热学(李椿+章立源+钱尚武)习题解答_第六章 热力学第二定律

合集下载

热学(李椿+章立源+钱尚武)习题解答_第六章 热力学第二定律

热学(李椿+章立源+钱尚武)习题解答_第六章 热力学第二定律

第六章热力学第二定律6-1 设每小时能造冰m克,则m克25℃的水变成-18℃的水要放出的热量为25m+80m+0.5×18m=114m有热平衡方程得4.18×114m=3600×2922∴ m=2.2×104克=22千克由图试证明:任意循环过程的效率,不可能大于工作于它所经历的最高热源温度与最低热温源温度之间的可逆卡诺循环的效率。

(提示:先讨论任一可逆循环过程,并以一连串微小的可逆卡诺循环过程。

如以T m和T n分别代表这任一可循环所经历的最高热源温度和最低热源温度。

试分析每一微小卡诺循环效率与的关系)证:(1)d当任意循环可逆时。

用图中封闭曲线R表示,而R可用图中一连串微笑的可逆卡诺循环来代替,这是由于考虑到:任两相邻的微小可逆卡诺循环有一总,环段绝热线是共同的,但进行方向相反从而效果互相抵消,因而这一连串微小可逆卡诺循环的总效果就和图中锯齿形路径所表示的循环相同;当每个微小可逆卡诺循环无限小而趋于数总无限多时,其极限就趋于可逆循环R。

考虑人一微小可逆卡诺循(187完)环,如图中阴影部分所示,系统从高温热源T i吸热Q i,向低温热源T i放热,对外做功,则效率任意可逆循环R的效率为A为循环R中对外作的总功(1)又,T m和T n是任意循环所经历的最高温热源和最低温热源的温度∴对任一微小可逆卡诺循,必有:T i≤T m,T i≥T n或或令表示热源T m和T n之间的可逆卡诺循环的效率,上式为将(2)式代入(1)式:或或(188完)即任意循环可逆时,其效率不大于它所机灵的最高温热源T m和最低温度热源T n之间的可逆卡诺循环的效率。

(2)任意循环不可逆时,可用一连串微小的不可逆卡诺循环来代替,由于诺定理知,任一微小的不可逆卡诺循环的效率必小于可逆时的效率,即(3)对任一微小的不可逆卡诺循环,也有(4)将(3)式代入(4)式可得:即任意不可逆循环的效率必小于它所经历的最高温热源T m和最低温热源T n之间的可逆卡诺循环的效率。

热学教程习题参考解(第六章)

热学教程习题参考解(第六章)

《第六章 习 题6-1. 有人声称设计出一热机工作于两个温度恒定的热源之间,高温和低温热源分别为400K 和250K ;当此热机从高温热源吸热2.5×107cal 时,对外作功20 kW ﹒h ,而向低温热源放出的热量恰为两者之差,这可能吗?解:此热机的效率应为 ()()%5.374002501112=-=-=T T η,故当热机从高温热源吸热71105.2⨯=Q cal 时,能提供的功为6711038.9375.0105.2⨯=⨯⨯==ηQ W cal ,同时向低温热源放出热量为7671210562.11038.9105.2⨯=⨯-⨯=-=W Q Q cal 。

这样,倘若本题所设计的热机能够实现,它对外的作功值 20kw·h 710728.1⨯=cal 显然超过了此卡诺热机可能的最大输出功 61038.9⨯cal ,所以设计这样的热机是不可能的。

6-2.设有1mol 的某种单原子理想气体,完成如图所示的一个准静态循环过程,试求:(1)经过一个循环气体所作的净功;(2)在态C 和态A 之间的内能差;(3) 从A 经B 到C 过程中气体吸收的热量。

(答:(1)314 J;(2)600 J;(3)1157 J)解:如图所示,1mol 在V p -图上,描述此圆的方程为()[]()[]1222020=-+-V V p p, 其中的33050m 10,Pa 10-==V p 。

(1)经过一个循环过程,气体所做的功等于描述此循环过程的圆面积,即31400=V p πJ ;(2)与A 和C 点的温度为 ()()R V p R V p T A A A 002==和()()R V p R V p T C C C 006==,故两点之间的内能差为 ()600600==-=-=∆V p T T C U U U A C V A C A C J ,其中的定容热容()R C V 23=;(3)依据热力学第一定律,气体在ABC 过程中吸收的热量 W U Q +∆=,其中的内能增量U ∆已由(2)求得;而过程中所做的功可由过程曲线下所包含的面积求得:()5574210000=+=V p V p W πJ ,故1157=Q J ; (4)循环最高和最低温度分别发生在()[]22201+=p p ,()[]22201+=V V习题6-2图和()[]22202-=p p ,()[]22202-=V V所以相应的最高温度值为:()()()[]2.88222200111=+==R V p R V p T K ,最低温度值为 ()()()[]1.20222200222=-==R V p R V p T K ;(5)此循环效率为 ()12Q W =η,式中的循环功已由(1)求得 314=W J ,而循环吸热将发生在气体从最低温度2T 升至最高温度1T 之间,故()()()()%373699.01.202.8831.823232112≅=-⨯⨯=-=T T R Q 。

热学答案第二版(完整版)解析-李椿-章立源等著

热学答案第二版(完整版)解析-李椿-章立源等著

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

热力学第二定律-习题精选全文完整版

热力学第二定律-习题精选全文完整版

可编辑修改精选全文完整版四、概念题(一) 填空题1.在高温热源T 1和低温热源T 2之间的卡诺循环, 其热温熵之和()1212Q Q T T +=。

循环过程的热机效率()η=。

2.任一不可逆循环过程的热温熵之和可以表示为()0Q T δ⎛⎫ ⎪⎝⎭⎰不可逆。

3.在绝热密闭的刚性容器中发生某一化学反应,此过程的()sys 0S ∆;()amb0S ∆。

4.系统经可逆循环后,S ∆( )0, 经不可逆循环后S ∆( )。

(填>,=,<)。

5.某一系统在与环境300K 大热源接触下经历一不可逆循环过程,系统从环境得到10kJ 的功,则系统与环境交换的热()Q =;()sys S ∆=;()amb S ∆=。

6.下列过程的△U 、△H 、△S 、△G 何者为零?⑴ 理想气体自由膨胀( );⑵ H 2(g )和Cl 2(g )在绝热的刚性容器中反应生成HCl (g )的过程( );⑶ 在0 ℃、101.325 kPa 下水结成冰的相变过程( )。

⑷ 一定量真实气体绝热可逆膨胀过程( )。

⑸ 实际气体节流膨胀过程( )。

7.一定量理想气体与300K 大热源接触做等温膨胀,吸热Q =600kJ,对外所做功为可逆功的40%,则系统的熵变()S ∆=。

8. 1 mol O 2(p 1,V 1,T 1)和1 mol N 2(p 1,V 1,T 1)混合后,总压为2 p 1,总体积为V 1,温度为T 1,此过程的△S ( )0(填>,<或=,O 2和N 2均可看作理想气体)。

9.热力学第三定律用公式表示为:()()*m S =。

10. 根据 d G =-S d T+V d p 可知任一化学反应的(1)r m ΔTG p ⎛⎫∂= ⎪∂⎝⎭( ); (2)r m ΔPG T ∂⎛⎫= ⎪∂⎝⎭( ); (3)r m ΔPV T ∂⎛⎫= ⎪∂⎝⎭( )。

11.某理想气体在500 K 、100 kPa 时,其m TS p ⎛⎫∂= ⎪∂⎝⎭ ( )(要求填入具体数值和单位)。

热力学第二定律习题解析

热力学第二定律习题解析

热力学第二定律习题解析第二章热力学第二定律习题一 . 选择题:1. 理想气体绝热向真空膨胀,则 ( )(A) △S = 0,W = 0 (B) △H = 0,△U = 0(C) △G = 0,△H = 0 (D) △U = 0,△G = 02. 熵变△S 是(1) 不可逆过程热温商之和 (2) 可逆过程热温商之和(3) 与过程无关的状态函数 (4) 与过程有关的状态函数以上正确的是()(A) 1,2 (B) 2,3 (C) 2 (D) 43. 对于孤立体系中发生的实际过程,下式中不正确的是:()(A) W = 0 (B) Q = 0 (C) △S > 0 (D) △H = 04. 理想气体经可逆与不可逆两种绝热过程()(A) 可以从同一始态出发达到同一终态(B) 不可以达到同一终态(C) 不能断定 (A)、(B) 中哪一种正确(D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定5. P?、273.15K 水凝结为冰,可以判断体系的下列热力学量中何者一定为零?(A) △U (B) △H (C) △S (D) △G6. 在绝热恒容的反应器中,H2和 Cl2化合成 HCl,此过程中下列各状态函数的变化值哪个为零?( ) (A) △r U m (B) △r H m (C) △r S m (D) △r G m7. 在绝热条件下,用大于气筒内的压力,迅速推动活塞压缩气体,此过程的熵变为: ( ) (A) 大于零 (B) 等于零 (C) 小于零 (D) 不能确定8. H2和 O2在绝热钢瓶中生成水的过程:()(A) △H = 0 (B) △U = 0 (C) △S = 0 (D) △G = 09. 在 270K,101.325kPa 下,1mol过冷水经等温等压过程凝结为同样条件下的冰,则体系及环境的熵变应为: ( )(A) △S体系 < 0 ,△S环境< 0 (B) △S体系 < 0 ,△S环境> 0(C) △S体系 > 0 ,△S环境< 0 (D) △S体系 > 0 ,△S环境 > 010. 1mol 的单原子理想气体被装在带有活塞的气缸中,温度是300K,压力为1013250Pa。

热学第六章课后习题答案

热学第六章课后习题答案

热学第六章课后习题答案第六章热学答案1.解:由致冷系数2122T T T A Q -==ε ()J T T AT Q 421221025.121102731000?=-?=-= 2.解:锅炉温度K T 4832732101=+=,暖气系统温度K T 333273602=+=,蓄水池温度K T 288273153=+=。

kg 0.1燃料燃烧放出的热量为1Q 热机的工作效率1212111T T Q Q Q A-=-==η,向制冷机做功)1(121T T Q A -=,热机向暖气系统放热分别为11212Q T T A Q Q =-=;设制冷机的制冷系数32343T T T A A Q A Q -=-==ε, A T T T T T T T T T A Q ?-?-=-+=3221213234)1(暖气系统得到热量为:112322112421Q T T T T T Q T T Q Q Q--+=+=1123231Q T T T T T ?-T -= cal 41049.115000483333288333288483?=--=3.解:(1)两个循环都工作与相同绝热线,且低温T 不变,故放热相同且都为2Q ,在第一个循环过程中221212111Q A Q Q Q T T +-=-=-=η,2122T T AT Q -=;在第二个循环过程中高温热源温度提高到3T 的循环过程中2223232111Q A Q Q Q T T +-=-=- =η,23222T T T A Q -=;因此23222122T T T A T T AT Q -=-=解得()()K T T A A T T 473173373800106.12733211223=-?+=-+=(2)效率增大为:3.424732731132=-=-=T T η %4.解:热机效率1211T T Q A -≤,当取等号时1Q 最小,此时1211T T Q A -=, ()J T T AT T T A Q 552111211075.2502732502732502731005.11?=--++?=-=-=,热力学第一定律A Q Q -=12,当1Q 最小时,2Q 最小,J A Q Q 555121070.11005.11075.2?=?-?=-=J5 .解:121T T -=η 4674.017273121=-+=-=ηT T 当η增加为 50 %时,5605.017273'1=-+=T高温热源需要增加的温度为:△934675601'1=-=-=T T T K 6.解:将1Kg25℃的水制成-10℃需要提取的热量为:Q=80+×10+1×25=×105cal/kg 由212T T T -= ε此制冷机的制冷系数为卡诺制冷系数的31,故有()A QT T T 2212133=-==εε∴()21223T T AT Q -=每小时制冰为:()2123T T q AT q Q M -===()8.2226330818.4101.13106.3150026353=-Kg 7.证明:如图所示:封闭的曲线ABCDA 为任意可逆循环过程这一可逆循环过程经历的最高温度为m T ,最低温度为n T图中还表示出用一连串微小的可逆卡诺循环去代替这一循环。

热力学第二定律参考答案

热力学第二定律参考答案

热力学第二定律参考答案热力学第二定律参考答案热力学第二定律是热力学中的一条基本定律,它描述了热量的自然流动方向和热量转化的不可逆性。

热力学第二定律的提出和发展,对于我们理解自然界中的热现象和能量转化过程具有重要的意义。

本文将从热力学第二定律的历史背景、基本原理和应用等方面进行探讨。

热力学第二定律的历史背景可以追溯到19世纪初,当时物理学家们开始对热现象进行深入研究。

在这个时期,人们普遍认为热量是一种物质,即所谓的“热质”。

然而,随着科学的发展,人们逐渐认识到热量并不是一种物质,而是一种能量形式。

这一认识的转变为热力学第二定律的提出奠定了基础。

热力学第二定律的基本原理可以用不同的表述方式来描述,其中最常见的是克劳修斯表述和开尔文表述。

克劳修斯表述指出,热量不会自发地从低温物体传递到高温物体,而是自发地从高温物体传递到低温物体。

这个表述可以用来解释为什么我们感觉到的热量总是从热的物体流向冷的物体。

开尔文表述则指出,不可能通过循环过程将热量完全转化为功而不产生其他影响。

这个表述可以用来解释为什么我们无法制造一个永动机,即从热源中获取无限的能量。

热力学第二定律的应用涵盖了广泛的领域,其中最重要的应用之一是热机的效率。

热机是将热能转化为功的装置,如汽车发动机和蒸汽机等。

根据热力学第二定律,热机的效率不可能达到100%,总是存在一定的能量损失。

这个能量损失被称为热机的热损耗,它限制了热机的效率提高的上限。

因此,热力学第二定律对于热机的设计和改进具有指导作用。

除了热机,热力学第二定律还可以应用于其他领域,如能源转化和环境保护等。

能源转化是指将一种形式的能量转化为另一种形式的能量,如化学能转化为电能。

根据热力学第二定律,能源转化过程总是伴随着能量的损失,因此我们需要在能源转化过程中尽量减少能量损失,提高能源利用效率。

环境保护方面,热力学第二定律的应用可以帮助我们理解能源消耗和环境污染的关系,从而制定相应的环境保护政策和措施。

李椿热学答案及部分习题讲解部分习题的参考答案

李椿热学答案及部分习题讲解部分习题的参考答案

“热学”课程第一章作业习题说明:“热学”课程作业习题全部采用教科书(李椿,章立源,钱尚武编《热学》)里各章内的习题。

第一章习题:1,2,3[1],4,5,6,8,10,11,20,24[2],25[2],26[2],27,28,29,30,31,32,33. 注:[1] 与在水的三相点时[2] 设为等温过程第一章部分习题的参考答案1.(1) –40;(2) 574.5875;(3) 不可能.2.(1) 54.9 mmHg;(2) 371 K.3. 0.99996.4. 400.574.5. 272.9.6. a = [100/(X s–X i)]⋅(︒C/[X]), b = –[100 X i/(X s–X i)]︒C, 其中的[X]代表测温性质X的单位.8. (1) –205︒C;(2) 1.049 atm.10. 0.8731 cm, 3.7165 cm.11. (1) [略];(2) 273.16︒, 273.47︒;(3) 不存在0度.20. 13.0 kg⋅m-3.24. 由教科书137页公式可得p = 3.87⨯10-3 mmHg.25. 846 kg⋅m-3.26. 40.3 s (若抽气机每旋转1次可抽气1次) 或40.0 s (若抽气机每旋转1次可抽气2次, 可参阅教科书132页).27. 28.9, 1.29 kg⋅m-3.28. 氮气的分压强为2.5 atm, 氧气的分压强为1.0 atm, 混合气体的压强为3.5 atm.29. 146.6 cm-3.30. 7.159⨯10-3 atm, 71.59 atm, 7159 atm; 4.871⨯10-4 atm, 4.871 atm, 487.1 atm.31. 341.9 K.32. 397.8 K.33. 用范德瓦耳斯方程计算得25.39 atm, 用理想气体物态方程计算得29.35 atm.“热学”课程第二章作业习题第二章习题:1,3,4,5,6,7,8,9[3],10,11,12,13[4],16,17,18,19,20.注:[3] 设为绝热容器[4] 地球和月球表面的逃逸速度分别等于11.2 km⋅s-1和2.38 km⋅s-1第二章部分习题的参考答案1. 3.22⨯103 cm-3.3. 1.89⨯1018.4. 2.33⨯10-2 Pa.5. (1) 2.45⨯1025 m-3;(2) 1.30 kg⋅m-3;(3) 5.32⨯10-26 kg;(4) 3.44⨯10-9 m;(5) 6.21⨯10-21 J.6. 3.88⨯10-2 eV,7.73⨯106 K.7. 301 K.8. 5.44⨯10-21 J.9. 6.42 K, 6.87⨯104Pa (若用范德瓦耳斯方程计算) 或6.67⨯104 Pa (若用理想气体物态方程计算).10. (1) 10.0 m⋅s-1;(2) 7.91 m⋅s-1;(3) 7.07 m⋅s-111. (1) 1.92⨯103 m⋅s-1;(2) 483 m⋅s-1;(3) 193 m⋅s-1.12. (1) 485 m⋅s-1;(2) 28.9, 可能是含有水蒸气的潮湿空气.13. 1.02⨯104 K, 1.61⨯105 K; 459 K, 7.27⨯103 K.16. (1) 1.97⨯1025 m-3 或2.00⨯1025 m-3;(2) 由教科书81页公式可得3.26⨯1027m-2或3.31⨯1027 m-2;(3) 3.26⨯1027 m-2或3.31⨯1027 m-2;(4) 7.72⨯10-21 J, 6.73⨯10-20 J.17. 由教科书81页公式可得9.26⨯10-6 g⋅cm-2⋅s-1.18. 2.933⨯10-10 m.19. 3.913⨯10-2 L, 4.020⨯10-10 m, 907.8 atm.20. (1) (V1/3 -d)3;(2) (V1/3 -d)3 - (4π/3)d3;(3) (V1/3 -d)3 - (N A - 1) ⋅(4π/3)d3;(4)因V1/3>>d,且N A>>1, 故b = V - (N A/2)⋅{(V1/3 -d)3 +[(V1/3 -d)3 - (N A - 1)⋅(4π/3)d3]}⋅(1/N A) ≈ 4N A(4π/3)(d/2)3.“热学”课程第三章作业习题第三章习题:1,2,4,5[5],6,7,9,10,11,12,13,15,16,17,18,19,20[6],22[7],23,24,25[8],26,27,28,29,30.注:[5] 设p0 = 1.00 atm[6] 分子射线中分子的平均速率等于[9πRT/(8μ)]1/2[7] 设相对分子质量等于29.0[8] f(ε)dε = 2π-1/2(kT)-3/2ε1/2e-ε/kT dε第三章部分习题的参考答案1. (1) 3.18 m⋅s-1;(2) 3.37 m⋅s-1;(3) 4.00 m⋅s-1.2. 395 m⋅s-1, 445 m⋅s-1, 483 m⋅s-1.4. 3π/8.5. 4.97⨯1016个.6. 0.9534.7. (1) 0.830 %;(2) 0.208 %;(3) 8.94⨯10-7 %.9. [2m/(πkT)]1/2.10. (1) 198 m⋅s-1;(2) 1.36⨯10-2 g⋅h-1.11. [略].12. (1) [略];(2) 1/v0;(3) v0/2.13. (1) 2N/(3v0);(2) N/3;(3) 11v0/9.15. [略].16. [略].17. 0.24 %.18. (1) 0.5724N;(2) 0.0460N.19. n[kT/(2πm)]1/2⋅[1 + (mv2/2kT)]⋅exp[ –(mv2/2kT)]或[nv p /(2π1/2)] ⋅[1 + (v2/v p2)]⋅exp[ –(v2/v p2)].20. 0.922 cm, 1.30 cm.22. 2.30 km.23. 1955 m.24. kT/2.25. f(ε)dε = 2(π)-1/2(kT)-3/2ε1/2exp[ -ε/(kT)]dε, kT/2.26. 3.74⨯103 J⋅mol-1, 2.49⨯103 J⋅mol-1.27. 6.23⨯103 J⋅mol-1, 6.23⨯103 J⋅mol-1; 3.09⨯103 J⋅g-1, 223 J⋅g-1.28. 5.83 J⋅g-1⋅K-1.29. 6.61⨯10-26 kg和39.8.30. (1) 3, 3, 6;(2) 74.8 J⋅mol-1⋅K-1.“热学”课程第四章作业习题第四章习题:1,2,4,6[7],7,8,10,11,13[2],14,15,17,18[9],19,21.注:[2] 设为等温过程[7] 设相对分子质量等于29.0[9] CO2分子的有效直径等于4.63×10-10 m第四章部分习题的参考答案1. 2.74⨯10-10 m.2. 5.80⨯10-8 m, 1.28⨯10-10 s.4. (1)5.21⨯104 Pa; (2) 3.80⨯106 m-1.6. (1) 3.22⨯1017 m-3;(2) 7.77 m (此数据无实际意义);(3) 60.2 s-1 (此数据无实际意义).7. (1) 1.40;(2) 若分子有效直径与温度无关, 则得3.45⨯10-7 m;(3) 1.08⨯10-7 m.8. (1) πd2/4;(2) [略].10. (1) 3679段;(2) 67段;(3) 2387段;(4) 37段;(5) 不能这样问.11. 3.11⨯10-5 s.13. (1) 10.1 cm;(2) 60.8 μA.14. 3.09⨯10-10 m.15. 2.23⨯10-10 m.17. (1) 2.83;(2) 0.112;(3) 0.112.18. (1) –1.03 kg⋅m-4;(2) 1.19⨯1023 s-1;(3) 1.19⨯1023 s-1;(4) 4.74⨯10-10 kg⋅s-1.19. [略].21. 提示:稳定态下通过两筒间任一同轴柱面的热流量相同.“热学”课程第五章作业习题第五章习题:1,2,3,5,7,8,10,12,13,15,16,17,18,19,21,22[10],23,24[11],25,26,27,28,29,31,33[12],34,35.注:[10] 使压强略高于大气压(设当容器中气体的温度与室温相同时其压强为p1)[11] γp0A2L2/(2V)[12] 设为实现了理想回热的循环第五章部分习题的参考答案1.(1) 623 J, 623 J, 0;(2) 623 J, 1.04⨯103 J, –416 J;(3) 623 J, 0, 623 J.2.(1) 0, –786 J, 786 J;(2) 906 J, 0, 906 J;(3) –1.42⨯103 J, –1.99⨯103 J, 567 J.3.(1) 1.50⨯10-2 m3;(2) 1.13⨯105 Pa;(3) 239 J.4.(1) 1.20;(2) –63.3 J;(3) 63.3 J;(4) 127 J.7. (1) 265 K;(2) 0.905 atm;(3) 12.0 L.8. (1) –938 J;(2) –1.44⨯103 J.10. (1) 702 J;(2) 507 J.12. [略].13. [略].15. 2.47⨯107 J⋅mol-1.16. (1) h = CT + v0p + bp2;(2) C p = C, C V= C + (a2T/b)–ap.17. –46190 J⋅mol-1.18. 82.97 %.19. [略].21. 6.70 K, 33.3 cal, 6.70 K, 46.7 cal; 11.5 K, 80.0 cal, 0, 0.22. γ = ln(p1/p0)/ln(p1/p2).23. (1) [略];(2) [略];(3) [略].24. (1) [略];(2) [略].25. (1) p0V0;(2) 1.50 T0;(3) 5.25 T0;(4) 9.5 p0V0.26. (1) [略];(2) [略];(3) [略].27. 13.4 %.28. (1) A→B为吸热过程, B→C为放热过程;(2) T C = T(V1/V2)γ– 1, V C = V2;(3) 不是;(4) 1 – {[1 – (V1/V2)γ– 1]/[(γ– 1)ln(V2/V1)]}.29. [略].31. 15.4 %.33. [略].34. [略].35. [略].“热学”课程第六章作业习题第六章习题:2,3,5,9,10,11,12[13],13,15,16,19.注:[13] 设为一摩尔第六章部分习题的参考答案2. 1.49⨯104 kcal.3. (1) 473 K;(2) 42.3 %.5. 93.3 K.9. (1) [略];(2) [略];(3) [略].10. [略].11. [略].12. [略].13. [略].15. ∆T = a (v2-1–v1-1)/C V = –3.24 K.16. [略].19. –a(n A–n B)2/[2C V V(n A+ n B)].“热学”课程第七章作业习题第七章习题:8.第七章部分习题的参考答案8. 提示:在小位移的情况下, exp[ -(cx2-gx3-fx4)/(kT)]≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)]}⋅{1 + [fx4/(kT)]}≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)] + [fx4/(kT)]}.“热学”课程第八章作业习题第八章习题:1,2,3,4,6,7[14],8,10.注:[14] 设θ= 0第八章部分习题的参考答案1. 2.19⨯108 J.2. 7.24⨯10-2 N⋅m-1.3. 1.29⨯105 Pa.4. 1.27⨯104 Pa.6. f = S[α(R1-1 + R2-1) – (ρgh/2)]= {Sα⋅[2cos(π–θ)]/[2(S/π)1/2 ⋅cos(π–θ) + h–h sin(π–θ)]} +{Sα⋅[2cos(π–θ)]/h} – (Sρgh/2)≈Sα⋅[2cos(π–θ)/h]= 25.5 N.7. 0.223 m.8. 2.98⨯10-2 m.10. (1) 0.712 m; (2) 9.60⨯104 Pa; (3) 2.04⨯10-2 m.“热学”课程第九章作业习题第九章习题:1,2,4[15],6[5],7,8,9[16],11,12,13[17].注:[5] 设p0 = 1.00 atm[15] 水蒸气比体积为1.671 m3/kg[16] 100℃时水的饱和蒸气压为1.013×105Pa,而汽化热为2.38×106 J⋅kg -1,由题8中的[17] 23.03 - 3754/T第九章部分习题的参考答案1. 3.21⨯103 J.2. (1) 6.75⨯10-3 m3;(2) 1.50⨯10-5 m3;(3) 液体体积为1.28⨯10-5 m3, 气体体积为9.87⨯10-4 m3.4. 373.52 K.6. 1.36⨯107 Pa.7. [略].8. [略].9. 1.71⨯103 Pa.11. 4.40⨯104 J⋅mol-1.12. (1) 52.0 atm;(2) 157 K.13. (1) 44.6 mmHg, 195 K;(2) 3.121⨯104 J⋅mol-1, 2.547⨯104 J⋅mol-1, 5.75⨯103 J⋅mol-1.。

热力学第二定律

热力学第二定律

第六章热力学第二定律6-1 一致冷机工作在t2=-10℃和t1=11℃之间,若其循环可看作可逆卡诺循环的逆循环,则每消耗1.00KJ的功能由冷库取出多少热量?解:可逆制冷机的制冷系数为ε=Q2/A=T1/(T1-T2)∴从冷库取出的热量为:Q2=AT2/(T1-T2)=103×263/(284-263)=1.25×104J6-2 设一动力暖气装置由一热机和一致冷机组合而成。

热机靠燃料燃烧时放出热量工作,向暖气系统中的水放热,并带动致冷机,致冷机自天然蓄水池中吸热,也向暖气系统放热。

设热机锅炉的温度为t1=210℃,天然水的温度为t2=15℃,暖气系统的温度为t3=60℃,燃料的燃烧热为5000Kcal·Kg-1,试求燃烧1.00Kg燃料,暖气系统所得的热量。

假设热机和致冷机的工作循环都是理想卡诺循环。

解:动力暖气装置示意如图,T1=273+210=483K,T3=273+60=333K,T2=273+15=288K。

I表热机,Ⅱ表致冷机。

热机效率η=A/Q1=1-T3/T1=0.31∴ A=ηQ1=0.31Q1致冷机的致冷系数ε=Q2/A=T2/(T3-T2)∴Q2=A·T2/(T3-T2)=0.31Q1288/(333-288)=1.984Q1而Q1=qM=5000×1Kcal ∴暖气系统得到的热量为:Q=Q3+Q4=(Q1-A)+(A+Q2)=Q1+Q2=Q1+1.984Q1=2.984×5000=1.492×104 Kcal=6.24×104 KJ6-3 一理想气体准静态卡诺循环,当热源温度为100℃,冷却器温度为0℃时,作净功800J,今若维持冷却器温度不变,提高热源温度,使净功增加为1.60×103 J,则这时:(1)热源的温度为多少?(2)效率增大到多少?设这两个循环都工作于相同的两绝热线之间。

热力学第二定律习题答案

热力学第二定律习题答案
可以占据体积,不满足 理想气体的条件。例如 满足PVm RT P (为常数)实际气体,其 U 0。
V T
二、简答题 1、(1)对。因为状态函数的 变化只与始终态有关。 但是绝热过程的 S计算例外, 因为对绝热体系来说, 可逆不可逆过程的始终 态的S不可能完全相同。 (2)错。孤立体系达到平 衡时熵最大。 (3)错。不可逆循环的熵 变仍然为0。 (4)错。S (0 l S) (5)对。因为孤立系统达 到平衡时熵最大。 (6)错。必须是等温等压 且无其他功的条件。 (7)对。此即亥姆赫兹自 由能判据。 (8)错。该式的适用条件 是均相封闭系统无其他 功的过程。像过冷水结 冰的 不可逆相变即使等温等 压,其G (0 因为自发进行)。 (9)错。吉布斯自由能是 状态函数,系统状态改 变,G就可能发生变化。
自由膨胀是不可逆的, 系统的温度和内能却都 不变。节流膨胀气
体温度是否降低与焦汤 系数的正负有关,节流 过程焓值不变。
10、取A、热机及 R为一个系统: S总 S热机 SA SR 0
而S热机
0,SR
Q1 T1
Q1
T1S A
11、U H 0,而S nR ln V2 ,F G W Q TS V1
Q W U 0
2、
Q
TS
过程恒温可逆
一定量的理想气体等温
可逆过程:
F G ( PV ) 0
Q W G F TS。
3、不矛盾。开尔文说法 :热不能无代价地全部 转化为功。而理想气体 等温
可逆膨胀吸热 Q全部转为功 W,它是付出了代价的, 即系统的体积变大了。
4、错。这只是两个过程 的dS与其相应的 Q 的关系。而始终态相同 的系统
解(1)在298.15K、101325Pa下,石墨(G)→金刚石 (D)相变过程的摩尔自由能变:

热力学第二定律习题答案

热力学第二定律习题答案

热力学第二定律习题答案热力学第二定律习题答案热力学第二定律是热力学中的一个基本定律,它描述了热量的自发传递方向和热机效率的限制。

在学习热力学时,我们经常会遇到各种各样的习题,通过解答这些习题可以更好地理解和应用热力学第二定律。

在本文中,我将给出一些常见的热力学第二定律习题的答案,希望能对读者有所帮助。

1. 一个热机从高温热源吸收3000J的热量,向低温热源放出2000J的热量,求该热机的热机效率。

根据热力学第二定律,热机效率可以用以下公式表示:η = 1 - (Qc / Qh)其中,η表示热机效率,Qc表示向低温热源放出的热量,Qh表示从高温热源吸收的热量。

代入已知数据,可得:η = 1 - (2000J / 3000J) = 1 - 2/3 = 1/3所以该热机的热机效率为1/3。

2. 一个热机的热机效率为40%,从高温热源吸收5000J的热量,求该热机向低温热源放出的热量。

根据热力学第二定律的热机效率公式,可得:η = 1 - (Qc / Qh)其中,η表示热机效率,Qc表示向低温热源放出的热量,Qh表示从高温热源吸收的热量。

已知热机效率为40%,代入已知数据可得:0.4 = 1 - (Qc / 5000J)解方程可得:Qc = 5000J * (1 - 0.4) = 5000J * 0.6 = 3000J所以该热机向低温热源放出的热量为3000J。

3. 一个热机从高温热源吸收1000J的热量,向低温热源放出的热量为200J,求该热机的热机效率。

根据热力学第二定律的热机效率公式,可得:η = 1 - (Qc / Qh)其中,η表示热机效率,Qc表示向低温热源放出的热量,Qh表示从高温热源吸收的热量。

代入已知数据,可得:η = 1 - (200J / 1000J) = 1 - 1/5 = 4/5所以该热机的热机效率为4/5。

通过以上习题的解答,我们可以看到热力学第二定律在实际问题中的应用。

通过计算热机效率,我们可以评估热机的性能,并且根据热力学第二定律,热量自发传递的方向总是从高温物体向低温物体。

《热力学第二定律》习题及答案

《热力学第二定律》习题及答案

《热力学第二定律》习题及答案选择题1.ΔG=0 的过程应满足的条件是(A) 等温等压且非体积功为零的可逆过程 (B) 等温等压且非体积功为零的过程 (C) 等温等容且非体积功为零的过程(D) 可逆绝热过程 答案:A2.在一定温度下,发生变化的孤立体系,其总熵(A )不变 (B)可能增大或减小(C)总是减小(D)总是增大答案:D 。

因孤立系发生的变化必为自发过程,根据熵增原理其熵必增加。

3.对任一过程,与反应途径无关的是(A) 体系的内能变化 (B) 体系对外作的功 (C) 体系得到的功 (D) 体系吸收的热 答案:A 。

只有内能为状态函数与途径无关,仅取决于始态和终态。

4.下列各式哪个表示了偏摩尔量: (A),,j i T p n U n ⎛⎫∂ ⎪∂⎝⎭ (B) ,,j i T V n H n ⎛⎫∂ ⎪∂⎝⎭ (C) ,,j i T V n A n ⎛⎫∂ ⎪∂⎝⎭ (D) ,,ji i T p n n μ⎛⎫∂ ⎪∂⎝⎭ 答案:A 。

首先根据偏摩尔量的定义,偏导数的下标应为恒温、恒压、恒组成。

只有A和D 符合此条件。

但D 中的i μ不是容量函数,故只有A 是偏摩尔量。

5.氮气进行绝热可逆膨胀ΔU=0 (B) ΔS=0 (C) ΔA =0 (D) ΔG=0答案:B 。

绝热系统的可逆过程熵变为零。

6.关于吉布斯函数G, 下面的说法中不正确的是(A)ΔG ≤W'在做非体积功的各种热力学过程中都成立(B)在等温等压且不做非体积功的条件下, 对于各种可能的变动, 系统在平衡态的吉氏函数最小(C)在等温等压且不做非体积功时, 吉氏函数增加的过程不可能发生(D)在等温等压下,一个系统的吉氏函数减少值大于非体积功的过程不可能发生。

答案:A 。

因只有在恒温恒压过程中ΔG ≤W'才成立。

7.关于热力学第二定律下列哪种说法是错误的(A)热不能自动从低温流向高温(B)不可能从单一热源吸热做功而无其它变化(C)第二类永动机是造不成的(D 热不可能全部转化为功答案:D 。

热力学第二定律练习题及答案

热力学第二定律练习题及答案

热力学第二定律练习题一、是非题,下列各题的叙述是否正确,对的画√错的画×1、热力学第二定律的克劳修斯说法是:热从低温物体传给高温物体是不可能的 ( )2、组成可变的均相系统的热力学基本方程 d G =-S d T +V d p +d n B ,既适用于封闭系统也适用于敞开系统。

( )3、热力学第三定律的普朗克说法是:纯物质完美晶体在0 K 时的熵值为零。

( )4、隔离系统的熵是守恒的。

( )5、一定量理想气体的熵只是温度的函数。

( )6、一个系统从始态到终态,只有进行可逆过程才有熵变。

( )7、定温定压且无非体积功条件下,一切吸热且熵减少的反应,均不能自发发生。

( )8、系统由状态1经定温、定压过程变化到状态2,非体积功W ’<0,且有W ’>∆G 和∆G <0,则此状态变化一定能发生。

( )9、绝热不可逆膨胀过程中∆S >0,则其相反的过程即绝热不可逆压缩过程中∆S <0。

( )10、克-克方程适用于纯物质的任何两相平衡。

( )11、如果一个化学反应的∆r H 不随温度变化,则其∆r S 也不随温度变化, ( )12、在多相系统中于一定的T ,p 下物质有从化学势较高的相自发向化学势较低的相转移的趋势。

( )13、在-10℃,101.325 kPa 下过冷的H 2O ( l )凝结为冰是一个不可逆过程,故此过程的熵变大于零。

( )14、理想气体的熵变公式只适用于可逆过程。

( ) 15、系统经绝热不可逆循环过程中∆S = 0,。

( ) 二、选择题1 、对于只做膨胀功的封闭系统的(∂A /∂T )V 值是:( )(1)大于零 (2) 小于零 (3)等于零 (4)不确定2、 从热力学四个基本过程可导出VU S ∂⎛⎫ ⎪∂⎝⎭=( ) (1) (2) (3) (4) T p S pA H U G V S V T ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ 3、1mol 理想气体(1)经定温自由膨胀使体积增加1倍;(2)经定温可逆膨胀使体积增加1倍;(3)经绝热自由膨胀使体积增加1倍;(4)经绝热可逆膨胀使体积增加1倍。

热力学第二定律习题详解

热力学第二定律习题详解

习题十一一、选择题1.你认为以下哪个循环过程是不可能实现的 [ ](A )由绝热线、等温线、等压线组成的循环; (B )由绝热线、等温线、等容线组成的循环; (C )由等容线、等压线、绝热线组成的循环; (D )由两条绝热线和一条等温线组成的循环。

答案:D解:由热力学第二定律可知,单一热源的热机是不可能实现的,故本题答案为D 。

2.甲说:由热力学第一定律可证明,任何热机的效率不能等于1。

乙说:热力学第二定律可以表述为效率等于100%的热机不可能制成。

丙说:由热力学第一定律可以证明任何可逆热机的效率都等于211T T -。

丁说:由热力学第一定律可以证明理想气体可逆卡诺热机的效率等于211T T -。

对于以上叙述,有以下几种评述,那种评述是对的 [ ](A )甲、乙、丙、丁全对; (B )甲、乙、丙、丁全错; (C )甲、乙、丁对,丙错; (D )乙、丁对,甲、丙错。

答案:D解:效率等于100%的热机并不违反热力学第一定律,由此可以判断A 、C 选择错误。

乙的说法是对的,这样就否定了B 。

丁的说法也是对的,由效率定义式211Q Q η=-,由于在可逆卡诺循环中有2211Q T Q T =,所以理想气体可逆卡诺热机的效率等于211T T -。

故本题答案为D 。

3.一定量理想气体向真空做绝热自由膨胀,体积由1V 增至2V ,此过程中气体的 [ ](A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。

答案:A解:绝热自由膨胀过程,做功为零,根据热力学第一定律21V V Q U pdV =∆+⎰,系统内能不变;但这是不可逆过程,所以熵增加,答案A 正确。

4.在功与热的转变过程中,下面的那些叙述是正确的?[ ](A )能制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用功;(B )其他循环的热机效率不可能达到可逆卡诺机的效率,可逆卡诺机的效率最高; (C )热量不可能从低温物体传到高温物体; (D )绝热过程对外做正功,则系统的内能必减少。

热力学第二定律与熵习题解答

热力学第二定律与熵习题解答
际应用中可能遇到的技术和经济挑战。
感谢您的观看
THANKS
热力学第二定律的重要性
指导能源利用
热力学第二定律让我们认识到能源利 用的限制和效率问题,推动我们不断 探索和开发更加高效、环保的能源利 用方式。
推动技术进步
热力学第二定律也是推动技术进步的 重要动力,它促使科学家和工程师不 断探索新的技术手段和方法,以克服 现有技术的局限性和瓶颈。
热力学第二定律的物理意义
04
习题解答
习题一:热力学第二定律的表述与证明
总结词
理解热力学第二定律的表述,掌握证明方法。
详细描述
热力学第二定律是热力学的核心定律之一,它表述了热能和其他形式的能量之间的转换关系。该定律指出,在一 个封闭系统中,自发发生的反应总是向着熵增加的方向进行,即系统的总熵不会自发减少。证明方法可以通过分 析热量传递和功的转换关系,利用热平衡原理和能量守恒定律来推导。
热量的传递方向
总结词
热量的传递方向是指热量总是从高温物体传递到低温物体,而不是自发地从低温物体传递到高温物体 。
详细描述
根据热力学第二定律,热量自发地从高温物体传递到低温物体,而不是自发地从低温物体传递到高温 物体。这是因为热量从高温向低温传递时,系统的熵会增加,符合熵增加原理。而热量从低温向高温 传递则违反了熵增加原理。
03
热力学第二定律的应用
热机效率的限制
总结词
热机效率的限制是指根据热力学第二定律,任何热机在转换能量的过程中,其效率都会 受到一定的限制,无法达到100%。
详细描述
热力学第二定律指出,热量不可能自发地从低温物体传递到高温物体而不引起其他变化。 这意味着在能量转换过程中,必然会有部分能量以热量的形式损失掉,无法被完全利用。

大学物理化学2-热力学第二定律课后习题及答案

大学物理化学2-热力学第二定律课后习题及答案

热力学第二定律课后习题答案习题1在300 K ,100 kPa 压力下,2 mol A 和2 mol B 的理想气体定温、定压混合后,再定容加热到600 K 。

求整个过程的∆S 为若干?已知C V ,m ,A = 1.5 R ,C V ,m ,B = 2.5 R[题解]⎪⎩⎪⎨⎧B(g)2mol A(g)2mol ,,纯态 3001001K kPa,()−→−−−−混合态,,2mol A 2mol B100kPa 300K 1+==⎧⎨⎪⎪⎩⎪⎪p T 定容()−→−−2混合态,,2mol A 2mol B 600K 2+=⎧⎨⎪⎩⎪T ∆S = ∆S 1 + ∆S 2,n = 2 mol∆S 1 = 2nR ln ( 2V / V ) = 2nR ln2 ∆S 2 = ( 1.5nR + 2.5nR ) ln (T 2 / T 1)= 4nR ln2 所以∆S = 6nR ln2= ( 6 ⨯ 2 mol ⨯ 8.314 J ·K -1·mol -1 ) ln2 = 69.15 J ·K -1 [导引]本题第一步为理想气体定温定压下的混合熵,相当于发生混合的气体分别在定温条件下的降压过程,第二步可视为两种理想气体分别进行定容降温过程,计算本题的关键是掌握理想气体各种变化过程熵变的计算公式。

习题22 mol 某理想气体,其定容摩尔热容C v ,m =1.5R ,由500 K ,405.2 kPa 的始态,依次经历下列过程:(1)恒外压202.6 kPa 下,绝热膨胀至平衡态; (2)再可逆绝热膨胀至101.3 kPa ; (3)最后定容加热至500 K 的终态。

试求整个过程的Q ,W ,∆U ,∆H 及∆S 。

[题解] (1)Q 1 = 0,∆U 1 = W 1, nC V ,m (T 2-T 1))(1122su p nRT p nRT p --=, K400546.2022.405)(5.11221211212====-=-T T kPa p kPa p T p T p T T ,得,代入,(2)Q 2 = 0,T T p p 3223111535325=-=-=--()γγγγ,, T T 320.42303==-()K(3)∆V = 0,W 3 = 0,Q U nC T T V 3343232831450030314491==-=⨯⨯⨯-=∆,()[.(.)].m J kJp p T T 434350030310131671==⨯=(.).kPa kPa 整个过程:Q = Q 1 + Q 2+ Q 3 =4.91kJ ,∆U = 0,∆H = 0,Q + W = ∆U ,故W =-Q =-4.91 kJ∆S nR p p ==⨯=--ln (.ln ..).141128314405616711475J K J K ··[导引]本题的变化过程为单纯pVT 变化,其中U 、H 和S 是状态函数,而理想气体的U 和H 都只是温度的函数,始终态温度未变,故∆U = 0,∆H = 0。

热学(李椿+章立源+钱尚武)习题解答-第五章---热力学第一定律

热学(李椿+章立源+钱尚武)习题解答-第五章---热力学第一定律

$第五章热力学第一定律5-1.0.020Kg的氦气温度由升为,若在升温过程中:(1)体积保持不变;(2)压强保持不变;(3)不与外界交换热量,试分别求出气体内能的改变,吸收的热量,外界对气体所作的功,设氦气可看作理想气体,且,解:理想气体内能是温度的单值函数,一过程中气体温度的改变相同,所以内能的改变也相同,为:热量和功因过程而异,分别求之如下:(1)等容过程:V=常量 A=0由热力学第一定律,((2)等压过程:由热力学第一定律,负号表示气体对外作功,(3)绝热过程Q=0由热力学第一定律—5-2.分别通过下列过程把标准状态下的0.014Kg氮气压缩为原体积的一半;(1)等温过程;(2)绝热过程;(3)等压过程,试分别求出在这些过程中气体内能的改变,传递的热量和外界对气体所作的功,设氮气可看作理想气体,且,解:把上述三过程分别表示在P-V图上,(1)等温过程理想气体内能是温度的单值函数,过程中温度不变,故由热一、%负号表示系统向外界放热(2)绝热过程由或得由热力学第一定律另外,也可以由·及先求得A(3)等压过程,有或而所以===>由热力学第一定律,也可以由求之另外,由计算结果可见,等压压缩过程,外界作功,系统放热,内能减少,数量关系为,系统放的热等于其内能的减少和外界作的功。

{5-3 在标准状态下的0.016Kg的氧气,分别经过下列过程从外界吸收了80cal的热量。

(1)若为等温过程,求终态体积。

(2)若为等容过程,求终态压强。

(3)若为等压过程,求气体内能的变化。

设氧气可看作理想气体,且解:(1)等温过程则故(2)等容过程《-(3)等压过程5-4 为确定多方过程方程中的指数n,通常取为纵坐标,为横坐标作图。

试讨论在这种图中多方过程曲线的形状,并说明如何确定n。

解:将两边取对数,或比较知在本题图中多方过程曲线的形状为一直线,如图所示。

直线的斜率为可由直线的斜率求n。

或即n可由两截距之比求出。

热力学第二定律习题and答案(2007级)

热力学第二定律习题and答案(2007级)

热⼒学第⼆定律习题and答案(2007级)热⼒学第⼆定律练习(化学2007级)2009-4-9⼀、选择题 1. p ?,100℃下,1mol H 2O(l)与 100℃⼤热源接触,使⽔在真空容器中汽化为101.325 kPa 的H 2O(g),设此过程的功为W ,吸热为Q ,终态压⼒为p ,体积为V ,⽤它们分别表⽰ΔU ,ΔH ,ΔS ,ΔG ,ΔF ,下列答案哪个是正确的? ( ) 2. 1mol 理想⽓体从p 1,V 1,T 1分别经: (1) 绝热可逆膨胀到p 2,V 2,T 2 (2) 绝热恒外压下膨胀到/2p ,/2V ,/2T 若p 2=/2p ,则: ( ) (A) /2T =T 2, /2V =V 2, /2S =S 2 (B) /2T >T 2, /2V2S(C) /2T >T 2, /2V >V 2, /2S >S 2(D) /2T2S3. 在等温等压下进⾏下列相变: H 2O (s,-10℃, p ?) = H 2O (l,-10℃, p ?) 在未指明是可逆还是不可逆的情况下,考虑下列各式哪些是适⽤的? ( )(1) ?δQ /T = Δfus S(2) Q = Δfus H(3) Δfus H /T = Δfus S(4) -Δfus G = 最⼤净功 (A) (1),(2) (B) (2),(3)(C) (4) (D) (2) 4. 理想⽓体从状态 I 经⾃由膨胀到状态 II ,可⽤哪个热⼒学判据来判断该过程的⾃发性?( ) (A) ΔH (B) ΔG (C) ΔS (D) ΔU5. 单原⼦分⼦理想⽓体的C V , m =(3/2)R ,温度由T 1变到T 2时,等压过程体系的熵变ΔS p 与等容过程熵变ΔS V 之⽐是: ( ) (A) 1 : 1 (B) 2 : 1(C) 3 : 5 (D) 5 : 3 6. 1 mol 理想⽓体向真空膨胀,若其体积增加到原来的10倍,则体系、环境和孤⽴体系的熵变应分别为:( )(A) 19.14 J·K -1, -19.14 J·K -1 , 0 (B) -19.14 J·K -1, 19.14 J·K -1, 0 (C) 19.14 J·K -1, 0 , 19.14 J·K -1 (D) 0 , 0 , 0 7. 在101.3 kPa 下,110℃的⽔变为110℃⽔蒸⽓,吸热Q p ,在该相变过程中下列哪个关系式不成⽴?(A) ?S 体> 0(B) ?S环不确定(C) ?S体+?S环> 0(D) ?S环< 08. 在⼀容器(是由体积相等的两部分构成)内,置⼊1 mol理想⽓体,这1 mol理想⽓体分⼦全部处在⼀⽅的数学概率等于:( )(A) (1/2)L/[L] (B) 2L/[L](C) (1/2)L/[L](D) 2L/[L]9. 某⽓体状态⽅程为p=f(V)T,f(V) 仅表⽰体积的函数,恒温下该⽓体的熵随体积V 的增加⽽:( )(A) 增加(B) 下降(C) 不变(D) 难以确定10. 恒温恒压条件下,某化学反应若在电池中可逆进⾏时吸热,据此可以判断下列热⼒学量中何者⼀定⼤于零?( )(A) ΔU (B) ΔH(C) ΔS(D) ΔG11. 2 mol H2和2 mol Cl2在绝热钢筒内反应⽣成HCl ⽓体,起始时为常温常压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章热力学第二定律6-1 设每小时能造冰m克,则m克25℃的水变成-18℃的水要放出的热量为25m+80m+0.5×18m=114m有热平衡方程得4.18×114m=3600×2922∴ m=2.2×104克=22千克由图试证明:任意循环过程的效率,不可能大于工作于它所经历的最高热源温度与最低热温源温度之间的可逆卡诺循环的效率。

(提示:先讨论任一可逆循环过程,并以一连串微小的可逆卡诺循环过程。

如以T m和T n分别代表这任一可循环所经历的最高热源温度和最低热源温度。

试分析每一微小卡诺循环效率与的关系)证:(1)d当任意循环可逆时。

用图中封闭曲线R表示,而R可用图中一连串微笑的可逆卡诺循环来代替,这是由于考虑到:任两相邻的微小可逆卡诺循环有一总,环段绝热线是共同的,但进行方向相反从而效果互相抵消,因而这一连串微小可逆卡诺循环的总效果就和图中锯齿形路径所表示的循环相同;当每个微小可逆卡诺循环无限小而趋于数总无限多时,其极限就趋于可逆循环R。

考虑人一微小可逆卡诺循(187完)环,如图中阴影部分所示,系统从高温热源T i吸热Q i,向低温热源T i放热,对外做功,则效率任意可逆循环R的效率为A为循环R中对外作的总功(1)又,T m和T n是任意循环所经历的最高温热源和最低温热源的温度∴对任一微小可逆卡诺循,必有:T i≤T m,T i≥T n或或令表示热源T m和T n之间的可逆卡诺循环的效率,上式为将(2)式代入(1)式:或或(188完)即任意循环可逆时,其效率不大于它所机灵的最高温热源T m和最低温度热源T n之间的可逆卡诺循环的效率。

(2)任意循环不可逆时,可用一连串微小的不可逆卡诺循环来代替,由于诺定理知,任一微小的不可逆卡诺循环的效率必小于可逆时的效率,即(3)对任一微小的不可逆卡诺循环,也有(4)将(3)式代入(4)式可得:即任意不可逆循环的效率必小于它所经历的最高温热源T m和最低温热源T n之间的可逆卡诺循环的效率。

综之,必即任意循环的效率不可能大于它所经历的最高温热源和最低温热源之间的可逆卡诺循环的效率。

*6-8 若准静态卡循环中的工作物质不是理想气体而是服从状态方程p(v-b)=RT。

式证明这可逆卡诺循环的效率公式任为证:此物种的可逆卡诺循环如图。

等温膨胀过程中,该物质从高温热源T1吸热为等温压缩过程中,该物质向低温热源放热为(189完)由第五章习题13知,该物质的绝热过程方程为利用可得其绝热方程的另一表达式子由绝热线23及14得两式相比得∴该物质卡诺循环的效率为可见,工作于热源T1和T2之间的可逆机的效率总为1-,与工作物质无关,这正是卡诺定理所指出的。

6-9(1)利用(6.7)式证明,对一摩尔范德瓦耳斯气体有(2)由(1) 证明:(3)设C v为常数,证明上式可写其中U0’=U O-c v t o+a/v o证:(1)对一摩尔物质,(6.7)式为一摩尔范氏气体的物态方程为代入上式即得(2)视u为T、v的函数,由(1)得积分上式即得(3)当C v为常数由(2)即得其中6-10设有一摩尔范德瓦耳斯气体,证明其准静态绝热过程方程为该气体的摩尔热容量C v为常数(提示:利用习题9的结果)证:上题给出由得Tds = du+pdv = CvdT-dv由熵增原理知,可逆绝热过程中系统的熵不变,有CvdT+dv = 0或+= 0已知为常数,积分上式即得6-11接上题,证明范德瓦耳斯气体准静态绝热过程方程又可写为证:有一摩尔范氏气体的状态方程得代入上题结果由于R是常量,所以上式可写作6-12证明:范德瓦耳斯气体进行准静态绝热过程时,气体对外做功为C V(T1-T2)-a( -) 设C v为常数证:习题9给出,对摩尔范氏气体有当范氏气体有状态(T1、v1)变到状态(T2、v2)。

内能由u1变到u2,而C v为常数时,上式为u2-u1=Cv(T2-T1)+a(-)绝热过程中,Q=0,有热力学第一定律得气体对外作的功-A=u2-u1=Cv(T2-T1)+a(-)6-13证明:对一摩尔服从范德瓦耳斯方程的气体有下列关系:(提示:)要利用范德瓦耳斯气体的如下关系:证:习题9已证得,一摩尔范氏气体有视V为T、P的函数,有所以,1摩尔范氏气体在无穷小等压(`````=0)过程中,热力学第一定律可写为:dQ = C p dT = du+pdv= C v dT +dv+(-)dv或又由(p+)(v-b) =RT 可得代入上式即得6-14 用范德瓦耳斯气体模型,试求在焦耳测定气体内能实验中气体温度的变化.设气体定容摩尔热容量CV 为常数,摩尔体积在气体膨胀前后分别为V1,V2。

解:当1摩尔范氏气体由(T1,V1)变到(T2,V2),而C V为常数时,由9题结果知其内能变化为:u2-u1=C V(T1-T1)+a ( -) (1)焦耳自由膨胀实验中,A=0,且气体向真空的膨胀过程极短暂,可认为气体来不及与外界热交换,Q=0,由热力学第一定律得u2-u1=0对于1摩尔范氏气体,由(1)式则得:T1-T1= ( - )6-15利用上题公式,求CO2在焦耳实验中温度的变化。

设体的摩尔体积在膨胀前是2.01·mol-1,在膨胀后为4.01·mol-1。

已知CO2的摩尔热容量为3.38R,a=3.6atm·I2·mol-2解:取R=8.2×10-2atm·l·mol-1·K-1利用上题公式并代入已知数据得T1-T1= ( - )=-3.25K负号表示范氏气体自由膨胀后温度降低。

6-16 对于一摩尔范德瓦耳斯气体,证明经节流膨胀后其温度的变化T2---T1为T2-T1=[(-)-(-)]设气体的摩尔热容量为常数。

证:由9题结果,1摩尔范氏气体的内能为u = u0'+C v T-由范氏气态方程(p+)(v-b)=RT得 pv=RT+pb-+则1摩尔范氏气体的焓为h=u+pv=(c v+R)T-+b(p+)+u0'=(c v+R(T-++u0')当1摩尔范氏气体由状态(T1、v1)变到状态(T2、v2)时,起焓变化为h1-h2=(c v+R)(T2-v1)-(-)+(-)气体节流膨胀前后焓不变,所以,令上式中h1-h2=0即得1摩尔范氏气体节流膨胀后温度的变化,为T2-T1=[(-)-(-)]6-17假设一摩尔气体在节流膨胀前可看作范德瓦尔斯气体,而在节流膨胀后可看作理想气体,气体的定容摩尔热量为C V为常数。

试用上述模型证明,气体节流前后温度变化为ΔT=T2-T1=(RT-)试在T1—v1图上画出ΔT=0的曲线(即转换温度曲线),并加以讨论。

证:由上题证明知,1摩尔范氏气体节流膨胀前的焓为h1=(c v+R)T1-++u0'节流膨胀后的气体可视为理想气体,起1摩尔的焓为h2 =u2+p2v2=c v T2-c v T0+u0+RT2=(c v+R)T2+u0''视二常数u0'和u0''相等,由气体节流气候焓不变,所以h1-h2=(c v+R)(T2-T1)+-=0解之,气体节流前后温度的变化为ΔT = T2-T1= (RT1-)(1)令上式ΔT= 0,即 RT1-= 0或 T1= -·(2)以1摩尔氧为例,由表1-2,取 a=1.36atm·l2·mol-2b=0.3818 l· mol-1 R=0.082rtm· l· mol-1·K-1,二式化为T1=1024-(3)取各个不同的V1值,可得相应的T1值,列表如下:用描点法作出(3)式的图线—氧的转换温度曲线如下T1(K) 0 213 489 627 710 876V1(I) 0.3 0.4 0.5 1 10 100T1(K) 931 960 976 1009 1039 1041.7 对于本题模型的气体,当气体节流前的状态(温度、体积):1. 由图中曲线上方的点表示时,气体节流膨胀后温度不变,不同的初始体积对应不同的转换温度。

2. 由图中曲线下方的曲线表示时,从(1)、(2)式知,气体节流膨胀后温度降低,对于氧气,显然,常温下节流温度降低。

3.由图中上方的点表示时,气体节流膨胀后温度升高(△T>0)△T=0的曲线称为转换温度曲线6—18 接上题,从上题作图来看,T0 = 具有什么意义?(称T0为上转温度)。

若已知氮气 a=1.35×100 atm6·mol-2,b= 39.6 cm6·mol-1, 氦气 a= 0.033×106 atm·cm6·mol-2,b = 23.4·mol-1,试求氮气6-21 设有一摩尔的过冷水蒸气,其温度和压强分别为24℃和1bar,当它转化为 24℃下的饱和水时,熵的变化是多少?计算时假定可把水蒸气看作理想气体,并可利用上题数据。

(提示:设计一个从初态到终态的可逆过程进行计算,如图6-21)解:由提示,将实际过程的初、始态,看作通过两个可逆过程得到,并设中间状态为2,初始状态分别为1、3。

先设计一个理想气体可逆等温膨胀降压过程,计算△S1:=×8.31 ln=1.62KJ·k-1·㎏-1再设计一个可逆等温等压相变过程,计算△S2,这已在上题算出:△S2=C p ln-C p ln∴(1)式为△S=C p ln-C p ln+C v ln=C p ln-Rln与(2)式相同得证6-24 在一绝热容器中,质量为m,温度为T1的液体和相同质量的但温度为T2的液体,在一定压强下混合后达到新的平衡态,求系统从初态到终态熵的变化,并说明熵增加,设已知液体定压比热为常数CP。

解:两种不同温度液体的混合,是不可逆过程,它的熵变可以用两个可逆过程熵变之和求得。

设T1>T2,(也可设T1<T2,结果与此无关),混合后平衡温度T满足下式mC p(T1-T)=mC p(T-T1)∴ T = (T1+T2)温度为T1的液体准静态等压降温至T,熵变为温度为T2的液体准静态等压升温至T熵变为由熵的可加性,总熵变为:△S=△S+△S=mC p(ln+ln)=mC p ln=mC p ln因(T1-T2)2>0 即T12-2T1T2+T22>0T12+2T1T2+T22-4T1T2>0由此得(T1+T2)2>4T1T2所以,△S>0由于液体的混合是在绝热容器内,由熵增加原理可见,此过程是不可逆。

6-25 由第五章习题15的数据,计算一摩尔的铜在一大气压下,温度由300K升到1200K时熵的变化。

相关文档
最新文档