七年级实数-平方根-算术平方根-立方根-习题

合集下载

初中数学实数(认识平方根和立方根)基础题(含答案)

初中数学实数(认识平方根和立方根)基础题(含答案)

初中数学实数(认识平方根和立方根)基础题一、单选题(共9道,每道11分)1.的平方根是()A. B.C. D.答案:C试题难度:三颗星知识点:整数、分数的平方根、算术平方根2.0.0004的算术平方根是()A.0.2B.±0.2C.0.02D.±0.02答案:C试题难度:三颗星知识点:小数、幂的平方根、算术平方根3.的平方根是()A.4B.±4C.2D.±2答案:D试题难度:三颗星知识点:多重平方根、算术平方根4.一个正数的平方根是a+3与2a+4,则这个正数为()A. B.C. D.答案:D试题难度:三颗星知识点:正数的平方根5.一个数的算术平方根为a,比这个数小2的数是()A.a+2B.-2C.+2D.a2-2答案:D试题难度:三颗星知识点:乘方与开方互为逆运算6.-27的立方根为()A.±3B.-3C.3D.9答案:B试题难度:三颗星知识点:立方根7.如果一个数的平方根是这个数本身,那么这个数一定是()A.1B.1或0C.0D.-1或0或1答案:C试题难度:三颗星知识点:等于本身的数8.已知0≤x≤6,则的化简结果是()A.2x-5B.7C.4D.5-2x答案:B试题难度:三颗星知识点:双重非负性9.一个正方体木块的体积为125厘米3,现先要把它锯成8块同样大小的正方体小木块,则小木块的棱长是()厘米A.5B.2.5C. D.1.25答案:B试题难度:三颗星知识点:立方根的简单应用。

算术平方根、平方根与立方根练习题

算术平方根、平方根与立方根练习题

算术平方根、平方根与立方根练习题 姓名:‗‗‗‗‗‗‗‗‗1、一般地,如果一个正数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个正数x 叫做a 的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗,读作‗‗‗‗‗‗‗‗‗‗,a 叫做‗‗‗‗‗‗‗‗‗,如3²=9,则3是9的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

0的算术平方根是‗‗‗‗‗‗;1的算术平方根是‗‗‗‗‗。

‗‗‗‗‗‗‗‗数没有算术平方根;被开方数是‗‗‗‗‗‗‗数;算术平方根是‗‗‗‗‗‗‗数。

2、算术平方根等于它本身的数是‗‗‗‗‗‗‗‗‗。

被开方数越大,对应的算术平方根也‗‗‗‗‗。

3、(-5)²的算术平方根是‗‗‗‗‗;0.49的算术平方根的相反数是‗‗‗‗‗‗。

4、81的算术平方根是‗‗‗‗‗。

16的算术平方根是‗‗‗‗‗。

5、求下列各数的算术平方根。

(1)0.0625; (2)0; (3)2)41(-; (4)16、计算(1)41.4 (2)25111(3)151722-7、已知35.14=3.788,x =378.8,则x=‗‗‗‗‗‗‗‗‗。

8、已知a ,b 为两个连续整数,且a <7<b ,则a+b=‗‗‗‗‗。

比较大小:215-‗‗‗21。

9、(1)(-3)²=‗‗‗‗‗;(2))3(2π-=‗‗‗‗‗‗‗‗‗‗;(3)若4-x =3,则x=‗‗‗‗‗。

10、若x ,y 为实数,且2+x +2-y =0,则)2016(y x 的值为‗‗‗‗‗‗‗‗。

平方根:1、一般地,如果一个数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个数x 叫做a 的‗‗‗‗‗‗‗‗‗或‗‗‗‗‗‗‗‗‗,数a 的平方根可记作‗‗‗‗‗‗,如)3(2±=9,所以‗‗‗‗‗是9的平方根,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

正数有‗‗‗‗个平方根,它们‗‗‗‗‗‗‗‗‗,0的平方根是‗‗‗。

人教版数学七年级下册 第六章 实数 算术平方根、平方根、立方根的难点突破 专题练习题 含答案

人教版数学七年级下册 第六章  实数 算术平方根、平方根、立方根的难点突破   专题练习题 含答案

第六章实数算术平方根、平方根、立方根的难点突破一、求算术平方根、平方根、立方根1. 一个自然数的算术平方根是a,则与这个自然数相邻的下一个自然数的算术平方根是2. 一个非负数的两个平方根分别是2a-1和a-5,则这个非负数是多少?3. 若x2=4,y2=9,且x>y,求x-y的平方根4. 已知x-2的平方根是±1,2x+y+17的立方根是3,求x2+y2的平方根和立方根.5. 已知M=m-1m+6是m+6的算术平方根,N=2m-3n+3n+6是n+6的立方根,试求M-N的值.二、算术平方根的非负性6. 若x -3有意义,则x 的取值范围是___________ __.7. 已知y =x -8+8-x +5,求x +y 的值8. 若y =x -12+12-x -6,求xy 的值.9. 已知实数x ,y ,z 满足|4x -4y +1|+132y +z +(z -12)2=0,求(y +z)·x 2的值.三、利用算术平方根、立方根解决实际问题10. 如图,将两个边长为3的正方形对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是__________.11. 一种集装箱是正方体,它的体积是343 m3,则这种正方体集装箱的棱长是____________.12. 国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间.某地新建了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用于国际比赛吗?并说明理由.13. 在做浮力实验时,小华用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱形烧杯中,溢出水的体积为40 cm3;小华又将铁块从烧杯中提起,量得烧杯中的水位下降了0.6 cm.请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器计算,结果精确到0.01 cm)14. 全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长,每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35 cm,问冰川约是在多少年前消失的?15. 将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.四、探究算术平方根、平方根、立方根的变化规律16. 观察分析下列数据:0,-3,6,-3,12,-15,18,…,根据以上数据排列的规律,第n个数据应是_______________________.(n为正整数) 17. 观察下列各式,并用所得出的规律解决问题:(1)2=1.414,200=14.14,20 000=141.4,…0.03=0.173 2,3=1.732,300=17.32,…由此可见,被开方数的小数点每向右移动_______位,其算术平方根的小数点向_______ __移动______ __位;(2)已知5=2.236,50=7.071,则0.5=_____________,500=___________; (3)31=1,31 000=10,31 000 000=100,…小数点变化的规律是:(4)已知310=2.154,3100=4.642,则310 000=__________,-30.1=______________.18. 先观察,再解决问题 3227=2327; 33326=33326; 34463=43463;…(1)请再写出一个类似的式子;(2)请用含n 的式子表示上述规律.19. 不用计算器,探究解决下列问题:(1)已知x 3=10 648,则x 的个位数字一定是____;∵8 000=203<10 648<303=27 000,∴x 的十位数字一定是____,∴x =________;(2)已知x 3=59 319,则x 的个位数字一定是____;∵27 000=303<59 319<403=64 000,∴x的十位数字一定是____,∴x=_________;(3)已知x3=148 877,则x的个位数字一定是____;∵125 000=503<148 877<603=216 000,∴x的十位数字一定是____,∴x=______;(4)按照以上思考方法,直接写出x的值.①若x2=857 375,则x=______;②若x3=373 248,则x=______.答案:一、1. a2+12. 解:根据题意,有(2a-1)+(a-5)=0,解得a=2.∴这个非负数为(2a-1)2=(2×2-1)2=9.3. 解:∵x2=4,y2=9,∴x=±2,y=±3.∵x>y,∴x=±2,y=-3.当x=2,y=-3时,x-y的平方根是±5;当x=-2,y=-3时,x-y的平方根是±1.4. 解:∵x-2的平方根是±1,∴x-2=1,则x=3.∵2x+y+17的立方根是3,∴2x+y+17=27.把x=3代入2x+y+17=27中,得y=4.∴x2+y2=32+42=25,∴x2+y2的平方根是±5,立方根是3 25.5. 解:由题意可知m-1=2,2m-3n+3=3,解得m=3,n=2.∴M=9=3,N=38=2,∴M-N=3-2=1.二、6. x≥37. 由题意可得x -8≥0,且8-x ≥0,∴x =8.当x =8时,y =5,∴x +y =13.8. 由题意可得x -12≥0,且12-x ≥0,∴x =12.当x =12时,y =-6,∴xy =12×(-6)=-3.9. 解:根据题意可得4x -4y +1=0,2y +z =0,z -12=0, ∴x =-12,y =-14,z =12,∴(y +z)·x 2=116. 三、 10. 611. 7m12. 解:这个足球场能用于国际比赛,理由:设足球场的宽为x m ,则长为1.5x m ,由题意得1.5x 2=7 560,∴x 2=5 040.∵x >0,∴x = 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71,∴70<x <71,∴105<1.5x <106.5,符合要求,∴这个足球场能用于国际比赛.13. 解:设铁块的棱长为a cm ,根据题意,得a 3=40,解得a≈3.42.设烧杯内部的底面半径为r cm ,根据题意,得πr 2×0.6=40,解得r≈4.61(舍去负值),则烧杯内部的底面半径约是4.61 cm ,铁块的棱长约是3.42 cm.14. 解:(1)当t =16时,d =7×t -12=7×2=14(cm ),则冰川消失16年后苔藓的直径为14 cm .(2)当d =35时,t -12=5,即t -12=25,解得t =37,则冰川约是在37年前消失的.15. 解:设每个小立方体铝块的棱长为x cm,则8x3=0.216.∴x3=0.027.∴x=0.3.∴6×0.32=0.54(m2),即每个小立方体铝块的表面积为0.54 m2.16. (-1)n+13(n-1)17. (1) 两右一(2) 0.7071 22.36(3) 被开方数的小数点向右(左)移动三位,其立方根的小数点向右(左)移动一位.(4) 21.54 -0.464218. (1) 解:355124=535124.(2) 解:3n+nn3-1=n3nn3-1(n≠1,且n为正整数).19. (1) 2 2 22(2) 9 3 39(3) 3 5 53(4) ① 95② 72。

七年级数学平方根立方根试题

七年级数学平方根立方根试题

七年级数学平方根立方根试题一、平方根相关试题。

1. 求16的平方根。

- 解析:- 一个正数有两个平方根,它们互为相反数。

- 因为(±4)^2 = 16,所以16的平方根是±4。

2. 若x^2 = 25,求x的值。

- 解析:- 因为x^2 = 25,根据平方根的定义,x是25的平方根。

- 又因为(±5)^2 = 25,所以x = ±5。

3. √(49)的值是多少?- 解析:- √(49)表示49的算术平方根。

- 因为7^2 = 49,所以√(49)=7。

4. 计算√(0.09)。

- 解析:- 因为0.3^2 = 0.09,所以√(0.09)=0.3。

5. 若√(a)=3,求a的值。

- 解析:- 因为√(a)=3,根据算术平方根的定义,a = 3^2 = 9。

6. 求√(frac{1){16}}的值。

- 解析:- 因为((1)/(4))^2=(1)/(16),所以√(frac{1){16}}=(1)/(4)。

7. 一个正数的平方根是2a - 1和- a+2,求这个正数。

- 解析:- 一个正数的两个平方根互为相反数。

- 所以2a - 1+( - a + 2)=0。

- 化简得2a - 1 - a+2 = 0,即a+1 = 0,解得a=-1。

- 则其中一个平方根为2a - 1 = 2×(-1)-1=-3。

- 所以这个正数为( - 3)^2 = 9。

8. 已知√(x - 1)+√(1 - x)=y + 4,求x,y的值。

- 解析:- 要使√(x - 1)和√(1 - x)有意义,则x - 1≥slant0且1 - x≥slant0。

- 所以x - 1 = 0,即x = 1。

- 当x = 1时,√(x - 1)+√(1 - x)=0,则y+4 = 0,解得y=-4。

9. 比较√(3)与1.7的大小。

- 解析:- 因为(√(3))^2 = 3,1.7^2 = 2.89。

平方根立方根实数练习题--5

平方根立方根实数练习题--5

平方根、立方根练习题一、选择题1、化简错误! 的结果是( )A .3 B.-3 C.±3 D.9 2.已知正方形的边长为a,面积为S,则( ) A .S a =B.±S a = C.a S = D .a S =±3、算术平方根等于它本身的数( )A、不存在;B、只有1个;C、有2个;D 、有无数多个; 4、下列说法正确的是( )A .a的平方根是±a ;B.a 的算术平方根是a ; C .a 的算术立方根3a ;D.-a 的立方根是-3a . 5、满足-2<x<3的整数x 共有( )A .4个;B.3个;C .2个;D.1个.6、如果a、b 两数在数轴上的位置如图所示,则()2b a +的算术平方根是();A、a +b;B 、a -b ;C 、b -a;D 、-a-b; 7、如果-()21x -有平方根,则x的值是( ) A 、x ≥1;B 、x ≤1;C 、x =1;D 、x≥0;8.已知a 中,a 是正数,如果a 的值扩大100倍,则a 的值( ) A 、扩大100倍;B、缩小100倍;C 、扩大10倍;D 、缩小10倍;9、2008年是北京奥运年,下列各整数中,与2008最接近的一个是( ) A.43;B、44;C 、45;D 、46;10.如果一个自然数的算术平方根是n,则下一个自然数的算术平方根是( ) A、n +1;B、2n +1;C 、1n +;D、21n +。

11. 以下四个命题①若a 是无理数,则a 是实数;②若a 是有理数,则a 是无理数;③若a 是整数,则a 是有理数;④若a 是自然数,则a 是实数.其中,真命题的是( ) A.①④ﻩB.②③ﻩ ﻩC .③ ﻩﻩD.④12. 当01a <<,下列关系式成立的是( ) A .a a >,3a a >ﻩﻩﻩB.a a <,3a a <a . -1. 0b .. 1.Ca <a >ﻩﻩDa >a <13. 下列说法中,正确的是( )A.27的立方根是33= B .25-的算术平方根是5C.a 的三次立方根是 D.正数a 14. 下列命题中正确的是( )(1)0.027的立方根是0.3;(2)3a 不可能是负数;(3)如果a 是b 的立方根,那么ab ≥0;(4)一个数的平方根与其立方根相同,则这个数是1. A .(1)(3) B.(2)(4) C .(1)(4) D .(3)(4) 15. 下列各式中,不正确的是( )> <D5=-16.若a<0,则aa 22等于( )A 、21 B 、21- C 、±21 D、0 二、填空题17、0.25的平方根是 ;125的立方根是 ;18.计算:412=___;3833-=___;1.4的绝对值等于 .19.若x 的算术平方根是4,则x=___;若3x =1,则x=___; 20.若2)1(+x -9=0,则x=___;若273x +125=0,则x =___; 21.当x___时,代数式2x +6的值没有平方根; 22.381264273292531+-+= ;23.若0|2|1=-++y x ,则x+y= ; 24.若642=x ,则3x =____. 25.立方根是-8的数是___,64的立方根是____。

(完整版)平方根、立方根练习题

(完整版)平方根、立方根练习题

平方根、立方根、实数练习题一、选择题1、化简(-3)2 的结果是( )A.3B.-3C.±3 D .9 2.已知正方形的边长为a ,面积为S ,则( ) A.S =a = C.a =.a S =± 3、算术平方根等于它本身的数( )A 、不存在;B 、只有1个;C 、有2个;D 、有无数多个; 4、下列说法正确的是( )A .a 的平方根是±a ;B .a 的算术平方根是a ;C .a 的算术立方根3a ;D .-a 的立方根是-3a . 5、满足-2<x <3的整数x 共有( )A .4个;B .3个;C .2个;D .1个.6、如果a 、b 两数在数轴上的位置如图所示,则()2b a +的算术平方根是( );A 、a+b ;B 、a-b ;C 、b-a ;D 、-a-b ;7、如果-()21x -有平方根,则x 的值是( ) A 、x ≥1;B 、x ≤1;C 、x=1;D 、x ≥0;8a 是正数,如果a 的值扩大100 ) A 、扩大100倍;B 、缩小100倍;C 、扩大10倍;D 、缩小10倍;9、2008最接近的一个是( ) A .43;B 、44;C 、45;D 、46;10.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( ) A 、n+1;B 、2n +1;C D 11. 以下四个命题①若a 是无理数,②若a 是有理数,是无理数;③若a 是整数,是有理数;④若a ) A.①④ B.②③ C.③D.④12. 当01a <<,下列关系式成立的是( ) a >a >a <a <a . -1. 0b .. 1.a <a > a >a <13. 下列说法中,正确的是( )A.27的立方根是33= B.25-的算术平方根是5C.a 的三次立方根是D.正数a 14. 下列命题中正确的是( )(1)0.027的立方根是0.3;(2)3a 不可能是负数;(3)如果a 是b 的立方根,那么ab ≥0;(4)一个数的平方根与其立方根相同,则这个数是1.A.(1)(3)B.(2)(4)C.(1)(4)D.(3)(4) 15. 下列各式中,不正确的是( )><>5=-16.若a<0,则aa 22等于( )A 、21B 、21- C 、±21 D 、0二、填空题17、0.25的平方根是 ;125的立方根是 ;18.计算:412=___;3833-=___;1.4的绝对值等于 .19.若x 的算术平方根是4,则x=___;若3x =1,则x=___; 20.若2)1(+x -9=0,则x=___;若273x +125=0,则x=___; 21.当x ___时,代数式2x+6的值没有平方根; 22.381264273292531+-+= ; 23.若0|2|1=-++y x ,则x+y= ; 24.若642=x ,则3x =____. 25.立方根是-8的数是___,64的立方根是____。

人教版七年级下册数学第六章:实数 平方根与算术平方根同步习题有答案

人教版七年级下册数学第六章:实数  平方根与算术平方根同步习题有答案

平方根与算术平方根一、选择题1. 9的算术平方根是()A.81B.3C.±3D.−32. 下列运算正确的是()A.√(−2)2=−2B.√(−3)33=3C.√2.5=0.5D.√23=2√23. 14的算术平方根是()A.12B.±116C.±12D.1164. √16的平方根是()A.4B.±4C.±2D.25. 下列各式中正确的是()A.√9=±3B.√83=±2 C.√−4=−2 D.√(−5)2=56. 下列说法中正确的是()A.−2是4的平方根B.算术平方根等于它本身的数一定是1C.9的立方根是3D.近似数3.06×105精确到百分位7. √16的平方根是( )A.±4B.4C.±2D.+28. 下列判断正确的是( )A.√16=±4B.−9的算术平方根是3C.27的立方根是±3D.正数a 的算术平方根是√a9. 下列说法正确的是( )A.9的平方根是3B.算术平方根等于它本身的数一定是1C.−2是4的平方根D.√16的算术平方根是410. 下列说法中,正确的是( )A.(−2)3的立方根是−2B.0.4的算术平方根是0.2C.√64的立方根是4D.16的平方根是411. 下列说法:①64的立方根是8,②49的算数平方根是±7,③127的立方根是13,④116的平方根是14,其中正确说法的个数是( )A.1B.2C.3D.412. 已知实数a的一个平方根是−2,则此实数的算术平方根是()A.±2B.−2C.2D.413、下列说法正确的是()A.169的平方根是13B.1.69的平方根是±1.3C.(-13)²的平方根是-13D.-(-13)没有平方根14、81的平方根是()A.9B.3C.±9D.±315、下列说法错误的是()A. 1的平方根是±1B. –1的立方根是–1C.√2是2的算术平方根D. –3是√(−3)2的平方根16、下列说法正确的是()A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术根17、一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C.√x+1D.2+118、估算√12的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间19、一个数的算术平方根是a,则比这个数大8数是()A.a+8B.a-4C.a²-8D.a²+820、若2m-4与3m-1是同一个正数的平方根,则m为()A.-3B.1C.-1D.-3或1二、填空题1 、4是________的算术平方根.2、√9的算术平方根是________.3=________.√(−2)2=________.3、计算:√(−2)34、√81的平方根是________.5、64的算术平方根是________,平方根是________,立方根是________.6、√16的平方根________,33的算术平方根是________.8一个数的平方根是±3,则这个数的平方是______.7、已知a 为实数,那么2 ( ).8、0的平方根是______; 25111的平方根是______;0.01算术平方根是______. 9、一个正方形的面积是6平方厘米,则这个正方形的边长等于__________厘米.10、若2m -4与3m -1是同一个数的平方根,则m 为 ( )11、已知实数a ,b ,c 满足b -4=√−(a −3)2,c 的平方根等于它本身,则a -√的值为( )若√x−32有意义,则x 满足的条件是________.12、a 2=(-5)2,b 3=(-5)3,则a +b 的值为______________.13. −4是a 的一个平方根,则a 的算术平方根是________. 14. √81的平方根是________,若x 2=(−0.7)2,则x =________.15. 若实数m 、n 满足|m +3|+√n −3=0,则(m n)2019的值为________.16. 已知一个正数a 的平方根分别是2−m 和2m +1,则这个正数a =________.三、解答题1、已知: 3x +y +7的立方根是3,25的算术平方根是2x −y ,求:(1)x,y的值;(2)x2+y2的平方根.2、若3a+1和5a−17是实数m的平方根,求m的值.3、已知2a+1的平方根为±5,a+b+7的算术平方根为4.(1)求a,b的值;(2)求a+b的平方根.4、某小区有一块面积为196m2的正方形空地,开发商计划在此空地上建一个面积为100m2的长方形花坛,使长方形的长是宽的2倍.请你通过计算说明开发商能否实现这个愿望?(参考数据:√2≈1.414,√50≈7.071)5、已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.6、3x-11的平方根是±5,y+12=7,求y-x的算术平方根.7、(1)若x2=4,y2=9,且x>y,求x-y的平方根;(2)已知|a-4|+b+3 =0,求a2+b2的平方根.8、(1)已知:2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.(2))已知|a|=6,b2=16,求a+b的平方根.。

初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(29)

初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(29)

章节测试题1.【答题】的平方根是______.【答案】【分析】本题考查了平方根.【解答】=3,本题实际上就是求3的平方根.2.【答题】计算:.【答案】2【分析】如果一个数x的平方等于a,那么x是a的平方根,其中正的平方根叫做算术平方根.由此即可求解.【解答】故答案为:3.【答题】的平方根是______.【答案】±3【分析】根据平方根的定义解答即可.【解答】∵(±3)2=9,∴9的平方根是±3.故答案为:±3.4.【答题】______.【答案】4【分析】本题考查了算术平方根.【解答】∵42=16,∴16的算术平方根是4,即=4.故答案为:4.5.【答题】7的平方根是______.【答案】【分析】本题考查了平方根.【解答】∵,∴7的平方根是,故答案为:.6.【答题】化简:=______.【答案】3【分析】本题考查了平方根.【解答】=|-3|=-(-3)=3.故答案是:3.7.【题文】已知-(b-2)=0,求b a的值.【答案】【分析】由平方根的性质,把原式变形为,根据几个非负数的和为零,那么这几个非负数都等于零,列方程求a,b的值.【解答】由,得,根据非负数的性质得1+a=0,2-b=0,解得a=-1,b=2,所以b a=2-1=8.【题文】已知一个正数的两个平方根分别为2a+5和3a-15.(1)求这个正数;(2)请估算30a的算术平方根在哪两个连续整数之间.【答案】(1)81(2)7和8之间【分析】本题考查了平方根与算术平方根.【解答】(1)由题意得2a+5+3a-15=0,解得a=2.故所求的正数是(2a+5)2=(2×2+5)2=81.(2)∵a=2,∴30a=60.∵49<60<64,∴,即.9.【题文】已知的算术平方根是3,的平方根是,是的整数部分,求的平方根.【答案】【分析】先根据算术平方根及平方根的定义得出关于的方程组,求出的值,再估算出的取值范围求出c的值,代入所求代数式进行计算即可.【解答】∵2a−1的算术平方根是3,3a+b−1的平方根是±4,∴解得∵9<13<16,∴,∴的整数部分是3,即c=3,∴原式.6的平方根是.10.【题文】若2a-5和a+8是一个正数的平方根,那么这个正数是多少?.【答案】这个正数为441或49【分析】直接利用平方根的定义分析得出答案.【解答】由题可知:①当2a-5=a+8时,解得:a=13,那么a+8=21,∴正数为441;②当2a-5+a+8=0时,解得:a=-1,那么a+8=7,∴正数为49.∴这个正数为441或49.11.【题文】若正数m的平方根是5a+1和a-19,求m的值及m的平方根.【答案】m=256,m的平方根是±16.【分析】根据数m的平方根是5a+1和a-19,可知5a+1和a-19互为相反数,据此即可列方程求得a的值,然后根据平方根的定义求得m的值.【解答】由题可得(5a+1)+(a-19)=0,解得a=3,则m=(5a+1)2=162=256,所以m的平方根是±16.12.【题文】求下列各式中的值:(1);(2)【答案】(1);(2)【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程整理后,利用立方根定义开立方即可求出解.【解答】(1)方程整理得:x2=4,开方得:x=±2;(2)方程整理得:(x-3)3=,开立方得:x-3=,解得:x=.13.【题文】(1)计算|-5|+-32+.(2)求的值:【答案】(1)-1(2)±2【分析】(1)理解绝对值,算术平方根,乘方,立方根的意义;(2)把常数项移到方程的右边,用平方根的意义求解.【解答】解:(1)原式=5+4-9-1=-1;(2)4x2=16,所以x²=4,所以x=±2.14.【题文】已知,的平分根是,是的整数部分,求:(1)求的值;(2)的平方根.【答案】(1)a=5,b=2,c=7(2)【分析】(1)先根据算术平方根及平方根的定义得出关于a、b的方程,求出a、b的值,再估算出的取值范围求出c的值即可;(2)把(1)中的a、b、c的值代入进行计算即可得.【解答】(1)∵,的平分根是,∴2a-1=32,3a+b-1=(±4)2,∴a=5,b=2,∵7<<8,是的整数部分,∴c=7;(2)∵a=5,b=2,c=7,∴a+2b+c=16,16的平方根是±4,即的平方根是±4.15.【题文】先阅读下列材料,再回答相应的问题若与同时成立,则x的值应是多少?有下面的解题过程:由于与都是算术平方根,故两者的被开方数与均为非负数.而与互为相反数,两个非负数互为相反数,只有一种情形,那便是,所以.问题:已知,求的值.【答案】【分析】根据阅读的解题过程,可类比求解即可求出x、y的值,代入求解即可.【解答】由于与都是算术平方根,故两者的被开方数与均为非负数.而与互为相反数,两个非负数互为相反数,只有一种情形,那便是,,所以,y=2,代入即可得==.16.【题文】若正数M的两个平方根是和,试求和M的值.【答案】a=2,M=9【分析】根据平方根的意义,一个正数有两个平方根,它们互为相反数,可列方程求解.【解答】因为正数M的两个平方根是和所以3a-3+2a-7=0解得a=2所以M=(3a-3)2=32=9.17.【题文】求的值,.【答案】x=0或x=-4【分析】根据平方根的意义,先两边同除以4,再直接开平方即可.【解答】(x+2)2=4x+2=±2解得x=0或x=4.18.【题文】(1)已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根;(2)若2a-4与3a+1是同一个正数的平方根,求a的值.【答案】(1)±3;(2)a=1【分析】(1)利用平方根及算术平方根的定义列出方程组,求出方程组的解得到a与b 的值,确定出的值,即可确定出平方根.(2)与是同一个正数的平方根,即可求出的值.【解答】(1)由题意得2a−1=9,3a+b−1=16,解得:a=5,b=2,则a+2b=9,则9的平方根为3或−3;(2)∵与是同一个正数的平方根,19.【题文】求x的值:4(x+1)2=64【答案】x=3或x=-5.【分析】直接开方法即可求出的值.【解答】或或20.【题文】计算下列各题:(1)(2)【答案】(1)-12;(2)-8【分析】(1)注意运算的顺序,先算乘除,后算加减;(2)注意-32与(-3)2的区别,-32=-9,(-3)2=9;负数得绝对值等于它的相反数,即;表示16的算术平方根,即.【解答】(1)原式=-10-2=-12(2)原式=-9+5-4=-8。

(完整版)平方根、算术平方根、立方根练习题

(完整版)平方根、算术平方根、立方根练习题

1、121的平方根是_________,算术平方根_________.
2、 4.9×10³的算术平方根是_________.
3、(-2)²的平方根是_________,算术平方根是_________.
4、0的算术平方根是_________,立方根是_________.
5、-√3是_________的平方根.
6、64的平方根的立方根是_________.
7、如果丨x丨=9,那么x=________;如果x²=9,那么________
8、一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________.
9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.
10、若一个实数的算术平方根等于它的立方根,则这个数是________;
11、√81的平方根是_______,√4的算术平方根是_________,
10-²的算术平方根是_______;
12、若一个数的平方根是±10,则这个数的立方根是_________;
13、当m_______时,有意义;
当m_______时,有意义;
14、若一个正数的平方根是2a-1和-a+2,则a=_______,
这个正数是_______;
15、√a+1+2的最小值是________,此时a的取值是________.
16、2x+1的算术平方根是2,则x=________.。

人教版七年级数学下册第六章《实数》同步练习(含答案)

人教版七年级数学下册第六章《实数》同步练习(含答案)

)
A.B 与 C B.C 与 D C.E 与 F D.A 与 B 18.(2017·广州四校联考期中)已知 a,b 为两个连续整数,且 a< 15<b,则 a+b 的值为 7. 19.(教材 P41 探究变式)如图,将两个边长为 3的正方形分别沿对角线剪开,将所得的 4 个三角形拼成一个大的 正方形,则这个大正方形的边长是 6.
20.(教材 P43 探究变式)观察:已知 5.217≈2.284, 521.7≈22.84,填空: (1) 0.052 17≈0.228__4, 52 170≈228.4; (2)若 x≈0.022 84,则 x≈0.000__521__7. 21.比较下列各组数的大小: (1) 12与 14; (2)- 5与- 7;
3 C.±2
81 D.16 D.0
A.0.7 B.-0.7 C.±0.7 4.下列说法正确的是( A ) A.因为 52=25,所以 5 是 25 的算术平方根 B.因为(-5)2=25,所以-5 是 25 的算术平方根 C.因为(±5)2=25,所以 5 和-5 都是 25 的算术平方根 D.以上说法都不对 5.求下列各数的算术平方根: 9 64 (1)121; (2)1; (3) ; (4)0.01.
Байду номын сангаас
a=.小明按键输入
C.-6 ) C.±2
D. 6 D.2
中档题 14.下列各数,没有算术平方根的是( B ) A.2 B.-4 C.(-1)2 D.0.1 15.若一个数的算术平方根等于它本身,则这个数是( D ) A.1 B.-1 C.0 D.0 或 1 16.(2017·广州期中)已知一个自然数的算术平方根是 a,则该自然数的下一个自然数的算术平方根是( D A.a+1 B. a+1 C.a2+1 D. a2+1 17.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )

七年级数学下册第6章实数平方根和立方根复习测试题

七年级数学下册第6章实数平方根和立方根复习测试题

3 a 七年级下册第 6 章实数( 6.1 平方根和 6.2 立方根复习测试题)第一部分知识点填空并加强背诵一、算术平方根一般地,如果的等于a,即,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为读作“根号a”,a 叫做.规定:0 的算术平方根是0. 也就是,在等式x 2 =a (x≥0)中,规定x = a 。

理解:x 2 =a (x≥0)<—> xa 是x 的平方x 的平方是a x 是a 的算术平方根 a 的算术平方根是x二、平方根1.平方根的定义:如果的平方等于a,那么这个数x 就叫做a 的.即:如果,那么x 叫做a的.理解:x 2 =a <—> x =a 是x 的平方x 的平方是a x 是a 的平方根 a 的平方根是x2.开平方的定义:求一个数的的运算,叫做.开平方运算的被开方数必须是才有意义。

3.平方与开平方:±3 的平方等于9,9 的平方根是±34.一个正数有平方根,即正数进行开平方运算有两个结果;一个负数平方根,即负数不能进行开平方运算5.符号:正数 a 的正的平方根可用表示,也是 a 的算术平方根;正数 a 的负的平方根可用 -表示.6.平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

三、立方根1.立方根的定义:如果的等于a ,这个数叫做a 的(也叫做),即如果,那么x 叫做a 的立方根。

2.一个数a 的立方根,记作,读作:“三次根号a ”,其中a 叫被开方数,3 叫根指数,不能省略,若省略表示平方。

理解:x3 =a <—>a 是x 的立方x 的立方是a x 是a 的立方根 a 的立方根是x3.一个正数有一个正的立方根;0 有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。

初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(21)

初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(21)

章节测试题1.【题文】求下列各数的立方根:(1);(2)-10-6;【答案】(1)(2)-10-2【分析】(1)直接利用立方根的定义求出即可;(2)直接利用立方根的定义求出即可.【解答】(1),∵,所以的立方根是;(2)∵,所以的立方根是.2.【题文】求下列各数的立方根:(1)-125;(2)0.027;(3)(53)2.【答案】(1)-5;(2)0.3;(3)25【分析】根据立方根的意义,如果一个数x的立方等于a,即x的三次方等于a (x3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根,也叫做三次方根.【解答】(1)∵(-5)3=-125∴-125的立方根为-5;(2)∵0.33=0.027∴0.027的立方根为0.3(3)∵(53)2=(52)3∴(53)2立方根为52=25.3.【题文】请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.【答案】(1)魔方的棱长6cm;(2)长方体纸盒的长为10cm.【分析】(1)由正方体的体积公式,再根据立方根,即可解答;(2)根据长方体的体积公式,再根据平方根,即可解答.【解答】(1)设魔方的棱长为xcm,可得:x3=216,解得:x=6,答:该魔方的棱长6cm;(2)设该长方体纸盒的长为ycm,6y2=600,y2=100,y=10,答:该长方体纸盒的长为10cm.4.【题文】如果一个正数x的两个平方根分别为a+1和a-5.(1)求a和x的值;(2)求7x+1的立方根.【答案】(1)x=9(2)【分析】(1)根据一个正数的两个平方根互为相反数,得出以为未知数的方程,求解即可求出的值,结合可求出的值;(2)先求出的值,再根据立方根的定义求解即可.【解答】(1)由题意,得解得所以因为的平方根是,所以(2)因为所以的立方根为5.【题文】已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?【答案】截得的每个小正方体的棱长是4cm.【分析】一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,设截得的每个小正方体的棱长xcm,根据已知条件可以列出方程,解方程即可求解.【解答】设截去的每个小正方体的棱长是xcm,则由题意得,解得x=4.答:截去的每个小正方体的棱长是4厘米.6.【题文】已知x-2的平方根是±2,2x+y+7的立方根是3,求的平方根.【答案】±10【分析】先运用立方根和平方根的定义求出x与y的值,再求出的平方根.【解答】∵x-2的平方根是±2,2x+y+7的立方根是3,∴x-2=4,2x+y+7=27,解得x=6,y=8,∴==100,∴的平方根是±10.7.【题文】计算:(1)(2)36(x-3)2-25=0(3)(x+5)3=-27.【答案】(1)0;(2)x1=,x2=;(3)x=-8.【分析】(1)首先化简各数,进而计算得出答案;(2)直接利用平方根的定义得出答案;(3)直接利用立方根的定义得出答案.【解答】(1)原式=2+2+=0;(2)36(x-3)2-25=0则(x-3)2=,故x-3=±,解得:x1=,x2=;(3)(x+5)3=-27x+5=-3,解得:x=-8.8.【题文】(1)求x的值:(1-x)3=-27;(2)计算:【答案】(1)x=4;(2)4【分析】(1)利用乘方概念解方程.(2)利用开平方,开立方计算.【解答】(1)(1-x)3=-27,1-x=3,x=4.(2)=2+1+1=4.9.【题文】若(2a-4)2和互为相反数,求a b的平方根与立方根.【答案】平方根是±2,立方根是2.【分析】根据几个非负数的和为零,那么这几个非负数都等于零,列方程求a,b 的值.【解答】∵(2a-4)2和互为相反数,∴(2a-4)2+=0,∴2a-4=0,b-3=0,解得a=2,b=3,所以a b=23=8,∴a b的平方根是±2,立方根是2.10.【题文】已知第一个正方体玩具的棱长是6cm,第二个正方体玩具的体积要比第一个玩具的体积大127cm,试求第二个正方体玩具的棱长.【答案】第二个正方形玩具的棱长为7cm【分析】先根据正方体的体积公式求出体积,然后得到第二个正方体的体积,然后根据立方根求解即可.【解答】第一个正方体的体积为:6×6×6=216cm3第二个正方体的体积为:216+127=343cm3第二个正方体的棱长为:=7cm.11.【题文】已知3a+b-1的立方根是3,2a+1的算术平方根是5,求a+b的平方根.【答案】±2【分析】根据立方根与算术平方根的定义得到3a+b-1=27,2a+1=25,则可计算出a=12,b=-8,然后计算a+b后利用平方根的定义求解.【解答】根据题意得3a+b-1=27,2a+1=25,解得a=12,b=-8,所以a+b=12-8=4,而4的平方根为±=±2,所以a+b的平方根为±2.12.【题文】已知2a-1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.【答案】±4【分析】根据平方根可求出2a-1=9,根据立方根可求出3a+b+9=27,然后解方程求出a、b的值即可.【解答】解:由已知得,2a-1=9解得:a=5,又3a+b+9=27∴b=3,2(a+b)=2×(3+5)=16,∴2(a+b)的平方根是:±=±413.【题文】已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.【答案】(1)a=5,b=2,c=3.(2)3a-b+c的平方根是±4.【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【解答】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2.∵c是的整数部分,∴c=3;(2)当a=5,b=2,c=3时,3a-b+c=16,3a-b+c的平方根是±4.14.【题文】计算:(1)(2)【答案】(1)8;(2)【分析】(1)根据算术平方根和立方根的定义解答即可;(2)根据绝对值的意义和平方根的性质化简计算即可.【解答】(1)原式=10-2=8;(2)原式.15.【题文】计算:().().【答案】(1)–2;(2)【分析】此题涉及平方根、算术平方根、立方根的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】()原式.()原式.16.【题文】(1);(2).【答案】(1)-3;(2)3.【分析】(1)直接利用算术平方根定义分析得出答案;(2)直接利用立方根的性质化简得出答案.【解答】(1)=2+5-10=-3;(2)==3.17.【题文】已知3a-2的平方根是±5,4a-2b-8的算术平方根是4,求a+3b的立方根.【答案】3【分析】根据题意可以求得a、b的值,再求a+3b的立方根即可.【解答】∵3a-2的平方根是±5,∴3a-2=25,解得a=9.∵4a-2b-8的算术平方根是4,∴36-2b-8=16,解得b=6,∴a+3b=9+3×6=27.∴a+3b的立方根为3.18.【题文】已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.【答案】2【分析】根据平方根与算术平方根的定义得到3a-b-2=16,2a-1=9,则可计算出a=5,b=1,然后计算a+b后利用立方根的定义求解.【解答】∵2a-1的平方根是±3∴a=5∵3a-b+2的算术平方根是4,a=5∴b=1∴a+3b=8∴a+3b的立方根是219.【题文】计算:(1);(2).【答案】0.3,【分析】本题考查了立方根.【解答】(1).(2).20.【题文】若与(6-27)2互为相反数,求的立方根.【答案】【分析】本题考查了平方根和立方根.【解答】根据题意,得:a+8=0,b-27=0,解得:a=-8,b=27,所以.。

算术平方根--平方根--立方根测试题

算术平方根--平方根--立方根测试题

算术平方根平方根立方根测试题一.选择题1,在数5,(-3)2,-32,x2+1,-a2,-x2-4,中,也许有平方根旳个数( )A. 2 B. 3 C. 4 D.52,4旳算术平方根是( )A. 2B. 2 C. 4 D. 163,若1m故意义,则m能取旳最小整数为( )4+A.-1 B. 0 C. 1 D. -44,如果a200是一种整数,那么最小正整数a应取( )A. 20B. 5C. 1 D.25,2+a=2,则(a+2)2旳平方根是()A. 16 B. ±16 C. ±4 D. ±26.若a是(-4)2旳平方根,b旳一种平方根是2,则代数式a+b 旳值为( )A.8 B. 0 C. 8或0 D. -4或47.①一种自然数旳算术平方根是X,则它背面旳一种数旳算术平方根()A. X+1 B. X2+1 C. X+1 D. 12+X②一种自然数旳算术平方根是X,则和这个自然数相邻旳下一种自然数是( )A.X+1 B. X2+1 C. X+1 D. 12+X8. 若a2=4,b2=9,且ab<0,则a-b旳值为()A.-2 B.±5C.5D. -59. 33)2(K-=2-K,那么K旳取值范畴是( )A. K≤2 B. K≥2 C. 0≤K≤2 D. K为任意实数10. 一种数旳平方根和立方根相等,则这个数是( )A . 1 B. ±1 C. 0D.-111.若31+X=2,则(X+1)3等于( )A. 8 B. ±8C.512D. -51212. 364旳平方根是()A. 4B. ±8 C. 2 D.±213. a23-等于最大旳负整数,则a=( )9A. ±5 B.-5 C. 5 D.不存在14.下列推理不对旳旳是( )A.若a=b则3a=3b B.若a=b则a=bC.若a=b则a=b D.若3a=3b则a=b二.填空题15.若X2=(-4)2,则X=___.16.若1+X=2,则2X-1=___.17.若X+Y=0,则3X+3Y=___.18.(m-2n)3旳立方根等于___。

实数(常考考点分类专题)(巩固篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

实数(常考考点分类专题)(巩固篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.14 实数(常考考点分类专题)(巩固篇)(专项练习)【考点一】平方根与立方根➽➼➵概念的理解➻➼平方根✮✮立方根1.一个正数的两个平方根分别是25a -和1a -+,则a 的值为( )A .2B .3C .4D .92.下列说法正确的是( )A .1的平方根是1B .3次方根是本身的数有0和1C .m -的3次方根是3m -D .a<0时,a -的平方根为a 【考点二】实数➽➼➵概念的理解✮✮分类3.下列命题:①无理数都是实数;①实数都是无理数;①无限小数都是无理数:①带根号的数都是无理数;①不带根号的数都是有理数,其中错误的命题的个数是( )A .1B .2C .3D .4 4.实数227,2-21,2π,(333,3-中,无理数的个数是( )个. A .2 B .3 C .4 D .5【考点一】平方根✮✮算术平方根✮✮立方根➽➼➵求一个数的平方根与算术平方根和立方根515n -n 不可能是( )A .6B .9C .11D .146.下列说法中,正确的是 ( )A .64的平方根是8B .4的平方根是2或-2C .(-3)2没有平方根D 164和-4 7.若()235270a b -+-=,则a b -的值为( )A.2B.-2C.5D.8【考点二】平方根与立方根➽➼➵已知平(立)方根,求原数8.如果一个正数的平方根是a+3及2a﹣15,那么这个正数是()A.441B.49C.7或21D.49或4419.若a的算术平方根为17.25,b的立方根为8.69-;x的平方根为 1.725±,y的立方根为86.9,则()A.1,1000100x a y b==-B.1,100100x a y b==C.1100,100x a y a==D.1,1001000x a y b==-【考点三】算术平方根➽➼➵非负性✮✮估算✮✮取值范围10.已知x为实数,且2120y x++-=(),则x y的值为()A.-1B.1C.2D.12 11224)A.7到8之间B.6到7之间C.5到6之间D.4到5之间【考点四】平方根✮✮立方根➽➼➵解方程12.已知:有理数满足22404nm n⎛⎫++-=⎪⎝⎭,则33m n的值为()A.1B.1-C.1±D.2±13.如果一个比m小2的数的平方等于2(4)-,那么m等于()A.4-B.4±C.2-D.2-或6【考点五】平方根✮✮算术平方根✮✮立方根➽➼➵实际应用14.23.6 4.858 2.36 1.536236000)A.﹣485.8B.﹣48.58C.﹣153.6D.﹣1536 15.体积为5的正方体棱长为()A5B35C.5D.5 2【考点六】平方根✮✮算术平方根✮✮立方根➽➼➵综合应用16.下列说法正确的是()A .4的算术平方根是2B .0.16的平方根是0.4C .0没有立方根D .1的立方根是±1 17.若a 16b 64a+b 的值是( )A .4B .4或0C .6或2D .6【考点一】实数性质✮✮数轴➽➼➵运算✮✮化简18.下列各组数中,互为相反数的是( )A .-33B .3-和13-C .3-与3-D .3()23-19.如图,若2a =-,则32810a a --的值所对应的点可能落在( )A .点A 处B .点B 处C .点C 处D .点D 处【考点二】实数大小比较➽➼➵运算✮✮化简20.下列实数中,最小的数是( )A .0B .1-C .3-D 521.下列实数中最大的数是( )A 327B .πC 15D .4【考点三】实数➽➼➵无理数➽➼➵估算✮✮整数部分和小数部分22.已知m 与n 为两个连续的自然数,且满足377m n <<,则m n +的值为( ). A .1 B .3 C .5 D .723.若202013a,202113b,则a +b 的值为( )A .2021B .2020C .4041D .1【考点四】实数➽➼➵混合运算 24.计算2535 )A .-1B .1C .525-D .255253331632700.1251464--( ) A .114- B .114± C .154 D .134【考点五】实数➽➼➵混合运算➼➵程序设计✮✮新定义 26.按如图所示的程序计算,若开始输入的x 5 )A .55B .55C .24D .35115+27.规定不超过实数x 的最大整数称为x 的整数部分,记作[]x ,例如[]9.859=,[]33=,103⎡=⎣.下列说法:①422⎡⎤=⎣⎦;①123192054⎡⎤⎡⎤⎡⎡⎡⎤+++⋅⋅⋅++=⎣⎦⎣⎦⎣⎣⎣⎦;①11a a ⎡⎡+=+⎣⎣(a 为正整数);①若n 为正整数,且4545n n ⎡⎤=⎣⎦则n 的最小值为6,其中正确说法的个数是( )A .1B .2C .3D .4【考点六】实数➽➼➵混合运算➼➵实际运用✮✮规律问题28.把四张形状大小完全相同的小长方形卡片(如图①,卡片的长为a ,宽为b )不重叠地21,宽为4)的盒子底部(如图①),盒子底面未被卡片覆盖的部分用阴影表示,则图①中两块阴影部分的周长和是( )A .21B .16C .)2214D .)4214 29.有一列数按如下规律排列:2,314-,56,7则第10个数是( ) A .10 B 10 C .1011 D 11【考点一】平方根与立方根➽➼➵概念的理解➻➼平方根✮✮立方根30.已知两个不相等的实数,x y 满足:2x a =,2y a =x y +__________. 31.一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______.【考点二】实数➽➼➵概念的理解✮✮分类32.下列说法:①无理数就是开方开不尽的数;①2x 5x 的整数有4个;①﹣381①不带根号的数都是有理数;①不是有限小数的不是有理数;①对于任意实数a 2a a .其中正确的序号是_____.33.在22311121,(1),3.14,|82|,,3,(),0,743π----------中,有理数有m 个,自然数有n 个,整数有p 个,分数有k 个,负数有t 个,则m -n -k +t +p =________.【考点一】平方根✮✮算术平方根✮✮立方根➽➼➵求一个数的平方根与算术平方根和立方根34.0.16的算术平方根是______25______.35()2460x y -+=,那么2x y -的平方根为_______.36.如果一个正数的两个平方根是24m -与31m -,那么这个正数的立方根是____________. 【考点二】平方根与立方根➽➼➵已知平(立)方根,求原数37.一个数的平方等于81,这个数是___________.38.已知x 没有平方根,且||27x =,则x 的立方根为________.【考点三】算术平方根➽➼➵非负性✮✮估算✮✮取值范围3910x x y --=,则20222022x y +的值为____________.40.已知221m <2m +m =_____.【考点四】平方根✮✮立方根➽➼➵解方程411y -0,则(y ﹣2)2021=________.42.已知3163x +=-,则x =_______【考点五】平方根✮✮算术平方根✮✮立方根➽➼➵实际应用43.已知3270x -=.(1)x 的值为_____;(2)x 的算术平方根为_____.44.已知21a -的平方根是3±,31a b --的算术平方根是4,那么2a b -的平方根是__________.【考点六】平方根✮✮算术平方根✮✮立方根➽➼➵综合应用45.已知271x y ++的算术平方根是6,83x y +的立方根是5,则+x y 的平方根为___________.46.已知4m +15的算术平方根是3,2﹣6n 的立方根是﹣264n m -___.【考点一】实数性质✮✮数轴➽➼➵运算✮✮化简472(81)-_____,127的立方根是_____2_____. 48.实数a ,b 在数轴上的对应点如图所示,化简:2233()()a a b b a --=____________.【考点二】实数大小比较➽➼➵运算✮✮化简49.比较大小:1232-“>”“<”“=”)50101-89.(填“>”或“<”) 【考点三】实数➽➼➵无理数➽➼➵估算✮✮整数部分和小数部分51.已知:23m ,小数部分为n ,则2m n -=_____.52.对于任何实数a ,可用[]a 表示不超过a 的最大整数,如[]44=,21⎡=⎣,则191⎡⎤=⎣⎦______.【考点四】实数➽➼➵混合运算53.已知x 、y 是有理数,且x 、y 满足22321462x y +=-x y +=______.543162527________.【考点五】实数➽➼➵混合运算➼➵程序设计✮✮新定义55.如图,程序运算器中,当输入-1时,则输出的数是______.56.对于任何实数a ,可用[]a 表示不超过a 的最大整数,如[]44,31⎡==⎣,现对72进行如下操作: 727288221⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦第一次第二次第三次,这样对72只需进行3次操作后变为1,类似地:(1)对64只需进行________次操作后变为1.(2)只需进行3次操作后变为1的所有正整数中,最大的是________.【考点六】实数➽➼➵混合运算➼➵实际运用✮✮规律问题57.如图,四边形ABCD CEFG 、均为正方形,其中正方形ABCD 面积为28cm .图中阴影部分面积为25cm ,正方形CEFG 面积为_________.58.a 是不为1的有理数,我们把11a -称为a 的差倒数....如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差的倒数,…,依此类推,2010a 的差倒数2011a =_____.参考答案1.C【分析】根据一个正数的两个平方根互为相反数得2a−5+(−a+1)=0,求解即可.解:①一个正数的两个平方根分别是2a−5、−a+1,①2a−5+(−a+1)=0,解得a=4.故选:C.【点拨】本题考查的是平方根,掌握“一个正数的平方根有两个,它们互为相反数”,是解题的关键.2.C【分析】根据平方根,立方根的概念理解分析选项即可.解:A. 1的平方根是1,①1的平方根是1±,故选项说法错误,不符合题意;B. 3次方根是本身的数有0和1,①3次方根是本身的数有0和1和1-,故选项说法错误,不符合题意;C. m -的3次方根是3m -D. a<0时,a -的平方根为a ①a<0时,a -的平方根为a -合题意;故选:C【点拨】本题考查平方根,立方根的相关概念,解题的关键是要熟练掌握相关概念.3.D【分析】根据无理数的定义,即无理数是无限不循环小数,结合各选项说法进行判断即可. 解:①无理数都是实数,正确;①错误,实数包括无理数和有理数;①错误,无限循环小数是有理数;①9①错误,不带根号的数不一定是有理数,如π等无限不循环小数,错误;故选:D .【点拨】本题主要考查实数,熟练掌握无理数的定义是解题的关键.4.B【分析】根据实数分类、无理数的性质,对各个实数逐个分析,即可得到答案. 解:实数227,2-21,2π,333,3-中,无理数为:2-21、2π,共3个;故答案为:B .【点拨】本题考查了实数分类的知识;解题的关键是熟练掌握实数分类、无理数的性质,从而完成求解.5.B 【分析】先确定n 15n -是整数,n 为正整数,确定n 的值即可. 15n -n 为正整数,∴15﹣n >0,解得:n <15,15n -∴n 的值为:6,11,14,故选:B .【点拨】本题考查了算术平方根,确定n 的取值范围是解题的关键.6.B【分析】根据平方根的相关定义对每个选项做出判断即可得到答案;解:A :64的平方根是8或-8,故该选项错误;B :4的平方根是2或-2,故该选项正确;C :2(3)=9,9的平方根是3或-3,故该选项错误;D 164,4的平方根是2或-2,故该选项错误;故选B ;【点拨】本题考查了平方根,掌握相关知识并熟练使用,同时注意解题中需注意的事项是本题的解题关键.7.A【分析】根据非负数性质求出a 、b 值,再代入a b -计算即可.解:①()235270a b -+-=, ①50a -=,3270b -=,5a ∴=,3b =,532a b -=-=∴.故选:A .【点拨】本题考查非负数性质,立方根,代数式求值,熟练掌握绝对值的非负性,偶次方的非负性,求立方根是解题的关键.8.B【分析】根据正数的平方根有两个,且互为相反数,由此可得a 的方程,解方程即可得到a 的值;进而可得这个正数的平方根,最后可得这个正数的值.解:①一个正数的平方根是a +3和2a ﹣15,①a +3和2a ﹣15互为相反数,即(a +3)+(2a ﹣15)=0;解得a =4,则a +3=﹣(2a ﹣15)=7;则这个数为27=49;故选:B .【点拨】本题考查了平方根的概念、解一元一次方程,注意一个正数有两个平方根,它们互为相反数.9.A【分析】根据平方根、算术平方根和立方根的定义求出a 、b 、x 、y 的值,再找出关系即可. 解:①a 的算术平方根为17.25,b 的立方根为-8.69,①a =297.5625,b =-656.234909.①x 的平方根为±1.725,y 的立方根为86.9,①x =2.975625,y =656234.909,①1,1000100x a y b ==-. 故选:A .【点拨】本题考查了对平方根、算术平方根和立方根的运用.解题的关键是掌握平方根、算术平方根和立方根的定义.10.B【分析】根据非负数的性质, 求出1y =-,2x =,即可计算x y 的值.解:()2120y x +-, 10y ∴+=,20x -=,1y ,2x =,()211x y ∴=-=,故选B .【点拨】本题考查了平方数的非负性,算术平方根的非负性,解题关键是掌握几个非负数的和等于0,则每一个算式都等于0.11.B4822448=364849<<648<<7, 2246和7之间,故选:B .【点拨】本题考查估算无理数的大小,二次根式的乘除法,掌握算术平方根的定义,二次根式乘除法的计算方法是正确解答的前提.12.B【分析】根据平方和绝对值的非负性可求出m 和n 的值,再代入33m n 中,求值即可.解:①22404n m n ⎛⎫++-= ⎪⎝⎭, ①20440n m n ⎧+=⎪⎨⎪-=⎩,解得:122m n ⎧=-⎪⎨⎪=⎩或122m n ⎧=⎪⎨⎪=-⎩. 当122m n =-=,时,33331212m n ⎛⎫=-⨯=- ⎪⎝⎭; 当122m n ==-,时,33331(2)12m n ⎛⎫=⨯-=- ⎪⎝⎭. 综上可知33m n 的值为1-.故选B .【点拨】本题考查非负数的性质,利用平方根解方程,代数式求值.掌握平方和绝对值的非负性是解题关键.13.D【分析】根据题意得出22(2)(4)m -=-,解方程即可.解:根据题意得:22(2)(4)m -=-,即2(2)16m -=,①24m -=±,①2m =-或6,故选:D .【点拨】本题考查了平方根,根据题意列出方程结合平方根的意义求解是关键.14.A【分析】根据平方根小数点的移动规律解答.解:236000是由23.6小数点向右移动4236000485.8;故选:A.【点拨】此题考查了平方根小数点的移动规律:当被开方数的小数点向右每移动两位,则平方根的小数点向右移动一位;当被开方数的小数点向左每移动两位,则平方根的小数点向左移动一位.15.B【分析】根据正方体体积公式进行计算即可.解:设正方体的棱长为a,则有:35a=解得,35a=35故选:B【点拨】本题主要考查了立方根的应用,正确掌握立方体的体积公式是解答本题的关键.16.A【分析】根据平方根和立方根的定义判断即可.解:①4的算术平方根是2,①A正确,符合题意;①0.16的平方根是±0.4,①B错误,不符合题意;①0的立方根是0,①C错误,不符合题意;①1的立方根是1,①D错误,不符合题意;故选A.【点拨】本题考查了平方根即如果一个数的平方等于a,称这个数为a的平方根,立方根如果一个数的立方等于a,称这个数为a的立方根,熟练掌握定义是解题的关键.17.C【分析】由a 16a=±2,由b 64b=4,由此即可求得a+b 的值.解:①a 16①a=±2,①b 64①b=4,①a+b=2+4=6或a+b=-2+4=2.故选C .【点拨】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.18.C【分析】先依据相反数和绝对值的定义化简各数,然后再依据相反数的定义进行判断即可. 解:A 、-3的相反数是3,故A 不符合题意B 、|-3|=3,3的相反数是-3,故B 不符合题意;C 、3-333-C 符合题意;D ()23=|3|--=3,3的相反数是-3,故D 不符合题意.故选:C .【点拨】本题考查相反数定义,即相加为0的两个数互为相反数,要注意细心运算每个选项.19.C【分析】先将a 的值代入代数式计算出得数,然后再在数轴上找到对应的点即可.解:将2a =-代入32810a a --得:()()3228122183210⨯---==--- , ①12123<<,且接近1. 故选:C .【点拨】本题主要考查求代数式的值、数轴上的点与实数的对应等知识点,熟练掌握数轴与实数一一对应的关系是关键.20.C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解:①315-0,①最小的是3故选:C .【点拨】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.21.D3273=,1543<<,后比较即可.解:① 3273=,1543<<,10154π<<<,①3154π<<<,故选D .【点拨】本题考查了无理数的估算,求立方根,实数大小的比较,正确进行无理数的估算,实数大小比较是解题的关键.22.A【分析】根据无理数的估算可得:6377<<,03771<,据此即可解答. 解:6377<,13770∴-<<, 03771∴<,0m ∴=,1n =,011m n ∴+=+=,故选:A .【点拨】本题考查了无理数的估算,绝对值,代数式求值问题,求得03771<<是解决本题的关键.23.D【分析】13再求出202013与202113的取值范围,从而求出a ,b 的值,即可求解.解:①91316<<,①3134<,①20201320242023<<,20201320172016<,①133a =,413b =①1334131a b +=+=.故选:D .【点拨】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分和小数部分.24.B【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案. 解:2535+(253525351-+-=,故选B .【点拨】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键.25.A【分析】根据算术平方根和立方根的意义分别进行计算,然后根据有实数的运算法则求解即可.解:原式311300.5264=---+ 11300.524=---++ 324=-; 故答案为:A.【点拨】本题考查了实数的混合运算,解题的关键是熟练掌握据算术平方根和立方根的意义.26.B【分析】把x 5x (x +1)得到结果,若大于7则输出,若结果不大于7再次代入,循环后满足条件即为所求结果.解:当x 5x (x +1))55155=,①4<5<9①253,①557①最后输出的结果为55故选:B .【点拨】此题考查了代数式求值,弄清题中的程序框图的意义是解本题的关键.27.B 【分析】根据取整函数的定义即可求解.解:①422⎡=⎣,故①正确; ①1231920⎡⎡⎡⎡⎡+++⋅⋅⋅++⎣⎣⎣⎣⎣31527354=⨯+⨯+⨯+⨯54=,故①正确;①若5a =时,12a ⎡⎤+=⎣⎦,13a ⎡+=⎣, 故11a a ⎡⎡+=+⎣⎣(a 为正整数)不一定成立,故①错误; ①若n 为正整数,且4545n n ⎡=⎣45n 是哪个开得尽方的正整数, 4535=,①n 的最小整数为5,故①错误;综上分析可知,正确的个数为2,故B 正确.故选:B .【点拨】本题主要考查了取整函数的定义,能够正确估算无理数的大小是解题的关键,难度不大.28.B【分析】分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案. 解:较大阴影的周长为:(42)22b a -⨯+⨯,较小阴影的周长为:(4)222a b -⨯+⨯,两块阴影部分的周长和为:[][](42)22(4)222b a a b -⨯+⨯+-⨯+⨯= 16,故两块阴影部分的周长和为16.故选B .【点拨】本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键.29.D【分析】将这列数据改写成:234567…,按照三步确定结果:一确定符号,二确定分子,三确定分母即可.解:2314-567可写出: 22-34567, ①第1011, 故选:D . 【点拨】本题考查数字类变化规律,解题的关键是把已知的一列数变形,找到变化规律. 30.0【分析】由题意可得x 、y 是a 的两个不相等的平方根,根据平方根的性质可得x +y =0即可解答解:①两个不相等的实数,x y 满足:2x a =,2y a =①x 、y 是a 的两个不相等的平方根①x +y =0x y +.故答案为0.【点拨】本题主要考查了平方根的性质,掌握一个数的两个不相等的平方根的和为0成为解答本题的关键.31.2【分析】根据一个正数的平方根互为相反数,将21b -和4b +相加等于0,列出方程,解出b ,再将b 代入任意一个平方根中,进行平方运算求出这个正数a ,将a b +算出后,求立方根即可.解:①21b -和4b +是正数a 的平方根,①2140b b -++=,解得1b ,将b 代入212(1)13b ,①正数2(3)9a , ①198a b +=-+=,①a b +3382ab , 故填:2.【点拨】本题考查正数的平方根的性质,求一个数的立方根,解题关键是知道一个正数的两个平方根互为相反数.32.①①【分析】根据有理数、无理数、实数的意义逐项进行判断即可.解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;①2x 5x 的整数有﹣1,0,1,2共4个,因此①正确,符合题意; ①﹣3是9819,因此①正确,符合题意;①π就是无理数,不带根号的数也不一定是有理数,因此①不正确,不符合题意; ①无限循环小数,是有理数,因此①不正确,不符合题意;①若a <02a |a|=﹣a ,因此①不正确,不符合题意;因此正确的结论只有①①,故答案为:①①.【点拨】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提. 33.12【分析】根据实数分类,分别求出m 、n 、k 、t 的值是多少,再应用代入法求值即可. 解:由题意可得 有理数8个,即m 8=,自然数2个,即2n =,分数3个,即3k =,整数5个,即5p =,负数有4个,即4t =故12m n k t p --++=.【点拨】本题主要考查有理数的分类,以及有理数的乘方,有理数的减法的运算方法,熟练掌握实数的定义和分类是解答此题的关键.34. 0.4 5±【分析】根据求一个数的算术平方根与平方根进行计算即可求解.解:0.16的算术平方根是0.4255=255故答案为:0.4,5±【点拨】本题考查了求一个数的算术平方根与平方根,理解平方根与算术平方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.35.141414-14-14【分析】根据算术平方根和平方的非负性,求出x y 、的值,然后进行计算即可. 解:()2460x y -+=,又()24060x y -+≥,,()24060x y -=+=,,①40x -=,60y +=,①4x =,y =-6,①()2246=86=14x y -=⨯--+,①2x y -的平方根为:14故答案为:14±【点拨】本题考查了算术平方根和平方式的非负性、代数式求值,解题的关键是利用非负性求出x y 、的值.3634【分析】根据一个正数的两个平方根互为相反数,列出方程,即可求得这个数,再求它的立方根即可.解:一个正数的两个平方根是24m -与31m -,24310m m -+-=∴, 解得1m =,24242m ∴-=-=-,故这个正数为4,3434【点拨】本题考查了一个正数的两个平方根之间的关系,求一个数的立方根,熟练掌握和运用一个正数的两个平方根之间的关系是解决本题的关键.37.9或-9【分析】根据平方根的定义即可解答.解:①()2981±=,①这个数是9或-9.故答案为:9或-9. 【点拨】本题主要考查了平方根的定义,一个正数的平方根有两个且这两个数互为相反数. 38.3-【分析】根据题意,27去掉绝对值的值为±27,在根据题意x 没有平方根直接算出立方根即可.解:①27去掉绝对值的值为±27,①x =±27,又①x 没有平方根①x =27,①x 的立方根为-3.故答案为:-3.【点拨】本题考查了绝对值的性质、平方根的性质和立方根的计算,解决此题的关键是不漏题目条件,掌握基本的计算即可.39.2【分析】根据非负数的性质列式求出x 、y 的值,然后相乘即可得解.解:根据题意得:10x -=,0x y -=,解得:1x =,1y =,①20222022112x y +=+=.故答案为:2.【点拨】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.40.-1,2,-2.【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 的具体数值,然后根据2m +解:2m + ①m 是整数,①221m <①m 2≤4,①-2≤m≤2,①m=-2,-1,0,1,2当m=±2或-12m +故答案为:-1,2,-2【点拨】本题考查算术平方根,解题的关键是根据条件求出m 的范围,本题属于中等题型. 41.1-【分析】根据算术平方根的定义得到1y =,代入代数式根据()111n n n ⎧-=⎨-⎩为偶数为奇数求解即可得到结论.解:1y -0,∴10y -=,得1y =,()()()20212021202121211y ∴-=-=-=-,故答案为:1-.【点拨】本题考查代数式求值,涉及到算术平方根的定义和()111n n n ⎧-=⎨-⎩为偶数为奇数,熟练掌握相关定义是解决问题的关键.42.4-【分析】移项后直接开立方即可得到答案.解:3163x +=-,3163x =--364x =-①4x=--故答案为:4【点拨】本题主要考查了开立方解方程,正确理解一个数的立方根只有一个是解答本题的关键.43.33【分析】(1)利用立方根的定义求得x的值;(2)利用算术平方根的定义解答即可.解:(1)①3270x-=,①33x==,273①x=3,故答案为:3;(2)由(1)知x=3,∴333【点拨】本题考查立方根和算术平方根的定义及计算,正确利用上述定义与性质解答是解题的关键.44.±3【分析】首先根据2a-1的平方根是±3,可得:2a-1=9,据此求出a的值是多少;然后根据3a+b-1的算术平方根是4,可得:3a+b-1=16,据此求出b的值是多少,进而求出a-2b的平方根是多少即可.解:①2a-1的平方根是±3,①2a-1=9,解得a=5;①3a+b-1的算术平方根是4,①3a-b-1=16,①3×5-b-1=16,解得b=-2,①a-2b=5+2×2=9,①a-2b的平方根是:93±=±.故答案为:±3.【点拨】此题主要考查了平方根、算术平方根的性质和应用.要熟练掌握,解答此题的关键是要明确:①被开方数a 是非负数;①算术平方根a 本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.45.4±【分析】根据271x y ++的算术平方根是6,83x y +的立方根是5,可得方程组2713683125x y x y ++=⎧⎨+=⎩①②,①+①再化简得到+x y 的值,然后求平方根即可得到答案. 解:①271x y ++的算术平方根是6,83x y +的立方根是5①2713683125x y x y ++=⎧⎨+=⎩①② ①①+①:1010160x y +=①+x y =16①+x y 的平方根为4±故答案为:4±.【点拨】本题考查了平方根和立方根的定义,平方根和立方根是解题关键.易错点:正数有两个平方根,不能只写一个平方根.46.4【分析】利用算术平方根,立方根定义求出m 与n 的值,代入原式计算即可求出值. 解:由题意可得:4159m +=,268n -=-, 解得:32m =-,53n =, 5364=6416432n m ⎛⎫-⨯-⨯- ⎪⎝⎭. 故答案为:4.【点拨】本题考查了平方根、算术平方根、立方根的定义.解题的关键是掌握平方根、立方根的定义.如果一个数的平方等于a ,这个数就叫做a 的平方根,也叫做a 的二次方根,其中的正数叫做a 的算术平方根,.如果一个数x 的立方等于a ,那么这个数x 就叫做a 的立方根.47. 9 13 2122【分析】根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可. 2(81)-的算术平方根是9,127=31()3的立方根是13222故答案为:-9,13,22. 【点拨】本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.48.a - 【分析】根据数轴可得:0a b << ,从而得到a b b a -=-,再根据算术平方根和立方根的性质求解即可.解:根据题意得:0a b << ,①0a b -< ,①a b b a -=-, 2233()()a a b b a --()a a b b a =--+-a b a b a =--++-a =-.故答案为:a -.【点拨】本题主要考查了实数与数轴、算术平方根、立方根的性质等知识点,掌握根据数轴判定代数式的正负是解题的关键.49.>【分析】利用两个负数比较大小,绝对值大的反而小即可求解. 解:①1212=321818-==1218< ①1218> 即1232-->故答案为:>【点拨】本题考查了实数的大小比较,熟记两个负实数比较大小的方法是解题的关键.50.>解:首先估算得出3104<1012>1011->,819<,由此比较得出答案即可. 【解答】解:3104<<, ∴1012>,1011->, 819<, ∴10189->. 故答案为:>.【点拨】本题考查实数的大小比较和无理数的估算,10的关键.51.73-37-+【分析】3进而估算出23确定m n 、的值,再代入计算即可.解:①134<<,①132<,①3234<<,①23+3m =,小数部分(23331n =-, ①()263173m n --==故答案为:73-【点拨】本题考查无理数的估算,根据接近的数求出整数部分是解题关键.52.3【分析】估计出31914<<,再结合题意,[]a 表示不超过a 的最大整数,因此即可得出191⎡⎤⎣⎦的答案. 解:①161925<<,①4195<,①31914<<,①1913⎡⎤=⎣⎦,故答案为:3.【点拨】本题考查了实数的估算,以及新定义运算,熟练找准无理数的整数部分是本题的关键.53.2-或10 【分析】把22321462x y ++=-(2231462x y y +-=-+,根据x 、y 是有理数,得到22314x y +-的值为有理数,即(62y -+故60y +=,求出y ,再求得x 即可求解. 解:2232142x y y +=-2231422x y y ∴+-=-,(2231462x y y ∴+-=-+x 、y 是有理数,22314x y ∴+-的值为有理数,(62y ∴-+60y ∴+=,解得y =-6,223140x y ∴+-=()2236140x ∴+⨯--=,解得4x =±,2x y ∴+=-或10x y +=-,故答案为:2-或10.【点拨】本题主要考查了代数式求值,利用有理数的定义进行求解,解题的关键在于能够熟练掌握相关知识进行求解.54.9559-【分析】先根据绝对值的性质、算术平方根和立方根的定义进行化简,然后再进行计算即可.3162527=+4253=95故答案为:95【点拨】本题考查了实数的混合运算,解本题的关键在熟练掌握绝对值的性质、算术平方根和立方根的定义.算术平方根:一般地,如果一个正数的平方等于a,即2x a=,那么这个正数就叫做a的算术平方根;立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根.55.7【分析】根据图表列出算式,然后把x=-1代入算式进行计算,注意分两种情况,且只有运算的数值大于3时才能输出结果.即可得解.解:根据题意可得,(-1+4)×(-2)+(-3)=3×(-2)+(-3)=-6-3=-9<3(-9+4)×(-2)+(-3)=(-5)×(-2)+(-3)=10-3=7>3.故答案为7.【点拨】此题的关键是知道计算顺序,明白当运算的结果小于3时要再重新计算,直到结果大于3,输出结果为止.56.3255【分析】(1)根据题意对64进行计算即可得出答案.(2)根据题意对256进行计算即可得出答案.解:(1)依题可得,646488221⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦第一次第二次第三次,①对64只需进行3次操作后变为1.故答案为:3.(2)只需进行3次操作后变为1的所有正整数中,最大的是255,①25616⎡=⎣,164⎡=⎣,42⎡⎤=⎣⎦,21⎡=⎣,①对256只需进行4次操作后变为1,①只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为:255.【点拨】本题考查新定义,算术平方根,理解新定义是解题的关键.57.18【分析】先设出正方形边长,再分别求出它们的边长,即可求解.解:设正方形ABCD 的边长为a ,正方形CEFG 的边长为b ,①28a =,①0a >, ①22a =①阴影面积为()()11222222522S b b b =-⨯=, ①0b >①32b =①218b =,故答案为:18. 【点拨】本题考查了实数运算的实际应用,解题关键是正确求出正方形的边长并且表示出阴影面积. 58.13- 【分析】根据题目中的数据,可以写出这列数的前几项,从而可以发现数字的变化特点,然后即可得到a 2011的值.解:由题意可得,113a =-,。

初中数学平方根立方根实数运算练习题(附答案)

初中数学平方根立方根实数运算练习题(附答案)

初中数学平方根立方根实数运算练习题一、单选题1.若一个数的平方根与它的立方根完全相同,这个数是( )A.1B.1-C.0D.1,0±2.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是( )A.①②③B.①②④C.②③④D.①③④ 3.若a 是2(4)-的平方根,b 的一个平方根是2,则a b +的立方根为( ).A.0B.2C.0或2D.0或2-4.4a =-成立,那么a 的取值范围是( )A.4a ≤B.4a ≤-C.4a ≥D.—切实数 5.对于实数a,b,下列判断正确的是( )A.若|a|=|b|,则a=bB.若a 2>b 2,则a>bC.b =,则a=bD.=则a=b二、解答题6.已知51a -的算术平方根是3,31a b +-的立方根为2.(1)求a 与b 的值;(2)求24a b +的平方根.7.求下列各式中x 的值:(1)22320x -=;(2)3440()6x ++=.8.已知第一个正方体纸盒的棱长是6厘米,第二个正方体纸盒的体积比第一个正方体纸盒的体积大127立方厘米,试求第二个正方体纸盒的棱长.9.已知2x -的平方根是2±,532y +的立方根是2-.1.求33x y +的平方根.2.计算: 2--的值. 三、计算题10.计算:1123-⎛⎫-+ ⎪⎝⎭11.计算: 01(2016)--;四、填空题12.827-的立方根为______. 13.若一个数的立方根是4,则这个数的平方根是______.14.已知21x +的平方根是5±,则54x +的立方根是 .参考答案1.答案:C解析:任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,所以这个数是0,故选C.2.答案:B解析:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.3.答案:C解析:4.答案:D解析:5.答案:D解析:6.答案:(1)由题意,得2513a -=,3312a b +-=,解得2a =,3b =.(2)∵24224316a b +=⨯+⨯=,∴24a b +的平方根4±.解析:7.答案:(1)22320x -=,2232x =,216x =,4x =±,∴14x =,24x =-;(2)()34640x ++=, ()3464x +-=,44x +=-,8x =-.解析:8.答案:第二个正方体纸盒的棱长是7厘米.解析:9.答案:1.无平方根; 2. 132-解析:10.答案:1解析:11.答案:0解析:12.答案:23-解析:a 827-的立方根是23-. 故答案为23-. 13.答案:8±解析:14.答案:4解析:根据题意,得()2215x +=±,解得12x =.所以54512464x +=⨯+=.因为64的立方根是4,所以54x +的立方根是4。

七八年级数学平方根立方根实数练习题

七八年级数学平方根立方根实数练习题

平方根练习题一、填空题1、 判断下列说法是否正确⑴5是25的算术平方根 ( ) ⑵56是2536的一个平方根 ( ) ⑶()24-的平方根是-4 ( ) ⑷ 0的平方根与算术平方根都是0 ( )2____,=⑵____,=⑶____,=⑷____=37=,则_____x =,x 的平方根是_____4 ) A 。

94± B 。

94 C 。

32± D 。

325、给出下列各数:49, 22,3⎛⎫- ⎪⎝⎭0, 4,- 3,-- ()3,-- ()45--,其中有平方根的数共有( )A 。

3个 B. 4个 C 。

5个 D. 6个6、若一个数a 的平方根等于它本身,数b 的算术平方根也等于它本身,试求a b +的平方根。

7、求下列各数中的x 值 ⑴225x = ⑵2810x -= ⑶2449x = ⑷225360x -=8、如果一个正数的两个平方根为1a +和27a -,请你求出这个正数9。

因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 10的平方根是 11.非负的平方根叫 平方根 二、选择题12. 9的算术平方根是( )A .-3B .3C .±3D .81 13.下列计算正确的是( )A =±2B =。

636=± D.992-=-14.下列说法中正确的是( )A .9的平方根是3B 2C 。

4D 。

215. 64的平方根是( ) A .±8 B .±4 C .±2 D 16. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .—14 D .14三计算题17.计算:(1(2(3(4) 18.求下列各数的平方根.(1)100; (2)0; (3)925; (4)1; (5)11549; (6)0.0919_______;9的平方根是_______. 四、能力训练20.一个自然数的算术平方根是x,则它后面一个数的算术平方根是( )A .x+1B .x 2+1C +1 D21.若2m —4与3m —1是同一个数的平方根,则m 的值是( ) A .—3 B .1 C .-3或1 D .-122.已知x ,y +(y —3)2=0,则xy 的值是( ) A .4 B .-4 C .94 D .-9427.利用平方根、立方根来解下列方程.(1)(2x —1)2-169=0; (2)4(3x+1)2-1=0; (3)274x 3—2=0; (4)12(x+3)3=4.四、课后练习1、25的平方根是( )A 、5 B 、5- C 、5± D 、5±2.36的平方根是( )A 、6 B 、6± C 、6 D 、 6±3.当≥m 0时,m 表示( ) A .m 的平方根 B .一个有理数 C .m 的算术平方根 D .一个正数4.用数学式子表示“169的平方根是43±”应是( ) A .43169±= B .43169±=± C .43169= D .43169-=-5.算术平方根等于它本身的数是( )A 、 1和0 B 、0 C 、1 D 、 1±和0 6.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±7.2)6(-的平方根是( )A 、-6 B 、36 C 、±6 D 、±68。

人教版七年级数学下册《平方根和立方根》同步练习含答案

人教版七年级数学下册《平方根和立方根》同步练习含答案

第4讲 算术平方根、平方根、立方根Ⅰ、算术平方根如果一个正数x 的平方等于a ,那个这个正数x 叫做a 的算术平方根,记作_________;0的算术平方根是________Ⅱ、平方根如果一个数的平方等于a ,那个这个数叫做a 的平方根或者二次方根,记作_________;求一个数的________的运算,叫做开平方。

公式补充:①a )a (2= ②|a |a 2=一.练习:(预习自主完成)1. 81的算术平方根是( ) A .9± B .9 C .-9 D .32) A. 49- B. 23 C. 49 D. 23- 3.下列说法不正确的是( )A 、9的算术平方根是3B 、0的算术平方根是0C 、负数没有算术平方根D 、 因为2x a =,所以x 叫做a 的算术平方根4. 如果5.1=y ,那么y 的值是( ) A .2.25 B .22.5 C .2.55 D .25.55. 计算()22-的结果是( ) A .-2 B .2 C .4 D .-46. 下列各式中正确的是( )A .525±=B .()662-=-C .()222-=D .()332=-7. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 的算术平方根是a ;④(π-4)的算术平方根是π-4;⑤算术平方根不可能是负数。

其中,不正确的有( )A. 2个B. 3个C. 4个D. 5个228. 已知5x 2=,则x 为( )A. 5B. -5C. ±5D. 以上都不对9.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .a+1 B .a2+1 C .a +1 D .1a 2+二、填空题:1. 一个数的算术平方根是25,这个数是______; 算术平方根等于它本身的数有______;81的算术平方根是__________。

2. 144=_____4925=________ 0025.0=_______()=2196________()=-28________3. 当______m 时,m -3有意义; 4.已知0)3b (1a 22=+++,则=32ab ________。

专题04 平方根、立方根、实数期末真题汇编(解析版)-2024学年七年级数学下学期期末(人教版)

专题04 平方根、立方根、实数期末真题汇编(解析版)-2024学年七年级数学下学期期末(人教版)

专题04平方根、立方根、实数期末真题汇编之十一大题型平方根、算术平方根、立方根概念的理解例题:(23-24七年级上·浙江绍兴·期末)下列说法中正确的是()A .5-是25的一个平方根B .116的平方根是14C .64-的平方根是8-D .64的立方根是4±【变式训练】1.(23-24七年级上·浙江湖州·期末)下列说法正确的是().A4±B .2(3)-的算术平方根是3-C .负数没有立方根D2的算术平方根2.(23-24七年级上·浙江丽水·期末)下列说法正确的是()3A.4的平方根是2B求一个数的算术平方根、平方根、立方根-的立方根是,平方根是.【变式训练】1.(23-24八年级上·山东枣庄·的立方根为.的平方根是.2.(22-23七年级下·湖北随州·的相反数是,4的平方根是,立方根是.利用算术平方根的非负性求解例题:(23-24八年级上·湖南衡阳·80y -=,则xy 的平方根为.【答案】4±【分析】此题主要考查了非负数的性质,算术平方根具有非负性,以及任意一个数的绝对值都是非负数,解答此题的关键是求出x y 、的大小.【变式训练】b+=,则a b等于.1.(23-24八年级上·江苏宿迁·()210x y+-=,则x y-的算术平方根是.2.(23-24八年级上·四川成都·期末)()220x y ∴-的算术平方根是2.故答案为:2.利用平方根、立方根的定义解方程例题:(23-24七年级上·山东滨州·期末)求下列各式中x 的值:(1)2(3)250x --=(2)31(1)322x -=【变式训练】1.(22-23八年级上·江苏淮安·期末)求下列各式中的x 值:(1)25100x -=(2)()334375x -=-.2.(22-23八年级上·江苏盐城·期末)求下列各式中x 的值:(1)2317x +=;(2)32(4)54x -=.【点睛】本题考查了解方程,解题的关键是掌握平方根。

七年数学下册 第6章 实数6.1平方根立方根第1课时平方根习题课件(新版)沪科版

七年数学下册 第6章 实数6.1平方根立方根第1课时平方根习题课件(新版)沪科版

8.下列说法中不正确的有( B ) ①一个数的算术平方根一定是正数; ②100 的算术平方根是 10,记作 100=10; ③(π-3.14)2 的算术平方根是 π-3.14; ④a2 的算术平方根为 a. A.1 个 B.2 个 C.3 个 D.4 个
9.使 x-3有意义的 x 的取值范围是( C ) A.x≤3 B.x<3 C.x≥3 D.x>3
解:由数轴可知a<0,b>0,a-b<0,a+b<0, 所以|a|=-a,|b|=b,|a-b|=-(a-b),|a+b|= -(a+b).所以原式=|a|-|b|-|a-b|+|a+b|=- a-b+(a-b)-(a+b)=-a-b+a-b-a-b=- a-3b.
18.观察: 2-25=2 25, 3-130=3 130, 4-147=4 147,….
5.下列关于“0”的说法中,正确的是( C ) A.0是最小的正整数 B.0没有相反数 C.0没有倒数 D.0没有平方根
6.下列说法中错误的是( C ) A.12是 0.25 的一个平方根 B.正数 a 的两个平方根的和为 0
C.196的平方根是34 D.当 x≠0 时,-x2 没有平方根
7.【中考·湖州】数 4 的算术平方根是( A ) A.2 B.-2 C.±2 D. 2
*12.【中考·南京】若方程(x-5)2=19的两根为a和b,且a >b,则下列结论正确的是( )
A.a是19的算术平方根 B.b是19的平方根 C.a-5是19的算术平方根 D.b+5是19的平方根
【点拨】因为方程(x-5)2=19的两根为a和b, 所以a-5和b-5是19的两个平方根,且互为相反数, 因为a>b, 所以a-5是19的算术平方根.故选C. 【答案】C
2.【中考·南京】3 的平方根是( D ) A.9 B. 3 C.- 3 D.± 3
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档