满足4112a a ++=,412b a-⨯=,解得1,6a b =-=; (2)原式因式分解可得()()14f x a x x a ⎛⎫=-- ⎪⎝⎭, 当0a =时,()40f x x =-+>,解得(),4x ∈-∞;当0a <时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为1,4x a ⎛⎫∈ ⎪⎝⎭; 当0a >时,()()140f x a x x a ⎛⎫=--> ⎪⎝⎭, ①若14a =,即14a =,则()()140f x a x x a ⎛⎫=--> ⎪⎝⎭的解集为4x ≠;②若14a <,即14a >时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭;③若14a >,即104a <<时,解得()1,4,x a ⎛⎫∈-∞+∞ ⎪⎝⎭. 【点睛】本题考查由一元二次不等式的解求解参数,分类讨论求解一元二次不等式,属于中档题. 24.(1)400吨;(2)不获利,补40000元. 【分析】(1)求得每吨二氧化碳的平均处理成本为1800002002y x x x=+-,利用基本不等式求得yx的最小值,利用等号成立的条件求得x 的值,由此可得出结论; (2)令()2211100200800003008000022f x x x x x x ⎛⎫=--+=-+-⎪⎝⎭,求得该函数在区间[]400,600的最大值,进而可得出结论. 【详解】(1)由题意可知,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为()21200800004006002y x x x =-+≤≤, 所以,每吨二氧化碳的平均处理成本为1800002002y x x x=+-,由基本不等式可得200200y x ≥=(元), 当且仅当1800002x x=时,即当400x =时,等号成立, 因此,该单位每月处理量为400吨时,才能使每吨的平均处理成本最低;(2)令()()222111100200800003008000030035000222f x x x x x x x ⎛⎫=--+=-+-=--- ⎪⎝⎭,400600x ≤≤,函数()f x 在区间[]400,600上单调递减,当400x =时,函数()f x 取得最大值,即()()max 40040000f x f ==-. 所以,该单位每月不能获利,国家至少需要补贴40000元才能使该单位不亏损. 【点睛】本题考查基本不等式和二次函数的实际应用,考查计算能力,属于中等题. 25.(1)4;(2)4. 【分析】(1)由于0x >,0y >,根据基本不等式得出8xy x y -=+≥不等式的解法,即可求出xy 的最大值;(2)根据题意,由0x >,0y >,根据基本不等式得出28()()2x y x y xy +-+=≤,通过解一元二次不等式,即可求出x y +的最小值.【详解】解:(1)∵0x >,0y >,∴8xy x y -=+≥80xy +≤,即2)0≤,解得:02<,04xy ∴<≤(当且仅当2x y ==时取等号), ∴xy 的最大值为4.(2)∵0x >,0y >,28()()2x y x y xy +∴-+=≤, 即2()()802x y x y +-++≥, 整理得:2()()3204x y x y +++-≥, ∴()()840x y x y +++-⎡⎤⎡⎤⎣⎦⎦≥⎣,∴4x y +≥(当且仅当2x y ==时取等号), 所以x y +的最小值为4. 【点睛】本题考查基本不等式的应用,考查利用基本不等式求和的最小值和积的最大值,以及一元二次不等式的解法,考查转化思想和运算能力. 26.()()2222x y xy x y ≥++,当且仅当x y =时等号成立【分析】运用作差比较法,结合配方法进行比较大小即可. 【详解】()()()2222442224433222x y xy x y x y x y xy x xy y x y x y xy +-++--++=+--=()()()()()()()2223333222324y x x y yy x x y xyx y xxy yx y x y ⎡⎤⎛⎫=-+-=--=-++=-++⎢⎥⎪⎝⎭⎢⎥⎣⎦()20x y -≥,223024y x y ⎛⎫++≥ ⎪⎝⎭,()2223024y x y x y ⎡⎤⎛⎫∴-++≥⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. ()()2222x y xy x y ∴≥++,当且仅当x y =时等号成立.【点睛】本题考查了用作差比较法进行比较两个多项式的大小,考查了配方法的应用,属于中档题.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修五试卷北
师大版
IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】
必修五测习题
一、单项选择题(一题5分)
1.数列{a n }中,如果n
a =3n (n =1,2,3,…),那么这个数列是().
A .公差为2的等差数列
B .公差为3的等差数列
C .首项为3的等比数列
D .首项为1的等比数列
2.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是().A .4
B .5
C .6
D .7
3.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°,则c 的值等于().
A .5
B .13
C .13
D .37
4.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为().A .4
B .8
C .15
D .31
5.△ABC 中,如果A a tan =B
b tan =C
c tan ,那么△ABC 是().
A .直角三角形
B .等边三角形
C .等腰直角三角形
D .钝角三角形
6.如果a >b >0,t >0,设M =b a
,N =t b t a ++,那么().
A .M >N
B .M <N
C .M =N
D .M 与N 的大小关系随t 的变化而变化
7.如果{a n }为递增数列,则{a n }的通项公式可以为().
A .a n =-2n +3
B .a n =-n 2-3n
+1
C .a n =n 21
D .a n =1+log 2n
8.如果a <b <0,那么().
A .a -b >0
B .ac <bc
C .a
1
>b 1 D .a 2<b 2
9.等差数列{a n }中,已知a 1=3
1,a 2+a 5=4,a n =33,则n 的值为().A .50
B .49
C .48
D .47
10.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于()
A .030
B .060
C .0120
D .0
150
11.若{a n }是等差数列,首项a 1>0,a 4+a 5>0,a 4·a 5<0,则使前n 项和S n >0成立的最大自然数n 的值为().
A .4
B .5
C .7
D .8
12.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =().A .9
B .8
C .7
D .6
二、填空题(一题5分)
13.对于实数c b a ,,中,下列命题正确的是______
:①22,bc ac b a
>>则若;②b a bc ac >>则若,22;
③22,0b ab a b a >><<则若;④b
a
b a 11
,0<<<则若; ⑤b
a
a b b a ><<则
若,0;⑥b a b a ><<则若,0; ⑦b
c b
a c a
b a
c ->->>>则
若,0;⑧
11,a b a b >>若,则0,0a b ><。

14.等差数列===+q p q p n a p a q a a 则中,,,}{ 15.一元二次不等式x 2<x +6的解集为.
16.在数列{a n }中,其前n 项和S n =3·2n +k ,若数列{a n }是等比数列,则常数k 的值为.
三、解答题:(17题10分,其他12分)
17.△ABC 中,BC =7,AB =3,且B C
sin sin =5
3.
(1)求AC 的长; (2)求∠A 的大小.
18.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,数列
{}n b 满足12b =,点1(,)()n n P b b n N *+∈在直线2y x =+上,
(1)求数列{}n a ,{}n b 的通项公式;
(2)设()n n n c a b n N *
=∈,求数列{}n c 的前n 项和n T .
19.在ABC ∆中,角,,A B C 所对的边分别为,,a b c
,且满足cos
2A =,
3AB AC ⋅=.(1)求ABC ∆的面积;(2)若6b c +=,求a 的值.
20.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且bcos C
-ccos (A+C )=3a cos B .(I )求cos B 的值; (II )若2=⋅,且6=a ,求b 的值.
21.已知等差数列{a n }的前n 项的和记为S n .如果a 4=-12,a 8=-4.(1)求数列{a n }的通项公式;
(2)求S n 的最小值及其相应的n 的值;
(3)从数列{a n }中依次取出a 1,a 2,a 4,a 8,…,12n -a ,…,构成一个新的数列{b n },求{b n }的前n 项和.
22.设函数x x f a log )(=(1,0≠>a a a 为常数且),已知数列
),(1x f ),(2x f ),(n x f 是公差为2的等差数列,且21a x =.(Ⅰ)求数
列}{n x 的通项公式; (Ⅱ)当2
1
=a 时,求证:3121<+++n x x x。

相关文档
最新文档