七年级数学角平分线同步练习

合集下载

七年级上下册数学同步练习册答案

七年级上下册数学同步练习册答案

七年级上下册数学同步练习册答案七年级下册数学配套练习册答案基础知识1、是不是不是是2、如果是直角,那么都相等3、两条线是邻补角生物角平分线它们互相垂直4、√ ⅹ √ √ ⅹ5、题目略(1)不是(2)不是(3)是,如果两个角相等,那么它们的补角相等,正确(4)是,如果两条直线相交,那么它们只有一个交点,正确(5)是,如果两个角是同旁内角,那么它们互补,错误(6)是,如果比较两个负数的大小,那么绝对值大的反而小,正确能力提升6、A7、两个数是正数两个数之积是正数8、两个角是对顶角它们相等9、如果两个角相等,那么它们的余角相等。

10、不对一个角的两边与另一个角的两边分别平行,这两个角相等或互补11、题目略(1)两直线平行,同位角相等(2)同位角相等,两直线平行(3)两直线平行,同旁内角互补(4)两直线平行,同旁内角互补探索研究12、题目略(1)假命题,不平行的两条直线被第三条直线所截,同位角不相等(2)假命题,(-3)²2²,但-32(3)假命题,0×4=0,但4≠0(4)假命题,3+0=3≯3初一上册数学同步练习答案苏科版第一章有理数§1.1正数和负数(一)一、1. D 2. B 3. C二、1. 5米 2. -8℃ 3. 正西面600米 4. 90三、1. 正数有:1,2.3,68,+123;负数有:-5.5, ,-11 2.记作-3毫米,有1张不合格3. 一月份超额完成计划的吨数是-20, 二月份超额完成计划的吨数是0, 三月份超额完成计划的吨数是+102.§1.1正数和负数(二)一、1. B 2. C 3. B二、1. 3℃ 2. 3℃ 3. -2米 4. -18m三、1.不超过9.05cm, 最小不小于8.95cm;2.甲地,丙地最低,的地方比最低的地方高50米3. 70分§1.2.1有理数一、1. D 2. C 3. D二、1. 0 2. 1,-1 3. 0,1,2,3 4. -10三、1.自然数的集合:{6,0,+5,+10…}整数集合:{-30,6,0,+5,-302,+10…}负整数集合:{-30,-302… }分数集合:{ ,0.02,-7.2, , ,2.1…}负分数集合:{ ,-7.2, … }非负有理数集合:{0.02, ,6,0,2.1,+5,+10…};2. 有31人可以达到引体向上的标准3. (1) (2) 0§1.2.2数轴一、1. D 2. C 3. C二、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3沪教版七年级下册数学练习册答案第五单元第1节轴对称现象答案【基础•达标】1、B2、完全重合;对称轴3、完全重合;对称轴4、角、线段、等腰三角形、等腰梯形、圆、扇形5、4;过对边重点的两条直线和两条对角线所在的直线6、1;底边的中线所在的直线7、2;过对边中点的两条直线8、无数;过圆心的直线9、3;三条边上的高所在的直线11、(1)(9);(3)(7);(5)(8);(2)(10)12、略【综合•提升】13、略14、略15、123454321;12345654321第五单元第2节轴对称的性质答案【基础•达标】1、×2、√3、×4、×5、√6、垂直平分线7、完全重合8、轴对称图形9、B10、C11、B12、C13、略。

七年级数学下册三角形的角平分线中线和高同步练习

七年级数学下册三角形的角平分线中线和高同步练习
A.118°‫ﻩ‬B.119° C.120°‫ﻩ‬D.121° 3.如图,在△ABC 中,D,E分别为BC,AD的中点,且△ABC 的面积为 4,则图中阴影部分 的面积是( )
A.2
B.1‫ﻩ‬
C. ‫ﻩ‬
D.
4.如图,△ABC中BC边上的高是________,△ACD中 CD 边上的高是________,△B CE 中BC 边上的高是________,以 CF为高的三角形是________.
5.如图,在△ABC 中,AD⊥BC,BE⊥AC,垂足分别为D,E,BC=16,AD=6,BE=8,则 AC=____
____.
6.如图,△ABC 中,∠ACB=110°,∠B=30°,作出∠BAC的平分线 AE 和 BC 边上的高 AD, 并求出∠DAE的度数.
7.如图,在△ABC中,AD是△ABC的角平分线,P 为线段 AD上的一个点,PE⊥AD 交直线 BC于点 E.
七年级数学下册.三角形的角平 分线中线和高同步练习
———————————————————————————————— 作者: ———————————————————————————————— 日期:
9.3 三角形的角平分线、中线和高
基础训练 1.下列说法正确的是( ) A.三角形的角平分线是射线 B.三角形的高是一条直线 C.三角形的三条中线相交于一点 D.三角形的中线是经过顶点和对边中点的直线 2.过△ABC 的顶点 A,作 BC边上的高,以下作法正确的是( )
参考答案 【基础训练】 1.【答案】C 解:任何一个三角形都有三条高、三条中线和三条角平分线,它们都是线段,不是射线或直线. 2.【答案】Aபைடு நூலகம்3.【答案】C 4.【答案】110
解:根据三角形的角平分线定义求得∠BAD= ∠BAC=34°.∠ADC 是△ABD 的外角,故∠AD C=∠B+∠BAD=36°+34°=70°,所以∠ADB=180°-∠ADC=110°. 5.【答案】2 解:∵CD 是 AB 边上的中线,∴AD=BD.

角的平分线的性质同步练习含答案解析

角的平分线的性质同步练习含答案解析

角的平分线的性质同步练习含答案解析一、填空题1.如图,∠B=∠D=90゜,依照角平分线性质填空:(1)若∠1=∠2,则______=______.(2)若∠3=∠4,则______=______.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD=______.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于______.4.如图,AD是△ABC的角平分线,若AB=2AC.则S△ABD :S△ACD=______.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.258.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.《12.3 角的平分线的性质》参考答案与试题解析一、填空题1.如图,∠B=∠D=90゜,依照角平分线性质填空:(1)若∠1=∠2,则BC = DC .(2)若∠3=∠4,则AB = AD .【考点】角平分线的性质.【分析】(1)依照角平分线性质推出即可;(2)依照角平分线性质推出即可.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边距离相等.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD= 45 .【考点】角平分线的性质.【分析】第一依照△ABD的面积运算出DE的长,再依照角平分线上的点到角两边的距离相等可得DE=DF,然后运算出DF的长,再利用三角形的面积公式运算出△BCD的面积即可.【解答】解:∵S△ABD=36,∴•AB•ED=36,×12×ED=36,解得:DE=6,∵BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,∴DE=DF,∴DF=6,∵BC=15,∴S△BCD=•CB•DF=×15×6=45,故答案为:45.【点评】此题要紧考查了角平分线的性质,关键是把握角平分线上的点到角两边的距离相等.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD=OE=OF ,∵AB=20,BC=30,AC=40,∴S △ABO :S △BCO :S △CAO =2:3:4.故答案为:2:3:4.【点评】此题要紧考查角平分线的性质和三角形面积的求法,难度不大,作辅助线专门关键.4.如图,AD 是△ABC 的角平分线,若AB=2AC .则S △ABD :S △ACD = 2 .【考点】角平分线的性质.【分析】过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,依照角平分线性质得出DM=DN ,依照三角形面积公式求出即可.【解答】解:过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,∵AD 是△ABC 的角平分线,∴DM=DN ,∴S △ABD :S △ACD =(AB ×DN ):(AC ×DM )=AB :AC=2AC :AC=2,故答案为:2.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【考点】角平分线的性质.【分析】直截了当依照角平分线的性质进行解答即可.【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选B.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【考点】角平分线的性质.【分析】依照角平分线的性质得出CD长,代入BC=BD+DC求出即可.【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选D.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.25【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,依照角平分线上的点到角的两边的距离相等可得DC=DE,然后求出BD的长,再依照BC=BD+DE代入数据进行运算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵点D到AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC交BC于D,∴DC=DE=6,∵BD:DC=3:2,∴BD=×3=9,∴BC=BD+DE=9+6=15.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.8.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【考点】角平分线的性质.【分析】依照三角形的角平分线相交于一点,连接AO,则AO平分∠BAC,然后依照角平分线上的点到角的两边的距离相等解答.【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,依照三角形的角平分线相交于一点作辅助线并判定出AO平分∠BAC是解题的关键.三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)依照角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再依照全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】依照“SSS”可得到△ABC≌△ADC,则∠BCA=∠DCA,再利用角平分线的性质即可得到结论.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.【点评】本题考查了全等三角形的判定与性质:三边都对应相等的两三角形全等;全等三角形的对应边相等,对应角相等.角平分线的性质:角的平分线上的点到角的两边的距离相等.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】依照角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后依照全等三角形的对应边相等推知PM=PN.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°;又∵PD=PD(公共边),∴△PMD≌△PND(AAS),∴PM=PN(全等三角形的对应边相等).【点评】本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC【考点】角平分线的性质.【分析】过点D作DF⊥BC于F,依照角平分线上的点到角的两边的距离相等可得DE=DF,然后依照三角形的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,=AB•DE+BC•DF=90,∴S△ABC即×18•DE+×12•DE=90,解得DE=6.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)依照角平分线性质得出OR=OQ=OP,依照勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.【解答】解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.【点评】本题考查了角平分线性质和全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.。

2019-2020年七年级数学上册 4.3角同步练习1 人教新课标版

2019-2020年七年级数学上册 4.3角同步练习1 人教新课标版

DABC 2019-2020年七年级数学上册 4.3角同步练习1 人教新课标版一、选择:1.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大; ③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形. A.1个 B.2个 C.3个 D.4个2.下列4个图形中,能用∠1,∠AOB,∠O 三种方法表示同一角的图形是( )AA1BO BA1B OCA B OCDA 1BOD3.图中,小于平角的角有( )A.5个B.6个C.7个D.8个 二、填空:4.将一个周角分成360份,其中每一份是______°的角, 直角等于____°,平角等于______°.5.30.6°=_____°_____′=_______′;30°6′=_______′______°. 三、解答题:6.计算:(1)49°38′+66°22′; (2)180°-79°19′; (2)22°16′×5; (4)182°36′÷4.7.根据下列语句画图:(1)画∠AOB=100°;(2)在∠AOB的内部画射线OC,使∠BOC=50°;(3)在∠AOB的外部画射线OD,使∠DOA=40°;(4)在射线OD上取E点,在射线OA上取F,使∠OEF=90°.8.任意画一个三角形,估计其中三个角的度数,再用量角器检验你的估计是否准确.9.分别确定四个城市相应钟表上时针与分钟所成的角的度数.10.九点20分时,时钟上时钟与分钟的夹角a等于多少度?11.马路上铺的地砖有很多种图案,如图所示的图案是某街面方砖铺设的示意图,请你用量角器量一下其中出现的所有的角度?12.如图,在∠AOB的内部引一条射线OC,可得几个小于平角的角? 引两条射线OC、OD呢?引三条射线OC、OD、OE呢?若引十条射线一共会有多少个角?ABO13.请用直线、线段、角等图形设计成表示客观事物的图画,如图, 并为你的图画命名.一盏吊灯一帆风顺答案:1.A2.B3.D4.1,90,1805.30,36,1836;1806,30.16.(1)116°;(2)100°41′;(3)111°20′;(4)45°39′.9.30°;0°;120°;90°10.160°12. 引1条射线有2+1=3个角;引2条射线有3+2+1=6个角;引3条射线有4+3+2+1=10个角;引10条射线有11+10+9+……+3+2+1=66个角.4.3 角的比较一、填空:1.如图1,∠AOB______∠AOC,∠AOB_______∠BOC(填>,=,<); 用量角器度量∠BOC=____°,∠AOC=______°,∠AOC______∠BOC.OC(1)AB O DC(2)ABOD C (3)A B2.如图2,∠AOC=______+______=______-______;∠BOC=______-______= _____-________.3.OC 是∠AOB 内部的一条射线,若∠AOC=12________,则OC 平分∠AOB;若OC 是∠AOB 的角平分线,则_________=2∠AOC. 二、选择:4.下列说法错误的是( )A.角的大小与角的边画出部分的长短没有关系;B.角的大小与它们的度数大小是一致的;C.角的和差倍分的度数等于它们的度数的和差倍分;D.若∠A+∠B>∠C,那么∠A 一定大于∠C 。

2.3.2角平分线的性质及作图 同步练习卷鲁教版(五四制)七年级数学上册

2.3.2角平分线的性质及作图 同步练习卷鲁教版(五四制)七年级数学上册

鲁教版(五四制)七年级上册《2.3.2 角平分线的性质及作图》同步练习卷一、选择题1.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF2.如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性质,由作图所得条件,判定三角形全等运用的方法是()A.SSS B.ASA C.AAS D.SAS3.如图,在△ABC中,BD平分∠ABC,交AC于点D,BC边上有一点E,连接DE,则AD与DE的关系为()A.AD<DE B.AD=DE C.AD>DE D.不确定4.如图,在△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB,垂足为点E,则下面结论中错误的是()A.AD+DE=AC B.DB平分∠EDC C.DE平分∠ADB D.DC+BE>BD5.如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P,且与AB垂直,若AD=8,则点P到BC的距离是()A.3 B.4 C.5 D.6 二、填空题6.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为点E,请任意写出一组相等的线段 ______ .7.如图,在Rt△ABC中,∠B=90°,以顶点C为圆心、适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,以大于EF的一半长为半径画弧,两弧交于点P,作射线CP交AB 于点D.若BD=4,AC=11,则△ACD的面积是 ______ .8.如图所示,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC,则∠A+∠C的度数是______ 度.9.在△ABC中,AB=4,AC=3,AD是△ABC的平分线,则△ABD 和△ACD的面积之比是 ______ .10.如图所示,在四边形ABCD中,∠A=90°,AD=6,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为 ______ .三、解答题11.尺规作图如图,已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(不写画图过程,保留作图痕迹)12.如图,在△ABC中,∠ACB=2∠B.(1)根据要求作图:作∠ACB的平分线交AB于点D;作∠BDC的平分线交BC于点E;(不写作法,保留作图痕迹)(2)在(1)的基础上写出一对全等三角形,并加以证明.13.如图,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.14.已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D.(1)PC和PD有怎样的数量关系是 ______ .(2)请你证明(1)得出的结论.。

初一数学人教版下册三角形同步测试卷含答案

初一数学人教版下册三角形同步测试卷含答案

七年级数学(下)三角形同步测试卷满分:100分时间:60分钟得分:_________一、选择题(每小题3分,计24分)1.(2009·柳州)如图,图中三角形的个数是( ) A.1 B.2 C.3 D.42.三角形的角平分线是( ) A.直线B.射线C.线段D.以上答案均不对3.(2009·齐齐哈尔)如图,为估计池塘岸边A、B间的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米.则A、B间的距离不可能是( )A.20米B.15米C.10米D.5米4.如图,三角形被遮住的两个角不可能是( ) A.一个锐角和一个钝角B.两个锐角C.一个锐角和一个直角D.两个钝角5.下面四个图形中,线段BE是△ABC的高的是( )6.(2008·陕西)已知一个三角形三个内角的度数之比为2:3:7.则这个三角形是( ) A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形7.(2009·新疆)如图.将三角尺的直角顶点放在直尺的一边上.已知∠1=30°,∠2=50°,则∠3的度数为( )A.50°B.30°C.20°D.15°8.已知一个多边形的内角和等于外角和的2倍,那么这个多边形是( ) A.六边形B.五边形C.四边形D.三角形二、填空题(每小题3分.计24分)9.在△ABC中,∠A=45°,∠B=63°,则∠C=_________.10.木工师傅有两根分别长80 cm、150cm的木条,他要找第三根木条,将它们钉成一个三角形框架.现有70cm、105 cm、200 cm、300cm四根木条.他可以选择长为_______的木条.11.(2008·宁德)如图是用一副三角尺拼成的图案,则∠AEB=_________.12.如图,∠1=100°,∠2=140°,那么∠3=________.13.如图,小亮从A点出发前进10 m,向右转30°,再前进10 m,又向右转30°……这样一直走下去.他第一次回到出发点A时,一共走了_________m.14.如图,国旗上五角星的五个角的度数是相同的,每一个角的度数都是_________.15.(2009·恩施)如图,AB∥ED,∠B=58°,∠C=35°,则∠D的度数为_________.16.(2009·济宁)观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有_________个.三、解答题(本题共6小题,计52分)17.(本题满分5分)请画出△ABC的中线AD、角平分线BE和高CF.18.(本题满分5分)如图.在△ABC中,AD是BC边上的中线,△ADC的周长是8 cm,△ABD的周长是10 cm.AB比AC长多少厘米?19.(本题满分5分)已知一个正多边形每个外角都是45°,求这个正多边形的边数.20.(本题满分6分)下面是小明课后练习中的一道习题:长度为2 cm、6 cm、4 cm的三条线段能否组成三角形,为什么?解:因为2+6>4,所以上述三条线段能组成三角形.小明的解法正确吗?请发表你的观点,并说明理由.21.(本题满分8分)一个零件的形状如图所示,按规定:∠A=90°,∠B和∠C应分别是32°和21°.检验工人量得∠BDC=148°,就断定这个零件不合格.请运用三角形的相关知识说明零件不合格的理由.22.(本题满分8分)在平面内,分别把3根、5根、6根……火柴首尾依次相接,能搭成什火柴数356……示意图形状等边三角形等腰三角形等边三角形…根据上述内容,解答下面的问题:(1)4根火柴能搭成三角形吗?(2)8根、12根火柴分别能搭成几种不同形状的三角形?请画出它们的示意图.23.(本题满分5分)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=n·90°,则n=____________.24.(本题满分8分)如图,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.证明:β=2α.参考答案—、1.C 2.C 3.D 4.D 5.C 6.D 7.C 8.A二、9.72°10.105 cm或200 cm 11.75°12.60°13.12014.36°15.23°16.121三、17.如图18.根据题意,得AB+BD+AD=10 cm,AD+DC+AC=8 cm.又因为BD=CD,所以AB-AC=2(cm)19.设这个正多边形的边数为x,根据题意得45x=360.解得x=820.错误21.延长BD交AC于E(图略),则∠CED=∠A+∠B=122°.所以∠BDC=∠CED+∠C=122°+21°=143°≠148°,所以这个零件不合格22.(1)由4根火柴组成的三条线段只能是1、1、2,因为1+1=2,所以不能搭成三角形(2)8根火柴能搭成等腰三角形,边长分别为3,3,2.12根火柴可以搭成等边三角形、等腰三角形和不等边三角形,三边长分别为4,4,4;5,5,2;3,4,5.图略23.如图,设AF与BG相交于点Q,则∠AQG=∠A+∠D+∠G.于是∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠B+∠C+∠E+∠F+∠AQG=∠B+∠C+∠E+∠F+∠BQF=540°=6×90°.所以n=6.24.提示:如图,过点C作CF∥AB,α=∠A+∠E=180°,由CF∥AB∥DE,得(∠B+∠1)+(∠2+∠D)=360°.故β=2α.。

七年级上册数学同步练习题库:角(简答题:一般)

七年级上册数学同步练习题库:角(简答题:一般)

角(简答题:一般)1、如图,AOB为直线,OC平分∠AOD,∠BOD=42°,求∠A OC的度数.2、如图,在△ABC中,AC∥DE,DC∥FE,CD平分∠BCA,求证:EF平分∠BED3、如图在ABCD中,已知CD=8,AD=5,AE平分∠BAD交DC于E,交BC的延长线于F,求CF的长.4、小亮利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,问小亮出发时和到家时时针和分针的夹角各为多少度.5、若时钟由2点30分走到2点55分,问时针、分针各转过多大的角度?6、如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.7、点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.图1 图2(1)如图1,将三角板MON的一边ON与射线OB重合时,则∠MOC=;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数.8、如图,已知AC=AB,AE=AD,CE=BD,B,E,D三点在同一条直线上.(1)求证:∠1=∠2.(2)求证:AE平分∠CE D.(3)若CE∥AD,求∠1的度数.9、已知:如图:AD是△ABC的角平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,EG∥AD.求证:∠AFG=∠G.10、(本题10分)如图,AB交CD于点O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.11、如图(1),将两块直角三角板的直角顶点C叠放在一起.(1)试判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想∠ACB与∠DCE的数量关系,并说明理由;(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)12、如图,∠AOB=35°,∠BOC=90°,OD是∠AOC的平分线,求∠BOD的度数.13、如图,O为直线AB上一点,OD平分∠AOC,OE平分∠COB,①问:DO与OE有何关系?并说明你的理由.②图中有几对互余的角?试写出所有你认为互余的角.14、如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.(1)指出图中∠AOD与∠BOE的补角;(2)试判断∠COD与∠COE具有怎样的数量关系.并说明理由.15、O为直线DA上一点,OB⊥OF,EO是∠AOB的平分线.(1)如图(1),若∠AOB=130°,求∠EOF的度数;(2)若∠AOB=α,90°<α<180°,求∠EOF的度数;(3)若∠AOB=α,0°<α<90°,请在图(2)中画出射线OF,使得(2)中∠EOF的结果仍然成立.16、(2015秋•常州期末)已知:点O为直线AB上一点,∠COD=90°,射线OE平分∠AOD.(1)如图①所示,若∠COE=20°,则∠BOD= °.(2)若将∠COD绕点O旋转至图②的位置,试判断∠BOD和∠COE的数量关系,并说明理由;(3)若将∠COD绕点O旋转至图③的位置,∠BOD和∠COE的数量关系是否发生变化?并请说明理由.(4)若将∠COD绕点O旋转至图④的位置,继续探究∠BOD和∠COE的数量关系,请直接写出∠BOD和∠COE之间的数量关系:.17、如图,两直线AB,CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,(1)求∠DOE的度数;(2)若OF⊥OE,求∠COF的度数.18、(本题满分10分)如果两个角的差的绝对值等于,就称这两个角互为反余角,其中一个角叫做另一个角的反余角.例如:,,,则和互为反余角,其中是的反余角,也是的反余角.(1)如图,为直线上一点,于点,于点,的反余角是,则的反余角是.(2)若一个角的反余角是它的补角的,求这个角.19、一个角的补角比它的余角的4倍少,求这个角的度数.20、如图,直线AB、CD相交于点O,射线OM,ON分别平分∠AOC,∠AOD,,求的度数.21、如图,已知CO⊥AB于点O,∠AOD=5∠DOB,求∠COD的度数.22、请估计下面角的大小,然后再用量角器测量.23、三角板如下图所示放置,在图上加弧线的角为多少度?24、两角差是36°,且它们的度数比是3∶2,则这两角的和是多少?解法一:设这两角度数分别为(3x)°和(2x)°,则根据题意列方程为:_______________,解方程,得:x="____________," ∴3x+2x=______________.解法二:设这两个角的度数和为x°,则这两个角分别为_______和_______,根据题意列方程为:_______________________________,解方程得:x =______________,∴这两角的和是____________°.25、已知下列条件,求角的度数。

角平分线性质练习题

角平分线性质练习题

4 分层练习, 评价自我活动四 做一做 练习一:判断:(1)OP 是∠AOB 的平分线,则PE=PF ( )(2)PE ⊥OA 于E ,PF ⊥OB 于F 则PE=PF ( )(3)在∠AOB 的平分线上任取一点Q ,点Q 到OA 的距离等于3cm,则点Q 到OB 距离等于3cm ( ) 练习二判断:1、若PE=PF ,则OP 是∠AOB 的平分线。

( )2、若PE ⊥OA 于E ,PF ⊥OB 于F ,则OP 是∠AOB 的平分线。

( )3、已知Q 到OA 的距离等于3cm, 且Q 到OB 距离等于3cm ,则Q 在∠AOB 的平分线上( ) 练习三如图,△ABC 的角平分线BM 、CN 相交于点P 。

(1)求证:点P 到三边AB 、BC 、CA 的距离相等 。

(2)点P 在角A 的平分线上吗? (3)三角形的三条角平分线有什么关系呢?5 课堂反思,强化思想 活动五 想一想(1)这节课我们帮助别人解决了什么问题?你是怎么做到的? (2)你感悟到了什么?6 布置作业,指导学习1、必做题:教材:第2题。

2、选做题:教材:第3题。

板书设计角平分线的性质 角平分线的判定∵ PA=PB ∵ OP 平分∠AOB , 又∵ PA ⊥OA ,PB ⊥OB 又∵ PA ⊥OA, PB⊥OB ∴ OP 平分∠AOB ∴ PA=PB到角的两边距离相等的点在角的平分线上. 角平分线上的点到角的两边距离相等11.3角平分线性质(1)一、选择题 1.如图,OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D .下列结论中错误的是 ( ) A .PC = PD B .OC = OD C .∠CPO = ∠DPO D .OC = PC 2.如图,△ABC 中,∠C = 90°,AC = BC , AD 是∠BAC 的平分线,D E ⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( ) A .10cm B .8cm C .6cm D .9cm 二、填空题3.角平分线的性质定理:角平分线上的点_____________________________. 4.⑴如图,已知∠1 =∠2,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则DE ____DF . ⑵已知DE ⊥AB ,DF ⊥AC ,垂足分别 为E 、F ,且DE = DF ,则∠1_____∠2.三、解答题5.如图,点D 、B 分别在∠A 的两边上,C 是∠A 内一点,AB = AD ,BC = CD ,CE ⊥AD 于E ,CF ⊥AF 于F . 求证:CE = CF6.已知:如图,在△ABC 中,∠A =90°,AB = AC , BD 平分∠ABC . 求证:BC = AB + ADABC DPEDCB21ABCDEFF A B EC DD A11.3角平分线性质(2)一、选择题1.到三角形三条边的距离都相等的点是这个三角形的( ) A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点2. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处二、填空题3.角的内部_____________________________的点,在这个角的平分线上. 4.如图, 点 P 到∠AOB 两边的距离相等,若∠POB =30°, 则 ∠AOB =_____度.5.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留画图痕迹)6.已知,如图,BP 是△ABC 的外角平分线,点P 在∠BAC 的角平分线上.求证:CP 是△ABC 的外角平分线.角的平分线性质的正确应用“角平分线上的点到角两边的距离相等”的应用例1 如图,AC 平分∠BAD ,CD=CB ,AB>AD ,CE ⊥AB 于E ,CF ⊥AD 于F. 求证:∠CBA+∠ADC=180°. 小结:涉及到角平分线有关的问题,要想到角平分线性质的应用,应用注意步骤的完整性.不要漏点关键的步骤:如CE ⊥AB ,CF ⊥AD ,垂足分别是E ,F 不能漏掉.例 2 如图,在△ABC,∠C=90°,AD 是∠ABC 的角平分线,DE ⊥AB.垂足为 E.DE=EB.求证:AC+CD=AB.小结:本题主要通过利用角平分线的性质以及直角三角形全等的有关知识进行证明的.解决问题时应灵活应用角平分线的性质. 二、“到角的两边的距离相等的点在角平分线上”的应用 例3 如图,△ABC 外角∠MAC 与∠NCA 的平分线相交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F.求证:BP 为∠ABC 的平分线.小结:本题角平分线性质和判定的综合应用,应注意辅助线的添加的方法.角的平分线性质及应用山东 李其明(1)性质定理:在角的平分线上的点到这个角的两边的距离相等;(2)性质定理的逆定理:到一个角的两边的距离相等的点在这个角的平分线上.例1.三角形内到三边的距离相等的点是( )的交点.(A )三条中线(B )三条高(C )三条角平分线(D )以上均不对.例2.如图1,△ABC 的角平分线BM 、CN 相交于点P ,试问:P 到AB 、BC 、CA 的距离相等吗?C例3.如图2,△ABC 中,∠C=900,AD 平分∠BAC ,BD=4,BC=7,则D 到AB 的距离是 .例4.如图3,△ABC 中,∠B 、∠C 的角平分线相交于O ,下面结论中正确的是( ).(A )∠1>∠2(B )∠1=∠2(C )∠1<∠2(D )不能确定. 例5.如图4,在△ABC 中,∠A=900,BD 是角平分线, 若AD=m ,BC=n ,求△BDC 的面积.例6.如图4,在△ABC 中,∠A=900,AC=AB ,BD 平分∠BAC ,DE ⊥BC ,BC=8, 求△BED 的周长. .例7.如图5,△ABC 中,∠A=900,点D 在BC 上,DE ⊥AB 于E ,且AE=EB ,DE=DC , 求∠B 的度数.角平分线典型案例精析安徽 李庆社题1 已知:如图CD ⊥AB 于D ,BE ⊥AC 于E ,且CD 、BE 相交于O 点. 求证:(1)当 ∠1= ∠2时,OB=OC ; (2)当OB=OC 时,∠ 1= ∠2.C BCABCDE1A BCD E2 图5【点评】利用角平分性质定理或判定定理时,一定要注意垂直的条件.题2 已知:如图∠ 1= ∠2,BC ⊥AC 于C ,BD ⊥AD 于D ,连结CD 交AB 于E 求证: AB 垂直平分CD.【点评】用了角平分线性质定理,可代替用全等三角形得到的结论,简化证明过程. 题3 已知:如图AD 为△ABC 的角平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,EF 交AD 于M,求证:MF=ME.【点评】在已知条件中,有角平分线,可以在角平分线上任取一点向两边作垂线,构造全等三角形.角平分线(同步测控) 一、选择题1. 2007广东茂名课改)Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于 点D ,2CD =,则点D 到AB 的距离是( ) A .1 B .2 C .3 D .42. (2007浙江义乌课改) 如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是( ) A .3 B .4 C .5 D .63. (2007广东课改)到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点 B.三条高的交点 C.三条边的垂直平分线的交点 D.三条角平分ABCDA BCDEF线的交点4. (2006 贵港课改)已知:如图,AD 是ABC △的角平分线,且:AB AC ABD △与ACD △的面积之比为( )A.3:2C.2:35. (2005 盐城)如图,OP 平分∠AOB ,PC ⊥OA 于C ,PD ⊥OB 于D ,则PC 与PD 的大小 关系是( ) A.PC PD >B.PC PD =C.PC PD < D.不能确定6.一个角的平分线的尺规作图的理论依据是() A .SAS B 。

人教版七年级数学下册平行线的判定同步练习题(含解析)

人教版七年级数学下册平行线的判定同步练习题(含解析)

人教版七年级数学下册平行线的判定同步练习题(含解析)人教版七年级数学下册平行线的判定同步练习题(含解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,点E在线段AC的延长线上,下列条件中能判断的是(?)A.∠3=∠AB.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°2.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是(?)A.30°B.40°C.60°D.70°3.如图,直线a,b被直线c所截,下列条件不能判定直线a 与b平行的是()A.∠1=∠3B.∠2+∠3=180°C.∠1=∠4D.∠1+∠4=180°4.如图,点E在AC的延长线上,下列条件能判断ABCD的是(?)A.∠3=∠4B.∠D=∠DCEC.∠D+∠ACD=180°D.∠1=∠25.如图,下面条件不能判断的是(?)A.B.C.D.6.如图,要使,则需要添加的条件是(?)A .B.C.D.二、填空题7.如图,请你添加一个条件________,使AB∥CD.8.两条平行直线被第三条直线所截,内错角相等.简称:两直线平行,内错角_________.如图,因为a∥b (已知),所以∠1=_____(两直线平行,内错角相等). 9.如图所示,在下列条件中,不能判断的有___________.①.?②.③.?④.10.a、b、c是直线,且a∥b,b⊥c,则a与c的位置关系是________.11.如图,已知∠1=30°,∠2或∠3满足条件_________,则a∥b.三、解答题12.如图,在△ABC中,AD是BC边上的中线,F,E分别是AD及其延长线上的点.(1)如果CFBE,说明:△BDE≌△CDF;(2)若CF,BE是△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F,请猜想BF与CE的位置关系?并说明理由.13.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠A BC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)______(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是______(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.14.下列推理是否正确?为什么?(1)如图,∵,∴;(2)如图,∵,∴;(3)如图,∵,∴;(4)如图,∵,∴.15.如图,将绕点B顺时针旋转60度得到,点C的对应点E 恰好落在AB的延长线上,连接AD.(1)求证:;(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.16.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2(1)求角F的度数与DH的长;(2)求证:.17.如图,在四边形中,与有怎样的位置关系?为什么?与呢?18.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC//DE.19.请补全证明过程及推理依据.已知:如图,BC//ED,BD平分∠ABC,EF平分∠AED.求证:BD∥EF.证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=∠AED,∠2=∠ABC(______________)∵BC∥ED(________)∴∠AED=________(________________)∴∠AED=∠ABC∴∠1=________∴BD∥EF(________________).参考答案:1.B【分析】根据平行线的判定条件逐一判断即可.【详解】A.由∠3=∠A无法判断,故A不符合题意;B.由∠1=∠2能判断,故B符合题意;C.由∠D=∠DCE可以判断,不能判断,故C不符合题意;D.∠D+∠ACD=180°可以判断,不能判断,故D不符合题意.故选:B.【点睛】本题主要考查平行线的判定,熟知平行线的判定条件,是解题的关键.2.A【分析】过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得.【详解】解:如图,过点作,,,,,,,,,故选:A.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.3.D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意;∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;(同位角相等,两直线平行)故C不符合题意;∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.4.D【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由∠3=∠4,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;B、由∠D=∠DCE,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;C、由∠D+∠ACD=180°,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;D、由∠1=∠2,可以利用内错角相等,两直线平行得到得到,符合题意;故选D.【点睛】本题主要考查了平行线的判定,熟知内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.5.B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由∠1=∠2,可以判断(内错角相等,两直线平行),故此选项不符合题意;B、由∠1+∠3=180°,可以判断(同旁内角互补,两直线平行),不能判断,故此选项符合题意;C、由,可以判断(同位角相等,两直线平行),故此选项不符合题意;D、由,可以判断(同旁内角互补,两直线平行),故此选项不符合题意;故选B.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.6.A【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【详解】解:A.∵∠A=∠CBE,∴AD∥BC,符合题意;B.由∠A=∠C无法得到AD∥BC,不符合题意;C.由∠C=∠CBE,只能得到AB∥CD,无法得到AD∥BC,不符合题意;D.由∠A+∠D =180°,只能得到AB∥CD,无法得到AD∥BC,不符合题意;故选:A.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.∠1=∠5.【分析】根据平行线的判定进行解答,可以考虑同位角相等,或内错角相等,或同旁内角互补.【详解】添加∠1=∠5∵∠1=∠5,∴AB∥CD.故答案为∠1=∠5【点睛】本题属于开放题,主要考查了平行线的判定,解决问题的关键是掌握平行线的判定方法.8.相等 ∠2【解析】略9.②③##③②【分析】根据平行线的判定进行解答即可得.【详解】解:①∵,∴(内错角相等,两直线平行),说法正确,不符合题意;②∵和既不是同位角,也不是内错角,∴不能根据判定,说法错误,符合题意;③∵为同位角,∴不一定平行,符合题意;④∵,∴(同旁内角互补,两直线平行),说法正确,不符合题意;故答案为:②③.【点睛】本题考查了平行线的判定,解题的关键是熟记并理解平行线的判定.10.互相垂直【详解】且a∥b,b⊥c,a⊥c.故答案为互相垂直.11.∠2=150°或∠3=30°【解析】略12.(1)见解析(2)BFCE,证明见解析【分析】(1)根据已知条件,通过两角及其夹边对应相等即可证明△BDE≌△CDF;(2)先证CFBE,利用(1)中结论得△BDE≌△CDF,推出,利用SAS证明△BDF≌△CDE,推出,利用内错角相等,两直线平行,可得BFCE.(1)证明:∵CFBE,∴∠FCD﹦∠EBD.∵AD是BC边上的中线,∴.在△BDE和△CDF中,,∴△BDE≌△CDF.(2)解:BFCE.理由如下:如图,连接BF,CE.∵ C F⊥AD于F,BE⊥AD于E,∴CFBE.由(1)的结论可知△BDE≌△CDF,∴.∵AD是BC边上的中线,∴BD =CD.在△B DF和△CDE中,,∴△BDF≌△CDE.∴,∴BFCE.【点睛】本题考查全等三角形的判定与性质,平行线的性质与判定,三角形中线的定义等,熟练掌握全等三角形的判定方法、平行线的性质定理和判定定理是解题的关键.13.(1)①,SSS(2)见解析【分析】(1)根据SSS即可证明△ABC≌?DEF,即可解决问题;(2)根据全等三角形的性质可得可得∠A=∠EDF,再根据平行线的判定即可解决问题.(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.(注意:只需选一个条件,多选不得分)故答案为:①,SSS;(2)证明:∵△ABC ≌△DEF.∴∠A=∠EDF,∴AB∥DE.【点睛】本题考查了平行线的性质和全等三角形的性质,和判定定理,能熟记全等三角形的判定定理是解此题的关键.14.(1)正确;理由见解析;(2)不正确;理由见解析;(3)正确;理由见解析;(4)正确;理由见解析.【分析】(1)是被所截形成的同位角,再利用同位角相等,两直线平行可判断;(2)是被所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;(3)是被所截形成的内错角,再利用内错角相等,两直线平行可判断;(4)是被所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;【详解】解:(1)正确,理由:同位角相等,两直线平行;(2)不正确,因为由“”只能推出“”,推不出“”;(3)正确,理由:内错角相等,两直线平行;(4)正确,理由:同旁内角互补,两直线平行.【点睛】本题考查的是平行线的判定,掌握“平行线的判定方法”是解题的关键.15.(1)见解析;(2)【分析】(1)先利用旋转的性质证明△ABD为等边三角形,则可证,即再根据平行线的判定证明即可.(2)利用弧长公式分别计算路径,相加即可求解.【详解】(1)证明:由旋转性质得:是等边三角形所以∴;(2)依题意得:AB=BD=4,BC=BE=1,所以A,C两点经过的路径长之和为.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、平行线的判定、弧长公式等知识,熟练掌握这些知识点之间的联系及弧长公式是解答的关键.16.(1)35°;6(2)见解析【分析】(1)根据三角形内角和定理求出∠ACB,根据全等三角形的性质得出AB=DE,∠F=∠ACB,即可得出答案;(2)根据全等三角形的性质得出∠B=∠DEF,再根据平行线的判定即可证得结论.(1)解:∵∠A=85°,∠B=60°,∴∠ACB=180°-∠A-∠B=180°-85°-60°=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=DE-EH=8-2=6;(2)证明:∵△ABC≌△DEF,∴∠B=∠DEF,∴.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,平行线的判定的应用,解此题的关键是能根据全等三角形的性质得出AB=DE,∠B=∠DEF,∠ACB=∠F,注意:全等三角形的对应边相等,对应角相等.17.,见解析【分析】四边形ABCD内角和360°,即,因为,所以,所以,同理.【详解】四边形ABCD内角和360°同理可得:【点睛】本题主要考查了四边形内角和以及平行线的判定,掌握该性质判定是解题的关键.18.见解析【分析】由BE平分∠ABC,可得∠1=∠3,再利用等量代换可得到一对内错角相等,即∠2=∠3,即可证明结论.【详解】证明:∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴B C//DE.【点睛】本题主要利用了角平分线的性质以及内错角相等、两直线平行等知识点,灵活运用平行线的判定定理成为解答本题的关键.19.角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行【分析】根据角平分线的定义得出∠1=∠AED,∠2=∠ABC,根据平行线的性质定理得出∠AED=∠ABC,求出∠1=∠2,再根据平行线的判定定理推出即可.【详解】证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=∠AED,∠2=∠ABC(角平分线的定义)∵BC∥ED(已知)∴∠AED=∠ABC(两直线平行,同位角相等)∴∠AED=∠ABC∴∠1=∠2 ∴BD∥EF(同位角相等,两直线平行).故答案为:角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行.【点睛】本题考查了角平分线的定义,平行线的性质定理和判定定理等知识点,能熟记平行线的性质定理和判定定理是解此题的关键.答案第1页,共2页答案第1页,共2页试卷第1页,共3页试卷第1页,共3页。

北师大版(2024)七年级上册《4.2_角2》2024年同步练习卷+答案解析

北师大版(2024)七年级上册《4.2_角2》2024年同步练习卷+答案解析

北师大版(2024)七年级上册《4.2角2》2024年同步练习卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若,,,则有()A. B. C. D.2.已知,,则与的大小关系是()A. B. C. D.无法确定3.如图,点C在的OB边上,用尺规作出了,作图痕迹中,是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧4.如图,小明将自己用的一副三角板摆成如图形状,如果,那么等于()A. B. C. D.5.如图,用同样大小的三角板比较和的大小,下列判断正确的是()A.无法确定B.C.D.6.,的顶点和一边重合,另一边都在公共边的同侧,且,那么的另一边落在的()A.另一边上B.内部C.外部D.以上结论都不对7.,,关于两个角的大小,下列正确的是()A. B. C. D.无法确定8.点P在内部,现在有四个等式:①;②;③;④其中,能表示OP为的平分线的有()A.1个B.2个C.3个D.4个9.如图.已知O是直线AB上一点,,OD平分,则的度数是()A.B.C.D.10.如图,,以OA为边作,使,则下列结论成立的是()A.B.C.或D.或11.已知,,OD平分,OM平分,则的度数是()A.或B.或C.或D.或12.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点和点,如图2,设,则的度数为()A. B. C. D.二、填空题:本题共7小题,每小题3分,共21分。

13.如图,BD平分,BE把分成3:7的两部分,,则的度数为______.14.已知,求作:,使作法:以______为圆心,______为半径画弧.分别交OA,OB于点C,画一条射线,以______为圆心,______长为半径画弧,交于点,以点______为圆心______长为半径画弧,与第2步中所画的弧交于点过点______画射线,则15.如图所示的网格是正方形网格,则______填“>”“<”或“=”16.比较角的大小,另一种方法是使两个角的顶点及一条边重合,另一条边放在重合边的______就可以比较大小.17.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕.则______度.18.从一个角的顶点出发,把它分成两个角的直线叫做这个角的平分线.______填“正确”或“错误”19.已知,在其顶点O处引一条射线OC,且,则______.三、解答题:本题共3小题,共24分。

初中数学专题复习角的平分线 精讲精练(含解答)

初中数学专题复习角的平分线 精讲精练(含解答)

角的平分线【基础知识精讲】角平分线是过角的顶点,且在角的内部的一条射线,它把一个角分成两个相等的角,它与角的两边三线共点.(角的顶点)角平分线是到角两边距离相等的所有点的集合.关于这一点需从两个方面去说明:①角平分线上的点到角两边的距离相等.②到角两边距离相等的点在角平分线上.进而推广到一般,若要证明某一图形B 是满足条件A 的点的集合,要说明两点:①图形B 上的所有点满足条件A.②满足条件A 的所有点都在图形B 上.关于命题“角平分线上的点到角两边距离相等”的证明,先要分清题目的题设部分及结论部分.依照命题准确作出图形,写出已知、求证,再利用相关知识进行证明,这也是证明一个命题(定理)的几个基本步骤.角平分线性质定理及其逆定理(判定定理)的证明分别利用了全等三角形中“AAS ”定理及“HL ”公理.本节还介绍了互逆命题及互逆定理,两个命题若条件(题设)与结论位置互换,即一个命题条件是另一个命题的结论,同时它的结论是另一命题的条件,则两命题互为逆命题.若一个定理的逆命题是真命题,则称逆命题为该定理的逆定理.这两个定理互为逆定理. 应当注意,每个命题都有逆命题,每个定理也有逆命题,但不一定有逆定理,只有当逆命题正确而成为定理时,才是原定理的逆定理.一个命题的正确与否与它的逆命题正确与否无关.难点:是“角平分线是到角两边距离相等的点的集合”这一结论的理解及运用. 例1 △ABC 中,∠C=90°,AD 为角平分线,BC=64,BD ∶DC=9∶7,求D 到AB 的距离.(图3.9-1)图3.9-1分析 设DE 为D 到AB 的距离,由角平分线性质CD=DE ,再由已知可求CD 、DE. 解 作DE ⊥AB 于E ,∵∠C=90°,DC ⊥AC ,又AD 为∠BAC 平分线,∴DC=DE ,BC=64,BD ∶DC=9∶7∴DC=167×64=28 ∴DE=28 例2 求证:三角形三条内角平分线交于一点.分析 此类命题证明需先作图,写出已知、求证,再根据条件进行证明.证明三直线共点,常用方法之一为二直线的交点必在第三条直线上,此题中,可考虑如图3.9-2,设∠ABC 与∠ACB 的平分线交于O ,再证AO 平分∠BAC.图3.9-2已知:△ABC 中,AA ′,BB ′,CC ′为角平分线,求证AA ′,BB ′,CC ′交于一点.证 设BB ′,CC ′交于O ,过O 分别作OD ⊥BC 于D ,DE ⊥AC 于E ,OF ⊥AB 于F ,∵O 在∠ABC 平分线上,∴OD=OF.O 在∠ACB 平分线上,∴OE=OD ∴OE=OF.∴O 在∠BAC 平分线上,即O 在AA ′上,∴AA ′,BB ′,CC ′交于一点.注:该点称为三角形内心.例3 定理“末位数字为0的整数能被5整除”是否存在逆定理?请说明理由.分析 先写出逆命题:“能被5整除的整数末位数字是0”,再说明逆命题的真假,显然这是一个假命题,我们只需举一反倒即可,例如15能被5整除,但末位数字为5,故逆命题为假命题,因此原定理没有逆定理例4 判断命题“两整数相加,和为整数”的逆命题的真假.解 逆命题为“和为整数,则两加数必为整数”,它是一个假命题,如“21+21=1,31+35=2”等,都能说明逆命题为假命题.【难题巧解点拨】例1 △ABC 的周长为41cm,边BC=17cm,角平分线AD 将△ABC 分为面积比为3∶5的两部分,且AB <AC ,求AB ,AC.(图3.9-3)图3.9-3分析 设AB=x,AC=y,则有x+y+17=41,而S △ABD ∶S △ADC =3∶5,此条件不好利用,故考虑AD 为角平分线,它到两边的距离相等,即△ABD 中AB 边上的高,△ADC 中AC 边上的高相等,从得求出x ∶y,进而求出x,y.解 作DE ⊥AB 于E ,DF ⊥AC 于F.∵AD 为角平分线∴DE=DF∵AB <AC ,∵S △ABD ∶S △ADC =(21DE ·AB )∶(21DF ·AC )=AB ∶AC=3∶5 ∴x+y+17=41 x ∶y=3∶5 (x <y)∴x=9,y=15 即AB=9cm, AC=15cm.例2 “三角形两内角平分线的交点到三角形三边距离相等”这一命题的逆命题是真命题还是假命题?图3.9-4分析 先要写出逆命题:到三角形三边距离相等的点是两内角平分线的交点.该命题是一个假命题.例如:图3.9-4,P 为△ABC 的两外角∠MBC 和∠NCB 的角平分线交点.此时P 到三边AB 、AC 、BC 的距离PD=PF=PE.而P 不为△ABC 的内角平分线交点.注意:不要误以为过点向△ABC 三边的作垂线那么垂足一定都落在边上,也可落在边延长线上,从这里入手证明逆命题为一假命题.【同步达纲练习】一、判断(3分×8=24分)( )1.P 为∠AOB 内一点,C 在OA 上,D 在OB 上,若PC=PD ,则OP 平分∠AOB.( )2.到角两边距离不相等的一点一定不在角平分线上.( )3.因为“三内角对应相等的两个三角形全等”是假命题,所以它的逆命题也是假命题.( )4.三角形三条角平分线交于一点,且这一点到三顶点的距离相等.( )5.任何命题都有逆命题.( )6.任何定理都有逆定理.( )7.“三角形三条角平分线交点到三边距离相等”这个命题的逆命题是真命题.( )8.有命题“若x=y ,则x 2=y 2”的逆命题是个假命题.二、填空(4分×8=32分)1.角平分线是到角的两边 相等的所有点的 .2.三角形三内角平分线 ,该点到三边的距离 .3.“对顶角相等”的逆命题是 ,它是一个 命题.4.P 在∠MON 的角平分线上,PA ⊥OM 于A ,PB ⊥ON 于B ,PA+PB=12,则PA= ,PB= .5.一个定理的 是正确的时,我们称它为原定理的 .6.“直角三角形有两个角是锐角”这个命题的逆命题是 ,它是一个 命题.7.定理“同位角相等,两直线平行”的逆定理是 .三、选择(5分×6=3分)1.下列说法正确的是( )A.每个命题都有逆命题B.每个定理都有逆定理C.真命题的逆命题也是真命题D.假命题的逆命题是假命题2.P 、Q 为∠AOB 内两点,且∠AOP=∠POQ=∠QOB=31∠AOB ,PM ⊥OA 于M ,QN ⊥OB 于N ,PQ ⊥OP,则下面结论正确的是( )A.PM >QMB.PM=QNC.PM <QND.PM=PQ3.下列关于三角形角平分线的说法错误的是( )A.两角平分线交点在三角形内B.两角平分线交点在第三个角的平分线上C.两角平分线交点到三边距离相等D.两角平分线交点到三顶点距离相等4.下列命题中,正确的命题有几个( )①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角就不相等;④不相等的角不是对顶角A.1个B.2个C.3个D.0个5.设a,b为实数,下面四个命题.①若a>b, 则a2>b2②若a2>b2, 则a>b③若a>b,则a2>b2④若a2>b2则a>b其中正确的有( )A.1个B.2个C.3个D.4个6.下列命题真命题是( )A.同位角相等B.同旁内角相等,两直线平行C.不相等的角不是内错角D.同旁内角不互补,两直线不平行四、解答题(7分×2=14分)1.如图3.9-6,P为∠AOB内一点,OA=OB,且△OPA与△OPB面积相等,求证∠AOP=∠BOP.图3.9-62.△ABC的外角∠CBD,∠BCE的角平分线交于点F,求证AF平分∠BAC.【素质优化训练】1.如图3.9-7,AB=AC,AD=AE,BD、CE交于O,求证AO平分∠BAC.图3.9-72.△ABC 中,AB=BC=CA ,三内角平分线交于O ,OP ⊥AB 于P ,OM ⊥BC 于M ,ON ⊥CA 于N ,AH ⊥BC 于H.求证OP+OM+ON=AH.【生活实际运用】1.如图(3.9-8),某铁路MN 和公路PQ 相交于点O ,且交角为90°,某仓库G 在A 区,到公路、铁路距离相等(即G 在∠NOQ 的平分线上),且到公路与铁路的相交点O 的距离为200m.(1)在图上标出仓库G 的位置(比例尺1∶10000,用圆规作图,保留作图痕迹,不写作法):(2)求出仓库G 到铁路的实际距离.图3.9-8参考答案:【同步达纲练习】一、1.× 2.√ 3.× 4.× 5.√ 6.× 7.× 8.√二、1.距离,集合 2.交于一点,相等 3.相等的角是对顶角,假 4.6,6 5.逆命题,逆定理 6.有两个锐角的三角形是直角三角形,假 7.两直线平行,同位角相等三、1.A 2.C 3.D 4.B 5.B 6.D四、1.作PM ⊥OA 交OA 延长线于M PN ⊥OB 交OB 延长线于N.∵S △OPA =S △OPB ∴21OA ·PM=21OB ·PN OA=OB ∴PM=PN ∴∠AOP=∠BOP 2.提示:过F 分别作三边的垂线FM ,FP ,FN. 易证FM=FP=FN ,再利用角平分线性质可得结论.【素质优化训练】1.作OM ⊥AB 于M ,ON ⊥CD 于N. AB=AC ∠BAD=∠CAE. AD=AE∴△ABD ≌△ACE ∴S △ABD =S △ACE ∴S △BOE =S △COD .又BE=CD ∴OM=ON ∴AO 平分∠BAC.2.S △ABC =S △OAB +S △OAC +S △OBC .21AH ·BC=21OP ·AB+21BC ·OM+21AC ·ON 又AB=BC=CA ∴OP+OM+ON=AH.【生活实际运用】(1)略 (2)1002(m)。

初中数学三角形的高、中线和角平分线同步练习题5套(含答案)

初中数学三角形的高、中线和角平分线同步练习题5套(含答案)

三角形的高、中线和角平分线同步练习题5套(含答案)(一)1.填空题:(1)从三角形一个顶点向它的对边画______,以______和______为端点的线段叫做三角形这边上的高.如图,若CD 是△ABC 中AB 边上的高,则∠ADC ______∠BDC =______,C 点到对边AB 的距离是______的长.(2)连结三角形的一个顶点和它______的______叫做三角形这边上的中线. 如右图,若BE 是△ABC 中AC 边上的中线,则AE ______.______21EC (3)三角形一个角的______与这个角的对边相交,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是________________________________ ______________________________________.如图,若AD 是△ABC 的角平分线,则∠BAD ______∠CAD =21______或∠BAC =2______=2______. 2.已知:△GEF ,分别画出此三角形的高GH ,中线EM ,角平分线FN .3.(1)分别画出△ABC 的三条高AD 、BE 、CF .(∠A 为锐角) (∠A 为直角) (∠A 为钝角)(2)这三条高AD 、BE 、CF 所在的直线有怎样的位置关系?4.(1)分别画出△ABC 的三条中线AD 、BE 、CF .(2)这三条中线AD 、BE 、CF 有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?5.(1)分别画出△ABC的三条角平分线AD、BE、CF.(2)这三条角平分线AD、BE、CF有怎样的位置关系?(3)设△ABC的角平分线BE、CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?(一)参考答案1.(1)垂线,顶点、垂足,=,90°,高CD的长.(2)所对的边的中点、线段,=,AC(3)平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段.=,∠BAC,∠BAD,∠DAC2.略.3.(1)略,(2)三条高所在直线交于一点.4.(1)略,(2)三条中线交于一点,(3)BM=2ME.5.(1)略,(2)三条角平分线交于一点,(3)点N到△ABC三边的距离相等.三角形的高、中线与角平分线(二)一.选择题:1.△ABC中,AB=AC=4,BC=a,则a的取值范围是( )A.a>0 B.0<a<4 C.4<a<8 D.0<a<82.△ABC中,CA=CB,D为BA中点,P为直线CD上的任一点,那么PA与PB的大小关系是( ) A.PA >PB B.PA<PB C.PA=PB D.不能确定3.△ABC中,AB=7,AC=5,则中线AD之长的范围是( )A.5<AD<7B.1<AD<6C.2<AD<12D.2<AD<54.△ABC中,AB=13,BC=10,BC边上中线AP=12,则AB,AC关系为( )A.AB>ACB.AB=ACC.AB<ACD.无法确定5.三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个6.一个三角形中,下列说法正确的是( )A.至少有一个内角不小于90°B.至少一个内角不大于30°C. 至少一个内角不小于60°D. 至少一个内角不大于45°7.△ABC中,∠A=40°,高BD和CE交于O,则∠COD为( )A.40°或140°B. 50°或130°C. 40°D. 50°8.已知,如图1,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是( )A.∠BAC<∠ADCB.∠BAC=∠ADCC.∠BAC>∠ADCD.不能确定9.在△ABC中,已知∠A+∠C=2∠B,∠C-∠A=80°,则∠C的度数是( )A.60°B.80°C.100°D.120°10.如图2,∠B=∠C,则∠ADC与∠AEB的关系是( )A.∠ADC>∠AEBB.∠ADC=∠AEBC.∠ADC<∠AEBD.不能确定二、填空题:1.△ABC中,∠A-∠B=10°,2∠C-3∠B=25°,则∠A= .2.等腰三角形周长为21cm,一中线将周长分成的两部分差为3cm,则这个三角形三边长为________.3.点A、B关于直线l对称,点C、D也关于l对称,AC、BD交于O,则O点在上.4.△ABC周长为36,AB=AC,AD⊥BC于D,△ABD周长为30cm,则AD= .5.等腰三角形一腰上的高与另一腰夹角为45°,则顶角为 .6.三角形三边的长为15、20、25,则三条高的比为 .7.若三角形三边长为3、2a-1、8,则a的取值范围是 .8.如果等腰三角形两外角比为1∶4则顶角为 . 9.等腰三角形两边比为1∶2,周长为50,则腰长为 . 10.等腰三角形底边长为20,腰上的高为16.则腰长为 . 三、解答题:1.△ABC 中AB=AC ,D 在AC 上,且AD=BD=BC.求△ABC 的三内角度数.2.如图,AC=BD ,AD ⊥AC ,BD ⊥BC ,求证AD=BC.3.CD 为Rt △ABC 斜边的中线 V ,DE ⊥AC 于E ,BC=1,AC=3.求△CED 的周长.4. 如图,AD 为△ABC 的中线,∠ADB 的平分线交AB 于E ,∠ADC 的平分线交AC 于E,求证BE+CF >EF.5.△A BC 中,AD ⊥BC 交边BC 于D.(1)若∠A=90° 求证:AD+BC >AB+AC(2)若∠A >90°,(1)中的结论仍然成立吗?若不成立,请举反例,若成立,请给出证明 6.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′、C ′的位置,ED ′ 的延长线与BC 交于点G ,若∠EFG =50°,求∠1、∠2的度数.(二)参考答案一、选择:DCBBB CABCB 二、填空:(1).55° (2).(8,8,5)或(6,6,9) (3).l (4).12 (5).45°或135° (6).20∶15∶12 (7).3<a <6 (8).140° (9).20 (10).350三.解答:1.设∠A=x AD=DB=BCAB=AC ∴∠ABD=x ∠BDC=2x ∠ABC=∠C=2x ∠DBC=x ∴5x=180° x=36° ∴∠A=36°∠C=72° ∠ABC=72°2.连DC ,∠DAC=∠DBC=90° AC=BD DC=DC ∴Rt △DAC ≌△CBD (HL) ∴AD=BC.3.∵∠ACB=90° BC=1 AC=3 ∴AB=2 ∠A=∠ACD=30°C D=1 DE=21CE=23 周长为2334.延长ED 至G ,使ED=DG ,连GC ,GF DE 平分∠BDA ,DF 平分∠ADC ∴∠EDF=90°,ED=DG ∴EF=FG ,△BED ≌△CGD ∴BE=GC ;GC+CF >GF.∴BE+CF >EF.5.(1)∵∠A=90°∴AB2+AC2=BC2AB ·AC=AD ·BC.(AB+AC)2=AB2+AC2+2AB ·AC=BC2+2AD ·BC <BC2+2AD ·BC+AD2=(BC+AD)2∴AD+BC >AB+AC. (2)若∠A >90°,上述结论仍成立.证∵∠A >90°,作AE ⊥AB 交BC 于E ,则AD 为Rt △BAE 斜边上的高 由(1)∴AD+BE >AB+AE ① 在△AE C 中 AE+EC >AC ②;①+② AD+BE+EC+AE >AB+AC+AE ∴AD+BC >AB+AC 6、80°,100°三角形的高、中线与角平分线(三)一、选择题1.一定在三角形内部的线段是( )A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、两条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.如图,△ABC 中,点E 是BC 上的一点,EC=2BE,BD 是边AC 上的中线,若S △ABC =12,则S △ADF -S △BEF =( ) A.1 B.2 C.3 D.4 二、填空题3.空调外机安装在墙壁上时,一般都会按如图所示的方法固定在墙壁上,这种方法应用的数学知识是三角形的 .4.如图所示,∠BAD=45°,AE=4 cm.(1)如果AD 是△ABC 的角平分线,那么∠DAC= ;(2)如果AE=CE,那么线段BE 是△ABC 的 ,AC 的长为 ; (3)如果AF 是△ABC 的高,那么图中以AF 为高的三角形有 个.5.如图,在△ABC中,AD是△ABC边BC上的中线,CE是△ACD边AD上的中线,F是EC的中点.若S△BFC=1,则S△ABC= .三、解答题6.如图,已知AD、AE分别是△ABC的高和中线,AB=9 cm,AC=12 cm,BC=15 cm,∠BAC=90°.试求:(1)△ABE的面积;(2)AD的长度;(3)△A CE与△ABE的周长的差.7.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为24和18两部分,求三角形的三边长.(三)参考答案1.答案 A A项,锐角三角形的三条高、三条角平分线、三条中线一定在三角形内部,故本选项正确;B项,钝角三角形的三条高有两条在三角形的外部,故本选项错误;C项,任意三角形的一条中线、两条角平分线都在三角形内部,但三条高不一定都在三角形内部,故本选项错误;D项,直角三角形的三条高有两条是直角边,不在三角形内部,故本选项错误.故选A.2.答案B∵S△ABC=12,EC=2BE,点D是AC的中点,∴S△ABE=S△ABC=4,S△ABD=S△ABC=6,∴S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.故选B.3.答案稳定性解析题中方法应用的数学知识是三角形的稳定性.4.答案(1)45°(2)中线;8 cm (3)6解析(1)∵AD是△ABC的角平分线,∴∠DAC=∠BAD=45°.(2)∵AE=CE,∴线段BE是△ABC的中线,AC=2AE=2×4=8(cm).(3)以AF为高的三角形有△ABD、△ABF、△ABC、△ADF、△ADC、△AFC,共6个. 5.答案 4解析如图,连接BE.∵点D、E分别为BC、AD的中点,∴S△ABD=S△ACD=S△ABC,S△BDE=S△ABD=S△ABC,S△CDE=S△ACD=S△ABC,∴S△BCE=S△BDE+S△CDE=S△ABC+S△ABC=S△ABC,∵点F是CE的中点,∴S△BEF=S△BFC=S△BCE=×S△ABC=S△ABC,∵S△BFC=1,∴S△ABC=4.6.解析(1)∵△ABC是直角三角形,∠BAC=90°,AB=9 cm,AC=12 cm,∴S△ABC=AB·AC=×9×12=54(cm2).∵AE是边BC上的中线,∴BE=EC,∴BE·AD=EC·AD,即S△ABE=S△AEC,∴S△ABE=S△ABC=27 cm2.∴△ABE的面积是27 cm2. (2)∵∠BAC=90°,AD是边BC上的高,∴AB·AC=BC·AD,∴AD===(cm),即AD的长度为 cm.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长-△ABE的周长=AC+AE+CE-(AB+BE+AE)=AC-AB=12-9=3(cm),即△ACE与△ABE的周长的差是3 cm.7.解析如图,设AB=AC=a,BC=b,则有或解得或这时三角形的三边长分别为16,16,10或12,12,18,它们都能构成三角形.所以三角形的三边长分别为16,16,10或12,12,18.三角形的高、中线与角平分线(四)一、选择题1、已知三角形的两边分别为4和9,则此三角形的第三边可能是()A. 4 B. 5 C.9 D. 132、下列长度的三根木棒首尾相接,不能做成三角形框架的是( )A.5 cm、7 cm、2 cm B.7 cm、13 cm、10 cmC.5 cm、7 cm、11 cm D.5 cm、10 cm、13 cm3、如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A.115°B.120°C.125°D.130°4、下列长度的三条线段,不能组成三角形的是()A.2、3、4 B.1、2、3 C.3、4、5 D.4、5、65、若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线6、如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C其中正确的是()A.①②③B.①③④C.①②④D.①②③④7、下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,118、如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACB C.AE=BE D.CD⊥BE9、一个三角形中直角的个数最多有()A.3B.1C.2D.010、下列图形不具有稳定性的是()11、下列各组中的三条线段能组成三角形的是()A.3,4,8 B.5,6,11C.5,6,10 D.4,4,812、如图所示,其中三角形的个数是()A.2个B.3个C.4个D.5个13、下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形14、如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交BC,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高二、填空题15、在△ABC是AB=5,AC=3,BC边的中线的取值范围是。

12.3角的平分线的性质同步练习题

12.3角的平分线的性质同步练习题

角的平分线的性质(一)知识点:1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。

如右图:OC平分∠AOB∵OC平分∠AOB∴∠AOC=∠BOC2、角的平分线的性质:角平分线上的点到角的两边的距离相等。

【重点】如上图:`∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边)3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。

∵PE⊥OA,PD⊥OB,PD=PE∴OC平分∠AOB(或∠1=∠2)同步测试题:1、角的平分线的性质:如图:用几何语言表示是:∵∴2、逆定理:如上图所示:用几何语言可表示为:;∵∴3、如图所示,CD⊥AB于D点,BE⊥AC于E点,BE、CD交于O点,(1)、若AO平分∠BAC,求证:OB=OC。

》(2)、若OB=OC,求证:AO平分∠BAC4、如图,AD⊥DC,BC⊥DC:,E是DC上一点,AE平分∠DAB.(1)如果BE平分∠ABC,求证:点E是DC的中点;(2)如果E是DC的中点,求证:BE平分∠ABC.PM。

CBAOOEDB CA*5.如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,(1)若BE =CF 。

求证:AD 是△ABC 的角平分线。

(2)若AD 是△ABC 的角平分线。

求证:BE =CF6.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M 、N 重合,过角尺顶点C 的射线OC 便是∠AOB 的平分线。

为什么ABCE ¥F D。

数学 七年级下册第四章三角形1认识三角形第3课时三角形的中线角平分线高同步分层练习

数学 七年级下册第四章三角形1认识三角形第3课时三角形的中线角平分线高同步分层练习

第3课时三角形的中线、角平分线、高1.如图,AE是△ABC的中线,已知EC=4,DE=2,则BD的长为( A )A.2 B.3 C.4 D.62.如图,在△ABC中,AD为BC边上的中线,若AB=5 cm,AC=3 cm,则△ABD的周长比△ACD的周长多( D )A.5 cm B.3 cm C.8 cm D.2 cm3.三角形的三条中线的交点的位置为( A )A.一定在三角形内B.一定在三角形外C.可能在三角形内,也可能在三角形外D.可能在三角形的一条边上4.三角形的重心是( A )A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条内角平分线的交点D.以上说法都不对5.三角形一边上的中线把原三角形分成两个( B )A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形6.如图,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,AE是哪个三角形的角平分线( D )A .△ABEB .△ADFC .△ABCD .△ABC ,△ADF7.如图,(1)AD 是△ABC 的角平分线,则∠ BAD =∠ DAC =12∠ BAC ;(2)AE 是△ABC 的中线,则 BE = EC =12BC .8.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC ,若∠1=30°,∠2=20°,则∠B = 50° .9.如图,D 是△ABC 中BC 上的一点,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,且∠ADE =∠ADF ,AD 是△ABC 的角平分线吗?说明理由.解:AD 是△ABC 的角平分线. 理由:因为DE ∥AC ,DF ∥AB , 所以∠ADE =∠DAF ,∠ADF =∠EAD . 又因为∠ADE =∠ADF ,所以∠DAF =∠EAD , 所以AD 是△ABC 的角平分线.10.(2019·北京石景山区二模)如图,在△ABC 中,AB 边上的高画法正确的是( B )11.三角形的高、中线、角平分线都是( B ) A .直线 B .线段 C .射线D .以上情况都有12.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是( B ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定13.如图.(1)在△ABC 中,BC 边上的高是 AD ; (2)在△AEC 中,CE 边上的高是 AE ; (3)在△BCF 中,BC 边上的高是 BF .14.如图,AD ⊥BC 于点D ,那么图中以AD 为高的三角形有( D )A .3个B .4个C .5个D .6个15.如图,CD ,CE ,CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( C )A .AB =2BF B .∠ACE =12∠ACBC .AE =BED .CD ⊥BE16.下列说法中,正确的个数是( A )①三角形的三条角平分线、三条中线、三条高都在三角形内部;②直角三角形只有一条高;③三角形的三条角平分线、三条中线、三条高分别交于一点. A .0 B .1 C .2 D .317.如图.(1)在△ABC 中,AD ⊥BC ,垂足为D ,则AD 是 BC 边上的高,∠ ADB =∠ ADC =90°;(2)若AE 平分∠BAC ,交BC 于点E ,则AE 叫 △BAC 的角平分线 ,∠ BAE =∠ CAE =12∠BAC ,AH 叫 △BAF 的角平分线 ;(3)若AF =FC ,则△ABC 的中线是 BF ;(4)若BG =GH =HF ,则AG 是 △BAH 的中线,AH 是 △AGF 的中线.18.(1)如图1,点D ,E ,F 分别是BC ,AB ,AC 的中点,若△ABC 的面积为16,则△ABD 的面积是 8 ,△EBD 的面积是 4 ;(2)如图2,点D ,E ,F 分别是BC ,AD ,EC 的中点,若△ABC 的面积为16,求△BEF 的面积是多少.解:(2)因为E 是AD 的中点, 所以S △BCE =12S △ABC =8.因为F 是CE 的中点, 所以S △BEF =12S △BCE =12×8=4.19.如图,在△ABC 中,AD ⊥BC 于点D ,AE 平分∠BAC . (1)若∠C =70°,∠B =40°,求∠DAE 的度数; (2)若∠C -∠B =30°,则∠DAE = 15° ;(3)若∠C -∠B =α(∠C >∠B ),求∠DAE 的度数(用含α的式子表示).解:(1)因为∠C =70°,∠B =40°,AD ⊥BC ,所以∠BAC =180°-40°-70°=70°,∠CAD =20°. 因为AE 平分∠BAC ,所以∠EAC =12∠BAC =35°.所以∠DAE =∠EAC -∠CAD =35°-20°=15°.(3)因为∠B +∠C +∠BAC =180°,所以∠BAC =180°-∠B -∠C .因为AE 平分∠BAC ,所以∠BAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).因为AD ⊥BC ,所以∠ADE =90°,所以∠BAD =90°-∠B ,所以∠DAE =∠BAD -∠BAE =90°-∠B -⎣⎢⎡⎦⎥⎤90°-12(∠B +∠C )=12(∠C -∠B ).因为∠C -∠B =α,所以∠DAE =12α.20.已知:如图1,线段AB ,CD 相交于点O ,连接AD ,CB .如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N .试解答下列问题:(1)在图1中,请直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系 ∠A +∠D =∠B +∠C ; (2)在图2中,若∠D =40°,∠B =30°,试求∠P 的度数;(写出解答过程)(3)如果图2中,∠D 和∠B 为任意值,其他条件不变,试写出∠P 与∠D ,∠B 之间的数量关系.(直接写出结论即可)解:(2)由(1)得,∠1+∠D =∠3+∠P ,∠2+∠P =∠4+∠B ,所以∠1-∠3=∠P -∠D ,∠2-∠4=∠B -∠P .又因为AP ,CP 分别平分∠DAB 和∠BCD ,所以∠1=∠2,∠3=∠4, 所以∠P -∠D =∠B -∠P ,2∠P =∠B +∠D , 所以∠P =(40°+30°)÷2=35°. (3)2∠P =∠B +∠D .。

6.2 角 苏科版数学七年级上册同步练习(解析版)

6.2 角 苏科版数学七年级上册同步练习(解析版)

6.2 角基础过关全练知识点1 角的定义及分类1.下列说法:①由两条射线组成的图形叫做角;②角的大小与所画出的边的长短无关,只与两条边张开的幅度有关;③角的两边是两条射线;④把一个角放到一个放大10倍的放大镜下观看,角的度数也扩大为原来的10倍.其中,正确的个数是( ) A.1B.2C.3D.42.下列角从小到大排列,正确的是( )A.锐角、钝角、直角、平角、周角B.锐角、直角、钝角、周角、平角C.周角、锐角、直角、钝角、平角D.锐角、直角、钝角、平角、周角知识点2 角的表示方法3.下列各个图形中,能用∠AOB,∠O,∠1三种方法表示同一个角的是( )A B C D知识点3 角的大小比较及角的和、差运算4.已知∠AOB=60°,∠BOC=35°,则∠AOC等于( )A.95°B.25°C.35°D.95°或25°5.如图所示,其中最大的角是 ,∠DOC、∠DOB、∠DOA的大小关系是 .(用“>”连接起来)6.如图,已知∠AOD∶∠BOD=3∶4,∠AOC=∠BOC,∠COD=10°,求∠AOB的度数.知识点4 角的度量单位及换算 7.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为( )A.45°B.55°C.125°D.135°8.将一副三角板按如图所示的方式摆放,若∠BAE=135°20',则∠CAD 的度数是 .9.(1)2直角= °;3(2)45°= 平角= 周角;(3)6°30'18″= °;(4)37.145°= ° ' ″.知识点5 角的画法10.(1)用一副三角板画出135°的角;(2)已知∠1=30°,∠2=45°,画∠AOB=2∠1+∠2.知识点6 角平分线11.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠DOM的度数是( )A.20°或50°B.20°或60°C.30°或50°D.30°或60°12.如图①,∠AOB是在透明纸上画的一个角,OC平分∠AOB,如图②,把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的使∠BOE=12一个角为80°,则∠AOB= °.13.(教材P156变式题)如图,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=60°,∠AOC=40°,求∠DOE的度数;(2)若∠DOE=n°,求∠AOB的度数;(3)若∠DOE+∠AOB=180°,求∠AOB与∠DOE的度数.能力提升全练14.(2022江苏扬州高邮期末,5,)学校早上8:20上第一节课,40分钟后下课,这节课中分针转动的角度为( )A.180°B.240°C.270°D.200°15.(2021江苏淮安开明中学期末,5,)如图,佳佳从A处沿正南方向骑行到B处,再右转60°骑行到C处,然后左转80°继续骑行,此时佳佳骑行的方向为( )A.南偏西20° B.南偏西80°C.南偏东20° D.南偏东80°16.(2021内蒙古呼伦贝尔中考,14,)74°19′30″= °.17.(2020内蒙古通辽中考,13,)如图,点O在直线AB上,∠AOC=53°17'28″,则∠BOC的度数是 .第17题图18.(2020云南昆明中考,3,)如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B北偏西35°方向,则∠ABC的度数为 °.第18题图19.(2022江苏淮安淮阴期末,24,)如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC∶∠BOC=1∶2.(1)求∠AOC和∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON∶∠BON=1∶3,求∠MON的度数;(3)过点O作射线OD,若∠AOD=1∠AOB,求∠COD的度数.2素养探究全练20.[空间观念]如图是一只蜗牛在地面上爬行时留下的痕迹,若蜗牛从P点出发按顺时针方向沿图中弧线爬行,最后又回到P点,则该蜗牛共转过的角度是多少?21.[模型观念](2022江苏泰州泰兴期末)如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与O重合,直角边OA与直线MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒3°的速度沿顺时针方向旋转一周,设运动时间为t(s).(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;(2)若在三角尺转动的同时,直线EF也绕点O以每秒9°的速度沿顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.①当t为何值时,EF平分∠AOB?②EF能否平分∠NOB?若能,请直接写出t的值;若不能,请说明理由.答案全解全析基础过关全练1.B ①有公共端点的两条射线组成的图形叫做角,故错误;②正确;③正确;④放大镜下观看角,角的度数不变,故错误.故选B.2.D 大于0°且小于90°的角叫锐角,等于90°的角叫直角,大于90°且小于180°的角叫钝角,等于180°的角叫平角,等于360°的角叫周角,据此可知D 正确.故选D.3.D A,B,C 中以O 为顶点的角不止一个,不能用∠O 表示,故A,B,C 选项不符合题意;D 中能用∠1,∠AOB,∠O 三种方法表示同一个角,故D 选项符合题意.故选D.4.D 如图1,∠BOC 的边OC 在∠AOB 的内部时,∠AOC=∠AOB-∠BOC=60°-35°=25°;如图2,∠BOC 的边OC 在∠AOB 的外部时,∠AOC=∠AOB+∠BOC=60°+35°=95°.综上所述,∠AOC 等于95°或25°.故选D.5.答案 ∠AOD;∠DOA>∠DOB>∠DOC6.解析 设∠AOD=3x°(x>0),则∠BOD=4x°,所以∠AOB=∠AOD+∠BOD=7x°,因为∠AOC=∠BOC,所以∠AOC=12∠AOB=72x°.所以∠COD=∠AOC-∠AOD=72x°-3x°=12x°,即12x°=10°,所以x=20,所以∠AOB=7x°=140°.7.B 因为∠AOB 的边OA 在0°刻度线上,边OB 在55°刻度线上,所以∠AOB 的度数为55°,故选B.8.答案 44°40'解析 ∵∠BAE=∠BAD+∠CAE-∠CAD,∴∠CAD=∠BAD+∠CAE-∠BAE=90°+90°-135°20'=44°40'.9.答案 (1)60 (2)14;18(3)6.505 (4)37;8;4210.解析 (1)如图所示.(2)如图所示.11.C 分为两种情况:如图1,当∠AOB 的边OB 在∠AOC 内部时,图1∵∠AOB=20°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD 平分∠AOB,OM 平分∠AOC,∴∠AOD=∠BOD=12∠AOB=10°,∠AOM=∠COM=12∠AOC=40°,∴∠DOM=∠AOM-∠AOD=40°-10°=30°;如图2,当∠AOB 的边OB 在∠AOC 外部时,图2易知∠DOM=∠AOM+∠AOD=40°+10°=50°.故选C.12.答案 120解析 如图,由题意得∠EOE'=80°,∠EOC=∠E'OC,∠BOE=∠AOE',∴∠COE'=∠COE=40°,∵∠BOE=12∠EOC,∴∠BOE=∠AOE'=20°,∴∠AOB=∠BOE+∠EOE'+∠AOE'=120°.13.解析 (1)∵OD 平分∠BOC,∠BOC=60°,∴∠COD=12∠BOC=30°.同理∠COE=20°.∴∠DOE=∠COD+∠COE=30°+20°=50°.(2)∵OD 平分∠BOC,∴∠BOC=2∠DOC.同理∠AOC=2∠COE.∵∠AOB=∠BOC+∠AOC,∴∠AOB=2∠DOC+2∠COE=2(∠DOC+∠COE)=2∠DOE=2n°. (3)∵∠AOB=2∠DOE,∠DOE+∠AOB=180°,∴∠DOE+2∠DOE=180°,∴∠DOE=60°,∴∠AOB=120°.能力提升全练14.B 分针每分钟转6°,40分钟转240°.15.C 如图,可知佳佳骑行的方向为南偏东20°,故选C.16.答案 74.325解析 先将30″化成0.5',再将19.5'化成0.325°,74°+0.325°=74.325°. 17.答案 126°42'32″解析 ∠BOC=180°-∠AOC=180°-53°17'28″=126°42'32″,故答案为126°42'32″.18.答案 95解析 如图,B在A的北偏东50°方向,则A在B的南偏西50°方向,∠1=∠A=50°,则∠ABC=180°-35°-50°=95°.19.解析 (1)∵∠AOC ∶∠BOC=1∶2,∠AOB=120°,∴∠AOC=13∠AOB=13×120°=40°,∠BOC=23∠AOB=23×120°=80°.(2)∵OM 平分∠AOC,∴∠COM=12∠AOC=12×40°=20°,∵∠CON ∶∠BON=1∶3,∴∠CON=14∠BOC=14×80°=20°,∴∠MON=∠COM+∠CON=20°+20°=40°.(3)分情况讨论:①如图1,当OD 在∠AOB 的内部时,图1∵∠AOD=12∠AOB,∴∠AOD=12×120°=60°,∴∠COD=∠AOD-∠AOC=60°-40°=20°;②如图2,当OD 在∠AOB 外部时,图2∵∠AOD=12∠AOB,∴∠AOD=12×120°=60°,∴∠COD=∠AOD+∠AOC=60°+40°=100°.综上所述,∠COD 的度数为20°或100°.素养探究全练20.解析 由P 点开始转一圈回到P 点与由A 点开始转一圈回到A 点所转角度相同,而由A 点转到C 点转了180°,由C 点转到D 点转了180°,由D 点转到E 点转了180°,由E 点转到F 点转了180°,由F 点转到B 点转了180°,由B 点转到A 点转了180°,共转了6×180°=1 080°.答:该蜗牛共转过的角度是1 080°.21.解析 (1)∵当直角边OB 恰好平分∠NOE 时,∠NOB=12∠NOE=12×(180°-30°)=75°,∴90°-3°t=75°,解得t=5.此时∠MOA=3°×5=15°=12∠MOE,∴此时OA 平分∠MOE.(2)①当OE 平分∠AOB 时,依题意有30°+9°t-3°t=90°÷2,解得t=2.5;当OF 平分∠AOB 时,依题意有30°+9°t-3°t=180°+90°÷2,解得t=32.5.故当t为2.5或32.5时,EF平分∠AOB.②能.理由:当OB在MN上方时,依题意有180°-30°-9°t=(90°-3°t)÷2,解得t=14;当OB在MN下方时,依题意有9°t-(360°-30°)=(3°t-90°)÷2,解得t=38.故EF能平分∠NOB,t的值为14或38.。

角平分线的性质定理的逆定理同步练习(2020年最新)

角平分线的性质定理的逆定理同步练习(2020年最新)

1.4 角平分线的性质第2课时角平分线的性质定理的逆定理要点感知角平分线的性质定理的逆定理:角的内部到角的两边距离相等的点在__________上.预习练习如图,P是∠MON内一点,PE⊥OM于点E,PF⊥ON于点F,若PE=PF,则OP平分∠MON,其依据是____________________.知识点角平分线的判定1.如图,点D在BC上,DE⊥AB,DF⊥AC,且DE=DF,∠BAD=25°,则∠CAD=( )A.20°B.25°C.30°D.50°第1题图第2题图第3题图2.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是( )A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点3.如图,已知点P在射线BD上,PA⊥AB,PC⊥BC,垂足分别为A,C,且PA=PC,下列结论错误的是( )A.AD=CPB.点D在∠ABC的平分线上C.△ABD≌△CBDD.∠ADB=∠CDB4.如图,是一个风筝骨架.为使风筝平衡,须使∠AOP=∠BOP.已知PC⊥OA,PD⊥OB,那么PC和PD应满足__________,才能保证OP为∠AOB的角平分线.第4题图第5题图5.如图,△ABC中,∠C=90°,∠A=36°,DE⊥AB于D,且EC=ED,则∠EBC的度数为__________.6.如图:在△ABC中,∠C=90°,DF⊥AB,垂足为F,DE=BD,CE=FB.求证:点D在∠CAB的角平分线上.7.如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于点D,若BD=CD.求证:AD平分∠BAC.8.下列说法:①角的内部任意一点到角的两边的距离相等;②到角的两边距离相等的点在这个角的平分线上;③角的平分线上任意一点到角的两边的距离相等;④△ABC中∠BAC的平分线上任意一点到三角形的三边的距离相等,其中正确的有( )A.1个B.2个C.3个D.4个9.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中( )A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确第9题图第10题图10.如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )A.1处B.2处C.3处D.4处11.点O是△ABC内一点,且点O到三边的距离相等,∠A=50°,则∠BOC=__________.12.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.13.如图,某校八年级学生分别在M,N两处参加植树劳动,现要在道路AB,AC的交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请你找出点P.14.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠DAB?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.参考答案要点感知角的平分线预习练习角平分线定理的逆定理1.B2.D3.A4.PC=PD5.27°6.证明:∵DF⊥AB,∠C=90°,∴∠DFB=∠C=90°.在Rt△CED和Rt△FBD中,DE=DB,CE=FB,∴△CED≌△FBD(HL).∴DC=DF.∵DF⊥AB,DC⊥AC,∴点D在∠CAB的角平分线上.7.证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,∠BFD=∠CED,∠BDF=∠CDE,BD=CD,∴△BDF≌△CDE(AAS).∴DF=DE.∴AD是∠BAC的平分线.8.B 9.B 10.D 11.115°12.证明:∵DE⊥AB,DF⊥AC,∴△BDE和△DCF是直角三角形.∵BD=CD,BE=CF,∴Rt△BDE≌Rt△CDF(HL).∴DE=DF.又∵DE⊥AB,DF⊥AC,∴AD是△ABC的角平分线.13.作法:(1)作出∠BAC的平分线AD;(2)连接MN,作MN的垂直平分线EF交AD于点P.∴点P就是所求的点.图略.14.(1)AM平分∠DAB.证明:过点M作ME⊥AD,垂足为 E.∵DM平分∠ADC,∴∠1=∠2.∵MC⊥CD,ME⊥AD,∴ME=MC.又∵MC=MB,∴ME=MB.∵MB⊥AB,ME⊥AD,∴AM平分∠DAB.(2)AM⊥DM.理由:∵∠B=∠C=90°,∴DC⊥CB,AB⊥CB.∴CD∥AB.∴∠CDA+∠DAB=180°.又∵∠1=12∠CDA,∠3=12∠DAB,∴2∠1+2∠3=180°.∴∠1+∠3=90°.∴∠AMD=90°,即AM⊥DM.。

数学人教版七年级下册同步训练:第五章5.2---5.4练习题含答案

数学人教版七年级下册同步训练:第五章5.2---5.4练习题含答案

5.2 平行线及其判定一、单选题1.下列说法正确的有( )①同位角相等;②两点之间的所有连线中,线段最短;③过一点有且只有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤已知同一平面内70AOB ∠=︒,30BOC ∠=︒,则100AOC ∠=︒;A. 1个B. 2个C. 3个D. 4个2.如图,已知,AB CD BC DA ==,下列结论:①BAC DCA ∠=∠;②ACB CAD ∠=∠;③//AB CD .其中正确的结论有( )A. 0个B.1个C. 2个D.3个3.如图,在下列四个条件中,可得CE AB ∥的条件是( )A.23∠∠=B.4180ACD ∠∠︒+=C.14∠∠=D.2180BCE ∠∠︒+=4.如图所示,一个零件ABCD 只需要满足AB 边与CD 边平行就合格,现只有一个量角器,测得拐角120ABC ∠︒=,60BCD ∠︒=,那么这个零件是否合格( )A.合格B.不合格C.不一定D.无法判断5.下列说法不正确的是( )A.100米跑道的跑道线所在的直线是平行线B.马路的斑马线所在的直线是平行线C.若//a b ,//b d ,则a d ⊥D.过直线外一点有且只有一条直线与已知直线平行6.如图,12∠∠=,则直线AB CD ∥的是( )A. B.C. D.7.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度是( )A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°8.如图,点E 在BC 的延长线上,下列条件中不能判定AB CD ∥的是( )A.12∠∠=B.34∠∠=C.B DCE ∠∠=D.180D DAB ∠∠︒+=二、填空题9.在同一平面内有三条直线,如果其中有且只有两条直线平行,那么这三条直线有且只有 个交点.10.如图所示,木工师傅用角尺画出工件边缘的两条垂线,则这两条垂线 .11.如图,要使CF BG ∥,你认为应该添加的一个条件是 .12.如图,70A ∠︒=,O 是AB 上一点,直线OD 与AB 所夹角82BOD ∠︒=,要使OD AC ∥,直线OD 绕点O 按逆时针方向旋转 度.13.已知,如图,ABC ADC ∠∠=,BF DE ,分别平分ABC ∠与ADC ∠,且13∠∠=.试说明:AB CD ∥.请根据条件进行推理,得出结论,并在括号内注明理由.解:BF DE ,分别平分ABC ∠与ADC ∠, 112ABC ∴∠∠=,122ADC ∠∠=( ) ABC ADC ∠∠=,∴∠ ∠= .13∠∠=,2∴∠= (等量代换)∴ ∥ ( )三、解答题14.已知,如图,AD 是一条直线,160∠︒=,2120∠︒=.试说明//BE CF .参考答案1.答案:A①同位角不一定相等,错误;②两点之间的所有连线中,线段最短,正确;③过直线外一点有且只有一条直线与已知直线平行,错误;④两点之间的距离是两点间的线段的长度,错误;⑤已知同一平面内70,30AOB BOC ∠=︒∠=︒,则100AOC ∠=︒或40︒,错误。

《角平分线》同步练习2

《角平分线》同步练习2

1.4 角平分线一、判断题1.在同一平面内,到三角形三边距离相等的点只有一个2.在同一平面内,到三角形三边所在直线距离相等的点只有一个3.三角形三条角平分线交于一点4.等腰三角形底边中点到两腰的距离相等5.三角形是以它的角平分线为对称轴的轴对称图形二、填空题1.如图(1),点P为△ABC三条角平分线交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD__________PE_________PF.2.如图(2),P是∠AOB平分线上任意一点,且PD=2cm,若使PE=2cm,则PE 与OB的关系是__________.3.如图(3),CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、CB于点E、F,FG⊥AB,垂足为G,则CF__________FG,∠1+∠3=__________度,∠2+∠4=__________度,∠3__________∠4,CE_________CF.(1)(2)(3)4.如右图,E、D分别是AB、AC上的一点,∠EBC、∠BCD的角平分线交于点M,∠BED、∠EDC的角平分线交于N.求证:A、M、N在一条直线上.证明:过点N作NF⊥AB,NH⊥ED,NK⊥AC过点M作MJ⊥BC,MP⊥AB,MQ⊥AC∵EN平分∠BED,DN平分∠EDC∴NF__________NH,NH__________NK∴NF__________NK∴N在∠A的平分线上又∵BM平分∠ABC,CM平分∠ACB∴__________=__________,__________=__________∴__________=__________∴M在∠A的__________上∴M、N都在∠A的_________上∴A、M、N在一条直线上三、作图题1.利用角平分线的性质,找到△ABC内部距三边距离相等的点.2.在下图△ABC所在平面中,找到距三边所在直线..距离相等的点.3.如下图,一个工厂在公路西侧,在河的南岸,工厂到公路的距离与到河岸的距离相等,且与河上公路桥南首(点A)的距离为300米.请用量角器和刻度尺在图中标出工厂的位置.四、解答题已知:如下图在△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若BC=32,且BD∶CD=9∶7,求:D到AB边的距离.参考答案一、1.√ 2.× 3.√ 4.√ 5. ×二、1.= =2.垂直3.= 90 90 = =4.= = = MP MJ MQ MJ MP MQ 平分线 平分线三、提示:1.三个内角平分线交点2.一个内角平分线与另外两个角外角平分线的交点3.略四、解:过点D 作DE ⊥AB ,则DE 是点D 到AB 的距离 ∵BD ∶CD=9∶7,∴CD=BC·16732167⨯==14 而AD 平分∠CAB ,∴DE=CD=14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.B2. B
四、计算题
解:∵AD平分∠BAC,DE⊥AB,
CD⊥AC
∴ห้องสมุดไป่ตู้D=DE
∵BC=8cm,BD=5cm,
∴CD=3cm
∴DE=3cm
五、证明题
1.证明:∵AD是角平分线
DE⊥AB,DF⊥AC
∴DE=DF
∵BD=CD
∠BED=∠CFD=Rt∠
∴Rt△BED≌Rt△CFD (HL)
∴BE=CF
2.证:∵∠1=∠2,OD⊥AB,OE⊥AC
∴OD=OE
∴∠ODB=∠OEC=90°
∠DOB=∠EOC
∴△DOB≌△EOC (ASA)
∴∠B=∠C
∵∠1=∠2.∠B=∠C,AO=AO
∴△AOB≌△AOC (AAS)
∴AB=AC
A.8cm B.10cm C.12cm D.14cm
2.三角形角平分线的交点_________.[]
A.到三角形三顶点的距离相等
B.到三角形三边的距离相等
C.到三角形三边中点的距离相等
D.到三边中垂线的距离相等
四、计算题
已知:如图,AD平分∠BAC,∠C=90°,
DE⊥AB,BC=8cm,BD=5cm,
求:DE=?
五、证明题
1.已知:如图△ABC中,AD是∠A的角平分线,且BD=CD,DE,DF分别垂直AB,AC于E,F.
求证:EB=FC
2.如图,O为∠BAC的平分线上一点,过O作AB,AC的垂线分别交AC,AB于C、B,垂足为D、E.
求证:AB=AC
参考答案
一、判断题√
二、填空题30,=.1
三、选择题
4.12角平分线同步练习
一、判断题
角的平分线可以看作是到角的两边的距离相等的所有点的集合.()
二、填空题
△ABC中,∠A=Rt∠,∠B的平分线交AC于D,DE、BC与E,若E恰好是BC的中点时,∠C=________度,AD________DE.
三、选择题
1.已知:如图,△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的角平分线,DE、BC于E,若BC=10cm,则△DEC的周长为_________.[]
相关文档
最新文档