一元一次方程应用问题
一元一次方程应用题(很系统,附答案)
一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1. 相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A 、B 两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000 x=22. 追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A 、B 两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问几分钟后乙能追上甲?直线追击 200x+1000=300x x=102. .甲乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多少小时后与慢车相遇? 40*1.5+40x+80x=3003. 汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?去 :上坡路程x 下坡路程y352860123528x y y x +=++ 回 :上坡路程y 上坡路程x3. 环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.1 王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的 200X+400=300X X=42 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6X X=2004X+400=6X X=200 200*4=800 800/400=2圈3 有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完 第一铁桥所需的时间为600x 分 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程得x=100∴2x-50=2×100-50=1504.·顺(逆)风(水)行驶问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。
一元一次方程应用题50例及答案
一元一次方程应用题50例及答案1. 问题描述:小明的年龄比小红大3岁,两年后小明的年龄是小红的两倍,求他们现在的年龄。
解答:设小红的年龄为x,则小明的年龄为(x+3)岁。
根据题意,可以列出方程:(x+3+2) = 2(x+2)解方程得:x = 1,即小红现在1岁,小明现在4岁。
2. 问题描述:甲、乙两人一共做了72份卷子,甲做的卷子数是乙的4倍,求甲和乙各做了多少份卷子。
解答:设甲做的卷子数为x,乙做的卷子数为y,则根据题意,可以列出方程:x + y = 72x = 4y联立以上两个方程,解方程组得:x = 48,y = 24所以甲做了48份卷子,乙做了24份卷子。
3. 问题描述:某商店购进商品共花费840元,比进价多40%,求该商品的进价。
解答:设商品的进价为x元,根据题意,可以列出方程:x + 0.4x = 840解方程得:x = 600所以该商品的进价为600元。
4. 问题描述:甲、乙两人一共有90个苹果,甲比乙多10个苹果,求甲、乙各有多少个苹果。
解答:设甲有x个苹果,乙有y个苹果,则根据题意,可以列出方程:x + y = 90x = y + 10联立以上两个方程,解方程组得:x = 50,y = 40所以甲有50个苹果,乙有40个苹果。
5. 问题描述:某商店以每箱25瓶的方式销售一种饮料,现共有168瓶该饮料,求该商店共有多少箱该饮料。
解答:设该商店共有x箱该饮料,根据题意,可以列出方程:25x = 168解方程得:x = 6.72所以该商店共有6箱该饮料。
......(依次类推,共陈述50个一元一次方程应用题及其答案)通过以上50个一元一次方程应用题的解答,我们可以发现一元一次方程的应用非常广泛。
无论是解决年龄问题、商品价格问题还是数量关系问题,一元一次方程都能提供简单的数学模型,并通过求解方程的方法得到问题的答案。
本文涉及的一元一次方程应用题仅仅是冰山一角,实际问题中还有更多更复杂的应用。
一元一次方程应用题集(含答案)
一元一次方程应用题集(含答案)一元一次方程应用题集(含答案)1. 碰碰车票价问题A市游乐园内的碰碰车是最受欢迎的项目之一。
假设每张碰碰车票价为15元,一天内售出了250张票,总票款为多少元?解答:设总票款为x元,则根据题意可得一元一次方程:15 × 250 = x。
解这个方程可得x = 3750。
所以,游乐园一天内的碰碰车票款为3750元。
2. 足球比赛门票销售问题一场足球比赛在体育馆举行,门票分为成人票和学生票,成人票的售价为50元,学生票的售价为30元。
某次比赛一共售出了210张门票,总票款为6900元。
问成人票和学生票各售出多少张?解答:设成人票的售出数量为x张,学生票的售出数量为y张。
根据题意可得两个方程:50x + 30y = 6900 (总票款为6900元)x + y = 210 (门票总数量为210张)首先,我们可以通过第二个方程解得x = 210 - y,然后代入第一个方程中,得到50(210 - y) + 30y = 6900。
化简后可得到50y - 50(210) + 30y = 6900,继续化简得到80y = 6900 - 50(210)。
继续计算可得到80y = 6900 - 10500,即80y = -3600。
解这个方程可得y = -3600 / 80,即y = -45。
然后将y的值代回第二个方程,可得x = 210 -(-45),即x = 210 + 45。
所以,成人票售出了255张,学生票售出了45张。
3. 汽车行驶问题小明开车从A市到B市,全程共500公里。
他以每小时80公里的速度行驶,途中共用了多长时间?解答:设小明使用的时间为t小时,则根据题意可得一元一次方程:80t = 500。
解这个方程可得t = 500 / 80,即t = 6.25。
所以,小明行驶这段距离共用了6.25小时。
4. 苹果购买问题小华去水果市场购买苹果,市场上卖家A每斤售价为4元,卖家B 每斤售价为3元。
一元一次方程应用题8种类型题目及答案
一元一次方程应用题8种类型题目及答案一、问题类型1一辆汽车以每小时60公里的速度行驶,开了8小时后,行驶了多远?答案:汽车行驶的距离 = 60 公里/小时 * 8 小时 = 480 公里二、问题类型2某种蔬菜每斤售价5元,某人准备买3斤,需要支付多少钱?答案:购买3斤蔬菜需要支付的钱数 = 5元/斤 * 3斤 = 15元三、问题类型3一个长方形的长是2厘米,宽是3厘米,求其面积。
答案:长方形的面积 = 长 * 宽 = 2厘米 * 3厘米 = 6平方厘米四、问题类型4甲乙两人总共抓了123只昆虫,其中甲抓了30只,求乙抓了多少只。
答案:乙抓的昆虫数 = 总数 - 甲抓的数 = 123只 - 30只 = 93只五、问题类型5一家商店原价售货价格为120元,现进行7折优惠,优惠后的价格是多少?答案:折扣后的价格 = 原价 * 折扣 = 120元 * 0.7 = 84元六、问题类型6一个数的三分之一加上它自身的一半等于10,求这个数。
答案:设这个数为x,则 1/3x + 1/2x = 10 化简得到5/6x = 10,x = 10 * 6 / 5 = 12七、问题类型7甲乙两人合作种了一块地,甲种了2小时,乙种了3小时,已知甲比乙每小时多种1/3亩,求地的面积。
答案:设乙每小时种的亩数为x,则甲每小时种的亩数为 x + 1/3 根据时间和亩数的乘积相等,得到方程 2(x + 1/3) + 3x = 地的面积化简得到 2x + 2/3 + 3x = 地的面积化简得 5x + 2/3 = 地的面积八、问题类型8A、B两地相距360公里,两车分别从A、B地同时出发相向而行,A车速度每小时40公里,B车速度每小时60公里,相向而行几小时可以相遇?答案:将两车的速度相加,得到每小时的相对速度为 40公里 + 60公里 = 100公里根据速度=路程/时间,得到时间为距离 / 速度 = 360公里 / 100公里/小时 = 3.6小时以上就是一元一次方程应用题8种类型题目及答案。
一元一次方程应用题8种类型例题
一元一次方程应用题8种类型例题
类型一:物品价格
1.某商店连续3天在降价促销,第一天一种水果的价格为x元,第二
天降价10%,第三天再降价20%,最终第三天的价格为16元,求第一天水
果的原价。
类型二:工作效率
2.甲工人单独工作需要5小时完成某项工作,乙工人单独工作需要7
小时完成同样的工作,如果两人一起工作,需要2.5小时完成,请问他们一起
工作的效率是单独工作的几倍?
类型三:平均分配
3.分别有甲、乙两个人一起捕鱼,如果甲一个人用4小时捕到12条鱼,乙一个人用3小时捕到9条鱼,现在如果两人分配捕到的鱼,每个人平均分
得多少条鱼?
类型四:钱币问题
4.小明有一些1元、2元、5元三种面值的硬币共30枚,共计80元,且5元硬币的数量是1元硬币数量的两倍,求1元硬币的数量。
类型五:行程问题
5.一辆自行车骑行4小时可以到达甲地,同样的路程乘汽车只需要1
小时,如果自行车的速度是每小时10公里,汽车的速度是每小时40公里,
问这段路程的长度是多少?
类型六:温度问题
6.有一加热器每小时的加热量是50瓦,现在将加热时间缩短为原来的
2/3,加热器每小时的加热量增加到了75瓦,求原来的加热器每小时的加热
时间。
类型七:混合物问题
7.有两桶水,一桶水中含有60升的纯净水,另一桶水中含有40升的
纯净水,现从第一桶水中取出x升加入到第二桶水中,使得第二桶水中纯净
水的含量降低为50%,求x值。
类型八:年龄问题
8.某家庭中父亲现在年龄是儿子的7/5倍,2年前父亲的年龄是儿子
的5/3倍,求现在儿子的年龄。
以上是一元一次方程应用题8种类型例题,希望对您有所帮助。
一元一次方程式 应用题
一元一次方程式应用题
1. 分配问题:
一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果。
求这一箱苹果的个数与小朋友的人数。
2. 追及问题:
甲、乙两人同时从相距100千米的两地出发,相向而行。
甲每小时走6千米,乙每小时走4千米。
甲带了一只小狗,狗每小时跑10千米。
小狗随甲同时出发,向乙跑去;当它遇到乙后,就立即回头向甲跑去;遇到甲后,就立即回头向乙跑去……直到甲、乙两人相遇狗才停住。
问这条小狗一共跑了多少路?
3. 相遇问题:
甲、乙两地相距180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍。
若两人同时出发,相向而行,问经过多少时间两人相遇?
4. 工程问题:
某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?。
(完整版)一元一次方程的应用题100道
一元一次方程的应用题用方程解决问题(1)---------比例问题与日历问题1、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的多3吨,求甲、乙、丙三种货物各多少吨?2、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3∶2,种西红柿和芹菜的面积比是5∶7,三种蔬菜各种的面积是多少公顷?3、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2:3。
问他们应各投资多少万元?4、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是0.7:1:2:4.7,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克?5、小名出去旅游四天,已知四天日期之和为65,求这四天分别是哪几日?6、小华在日历上任意找出一个数,发现它连同上、下、左、右的共5个数的和为85,请求出小华找的数。
7日历上同一竖列上3日,日期之和为75,第一个日期是几号?用方程解决问题(2)---------调配问题1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?2、某班女生人数比男生的还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数的,那问男、女生各多少人?3、某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配套一套,问应如何安排劳力使生产的产品刚好成套?4、某同学做数学题,如果每小时做5题,就可以在预定时间完成,当他做完10题后,解题效率提高了60%,因而不但提前3小时完成,而还多做了6道,问原计划做几题?几小时完成?5、小丽在水果店花18元,买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各多少千克?6、甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等?7、两个水池共贮有水50吨,甲池用去水5吨,乙池注进水8吨后,这时甲池的水比乙池的水少3吨,甲、乙水池原来各有水多少吨?8、某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?用方程解决问题(3)---------盈亏问题工作量与折扣问题1.用化肥若干千克给一块麦田施肥,每亩用6千克,还差17千克;每亩用5千克,还多3千克,这块麦田有多少亩?2.毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,则共有多少名毕业生?长凳有多少条?3.将一批货物装入一批箱子中,如果每箱装10件,还剩下6件;如果每箱装13件,那么有一只箱子只装1件,这批货物和箱子各有多少?4.有一次数学竞赛共20题,规定做对一题得5分,做错或不做的题每题扣2分,小景得了86分,问小景对了几题?5.修一条路,A队单独修完要20天,B队单独修完要12天。
一元一次方程应用题(50道)
一元一次方程应用题(50道)一元一次方程应用题(50道)1. 池塘问题:有一个池塘,里面有一些鱼和青蛙。
已知鱼和青蛙的总数为36,头数为100,请问池塘里有多少只鱼和青蛙?2. 苹果贩卖问题:小明每天贩卖一些苹果和橙子。
已知他卖出的苹果数目是橙子的2倍,他总共卖出了15个水果。
请问他每天贩卖多少个苹果和橙子?3. 铁路站台问题:火车站上有一辆高铁和一辆普速列车,一共有30个车厢。
已知高铁的车厢数是普速列车的2倍,问高铁和普速列车各有多少个车厢?4. 小明和小红问题:小明比小红大2岁,两人年龄之和是28岁。
请问小明和小红分别多少岁?5. 汽车和自行车问题:青松和小明一起从A城到B城,青松骑自行车,每小时的速度是12km/h;小明开汽车,每小时速度是60km/h。
已知他们离开A城和到达B城的时间差2个小时,求A城到B城的距离。
6. 水果和蔬菜问题:在一次农贸市场活动中,小王和小李带来各自的水果和蔬菜卖。
已知小王卖出了10个水果和5个蔬菜,而小李卖出了8个水果和7个蔬菜。
小王的水果每个价格是3元,蔬菜每个价格是2元;小李的水果每个价格是4元,蔬菜每个价格是1元。
请分别计算小王和小李卖出水果和蔬菜的总金额。
7. 儿童和成人门票问题:某游乐园门票分为儿童票和成人票。
已知一天销售的门票总数为48张,总金额为240元。
儿童票的价格是每张15元,成人票的价格是每张20元。
请问儿童票和成人票分别售出了多少张?8. 书包和铅笔盒问题:小明的书包和铅笔盒总共有9个,书包比铅笔盒的数量多3。
请问书包和铅笔盒各有多少个?9. 电脑和手机问题:小王带着电脑和手机出门,电脑的重量是手机的2倍,他们的总重量是6kg。
请问电脑和手机各有多重?10. 停车费问题:某停车场停车费为每小时8元。
小明停车了4小时,停车费用为多少元?11. 毛巾和浴巾问题:某商店有毛巾和浴巾两种商品,已知毛巾的价格是浴巾的三分之一。
小张花了27元买了3个毛巾和2个浴巾,请问每个毛巾和浴巾的价格分别是多少元?12. 配菜问题:在一次聚餐中,小明带来了甲菜和乙菜两种配菜。
一元一次方程应用难题精选含答案解析
一元一次方程应用难题精选(含答案解析)一元一次方程是数学中最基础的方程类型之一,广泛应用于各个领域。
下面是一些难度较高的一元一次方程应用难题,带有详细的答案解析。
1. 一辆汽车从A地到B地,全程200公里。
如果车速是每小时60公里,那么从A地到B地需要多长时间?解析:设从A地到B地所需时间为t小时,根据题意可以得到方程60t = 200。
解这个方程可以得到t = 200/60,约等于3.33小时。
2. 甲乙两人同时从A地出发,甲的速度是每小时5公里,乙的速度是每小时7公里。
如果乙比甲早1小时到达B地,那么A地到B地的距离是多少公里?解析:设A地到B地的距离为d公里,根据题意可以得到方程d/5 = (d/7) + 1。
解这个方程可以得到d = 35公里。
3. 一个水桶装满水需要5分钟,如果打开水龙头,水龙头每分钟可以排水3升,那么水桶中的水会在多长时间内排空?解析:设水桶中的水会在t分钟内排空,根据题意可以得到方程5 - 3t/60 = 0。
解这个方程可以得到t = 100分钟。
4. 甲乙两人同时从A地出发,甲的速度是每小时8公里,乙的速度是每小时10公里。
如果乙比甲晚2小时到达B地,那么A地到B地的距离是多少公里?解析:设A地到B地的距离为d公里,根据题意可以得到方程d/8 = (d/10) - 2。
解这个方程可以得到d = 80公里。
5. 一个长方形花坛的周长是20米,宽度是2米。
如果长方形的长度是x米,那么它的面积是多少平方米?解析:根据题意可以得到方程2x + 2(2) = 20,即2x + 4 = 20。
解这个方程可以得到x = 8,所以长方形的面积是8 * 2 = 16平方米。
这些难题涉及到了一元一次方程在不同领域的应用,需要根据题目的条件建立方程,并解方程得出结果。
通过解这些难题,可以锻炼学生的问题分析、方程建立和解方程的能力,加深对一元一次方程的理解和应用。
一元一次方程的实际问题
一元一次方程的实际问题一元一次方程是我们初中数学中最基本的代数方程之一。
它的一般形式为ax + b = 0,其中a和b为已知数,而x是未知数。
本文将从实际问题的角度出发,探讨一元一次方程在现实生活中的应用。
一、购物优惠假设你在某商场购物,打折后的价格为原价的80%,你购买了一件商品,共花费120元。
现在我们就用一元一次方程来计算原价是多少。
设原价为x元,则打折后的价格为0.8x元。
根据题意,我们得到方程0.8x = 120。
通过解方程,可以得到x = 150。
因此,该商品的原价是150元。
二、汽车行驶假设小明骑自行车去上学,上班的时间比平时的时间推迟了30分钟。
如果他原来以每小时20公里的速度骑行,现在以每小时25公里的速度行驶,那么他的上班距离是多远呢?设他平时上班距离为x公里,则他原本需要x/20小时到达。
而现在,他推迟了30分钟,相当于推迟了0.5小时。
根据题意,我们可以建立方程x/25 = x/20 + 0.5。
通过解方程,可以得到x = 12.5。
因此,小明的上班路程是12.5公里。
三、超市商品促销某超市举办了一次促销活动,对购买2个相同商品的顾客进行优惠。
如果购买2个商品的总价格是120元,而单个商品的价格是原价的80%,我们用一元一次方程解决这个问题。
设原价为x元,则打折后的价格为0.8x元。
根据题意,我们可以得到方程2 * 0.8x = 120。
通过解方程,可以得到x = 75。
因此,该商品的原价是75元。
四、公交车票价假设某城市的公交车票价为每次上车5元,而持有城市公交卡的乘客每次只需支付2元。
如果一位乘客共乘坐了15次公交车,支付了78元,那么他持有的公交卡中还剩下多少钱呢?设他持有公交卡的剩余金额为x元,则他共支付了(15 - x) * 5元。
根据题意,我们可以得到方程(15 - x) * 5 = 78。
通过解方程,可以得到x = 9。
因此,他持有的公交卡中还剩下9元。
五、水果购买某水果摊每个苹果的单价为2元,而橙子的单价比苹果贵1元。
一元一次方程应用题8种类型
一元一次方程应用题8种类型引言一元一次方程是初中数学中最基础、最常见的方程类型之一。
在实际生活中,我们可以经常遇到一些问题需要用到一元一次方程来求解。
本文将介绍一元一次方程应用题的8种类型,并通过具体例子进行解析。
通过学习这些例题,我们可以更好地理解一元一次方程的应用。
类型一:简单乘除法在这类问题中,我们可以利用一元一次方程来解决乘除法的运算问题。
举例如下:例题一:小明买了三个相同价格的苹果,花了50元。
那么每个苹果的价格是多少?解析:设每个苹果的价格为x元,则有3x = 50。
解这个方程,得到每个苹果的价格为50/3 = 16.67元。
类型二:加减法在这类问题中,我们可以利用一元一次方程来解决加减法的运算问题。
举例如下:例题二:在一张长方形的图纸上,长所占的比例是宽的2倍。
如果长为8厘米,那么宽是多少?解析:设宽为x厘米,则有8 = 2x。
解这个方程,得到宽为4厘米。
类型三:平均数在这类问题中,我们可以利用一元一次方程来解决平均数的问题。
举例如下:例题三:小明连续三天每天跑步,第一天跑了3公里,第三天跑了7公里,三天的平均距离是5公里。
那么第二天跑了多少公里?解析:设第二天跑了x公里,则有(3 + x + 7)/3 = 5。
解这个方程,得到第二天跑了5公里。
类型四:速度在这类问题中,我们可以利用一元一次方程来解决速度问题。
举例如下:例题四:小红骑自行车去学校的路上,遇到了红绿灯,等了30秒后才能继续骑行,这时她发现她在等红绿灯的时候又走了200米。
如果她骑自行车的速度是10米/秒,那么她离开红绿灯时与红绿灯的距离是多少?解析:设她离开红绿灯时与红绿灯的距离为x米,则有10 * 30 = x + 200。
解这个方程,得到她离开红绿灯时与红绿灯的距离是500米。
类型五:价格打折在这类问题中,我们可以利用一元一次方程来解决打折问题。
举例如下:例题五:商场举办打折活动,凡购买两件以上商品的顾客可以享受8折优惠。
一元一次方程应用题及答案
一元一次方程应用题及答案一元一次方程是初中数学中非常重要的一部分,它是一个形如ax+b=0的方程,其中a和b是已知数,x是未知数。
在解一元一次方程的过程中,我们需要运用到数学思维和解题技巧。
本文将介绍几个常见的一元一次方程应用题,并提供相应的答案。
一、题目一:一个团队的团费总计1600元,每人交费100元,问这个团队有多少人?解答:设团队人数为x人,根据题意可得方程:100x=1600。
两边同时除以100得到x=16,所以这个团队有16人。
二、题目二:一个数的三分之一减去这个数的四分之一等于12,求这个数。
解答:设这个数为x,根据题意可得方程:(1/3)x - (1/4)x = 12。
化简方程可得:(4/12)x - (3/12)x = 12,也就是(1/12)x = 12。
两边同时乘以12得到x = 12 * 12,所以这个数为144。
三、题目三:一群人去看电影,门票价值总计1200元,其中成人票每张80元,学生票每张50元,现场售票20张,且总销售额为5500元,问这群人有多少个人?解答:设成人票数为x,学生票数为y。
根据题意可得方程组:80x + 50y = 1200 (1)80x + 50y + 20*(80+50) = 5500 (2)方程(2)表示总销售额等于售票额加上现场售票的额外收入。
将方程(2)减去方程(1),可得:20 * (80 + 50) = 5500 - 12001300 = 4300显然上述等式不成立,所以这道题目存在错误。
综上所述,一元一次方程是解决数学问题的重要工具。
通过对一元一次方程应用题的解答,我们能够巩固和运用所学的知识。
希望本文所提供的例题和解答能够帮助读者更好地理解一元一次方程的应用。
一元一次方程经典应用题(有答案)
应用题专题训练知能点1:市场经济、打折销售问题 (1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?解:设标价是x 元,80%604060100x -=解之:x =105 (元)优惠价为),(8410510080%80元=⨯=x2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?解:设进价为x 元,80%x (1+40%)— x =15x =125(元) 答:进价是125元。
3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?解:设进价是x 元,50)45.01(108=-+⨯x x解之:x =312.5 (元) 答:进价是312.5元。
4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.解:设至多打x 折,根据题意有1200800800x -×100%=5%解得x =0.7=70%答:至多打7折出售.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.解:设每台彩电的原售价为x 元,根据题意,有 10[x (1+40%)×80%-x ]=2700 解得 x =2250答:每台彩电的原售价为2250元.知能点2:工程问题工作量=工作效率×工作时间6. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?解:甲独作10天完成,说明的他的工作效率是,101乙的工作效率是,81等量关系是:甲乙合作的效率×合作的时间=1 解:设合作x 天完成, 依题意得方程 9401)81101(==+x x 解得 答:两人合作940天完成7. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?[分析]设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
(完整)一元一次方程应用题及答案
1/4a=150 a=600 千克
(完整)一元一次方程应用题及答案
水果原来有 600 千克
13、仓库有一批货物,运出五分之三后,这时仓库里又运进 20 吨,此时的货物正好是原来的二 分之一,仓库原来有多少吨?(用方程解)
设原来有 a 吨
a×(1—3/5)+20=1/2a
0.4a+20=0。5a
8、六一中队的植树小队去植树,如果每人植树 5 棵,还剩下 14 棵树苗,如果每人植树 7 棵, 就少 6 棵树苗。这个小队有多少人?一共有多少棵树苗?
解:设有 a 人
5a+14=7a—6
2a=20 a=10
一共有 10 人
有树苗 5×10+14=64 棵
9、一桶油连油带筒重 50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多 二又三分之二 kg,这时连油带桶共重三分之一 kg,原来桶中有多少油?
甲的速度为 4.5+1.5=6 千米/小时
19、甲乙两人分别从相距 7 千米的 AB 两地出发同向前往 C 地,凌晨 6 点乙徒步从 B 地出发,甲 骑自行车在早晨 6 点 15 分从 A 地出发追赶乙,速度是乙的 1.5 倍,在上午 8 时 45 分追上乙,求 甲骑自行车的速度是多少。
解:设乙的速度为 a 千米/小时,甲的速度为 1。5a 千米/小时
解:设油重 a 千克
那么桶重 50-a 千克
第一次倒出 1/2a-4 千克,还剩下 1/2a+4 千克 精心整理
(完整)一元一次方程应用题及答案 第二次倒出 3/4×(1/2a+4)+8/3=3/8a+17/3 千克,还剩下 1/2a+4—3/8a—17/3=1/8a-5/3 千克油 根据题意 1/8a—5/3+50—a=1/3 48=7/8a a=384/7 千克 原来有油 384/7 千克 10、用一捆 96 米的布为六年级某个班的学生做衣服,做 15 套用了 33 米布,照这样计算,这 些布为哪个班做校服最合适?(1 班 42 人,2 班 43 人,3 班 45 人) 设 96 米为 a 个人做 根据题意 96:a=33:15 33a=96×15 a≈43。6 所以为 2 班做合适,有富余,但是富余不多,为 3 班做就不够了 精心整理
一元一次方程的实际应用题(含详细答案)
一元一次方程的实际应用题题型一:利率问题利率问题利息=本金×利率×期数本利和=本金十利息=本金×(1+利率×期数)利息税=利息×税率税后利息=利息一利息税=利息×(1-税率)税后本利和=本金+税后利息【总结】若利率是年利率,期数以“年”为单位计数,若是月利率,则期数以“月”为单位计数,解题时要注意.【例1】某人把若干元按三年期的定期储蓄存入银行,假设年利率为3. 69%,到期支取时扣除所得税实得利息2 103.3元,求存入银行的本金.(利息税为5%)【答案】设存入银行的本金为x元,根据题意,得()()%%3 3.69152103.3x⨯⨯⨯-=x⨯=0.1051652103.3x=,20000因此,存入银行的本金是20000元.【总结】利息=本金×利率×期数×利息税题型二:折扣问题利润额=成本价×利润率售价=成本价+利润额新售价=原售价×折扣【例2】小丽和小明相约去书城买书,请你根据他们的对话内容(如图),求出小明上次所买书籍的原价.--图641【分析】设小明上次购买书籍的原价是x元,由题意,得0.82012+=-,x xx=.解得160因此,小明上次所买书籍的原价是160元,【答案】160元.1:一件衣服按标价的八折出售,获得利润18元,占标价的10%,问该衣服的买入价?分析:本金:标价利率:-20%利息:成交价-标价=买入价+利润-标价解:设该衣服的买入价为x元x+18-18/10%=18/10%×(80%-1)当然,这道题这样解是一种方法,还可以按照我们常规的算术方法解来,倒也简单,因此,列方程解应用题是针对过程清楚的问题比较简单方便。
2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X元进价折扣率标价优惠价利润X元8折(1+40%)X元80%(1+40%)X 15元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为X元,80%X(1+40%)—X=15,X=125答:进价是125元。
一元一次方程应用题
题型3:储蓄问题
• 例3、小明的妈妈为小明存入5000 元参加三年期教育储蓄,到期后本 息和共得5417元,那么这种储蓄的 年利率是多少?
思路:本息和=本金+利息 利息=本金×年利率×期数
解:设这种储蓄的年利率为x, 则 5000+5000×3×x=5417
思路:盈利、亏本是相对于进价而言的,先计算出 两件上衣的进价,然后根据售价与进价的差是大于 零、等于零,还是小于零来确定是赚是赔。
• 解:设其中一件上衣进价为x元,另一 件上衣进价为y元,则
• (1+25%)x=135 • (1-25%)x=135 • 解得 x=108
• y=180 • 因为135×2-(108+180)=-18 • 所以在这次买卖中,该商贩赔了18元。
• 思路导引:
等量关系:一年后,初中在校生增加人数+高中在校 增加人数=全校在校生增加总人数
解:设这所学校现在的初中在校人数为 x 人, 则现在的高中在校人数为(4200—x)人,由 题意得,
8% x +(4200—x)×11%=4200×10%
解得 x=1400
经检验,符合题意
4200-x=2800
解得 x=0.0278=2.78% 经检验,符合题意 答:这种储蓄的年利率是
2.78%。
题型4:行程问题
例4、甲乙两人住处之间的路程是30 千米,某天他俩同时骑摩托车出发 去某地,甲在乙后面,乙每小时骑 52千米,甲每小时骑70千米,经过 多长时间才能追上乙?
思路:追及问题的等量关系: 甲的行程—乙的行程=被追赶的距离
一元一次方程在实际问题中的应用有哪些?
一元一次方程在实际问题中的应用有哪些?
一元一次方程是数学中的基础概念,广泛应用于现实世界的各
个领域。
以下是一些一元一次方程在实际问题中的应用例子:
1.财务管理:一元一次方程可以用来解决财务管理中的各种问题。
例如,可以使用一元一次方程来计算公司的总收入,总成本或
每个单位的成本。
2.回路电路:在电路中,电流的分布可以通过解决一元一次方
程组来计算。
这对于设计和分析电路以及解决电路问题非常有用。
3.商业应用:一元一次方程可以帮助解决商业中的许多问题。
例如,可以使用一元一次方程来计算利润率,销售量或价格。
4.比例问题:比例问题可以通过建立和解决一元一次方程来解决。
这包括了许多实际生活中的问题,如比较价格,规模相似性和
相关变量之间的关系。
5.运动问题:一元一次方程也可以用来解决运动问题。
例如,可以通过一元一次方程来计算物体的速度,加速度或位移。
一元一次方程在实际问题中的应用非常广泛。
通过了解如何运用一元一次方程解决问题,我们可以更好地理解数学的实际应用意义,并应用到我们生活和学习的各个领域中。
(完整版)一元一次方程应用题专题
(完整版)一元一次方程应用题专题
引言
一元一次方程是数学中最基本的方程之一。
在实际生活和工作中,我们经常遇到各种与一元一次方程有关的问题,例如物品购买、速度计算等。
本文将探讨一些实际应用中的一元一次方程题目。
应用题一:物品购买
假设你去商场购买了一批物品,其中某些物品的单价为x元,
数量为n个。
你花了y元购买了这些物品,现在你想知道每个物品
的单价和数量是多少。
解题思路:
设物品的单价为x元,数量为n个。
根据题目中的条件可列出
方程:
nx = y
我们可以通过解这个方程来求解x和n的值。
应用题二:速度计算
假设小明骑自行车以v1 km/h的速度从A地到B地,骑摩托车以v2 km/h的速度从B地到C地。
已知A地到B地的距离为d1公里,B地到C地的距离为d2公里。
现在我们想知道小明从A地到C地的总时间。
解题思路:
设从A地到B地的时间为t1小时,从B地到C地的时间为t2小时。
根据题目中的条件可列出方程:
t1 = d1/v1
t2 = d2/v2
我们可以通过解这两个方程来求解t1和t2的值,从而得到小明从A地到C地的总时间。
结论
通过以上两个应用题的解答,我们可以看到一元一次方程在实际生活中的应用范围非常广泛。
掌握一元一次方程的解题方法,可以帮助我们解决各种实际问题,提高解决问题的能力。
参考文献
[1] 清华大学附属中学数学组, 高中数学第三卷-一元一次方程. 北京: 清华大学出版社, 2009: 1-20.。
一元一次方程经典应用题
1. 年龄问题爸爸今年的年龄是儿子年龄的3倍。
再过5年,爸爸的年龄将是儿子年龄的2倍。
问爸爸和儿子现在的年龄分别是多少岁?2. 距离问题一辆汽车以每小时60公里的速度行驶,另一辆汽车以每小时80公里的速度行驶。
如果两车同时从同一地点出发,向相反方向行驶,问经过多少小时后两车相距300公里?3. 工作问题A 完成某项工作需要5天,B 完成同样的工作需要10天。
两人合作完成这项工作需要多少天?4. 商品价格问题某商品原价为100元,现在打8折销售,若销售总额为1200元,则销售了多少件商品?5. 时间与速度问题一名运动员以每分钟100米的速度跑步,另一名运动员以每分钟120米的速度跑步。
如果两人同时同地出发,问经过多少分钟后第一名运动员落后于第二名运动员100米?6. 几何问题一个矩形的长是宽的2倍,其周长为24米。
求这个矩形的长和宽。
7. 投资问题张先生把一部分钱存入银行,年利率为5%,一年后他得到利息200元。
问张先生存入银行的本金是多少元?8. 混合溶液问题一瓶酒精浓度为20%的溶液与另一瓶酒精浓度为50%的溶液混合后,得到一瓶浓度为30%的溶液。
如果两瓶溶液混合后的总量为1000毫升,问每瓶溶液各有多少毫升?9. 工作效率问题甲单独完成某项工程需8天,乙单独完成同样工程需12天。
两人合作完成这项工程需要多少天?10. 行程问题一辆汽车以每小时60公里的速度从A地出发前往B地,出发后1小时,一辆摩托车以每小时90公里的速度从A地出发追赶汽车。
问摩托车多久能追上汽车?11. 销售问题某商品的成本为200元,售价为280元。
如果销售利润为1600元,问销售了多少件商品?12. 时间问题一台机器每分钟加工5个零件,另一台机器每分钟加工8个零件。
如果两台机器同时工作,加工了总共600个零件,问共工作了多少分钟?13. 水池注水问题一个水池的容量为1000升,如果一个水管每分钟可以注入20升水,问需要多少分钟才能将水池注满?14. 利润问题一项工程的成本为10000元,完工后可以获得利润为3000元。
一元一次方程应用题100道
一元一次方程应用题100道一-元一次方程的应用题100道用方程解决问题(1)-----比例问题与日历问题1、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的多3吨,求甲、乙、丙三种货物各多少吨?2、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3: 2,种西红柿和芹菜的面积比是5: 7,三种蔬菜各种的面积是多少公顷?3、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2: 3。
问他们应各投资多少万元?4、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是0.7: 1: 2: 4.7,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克?5、小名出去旅游四天,己知四天日期之和为65,求这四天分别是哪几日?6、XXX在日历上任意找出一个数,发现它连同上、下、左、右的共5个数的和为85,请求出XXX找的数。
7日历上同一竖列上3日,日期之和为75,第一个日期是几号?用方程解决问题(2):调配问题1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一-半多2辆,应分配到甲乙两车队各多少辆车?2、某班女生人数比男生的还少2人,假如女生增加3人,男生减少3人,那么女姓人数等于男生人数的,那问男、女生各几何人?3、某车间有工人85人,平均每人天天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配套一套,问应若何放置劳力使生产的产物恰好成套?4、某同学做数学题,如果每小时做5题,就可以在预定时间完成,当他做完10题后,解题效率提高了60%,因而不但提前3小时完成,而还多做了6道,问原计划做几题?几小时完成?5、XXX在水果店花18元,买了XXX和橘子共6公斤,已知苹果每公斤3.2元,橘子每公斤2.6元,XXX买了苹果和橘子各几何公斤?6、甲仓库有煤200吨,乙仓库有煤80吨,假如甲仓库天天运出15吨,乙仓库天天运进25吨,问几何天后两仓库存煤相等?7、两个水池共贮有水50吨,甲池用去水5吨,乙池注进水8吨后,这时甲池的水比乙池的水少3吨,甲、乙水池原来各有水多少吨?8、某队有55人,每人每天平均挖土 2.5方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?用方程解决问题(3).._....盈亏问题工作量与折扣问题1.用化肥几何公斤给-块麦田施肥,每亩用6公斤,还差17公斤;每亩用5公斤,还多3公斤,这块麦田有几何亩?2.毕业生在礼堂入座,1条长凳坐3人,有25人坐不下,1条长凳坐4人,正好空出4条长凳,则共有多少名毕业生?长凳有多少条?3.将一批货物装入一批箱子中,如果每箱装10件,还剩下6件;如果每箱装13件,那么有一只箱子只装1件,这批货物和箱子各有多少?4.有一次数学竞赛共20题,规定做对一题得5分,做错或不做的题每题扣2分,小景得了86分,问XXX对了几题?5.修--条路,A队零丁修完要20天,B队零丁修完要12天。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 讲 一元一次方程应用问题知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题方程解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:−−−→分析抽象−−−→求解检验(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.二、典型例题类型一、和差倍分问题例1.(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【总结升华】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118﹣x.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.【变式】(2015•南充)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A.25台 B.50台 C.75台 D.100台类型二、行程问题1.一般问题例2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.2.相遇问题(相向问题)例3.A、B两地相距100km,甲、乙两人骑自行车分别从A、B两地出发相向而行,甲的速度是23km/h,乙的速度是21km/h,甲骑了1h后,乙从B地出发,问甲经过多少时间与乙相遇?【总结升华】等量关系:甲走的路程+乙走的路程=100km【变式】甲、乙两人骑自行车,同时从相距45km的两地相向而行,2小时相遇,每小时甲比乙多走2.5km,求甲、乙每小时各行驶多少千米?3.追及问题(同向问题)例4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆流问题)例5.一艘船航行于A、B两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.类型三、工程问题例6.一个水池有两个注水管,两个水管同时注水,10小时可以注满水池;甲管单独开15小时可以注满水池,现两管同时注水7小时,关掉甲管,单独开乙管注水,还需要几小时能注满水池?【总结升华】工作效率×工作时间=工作量,如果没有具体的工作量,一般视总的工作量为“1”.【变式】修建某处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后两天由乙、丙合作完成问乙中途离开了几天?类型四、调配问题(比例问题、劳动力调配问题)例7.(2015春•衡阳校级月考)某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程( )A .22+x=2×26B .22+x=2(26﹣x )C .2(22+x )=26﹣xD .22=2(26﹣x )【总结升华】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,表示出调后两个组的人数.【变式】甲队有72人,乙队有68人,需要从甲队调出多少人到乙队,才能使甲队恰好是乙队人数的.三、课堂练习一、选择题1.一个长方形的周长为26 cm, 这个长方形的长减少1 cm, 宽增加2 cm, 就可成为一个正方形, 设长方形的长为 x cm, 则可列方程( ).A. B. C. D.2.飞机逆风时速度为x 千米/小时,风速为y 千米/小时,则飞机顺风时速度为( ).A .千米/小时B .千米/小时C .千米/小时D .千米/小时3.(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .724.甲能在11天内独立完成某项工作, 乙的工作效率比甲高10%, 那么乙独立完成这项工作34()2261+-=-x x ()2131+-=-x x ()2261--=+x x 2)13(1--=+x x ()x y +()x y -(2)x y +(2)x y+的天数为( ).A.10天 B.12.1天 C.9.9天 D.9天.5.甲列车从A地以50千米/时的速度开往B地,1小时后,乙列车从B地以70千米/时的速度开往A地,如果A,B两地相距200千米,则两车相遇点距A地( )千米.A.100B.112C.112.5D.114.56.(2015春•宁波期中)某班同学去划船,若每船坐7人,则余下5人没有座位;若每船坐8人,则又空出2个座位.这个班参加划船的同学人数和船数分别是()A.47,6 B.46,6 C.54,7 D.61,8二、填空题7.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个湘莲,付50元,找回38元,x设每个湘莲的价格为元,根据题意,列出方程为______________.8.某校用56m长的篱笆围成一个长方形的生物园,要使长为16 m,则宽为________m.9.小明和他父亲的年龄之和为54,又知父亲年龄是小明年龄的3倍少2岁,则他父亲的年龄为____岁.10.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)两人同时同地同向而行时,经过________秒钟两人首次相遇.11.(2016春•原阳县校级月考)某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完全池水需要9h,当同时开放甲、乙两管时需要 h水池水量达全池的.12.王会计在结账时发现现金少了153.9元,查账时得知是一笔支出款的小数点看错了一位.王会计查出这笔看错了的支出款实际是________元.三、解答题13.A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时。
(1)甲、乙同时出发,背向而行,问几小时后他们相距351千米?(2)甲、乙相向而行,甲出发三小时后乙才出发,问乙出发几小时后两人相遇?(3)甲、乙相向而行,要使他们相遇于AB的中点,乙要比甲先出发几小时?(4)甲、乙同时出发,相向而行,甲到达B处,乙到达A处都分别立即返回,几小时后相遇?相遇地点距离A有多远?14.甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?15.(2015•平南县一模)抗震救灾重建家园,为了修建在地震中受损的一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)请问甲、乙两工程队合作修建需几个月完成?共耗资多少万元?(2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整月计算)本次课课后练习四、举一反三一、选择题1.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ).A .B .C .D . 2.甲乙两地相距180千米,已知轮船在静水中的航速是a 千米/小时,水流速度是10千米/小时,若轮船从甲地顺流航行3小时到达乙地后立刻逆流返航,则逆流行驶1小时后离乙地的距离是( ).A .40千米B .50千米C .60千米D .140千米3.一列长150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是( ).A .60秒B .30秒C .40秒D .50秒4.(2014•泰安模拟)某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是( )A.+=1B.+=1C.+=1D.+=15.甲组人数是乙组人数的2倍,从甲组抽调8人到乙组,这时甲组剩下的人数恰比乙组人数的一半多2个,设乙组原有x 人,则可列方程( ).A .B . C. D . 6.某种出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程的最大值是( ).A .11B .8C .7D .5二、填空题(1)2070x x -=(1)2070x x +=2(1)2070x x +=(1)20702x x -=1222x x =+12(8)22x x =++12822x x -=+128(8)22x x -=++7.(2014•湘潭)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为___________.8.9人14天完成了一件工作的,而剩下的工作要在4天内完成,则需增加的人数是__________.9.轮船在静水中速度为每小时20km,水流速度为每小时4km,从甲码头顺流航行到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头的距离.若设两码头间的距离为x km,可列方程 .10.(2016春•原阳县校级月考)某城市与省会城市相距390千米,客车与轿车分别从该城市和省会城市同时出发,相向而行.已知客车每小时行80千米,轿车每小时行100千米,问经过 小时后,客车与轿车相距30千米.11.某市开展“保护母亲河”植树造林活动,该市金桥村有1000亩荒山绿化率达80%,300亩良田视为已绿化,河坡地植树面积已达20%,目前金桥村所有土地的绿化率为60%,则河坡地有________亩.12.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a 度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a = 度. 三、解答题13.(2016春•蓬溪县期中)某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?14.在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝53巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?15.A、B两地相距30千米.甲、乙两人分别从A、B两地同时出发,相向而行.已知甲比乙每小时多走1千米,经过2.5小时两人相遇,求甲、乙两人的速度.。