高中函数知识点
高中数学函数知识点
高中数学函数知识点一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。
下面小编给大家分享一些高中数学函数知识点,希望能够帮助大家,欢迎阅读!高中数学函数知识一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
高一所有类型函数知识点
高一所有类型函数知识点在高中数学学习中,函数是一个重要的概念。
学习函数的类型是理解和掌握数学知识的基础。
在这篇文章中,将详细介绍高一阶段学习的所有类型函数的知识点。
一、一次函数一次函数又称为线性函数,其形式为f(x) = ax + b,其中a和b 为常数,a不为零。
一次函数的图像是一条直线,斜率为a,截距为b。
通过斜率和截距,我们可以确定一次函数的图像、性质和方程。
二、二次函数二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b和c为常数,且a不为零。
二次函数的图像是一条抛物线,开口方向由a 的正负决定。
通过顶点、判别式、因式分解等方法,我们可以确定二次函数的图像、性质和方程。
三、指数函数指数函数是形如f(x) = a^x的函数,其中a为常数,且a大于零且不等于1。
指数函数的图像是一条平行于y轴的曲线,呈现指数递增或递减的特点。
通过底数a的大小和正负,我们可以确定指数函数的图像、性质和方程。
四、对数函数对数函数是指满足f(x) = loga x的函数,其中a为底数,x为正实数。
对数函数与指数函数是互为反函数的关系。
对数函数的图像是一条对称于y = x的曲线。
通过底数a的大小和正负,我们可以确定对数函数的图像、性质和方程。
五、幂函数幂函数是形如f(x) = x^a的函数,其中a为常数。
幂函数的图像形状不尽相同,可以是一条直线、一条抛物线或者更复杂的曲线。
通过指数a的大小和正负,我们可以确定幂函数的图像、性质和方程。
六、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
它们的定义由单位圆上的点的坐标决定。
三角函数的图像具有周期性和对称性。
通过对应关系、单位圆和性质,我们可以确定三角函数的图像、性质和方程。
七、反三角函数反三角函数是指满足特定关系的函数,包括反正弦函数、反余弦函数、反正切函数等。
反三角函数与三角函数是互为反函数的关系。
通过对应关系、定义域和值域,我们可以确定反三角函数的图像、性质和方程。
函数高中知识点
函数高中知识点函数是高中数学中的重要知识点之一,它在数学和实际问题中起着重要的作用。
本文将介绍函数的定义、性质和应用,以及一些常见的函数类型。
一、函数的定义和性质函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。
函数通常用符号表示,例如f(x)或y=f(x)。
其中,x是自变量,y是因变量。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
函数有一些重要的性质。
首先,每个自变量只能对应一个因变量,即函数中的每个x值都有唯一的y值。
其次,函数可以通过图像来表示,图像是平面直角坐标系中的一条曲线。
函数的图像可以用来研究函数的性质,如增减性、奇偶性和周期性等。
二、常见的函数类型1. 线性函数:线性函数是最简单的函数类型之一,它的图像是一条直线。
线性函数的一般形式是y=ax+b,其中a和b是常数。
线性函数的图像是一条斜率为a的直线,常数b表示直线与y轴的截距。
2. 幂函数:幂函数是形如y=x^n的函数,其中n是常数。
幂函数的图像形状取决于指数n的正负和大小。
当n为正偶数时,幂函数的图像是一个开口向上的抛物线;当n为正奇数时,幂函数的图像是一个开口向上的曲线;当n为负数时,幂函数的图像是一个开口向下的曲线。
3. 指数函数:指数函数是形如y=a^x的函数,其中a是常数且大于0且不等于1。
指数函数的图像是一条逐渐增长或递减的曲线。
当a大于1时,指数函数的图像是递增的;当0<a<1时,指数函数的图像是递减的。
4. 对数函数:对数函数是指数函数的反函数,它的一般形式是y=logₐx,其中a是常数且大于0且不等于1。
对数函数的图像是一条逐渐增长或递减的曲线。
当a大于1时,对数函数的图像是递增的;当0<a<1时,对数函数的图像是递减的。
三、函数的应用函数在数学和实际问题中有广泛的应用。
以下是一些常见的应用领域:1. 经济学:函数可以用来描述供求关系、成本函数和收益函数等经济学概念。
高中函数架构知识点总结
高中函数架构知识点总结一、函数的定义与表示方法1. 函数的定义:函数是一个对应关系,它把一个数集的每一个元素映射到另一个数集的元素上。
2. 函数的表示方法:函数可以用公式、表格、图像和符号等多种方式来表示。
二、函数的性质与分类1. 函数的性质(1)定义域:函数的自变量的取值范围称为函数的定义域。
(2)值域:函数的因变量的取值范围称为函数的值域。
(3)奇偶性:满足$f(-x)=f(x)$的函数称为偶函数,满足$f(-x)=-f(x)$的函数称为奇函数。
(4)周期性:若存在正数$T$,使得对任何$x\in D$有$f(x+T)=f(x)$,则称函数$f(x)$为周期函数,而最小的这样的正数$T$称为函数$f(x)$的周期。
(5)单调性:若对于$x_1<x_2$,总有$f(x_1)\le f(x_2)$或者$f(x_1)\ge f(x_2)$,则称$f(x)$在定义域上是单调的。
(6)最值:若对于每一个$x\in D(f)$,总有$f(x)\le M$或者$f(x)\ge m$,则称$M$为函数$f(x)$的最大值,$m$为函数$f(x)$的最小值。
(7)有界性:若存在正数$A$和$B$,对于任意$x\in D(f)$,有$f(x)\le A$和$f(x)\ge B$,则称函数$f(x)$在定义域上有上界$A$和下界$B$。
2. 函数的分类(1)多项式函数:函数由一系列单项式组成,例如$f(x)=x^n$。
(2)指数函数:函数的自变量是指数的函数,例如$f(x)=a^x$。
(3)对数函数:函数的因变量是对数的函数,例如$f(x)=\log_ax$。
(4)三角函数:函数的自变量是角度的函数,例如$f(x)=\sin x$和$f(x)=\cos x$。
(5)反三角函数:函数的因变量是角度的函数的反函数,例如$f(x)=\arcsin x$和$f(x)=\arccos x$。
(6)组合函数:多个函数的组合形成的新函数,例如$f(x)=g(h(x))$。
高中数学函数知识点总结
函数一、函数的定义:1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.(1)其中,x叫做自变量,x的取值X围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。
4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2) 画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。
(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x) 关于X轴对称得函数y=-f(x)4)函数y=f(x) 关于Y轴对称得函数y=f(-x)5)函数y=f(x) 关于原点对称得函数y=-f(-x)6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=| f(x)|7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)二、函数的基本性质1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
函数知识点总结高中
函数知识点总结高中一、函数的定义1. 函数的定义函数是自变量和因变量之间的一种映射关系。
一般地,如果对于集合A中的每一个元素x,在集合B中有唯一确定的元素y与之对应,则称y是x的函数值,称这种对应关系为函数,记作y=f(x)。
2. 函数的定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
在定义函数的时候,需要确定函数的定义域和值域。
3. 函数的性质函数的性质包括奇偶性、周期性、单调性等,这些性质可以通过函数的图像来判断。
二、函数的图像1. 函数的图像函数的图像是函数在平面直角坐标系上的表示,对于一元函数y=f(x),可以通过画出函数的图像来直观地理解函数的性质和规律。
2. 基本初等函数的图像常见的初等函数包括线性函数、二次函数、指数函数、对数函数、幂函数、三角函数等,它们都有各自的特点和图像特征。
三、函数的性质1. 奇偶性函数的奇偶性是指函数的图像是否关于原点对称。
如果对于任意x∈D,有f(-x)=f(x),则函数f(x)是偶函数;如果对于任意x∈D,有f(-x)=-f(x),则函数f(x)是奇函数。
2. 周期性周期函数的函数值随自变量的变化而重复出现。
周期函数可以用来描述一些具有规律性变化的现象,如正弦函数、余弦函数等。
3. 单调性函数的单调性是指函数在定义域上的增减性。
如果对于任意x1<x2,有f(x1)<f(x2),则函数f(x)是单调增加的;如果对于任意x1<x2,有f(x1)>f(x2),则函数f(x)是单调减少的。
4. 极限和连续性函数的极限和连续性是函数的重要性质,它们可以用来描述函数在某一点的趋势和变化规律。
四、常见函数1. 线性函数线性函数是最简单的一种函数,它的图像是一条直线,表示为y=kx+b,其中k是斜率,b是截距。
2. 二次函数二次函数是一种常见的函数,它的图像是一个抛物线,表示为y=ax^2+bx+c,其中a、b、c为常数且a≠0。
高考常用函数知识点汇总
高考常用函数知识点汇总函数是数学中非常重要的一个概念,也是高考中常常出现的考点。
理解和掌握常用函数的知识点对于高考数学题目的解答非常有帮助。
本文将对高考常用的函数知识点进行汇总,以帮助同学们更好地备考。
一、一次函数一次函数是最基本的函数之一,其定义域为全体实数。
一次函数的一般形式为y = kx + b,其中k和b是常数。
一次函数的图像为一条直线,其斜率k决定了直线的倾斜程度,常数b决定了直线与y轴的交点。
二、二次函数二次函数是高中数学中较为复杂的函数之一,其定义域为全体实数。
二次函数的一般形式为y = ax^2 + bx + c,其中a、b和c是常数且a ≠ 0。
二次函数的图像为一条抛物线,其开口方向由二次项系数a的正负决定。
三、指数函数指数函数是以一个正常数为底数的幂函数,其定义域为全体实数。
指数函数的一般形式为y = a^x,其中a是正常数且a ≠ 1。
指数函数的特点是呈现指数递增或递减的趋势,底数a的大小决定了函数的增长速度。
四、对数函数对数函数是指数函数的逆函数,其定义域为x > 0。
对数函数的一般形式为y = loga(x),其中a是正常数且a ≠ 1。
对数函数的特点是呈现递增或递减的趋势,底数a的大小决定了函数的增长速度。
五、三角函数三角函数是研究角及其变化规律的函数,其定义域为全体实数。
常见的三角函数有正弦函数、余弦函数和正切函数。
三角函数的图像为周期性的波动曲线,其周期和振幅由函数的参数决定。
六、反三角函数反三角函数是三角函数的逆函数,其定义域由对应的三角函数确定。
常见的反三角函数有反正弦函数、反余弦函数和反正切函数。
反三角函数的图像可通过对应的三角函数的图像通过y = x镜像得到。
七、指数对数函数指数对数函数是指数函数和对数函数的组合,其定义域由对应的函数确定。
常见的指数对数函数有指数对数函数、指数对数对函数和对数指数函数。
这些函数的图像由对应的指数函数和对数函数的图像组合而成。
高中函数概念知识点总结
高中函数概念知识点总结一、函数的概念1. 函数的定义函数是一个非常基本的概念,它可以表达变量之间的依赖关系。
在代数或数学分析中,函数是一种特殊的关系,即每个自变量的值都对应着唯一的因变量的值。
用符号表示为:y=f(x),其中x为自变量,y为因变量,f为函数关系。
在实际应用中,函数可以描述抽象的关系,也可以表示具体的物理、经济、生活等现象。
2. 函数的图像函数的图像是函数在坐标系中的几何表示,用曲线或者折线表示。
它可以帮助我们直观地了解函数的性质,如增减性、奇偶性、周期性等。
3. 函数的定义域和值域函数的定义域即自变量的取值范围,值域即因变量的取值范围。
了解函数的定义域和值域可以帮助我们更好地理解函数的性质和特点。
4. 函数的解析式函数的解析式表示函数之间的依赖关系,可以用代数式、分段函数、组合函数等形式表示。
掌握函数的解析式有利于我们对函数进行分析和运算。
5. 常见函数常见函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
了解这些常见函数的性质和特点有助于我们更好地理解和运用函数。
二、函数的基本性质1. 函数的奇偶性函数的奇偶性是函数的一个重要性质,它可以帮助我们简化函数的图形和运算。
奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
2. 函数的增减性函数的增减性描述了函数图像在定义域上的上升或下降趋势。
通过研究函数的增减性,我们可以得到函数在不同区间上的性质。
3. 函数的最值和极值函数的最值即函数在定义域上的最大值和最小值,极值指的是函数在某个点上的最大值和最小值。
研究函数的最值和极值有助于我们理解函数的局部性质。
4. 函数的周期性周期函数是指函数具有周期性变化的特点,即在一定区间内具有重复的性质。
掌握周期函数的性质对于我们理解函数的变化规律和应用具有重要意义。
5. 复合函数复合函数是由两个或多个函数组合而成的新函数,它可以描述多个变量之间的复杂关系。
掌握复合函数的运算和性质有助于我们应用函数解决实际问题。
高中函数知识点总结(最新最全)
高中数学函数知识点归纳1. .函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.2. 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.3. 多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.4. 两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.5. 互为反函数的两个函数的关系.27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.6. 几个常见的函数方程(1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,.7. 几个函数方程的周期(约定a>0)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.8. 分数指数幂(1)(,且).(2)(,且).9. 根式的性质(1).(2)当为奇数时,;当为偶数时,.10. 有理指数幂的运算性质(1).(2).(3).33.指数式与对数式的互化式.34.对数的换底公式(,且,,且,).推论(,且,,且,,).11. 对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1);(2);(3).。
高中数学函数知识点总结(精华版)知识分享
高中数学函数知识点总结(精华版)知识分
享
高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。
- 函数的性质:单调性、奇偶性、周期性等。
2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。
- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。
- 指数函数:y = a^x,a为正常数,图像单调递增或递减。
- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。
3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。
- 复合运算:由两个或多个函数构成一个新的函数。
- 反函数:原函数与定义域互为值域的函数。
- 平移、压缩、翻折等函数的变换。
4. 函数的图像与性质
- 函数图像的绘制和分析方法。
- 函数的最值、零点、极值等特性。
5. 函数的应用
- 函数在物理、经济等领域的应用。
- 函数在数学建模中的应用。
6. 解函数方程
- 求函数方程的解法与步骤。
以上是高中数学函数知识点的精华总结和知识分享。
掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。
注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。
高中数学函数知识点总结
高中数学函数知识点总结高中数学函数知识点总结篇一一、增函数和减函数一般地,设函数f(x)的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么就是f(x)在这个区间上是减函数。
二、单调区间单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。
如果函数y=f(x)在某个区间是增函数或减函数。
那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。
一、指数函数的定义指数函数的一般形式为y=a^x(a0且≠1) (x∈R)。
二、指数函数的性质1、曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)2、曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)一、对数与对数函数定义1、对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
2、对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。
二、方法点拨在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果,这也是分类与整合思想的一个重要方面。
一、幂函数定义形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
二、性质幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y0,图像在第一;二象限。
这时(-1)^p的指数p的奇偶性无关。
高中数学函数的性质知识点整理
一、函数(一)、函数的单调性1、定义:一般地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1 ,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是增函数; 当x 1<x 2时,都有f(x 1)>f(x 2),那么就说函数f(x)在区间D 上是减函数。
单调性定义的等价形式:设x 1,x 2∈[a,b],x 1≠x 2.(1)若有(x 1-x 2)[f(x 1)-f(x 2)]>0或>0,则f(x)在闭区间[a,b]上是增函数;(2)若有(x 1-x 2)[f(x 1)-f(x 2)]<0或<0,则f(x)在闭区间[a,b]上是减函数.2、常用结论(1)若f(x),g(x)均为区间A 上的增(减)函数,则f(x)+g(x)也是区间A 上的增(减)函数. (2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反.(3)函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=的单调性相反.(4)函数y=f(x)(f(x)≥0)在公共定义域内与y=的单调性相同.(5)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.简称“同增异减”. (二)、函数的奇偶性1.函数奇偶性的定义:函数()f x 的定义域必须关于原点对称,对定义域内的任意一个x 都满足 ①()()f x f x -=⇔函数()f x 为偶函数;②()()()()0f x f x f x f x -=-⇔-+=⇔函数()f x 为奇函数.2.奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;反过来如果一个函数的图像关于原点对称,则该函数为奇函数,若该函数的图像关于y 轴对称,该函数为偶函数. 3.函数奇偶性的性质①既是奇函数又是偶函数的函数只有一种类型,即()0f x =,x D ∈,其中定义域D 是关于原点对称的非空数集.②奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.即奇函数()f x 在区间[,](0)a b a b ≤<上单调递增(减),则()f x 在区间[,]b a --上也是单调递增(减); ③偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.即偶函数()f x 在区间[,](0)a b a b ≤<上单调递增(减),则()f x 在区间[,]b a --上也是单调递减(增); ④任意定义在R 上的函数()f x 都可以唯一地表示成一个奇函数与一个偶函数的和.即()()()()()22f x f x f x f x f x +---=+(三)、函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)特别的(2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称; (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称.本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称. 3、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 中心对称(当0a =时,恰好就是奇函数); (2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫⎪⎝⎭中心对称;(3)()f x a +是奇函数,则()()f x a f x a +=--+,进而可得到:()f x 关于(),0a 中心对称。
免费初高中函数知识点总结
免费初高中函数知识点总结一、函数的定义和基本性质1. 函数的定义函数是一种特殊的对应关系,即对于每一个自变量的取值,对应且仅对应一个因变量的取值。
符号表示为:y = f(x),其中y称为因变量,x称为自变量,f(x)为函数符号。
函数通常用一种对图表或几何图形的表示方法来表达。
2. 函数的基本性质(1)定义域:函数中自变量的取值范围。
(2)值域:函数中因变量的取值范围。
(3)奇偶性:若函数满足f(x) = f(-x),称为偶函数;若函数满足f(x) = -f(-x),称为奇函数;若既不是偶函数也不是奇函数,称为非奇非偶函数。
(4)单调性:函数在定义域内的值随自变量的增大而增大(或减小)的性质。
(5)周期性:若存在正数T,使得对于函数f(x),有f(x+T) = f(x),则称函数f(x)为周期函数。
二、常见函数类型及图像特征1. 一次函数形式为y = kx + b,其中k为斜率,b为截距。
特征:图像为一条直线,斜率k决定了直线的倾斜程度,截距b决定了直线与y轴的交点。
2. 二次函数形式为y = ax² + bx + c,其中a≠0。
特征:图像为开口朝上或者开口朝下的抛物线,抛物线的开口方向取决于a的正负值,抛物线在y轴上的交点为c。
3. 幂函数形式为y = x^n,其中n为常数。
特征:n为偶数时,函数图像在第一和第四象限均为非负值,n为奇数时,函数图像在整个坐标系都有定义。
4. 指数函数形式为y = a^x,其中a为常数且a>0,a≠1。
特征:函数图像在经过点(0,1),当a>1时函数图像递增,当0<a<1时函数图像递减。
5. 对数函数形式为y = logₐx,其中a为常数且a>0,a≠1。
特征:函数图像在x轴的正半轴上有定义,对数函数的导数在x>0时为正值。
6. 三角函数包括正弦函数y = sinx,余弦函数y = cosx,正切函数y = tanx等。
最全函数知识点总结高中
最全函数知识点总结高中一、函数的基本概念1.1 函数的定义函数是一个非常基本的数学概念。
在数学上,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
用数学符号表示就是:对于两个集合A和B,如果存在一个规则f,它使得对于A中的每个元素x,都有一个唯一的y属于B与之对应,那么我们说f是从A到B的一个函数,记作f:A→B。
其中A称为定义域,B称为值域。
1.2 函数的概念在我们的日常生活中,我们可以看到很多函数的例子。
比如,将一个数字加上3,或者乘以2,这就是两个函数的例子。
我们可以看到,函数本质上就是一种输入与输出的关系。
1.3 函数的符号表示函数一般用字母f,g,h等表示,其定义为:y=f(x),表示x是自变量,y是因变量。
1.4 函数的自变量和因变量在函数中,自变量是输入的值,它在定义域中取值;而因变量是输出的值,它在值域中取值。
1.5 函数的图象函数的图象是函数在一个坐标系中的表示,它可以帮助我们更直观地了解函数的性质和规律。
1.6 函数的性质函数有很多的性质,比如奇偶性、单调性、周期性等等。
1.7 函数的分类函数可以分为初等函数和非初等函数。
初等函数包括多项式函数、有理函数、指数函数、对数函数、三角函数和反三角函数。
非初等函数包括无穷级数、常微分方程等。
1.8 逆函数如果函数f有定义域A和值域B,对于B中的每一个y,存在一个唯一的x属于A与之对应,那么我们称这个函数有逆函数,记作f^(-1)。
1.9 复合函数如果有两个函数f和g,使得f的值域是g的定义域,那么我们可以定义一个新的函数h(x)=f(g(x)),这就是复合函数。
1.10 函数的性质与变化函数有很多的性质和变化规律,比如极值、单调性、周期性、奇偶性等等。
对于这些性质和变化,我们可以通过函数的图象和导数来进行分析。
1.11 函数的运算函数之间可以进行加减乘除的运算,还可以进行求泛函、求复合函数、求逆函数等。
二、函数的表示与运用2.1 函数的表示方法函数可以用方程的形式、图象的形式、表格的形式、文字的形式等来表示。
高考常用六大函数知识点
高考常用六大函数知识点在我们的高中数学学习中,函数是一个重要的概念。
函数是一种映射关系,将一个自变量映射到一个因变量。
在高考中,有六大常用函数,它们分别是线性函数、二次函数、指数函数、对数函数、幂函数和三角函数。
下面,我们将逐个介绍这六大函数的知识点。
线性函数是最基本的函数之一,在数学领域具有广泛的应用。
线性函数的定义很简单,即y=kx+b,其中k是斜率,b是常数。
在坐标系中,线性函数的图像是一条直线。
计算线性函数的斜率可以用两点间的纵坐标差除以横坐标差。
在高考中,我们需要掌握线性函数的性质和相关计算方法。
二次函数是形如y=ax^2+bx+c的函数,其中a、b、c都是常数,且a不等于0。
二次函数的图像通常是一条抛物线。
高考中常涉及到二次函数的顶点坐标、对称轴、开口方向等性质,以及求二次函数的零点、最值等相关计算。
指数函数是以指数为自变量的函数,形如y=a^x,其中a是底数,x是指数,a大于0且不等于1。
指数函数的图像通常是一条逐渐增大或逐渐减小的曲线。
在高考中,我们需要了解指数函数的增减性、图像的特点以及指数函数与对数函数的互逆性。
对数函数是指对数为自变量的函数,形如y=logax,其中a是底数,a大于0且不等于1。
对数函数的图像通常是一条逐渐增大或逐渐减小的曲线。
在高考中,我们需要了解对数函数的增减性、图像的特点以及对数函数与指数函数的互逆性。
幂函数是指以幂为自变量的函数,形如y=x^a,其中a是指数,不一定是整数。
幂函数的图像的形状可以根据指数的奇偶性、正负性来确定。
在高考中,我们需要了解幂函数的增减性、图像的特点以及幂函数与开方函数的关系。
三角函数是以角度(或弧度)为自变量的函数,包括正弦函数、余弦函数、正切函数等。
三角函数的图像在数学坐标系中呈现周期性的波动形态。
在高考中,我们需要了解三角函数的周期、图像的特点以及三角函数之间的关系。
这六大函数是高考中经常出现的知识点,理解和掌握它们对于顺利解题至关重要。
高中函数知识点总结框架
高中函数知识点总结框架一、函数与自变量1. 函数的概念:函数是一种对应关系,它将一个集合中的每一个元素映射到另一个集合中的唯一元素上。
2. 自变量与因变量:函数中的自变量是输入值,因变量是对应的输出值。
3. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
二、函数的表示与性质1. 函数的表示方法:函数可以用表达式、图象、数据等多种方式描述。
2. 函数的奇偶性:奇函数、偶函数和周期函数的定义和性质。
3. 函数的单调性:递增函数和递减函数的概念和性质。
三、初等函数1. 一次函数:y=kx+b的基本性质和图象特征。
2. 二次函数:y=ax^2+bx+c的基本性质和图象特征。
3. 指数函数和对数函数:y=a^x和y=loga(x)的定义和性质。
4. 三角函数:正弦函数、余弦函数、正切函数等的定义和性质。
四、函数的运算1. 函数的加减乘除:函数的加减、乘除的定义和性质。
2. 复合函数:复合函数的定义和求值方法。
3. 反函数:反函数的概念和性质。
五、函数的图象与性质1. 函数的图象:函数的图象是自变量与因变量的对应关系在坐标系中的集合。
2. 函数的性质:最值、单调性、奇偶性等函数的性质的判定方法和应用。
六、函数方程与不等式1. 函数方程:y=f(x)的各种函数关系的方程解法和应用。
2. 函数不等式:函数不等式的解法和应用。
七、函数与导数1. 导数的概念:导数是函数在某一点的瞬时变化率。
2. 导数的计算:用定义法、基本公式、导数运算法则等方法计算导数。
3. 导数的应用:导数在函数极值、单调性、凹凸性、曲线图象等方面的应用。
八、函数与积分1. 不定积分:函数积分的基本概念和计算方法。
2. 定积分:定积分的概念和性质。
3. 积分的应用:积分在面积、体积、物理量等方面的应用。
以上所述,就是高中函数知识点的总结。
掌握这些知识点,可以帮助我们更深入地理解和运用函数的各种性质和运算方法。
同时也为进一步学习数学课程打下坚实的基础。
高中数学函数知识点(详细)
第二章 函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B的一个函数.记作:y =)(x f ,x ∈A.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则 (3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值范围。
(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。
(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。
③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。
例2. 求函数()02112++-=x x y 的定义域。
④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。
(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。
高中数学函数基础知识点
高中数学函数基础知识点1. 函数的基本概念-函数的定义:设在一个非空数集D上,如果存在一个法则f,使得对每一个x∈D,都有唯一确定的y与之对应,记作y=f(x),那么就称y是x的函数,记作y=f(x),其中D称为函数的定义域。
-单调性:函数在某个区间上若满足随着自变量增大,函数值也增大,则称函数在这个区间上单调递增;反之,若函数值随自变量增大而减小,则称函数在这个区间上单调递减。
-奇偶性:若对于所有定义域内的x,都有f(-x) = f(x),则称f(x)为偶函数;若f(-x) = -f(x),则称f(x)为奇函数。
2. 基本初等函数-常数函数、幂函数、指数函数、对数函数、三角函数(正弦函数、余弦函数、正切函数等)、反三角函数及其性质。
3. 函数图像与性质-函数图像的画法:列表、描点、连线。
-函数图像的平移、翻折、伸缩变换规律。
-函数零点的定义及求解方法。
4. 函数的运算-函数的四则运算:两个函数的和、差、积、商仍然是函数。
-复合函数:由两个或多个简单函数经过嵌套组合而成的函数。
5. 函数的最值问题-利用函数单调性寻找函数在指定区间上的最大值和最小值。
-利用导数工具求解闭区间上的函数最值。
6. 函数方程与函数不等式-解决函数方程,即求解满足给定条件的函数表达式。
-解函数不等式,求解满足不等式的自变量范围。
7. 分段函数-定义和表示方法,以及其连续性和单调性等问题。
以上都是高中数学函数部分的基础知识点,也是后续学习诸如导数、积分、微积分等高级数学知识的基础。
在学习过程中,需结合实例,多做题型练习,以便理解和熟练掌握函数的各种性质和运算法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。
3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。
同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。
当然,我们也要注意到,这2n种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n -()若,;2A B A B A A B B ⊆⇔==(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,函数1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)2. 求函数的定义域有哪些常见类型?()()例:函数的定义域是y x x x =--432lg()()()(答:,,,)022334函数定义域求法:● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; ●对数式的底数大于零且不等于一,真数大于零。
●正切函数x y tan = ⎪⎭⎫ ⎝⎛∈+≠∈Z ππk k x R x ,2,且 ●余切函数x y cot = ()Z π∈≠∈k k x R x ,,且反三角函数的定义域函数y =arcsinx 的定义域是 [-1, 1] ,值域是,函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) .3、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例 求函数y=x1的值域 2、配方法配方法是求二次函数值域最基本的方法之一。
例、求函数y=2x -2x+5,x ∈[-1,2]的值域。
3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂.112..22222222ba y 型:直接用不等式性质k+x bxb. y 型,先化简,再用均值不等式x mx nx 1 例:y 1+x x+xx m x n c y 型 通常用判别式x mx n x mx nd. y 型x n法一:用判别式 法二:用换元法,把分母替换掉x x 1(x+1)(x+1)+1 1例:y (x+1)1211x 1x 1x 1==++==≤''++=++++=+++-===+-≥-=+++1 . 如何用定义证明函数的单调性? (取值、作差、判正负) 判断函数单调性的方法有三种: (1)定义法:根据定义,设任意得x 1,x 2,找出f(x 1),f(x 2)之间的大小关系可以变形为求1212()()f x f x x x --的正负号或者12()()f x f x 与1的关系2. 如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。
(在个别点上导数等于a b f x f x '()()≥0零,不影响函数的单调性),反之也对,若呢?f x '()≤0[)如:已知,函数在,上是单调增函数,则的最大a f x x ax a >=-+∞013()值是( ) A. 0(令f x x a x a x a '()=-=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪≥333302则或x ax a ≤-≥33由已知在,上为增函数,则,即f x aa ()[)1313+∞≤≤ ∴a 的最大值为3)一、 定义域法一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数. 二、 奇偶函数定义法在给定函数的定义域关于原点对称的前提下,计算)(x f -,然后根据函数的奇偶性的定义判断其奇偶性.这种方法可以做如下变形f(x)+f(-x) =0 奇函数f(x)-f(-x)=0 偶函数f(x)1 偶函数 f(-x)f(x)1 奇函数f(-x)==- 三、 复合函数奇偶性对称性与周期性()(若存在实数(),在定义域内总有,则为周期T T f x T f x f x ≠+=0()()函数,T 是一个周期。
)()如:若,则f x a f x +=-()(答:是周期函数,为的一个周期)f x T a f x ()()=2我们在做题的时候,经常会遇到这样的情况:告诉你f(x)+f(x+t)=0,我们要马上反应过来,这时说这个函数周期2t. 推导:()()0()(2)()(2)0f x f x t f x f x t f x t f x t ++=⎫=>=+⎬+++=⎭,同时可能也会遇到这种样子:f(x)=f(2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称, 对称轴可以由括号内的2个数字相加再除以2得到。
比如,f(x)=f(2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a 对称。
()()()()()()(2)(2)(2)()(2)2,222,()(22)()(22),()2||(,,,f x x a x b f a x f a x f b x f b x f x f a x f a x f b x f x f b x t a x b x t b a f t f t b a f x f x b a f x b a a b ==+=-+=-=-⎧⎫=>=>-=-⎨⎬=-⎩⎭=--=+-=+-=+--又如:若图象有两条对称轴,即,令则即所以函数以为周期因不知道的大小关系为保守起见我加了一个绝对值指数函数,对数函数和幂函一.基础知识(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm )1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)r a ·sr r a a += ),,0(R s r a ∈>;(2)rss r a a =)( ),,0(R s r a ∈>;(3)sr r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1.注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)说明:○1 注意底数的限制0>a ,且1≠a ;○2 x N N a a x =⇔=log ; ○3 注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln .指数式与对数式的互化幂值 真数对数 (二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○2 =NMa log M a log -N a log ;○3 n a M log n =M a log )(R n ∈. 注意:换底公式a bb c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论(1)b mnb a n a mlog log =;(2)a b b a log 1log =.(二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如:x y 2log 2=,5log 5x y = 都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:0(>a ,且)1≠a .1.定义:形如y=x a (是常数)的函数,叫幂函数 2.幂函数的性质:n>0时,(1)图象都通过点(0,0),(1,1) (2)在(0,+∞),函数随的增大而增大 n<0时,(1)图象都通过(1,1)(2)在(0,+∞),函数随x的增加而减小(3)在第一象限内,图象向上与y轴无限地接近,向右与x轴无限地接近。
注意事项:判断幂函数的定义域的方法可概括为(对指数)“先看正负,是负去零,再看奇偶,是偶非负”3.根据幂函数的定义域,值域及指数特点画其图象。
函数位于第一象限的图象在“n>1”时,往上翘;0<n<1,往右拐;n<0向下滑.n>1 0<n<1 n<0。