初中因式分解基本方法

合集下载

初中因式分解基本方法

初中因式分解基本方法

word格式-可编辑-感谢下载支持初中因式分解的基本方法因式分解(factorization)因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.⑴提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的~.②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.am+bm+cm=m(a+b+c)③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.⑵运用公式法①平方差公式:. a2-b2=(a+b)(a-b)②完全平方公式:a2±2ab+b2=(a±b)2※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.③立方和公式:a3+b3=(a+b)(a2-ab+b2).立方差公式:a3- b3=(a-b)( a2+ab+ b2).③完全立方公式:a3±3 a2b+3a b2±b3=(a±b)3④a n-b n=(a-b)[a(n-1)+a(n-2)b+……+b(n-2)a+b(n-1)]a m +b m =(a+b)[a(m-1)-a(m-2)b+……-b(m-2)a+b(m-1)] (m为奇数)⑶分组分解法分组分解法:把一个多项式分组后,再进行分解因式的方法.分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.⑷拆项、补项法拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.例:分解因式bc(b+c)+ca(c-a)-ab(a+b)解bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)⑸十字相乘法①x2+(p q)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p q)x+pq=(x+p)(x+q)这个很实用,但用起来不容易.在无法用以上的方法进行分解时,可以用下十字相乘法.例:x2+5x+6首先观察,有二次项,一次项和常数项,可以采用十字相乘法.一次项系数为1.所以可以写成1*1常数项为6.可以写成1*6, 2*3, -1*-6, -2*-3(小数不提倡)然后这样排列1 - 21 - 3(后面一列的位置可以调换,只要这两个数的乘积为常数项即可)然后对角相乘,1*2=2,1*3=3.再把乘积相加.2+3=5,与一次项系数相同(有可能不相等,此时应另做尝试),所以可一写为(x+2)(x+3) (此时横着来就行了)我再写几个式子,楼主再自己琢磨下吧.x2-x-2=(x-2)(x+1)2 x2+5x-12=(2x-3)(x+4)②mx2 +px+q型的式子的因式分解对于mx2 +px+q形式的多项式,如果a×b=m, c×d=q且ad+bc=p,则多项式可因式分解为(ax+ c)(bx+ d)例:分解因式7x2 -19x-6分析: 1 --37- 21×2+(-3×7)= -19解:7 x2 -19x-6=(x-3)(7x+2)⑸双十字相乘法难度较之前的方法要提升许多。

初中数学:因式分解,很简单

初中数学:因式分解,很简单

初中数学:因式分解,很简单因式分解是初中数学中一个重要的概念,它是指把一个多项式表示成多个简单的乘积形式的过程。

虽然因式分解的过程可能看起来比较复杂,但是只要掌握了一些基本方法和技巧,它其实是非常简单的。

以下是因式分解的一些基本方法和技巧:
1. 提公因式法:如果一个多项式中存在公因式,可以把公因式提出来,这样就能把多项式分解为公因式和另一个多项式的乘积形式。

例如,多项式6x^2+12x可以写成6x(x+2)的形式,其中6x是公因式。

2. 公式法:对于一些常见的多项式,可以使用公式进行因式分解。

例如,平方差公式可以用于因式分解x^2-y^2的形式,得到(x+y)(x-y)的结果。

3. 分组法:将多项式中的项进行分组,使得每组之间存在公因式,这样就能把多项式分解为多个括号的乘积形式。

例如,多项式x^3+8可以分为(x+2)(x^2-2x+4)的形式,其中第一组是x+2,第二组是x^2-2x+4。

因式分解是解决多项式相关问题的重要方法之一,学生应该认真掌握。

1/ 1。

初中数学因式分解的几种经典技巧

初中数学因式分解的几种经典技巧

初中数学因式分解的几种经典技巧初中数学因式分解的几种经典方法因式分解是初中数学的一个重点,涉及到分式方程和一元二次方程,因此学会一些基本的因式分解方法非常必要。

下面列举了九种方法,希望对大家的研究有所帮助。

1.提取公因式这种方法比较常规、简单,必须掌握。

常用的公式有完全平方公式、平方差公式等。

例如,对于方程2x-3x=0,可以进行如下因式分解:x(2x-3)=0,得到x=0或x=3/2.一个规律是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式,这对我们后面的研究有帮助。

2.公式法将式子利用公式来分解,也是比较简单的方法。

常用的公式有完全平方公式、平方差公式等。

建议在使用公式法前先提取公因式。

例如,对于x^2-4,可以使用平方差公式得到(x+2)(x-2)。

3.十字相乘法是做竞赛题的基本方法,但掌握了这个方法后,做平时的题目也会很轻松。

关键是将二次项系数a分解成两个因数a1和a2的积a1.a2,将常数项c分解成两个因数c1和c2的积c1.c2,并使ac正好是一次项b,那么可以直接写成结果。

例如,对于2x^2-7x+3,可以使用十字相乘法得到(x-3)(2x-1)。

总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1.a2,常数项c可以分解成两个因数之积,即c=c1.c2,那么可以使用十字相乘法进行因式分解。

文章中有一些格式错误,需要修正。

另外,第四段中的一些内容似乎有问题,建议删除。

改写后的文章如下:分解因式是数学中的一个重要概念,也是许多数学问题的基础。

在中学数学中,我们通常研究到七种分解因式的方法。

1.公因数法这种方法是最基础的方法之一,它的核心思想是找到表达式中的公因数。

例如,对于表达式6x+9y,我们可以找到它们的公因数3,然后将表达式简化为3(2x+3y)。

2.公式法公式法是通过运用数学公式来分解因式。

例如,对于二次三项式ax2+bx+c,我们可以使用求根公式来求出它的两个根,然后将表达式分解为(a(x-根1)(x-根2))的形式。

初中数学因式分解常见的6种方法和7种应用

初中数学因式分解常见的6种方法和7种应用

因式分解的六种方法及其应用因式分解的常用方法有:(1)提公因式法;(2)公式法;(3)提公因式法与公式法的综合运用.在对一个多项式因式分解时,首先应考虑提公因式法,然后考虑公式法.对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等.方法一提公因式法题型1 公因式是单项式的因式分解1.若多项式-12x2y3+16x3y2+4x2y2的一个因式是-4x2y2,则另一个因式是()A.3y+4x-1 B.3y-4x-1C.3y-4x+1 D.3y-4x【解析】B2.分解因式:2mx-6my=__________.【解析】2m(x-3y)3.把下列各式分解因式:(1)2x2-xy;(2)-4m4n+16m3n-28m2n.【解析】(1)原式=x(2x-y).(2)原式=-4m2n(m2-4m+7).题型2公因式是多项式的因式分解4.把下列各式分解因式:(1)a(b-c)+c-b;(2)15b(2a-b)2+25(b-2a)2.【解析】(1)原式=a(b-c)-(b-c)=(b-c)(a-1).(2)原式=15b(2a-b)2+25(2a-b)2=5(2a-b)2(3b+5).方法二公式法题型1直接用公式法5.把下列各式分解因式:(1)-16+x4y4;(2)(x2+y2)2-4x2y2;(3)(x2+6x)2+18(x2+6x)+81.【解析】(1)原式=x4y4-16=(x2y2+4)(x2y2-4)=(x2y2+4)(xy+2)(xy-2).(2)原式=(x 2+y 2+2xy )(x 2+y 2-2xy )=(x +y )2(x -y )2.(3)原式=(x 2+6x +9)2=[(x +3)2]2=(x +3)4.题型2 先提再套法6.把下列各式分解因式:(1)(x -1)+b 2(1-x );(2)-3x 7+24x 5-48x 3.【解析】(1)原式=(x -1)-b 2(x -1)=(x -1)(1-b 2)=(x -1)(1+b )(1-b ).(2)原式=-3x 3(x 4-8x 2+16)=-3x 3(x 2-4)2=-3x 3(x +2)2(x -2)2.题型3 先局部再整体法7.分解因式:(x +3)(x +4)+(x 2-9).【解析】原式=(x +3)(x +4)+(x +3)·(x -3)=(x +3)[(x +4)+(x -3)]=(x +3)(2x +1). 题型4 先展开再分解法8.把下列各式分解因式:(1)x (x +4)+4;(2)4x (y -x )-y 2.【解析】(1)原式=x 2+4x +4=(x +2)2.(2)原式=4xy -4x 2-y 2=-(4x 2-4xy +y 2)=-(2x -y )2.方法三 分组分解法9.把下列各式分解因式:(1)m 2-mn +mx -nx ;(2)4-x 2+2xy -y 2.【解析】(1)原式=(m 2-mn )+(mx -nx )=m (m -n )+x (m -n )=(m -n )(m +x ).(2)原式=4-(x 2-2xy +y 2)=22-(x -y )2=(2+x -y )(2-x +y ).方法四 拆、添项法10.分解因式:x 4+14. 【解析】原式=x 4+x 2+14-x 2=⎝⎛⎭⎫x 2+122-x 2=⎝⎛⎭⎫x 2+x +12(x 2-x +12). 方法五 整体法题型1 “提”整体11.分解因式:a (x +y -z )-b (z -x -y )-c (x -z +y ).【解析】原式=a (x +y -z )+b (x +y -z )-c (x +y -z )=(x +y -z )(a +b -c ).题型2 “当”整体12.分解因式:(x+y)2-4(x+y-1).【解析】原式=(x+y)2-4(x+y)+4=(x+y-2)2.题型3“拆”整体13.分解因式:ab(c2+d2)+cd(a2+b2).【解析】原式=abc2+abd2+cda2+cdb2=(abc2+cda2)+(abd2+cdb2)=ac(bc+ad)+bd(ad+bc)=(bc+ad)(ac+bd).题型4“凑”整体14.分解因式:x2-y2-4x+6y-5.【解析】原式=(x2-4x+4)-(y2-6y+9)=(x-2)2-(y-3)2=(x+y-5)(x-y+1).方法六换元法15.分解因式:(1)(a2+2a-2)(a2+2a+4)+9;(2)(b2-b+1)(b2-b+3)+1.【解析】(1)设a2+2a=m,则原式=(m-2)(m+4)+9=m2+4m-2m-8+9=m2+2m+1=(m+1)2=(a2+2a+1)2=(a+1)4.(2)设b2-b=n,则原式=(n+1)(n+3)+1=n2+3n+n+3+1=n2+4n+4=(n+2)2=(b2-b+2)2.因式分解的7种应用因式分解是整式的恒等变换的一种重要变形,它与整式的乘法是两个互逆的过程,是代数恒等变形的重要手段,在有理数计算、式子的化简求值、几何等方面起着重要作用.应用一用于简便计算1.利用简便方法计算:23×2.718+59×2.718+18×2.718.【解析】23×2.718+59×2.718+18×2.718=(23+59+18)×2.718=100×2.718=271.8.2.计算:2 0162-4 034×2 016+2 0172.【解析】2 0162-4 034×2 016+2 0172=2 0162-2×2 016×2 017+2 0172=(2 016-2 017)2=1.应用二用于化简求值3.已知x-2y=3,x2-2xy+4y2=11.求下列各式的值:(1)xy;(2)x2y-2xy2.【解析】(1)∵x-2y=3,∴x2-4xy+4y2=9,∴(x2-2xy+4y2)-(x2-4xy+4y2)=11-9,即2xy=2,∴xy=1.(2)x2y-2xy2=xy(x-2y)=1×3=3.应用三用于判断整除4.随便写出一个十位数字与个位数字不相等两位数,把它的十位数字与个位数字对调得到另一个两位数,并用较大两位数减去较小的两位数,所得的差一定能被9整除吗?为什么?【解析】所得的差一定能被9整除.理由如下:不妨设该两位数个位上的数字是b,十位上的数字是a,且a>b,b不为0,则这个两位数是10a+b,将十位数字与个位数字对调后的数是10b+a,则这两个两位数中,较大的数减较小的数的差是(10a+b)-(10b+a)=9a-9b=9(a-b),所以所得的差一定能被9整除.应用四用于判断三角形的形状5.已知a,b,c是△ABC的三边长,且满足a2+b2+c2-ab-bc-ac=0,判断△ABC形状.【解析】∵a2+b2+c2-ab-bc-ac=0,∴2a2+2b2+2c2-2ab-2bc-2ac=0.即a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0.∴(a-b)2+(b-c)2+(a-c)2=0.又∵(a-b)2≥0,(b-c)2≥0,(a-c)2≥0,∴a-b=0,b-c=0,a-c=0,即a=b=c,∴△ABC为等边三角形.应用五用于比较大小6.已知A=a+2,B=a2+a-7,其中a>2,试比较A与B的大小.【解析】B-A=a2+a-7-a-2=a2-9=(a+3)(a-3).因为a>2,所以a+3>0,从而当2<a<3时,a-3<0,所以A>B;当a=3时,a-3=0,所以A=B;当a>3时,a-3>0,所以A<B.应用六 用于解方程(组)7.已知大正方形的周长比小正方形的周长多96 cm ,大正方形的面积比小正方形的面积多960 cm 2.请你求这两个正方形的边长.【解析】设大正方形和小正方形的边长分别为x cm ,y cm ,根据题意,得⎩⎪⎨⎪⎧4x -4y =96,①x 2-y 2=960,② 由①得x -y =24,③;由②得(x +y )(x -y )=960,④把③代入④得x +y =40,⑤;由③⑤得方程组⎩⎪⎨⎪⎧x -y =24,x +y =40,,解得⎩⎪⎨⎪⎧x =32,y =8. 故大正方形的边长为32 cm ,小正方形的边长为8 cm.应用七 用于探究规律8.观察下列各式:12+(1×2)2+22=9=32,22+(2×3)2+32=49=72,32+(3×4)2+42=169=132,…. 你发现了什么规律?请用含有字母n (n 为正整数)的等式表示出来,并说明理由.【解析】规律:n 2+[n (n +1)]2+(n +1)2=[n (n +1)+1]2.理由如下:n 2+[n (n +1)]2+(n +1)2=[n (n +1)]2+2n 2+2n +1=[n (n +1)]2+2n (n +1)+1=[n (n +1)+1]2.。

八年级数学上册:《因式分解》的4种基本方法,例解+练习高清图片,可保存

八年级数学上册:《因式分解》的4种基本方法,例解+练习高清图片,可保存

八年级数学上册:《因式分解》的4种基本方法,例解+练习高清图片,可保存因式分解是初中数学中一个非常重要的概念,了解和掌握因式分解的方法非常有必要。

因此,本文将详细介绍八年级数学上册中因式分解的4种基本方法和例解和练习的高清图片。

首先,介绍因式分解的定义:因式分解的意思就是将一个多项式拆分成多个因子,使其值等于原来的多项式的值,并且多项式中的次数不会发生变化,从而达到简单化或剖析多项式的表达式的目的。

其次,介绍八年级数学上册中因式分解的4种基本方法:1. 查表法。

查表法是把因式表中的每一项拿出来,然后用多项式中的每一项去比较,如果多项式的某一项是因式列表中某一项的整数倍,就将该因式提取出来,然后分解。

2. 平方差分解法。

找出一个最大的可以合成该多项式中所有次数和为偶数,最高次为偶数的平方差,然后把该多项式拆分成两个多项式,一个多项式中各项次和为x2,另一个多项式中各项次和为x,然后将两个多项式分别用此法求解得出各自因式。

3. 系数法。

如果可以找出多项式中最高次的系数,并将它简化为若干个合数的乘积的形式,然后再将各个因式拆分成单项式,最后将它们一一相乘,即可得到最终的结果。

4. 因式分解辗转相除法。

该方法是把多项式中的每一项的系数提取出来,然后拿系数中的每一项去比较,查找出最大的可以相除的因子,将其因子提取出来,放入前一项,然后再用辗转相减、相除法求出结果。

最后,例解+练习高清图片可直观地帮助学生理解因式分解的方法,加深印象,让学生在掌握并灵活运用这一方法时不会出现停滞,而是可以轻松应对考试中的试题。

综上所述,八年级数学上册中因式分解的4种基本方法都是可有效分解多项式的有效方法,通过举例教学+练习,可以有效帮助学生理解这一概念,加深对因式分解这一技能的掌握。

初中因式分解基本方法

初中因式分解基本方法

初中因式分解基本方法因式分解是一种将一个多项式表达式表示为若干个乘积的形式的数学运算方法。

初中阶段,学生主要学习了解一元一次方程、一元二次方程和一元二次函数,并能应用这些知识进行因式分解。

下面是初中因式分解的基本方法:一、公因式提取法公因式提取法是最基本的因式分解方法,它适用于多个项有公共因子的情况。

步骤:1.找出多个项的公因式。

2.提取公因式,并用括号括起来。

3.将提取后的公因式和剩余的部分相乘。

例如:1.因式分解4x+8y:公因式:4提取公因式:4(x+2y)2.因式分解3a+6b+9c:公因式:3提取公因式:3(a+2b+3c)二、配方法(特殊因式两项之和差公式)配方法适用于两个互为乘积的二次式(特殊因式)相加或相减的情况。

步骤:1.求出两个特殊因式。

2.将两个特殊因式用括号括起来,并根据所给的运算符号来进行相加或相减。

3.将特殊因式中的公因式提取出来。

4.化简提取后的公式。

例如:1.因式分解x²+5x+6:特殊因式:x²,6括号中根据加法结合律和交换律:(x+2)(x+3)2.因式分解x²-4x+4:特殊因式:x²,4括号中根据减法结合律和交换律:(x-2)(x-2)或(x-2)²三、公式法公式法适用于一些特定的公式或模板,例如完全平方公式、平方差公式、立方差公式等。

步骤:1.将给定的多项式改写为公式或模板中的形式。

2.运用对应的公式或模板进行因式分解。

3.将分解后的表达式化简。

例如:1.因式分解x²-4:平方差公式:a²-b²=(a+b)(a-b)将表达式改写为公式形式:x²-2²利用平方差公式:(x+2)(x-2)2.因式分解x³-8:立方差公式:a³-b³=(a-b)(a²+ab+b²)将表达式改写为公式形式:x³-2³利用立方差公式:(x-2)(x²+2x+4)以上是初中因式分解的基本方法,理解并掌握这些方法可以帮助学生更好地解决因式分解的问题。

初中生因式分解

初中生因式分解

因式分解是将一个多项式表达为几个多项式的乘积的过程。

对于初中生来说,通常需要掌握以下几种基本的因式分解方法:
1. 提公因式法:如果多项式的各项中都有公共的因子,可以提取出来,使得原多项式变为公因子与剩余部分的乘积。

例如:ax + ay = a(x + y)
2. 分组分解法:将多项式的各项分成几组,每组提出公因子,再将提取公因子后的表达式进行合并。

例如:ax + ay + bx + by = a(x + y) + b(x + y) = (a + b)(x + y)
3. 完全平方公式法:利用完全平方公式(a + b)^2 = a^2 + 2ab + b^2和(a - b)^2 = a^2 - 2ab + b^2进行因式分解。

例如:x^2 + 6x + 9 = (x + 3)^2
4. 差平方公式法:利用差平方公式a^2 - b^2 = (a + b)(a - b)进行因式分解。

例如:x^2 - 9 = (x + 3)(x - 3)
5. 十字相乘法:适用于形如ax^2 + bx + c的三项式的因式分解,其中a、b、c是常数。

例如:x^2 + 5x + 6 = (x + 2)(x + 3)
6. 配方法:通过添加和减去同一个数,将二次项和一次项的部分转换为完全平方的形式。

例如:x^2 + 4x = x^2 + 4x + 4 - 4 = (x + 2)^2 - 4
7. 其他特殊公式:如立方和公式、立方差公式等,用于特定形式的多项式因式分解。

因式分解是初中数学中的一个重要知识点,它不仅能够帮助简化多项式的表达,还是解决方程、不等式等问题的重要工具。

因式分解法的四种方法初中

因式分解法的四种方法初中

因式分解法的四种方法初中如下:
因式分解法的四种方法是:提公因式法、分组分解法、待定系数法、十字分解法。

1、一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。

3、待定系数法是初中数学的一个重要方法。

用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的。

由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。

4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

其实就是运用乘法公式
(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。

初中数学因式分解的常用方法

初中数学因式分解的常用方法

初中数学因式分解的常用方法因式分解是将一个数按照乘法拆分成几个因式相乘的形式,可以简化计算和解方程的过程。

在初中数学中,常见的因式分解方法有以下几种:1.提公因式法:提公因式法是最常见的一种因式分解方法,适用于多项式的各项有公因式的情况。

具体步骤如下:(1)找出多项式的各项的最大公因式;(2)将多项式中各项除以最大公因式得到的商作为新的因式;(3)将最大公因式与新的因式相乘,得到因式分解的结果。

2.公式法:公式法是指通过运用一些特定的公式,将数或多项式进行因式分解。

常见的公式有二次差、平方差、立方差等,具体使用公式的方法可参考相关的理论知识。

3.分组分解法:分组分解法是指将多项式进行分组后,再进行因式分解。

主要适用于多项式的各项无公因子时的情况。

具体步骤如下:(1)将多项式中的各项进行重新分组;(2)在每个组内找出公共因子;(3)将每个组内的公共因子提取出来,得到因式分解的结果。

4.平方差公式:平方差公式是指任意两个数的平方之差可以进行因式分解的公式。

常见的平方差公式有以下几个:(1)平方差公式1:a²-b²=(a+b)(a-b)(2)平方差公式2:a² + 2ab + b² = (a+b)²(3)平方差公式3:a² - 2ab + b² = (a-b)²5.立方差公式:立方差公式是指任意两个数的立方之差可以进行因式分解的公式。

常见的立方差公式有以下几个:(1)立方差公式1:a³ - b³ = (a-b)(a²+ab+b²)(2)立方差公式2:a³ + b³ = (a+b)(a²-ab+b²)6.积因式之和法:积因式之和法是指将一个数a分解成两个因式的乘积之和。

常见的积因式之和公式有以下几个:(1)a² + ab = a(a+b)(2)a² - ab = a(a-b)(3)a² + 2ab + b² = (a+b)²(4)a² - 2ab + b² = (a-b)²以上是初中数学中常用的因式分解方法。

初中因式分解方法总结

初中因式分解方法总结

初中因式分解方法总结因式分解是初中数学中重要的一部分,它是指将一个多项式表达式分解为包含更简单的表达式的积的形式,其中这些表达式通常是多项式的因子。

在这篇文章中,我们将总结因式分解的基本方法和一些通用技巧,希望能帮助初中学生更好地掌握这一知识点。

一、因式分解基本方法1.提取公因数因式分解的第一步通常是提取公因数。

如果一个多项式的每一项都有一个共同的因子,那么这个因子可以提取出来。

例如,多项式 9x^2 + 6x 可以被因式分解为 3x(3x + 2)。

2.平方差公式平方差公式是因式分解的一个重要公式,其表达式为a²-b²=(a+b)(a-b)。

应用平方差公式,可以将一个二次多项式分解为两个因子的乘积。

例如,x²-4可以分解为(x+2)(x-2)。

3.分组分解有时,分组分解技巧可以用于分解一个多项式。

在分组分解中,我们可能会将项分组,使每一组都有共同的因子。

例如,1+a+b+ab可以分解为(a+1)(b+1)。

4.配方法配方法是因式分解的一种通用技巧,用于将一个双项式转换为二次多项式,进而将其分解。

配方法的一般思路是,使用一个与双项式中各项相关的常数,对双项式进行乘法。

例如,将x+3和x+1相乘可以得到x²+4x+3,然后就可以将其分解为(x+3)(x+1)。

5.长除法长除法是一种较为复杂的因式分解方法,通常适用于高阶多项式。

这种方法基于多项式的最高项,通过连续除以一个因子,在多项式中逐步减少幂的位数,从而得到各个因子。

这种方法需要耐心和技巧,但可以解决较为复杂的因式分解问题。

二、因式分解通用技巧1. 特殊的二次多项式特殊的二次多项式可以被因式分解很容易。

例如,x^2 - 2x + 1可以分解为(x-1)(x-1),因为它们都等于(x-1)²。

3. 奇偶规则奇偶规则是因式分解中的一个重要原则。

如果一个多项式中有偶数项,则它可以被分解为一个偶数项的多项式与一组单独的偶数项。

初中数学因式分解的方法

初中数学因式分解的方法

初中数学因式分解的方法
在初中数学中,因式分解是一项基本的技能和知识点。

因式分解就是将一个数或者一个多项式分解成几个因子的乘积的形式。

因式分解的方法有很多种,下面介绍一些常用的方法。

1. 公因数法
公因数法是最简单的因式分解方法,它是将多项式中的每一项提取一个公因数,然后将公因数提出来,剩下的部分就是括号中的另一个因子。

例如:4x+8y=4(x+2y)
2. 分组法
分组法是将多项式中的项按照某种规则进行分组,找出相同的因子,然后将相同的因子提取出来,形成括号。

例如:6x^2+11xy+4y^2=(2x+y)(3x+4y)
3. 公式法
公式法是将多项式利用数学公式进行因式分解,例如平方差公式、平方和公式、立方和公式等,将多项式化为已知公式的形式,然后对公式进行因式分解。

例如:x^2-y^2=(x+y)(x-y)
4. 代数方法
代数方法是通过代数运算,将多项式进行因式分解。

这种方法需要掌握一些代数知识,如二次方程的求解、多项式的展开等。

例如:x^2+2x+1=(x+1)^2
以上是初中数学因式分解的一些常用方法,掌握这些方法能够帮助学生更好的完成因式分解题目。

初中数学因式分解的常用方法总结

初中数学因式分解的常用方法总结

初中数学因式分解的常用方法总结因式分解是数学中重要的基本概念,它在初中阶段占据了重要的地位。

因式分解可以将多项式等式转化为因式的乘积形式,从而简化问题的求解过程。

在初中数学中,常见的因式分解方法包括公因式提取法、分组分解法、特殊因式分解法和差平方公式等。

下面将详细介绍这些常用的因式分解方法。

一、公因式提取法公因式提取法是因式分解中最基本的方法之一、它的基本思想是将多项式中的公因式提取出来,使多项式可以表示为公因式与剩余部分的乘积形式。

公因式提取法的步骤如下:Step 1:找出多项式中的公因式。

Step 2:将多项式中的每一项除以公因式。

Step 3:将结果相加,得到公因式和剩余部分的乘积形式。

例如,将多项式4x+8分解为公因式和剩余部分的乘积形式:Step 1:找出多项式中的公因式,即4Step 2:将多项式中的每一项除以公因式,得到x+2Step 3:将结果相加,得到公因式4和剩余部分(x+2)的乘积形式,即4(x+2)。

二、分组分解法分组分解法是一种常见的因式分解方法,它适用于多项式中存在相同的二次或高次项的情况。

分组分解法的基本思想是根据多项式的结构特点,将多项式按照其中一种方式进行分组,然后使用公式进行分解。

分组分解法的步骤如下:Step 1:将多项式按照其中一种方式进行分组。

Step 2:每一组中的项尽量找出公因式。

Step 3:将每一组中的项进行因式分解。

Step 4:将结果相加,得到多项式的因式分解形式。

例如,将多项式x^2+3x+2分解为因子的乘积形式:Step 1:将多项式按照其中一种方式进行分组,例如(x^2+2x)+(x+2)。

Step 2:每一组中的项尽量找出公因式,得到x(x+2)+1(x+2)。

Step 3:将每一组中的项进行因式分解,得到x(x+2)+1(x+2)=(x+1)(x+2)。

三、特殊因式分解法特殊因式分解法适用于一些特殊的因式分解问题,例如平方差、和差的平方等形式的分解。

初中 因式分解

初中 因式分解

初中因式分解
因式分解是将一个多项式写成若干个因式的乘积的形式。

初中时通常会学习一些基本的因式分解方法,如:
1. 提公因式法:将多项式中的公因式提出来,写成因式的形式。

例如,对于$4x^2-4x$,我们可以提出$4x$,得到$4x(x-1)$。

2. 平方公式法:对于一些形如 $a^2\pm 2ab+b^2$ 的二次多项式,可以使用平方公式 $(a\pm b)^2$ 将其因式分解。

例如,
$x^2+6x+9$ 可以写成 $(x+3)^2$。

3. 差平方公式法:对于一些形如 $a^2-b^2$ 的差平方多项式,
可以使用差平方公式 $(a+b)(a-b)$ 将其因式分解。

例如,$x^2-
4$ 可以写成 $(x+2)(x-2)$。

4. 三项式乘法公式法:对于一些形如 $ab+ac+bc$ 的三项式多
项式,可以使用三项式乘法公式 $ab+ac+bc=(a+b)(a+c)$ 将其
因式分解。

例如,$3x^2-6x+3$ 可以写成 $3(x-1)^2$。

以上仅是初中时常见的因式分解方法,更复杂和高级的因式分解需要在高中及以上学习。

初中数学因式分解的方法和技巧

初中数学因式分解的方法和技巧

初中数学因式分解的方法和技巧因式分解法主要方式有这些:1.运用公式法,即把乘法公式反过来,就可以用来把某些多项式分解因式;2.因式分解时,各项如果有公因式应先提公因式,再进一步分解;必须进行到每一个多项式因式不能再分解为止。

(一)运用公式法我们晓得整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式水解因式。

于是存有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用以把某些多项式水解因式。

这种水解因式的方法叫作运用公式法。

(二)平方差公式1.平方差公式(1)式子: a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等同于这两个数的和与这两个数的高的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果存有公因式应先加公因式,再进一步水解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)全然平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加之(或者乘以)这两个数的积的2倍,等同于这两个数的和(或者高)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫做全然平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③存有一项就是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)全然平方公式中的a、b可以则表示单项式,也可以则表示多项式。

这里只要将多项式看作一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组水解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分为两组(am+ an)和(bm+ bn),这两组能够分别用抽取公因式的方法分别水解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)?(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)加公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)展开因式分解必须特别注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数内积的多次尝试,通常步骤:① 列举常数项分解成两个因数的积各种可能将情况;②尝试其中的哪两个因数的和恰好等同于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.。

初中因式分解基本方法

初中因式分解基本方法

初中因式分解基本方法因式分解是数学中的一项重要内容,它是解答一元多次方程、凑项、约分、分式化简等问题的基本方法之一、因式分解就是将一个复杂的式子按照一定的规则分解成多个因式的乘积。

在初中数学中,因式分解主要涉及多项式的因式分解。

下面将介绍初中因式分解的基本方法。

一、当多项式为两个完全平方差的形式时,可以利用差平方公式进行因式分解。

差平方公式:a^2-b^2=(a+b)(a-b)例如:x^2-9=(x+3)(x-3)二、当多项式为两个立方差的形式时,可以利用立方差公式进行因式分解。

立方差公式:a^3 - b^3 = (a - b)(a^2 + ab + b^2)例如:x^3-8=(x-2)(x^2+2x+4)三、当多项式为两个立方和的形式时,可以利用立方和公式进行因式分解。

立方和公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2)例如:x^3+8=(x+2)(x^2-2x+4)四、当多项式为两个平方和的形式时,可以利用平方和公式进行因式分解。

平方和公式:a^2 + 2ab + b^2 = (a + b)^2例如:x^2+4x+4=(x+2)^2五、当多项式为两个立方和立方差的形式时,可以利用立方和立方差公式进行因式分解。

立方和立方差公式:a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc)例如:x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz)六、当多项式为四个完全平方差的形式时,可以利用完全平方差公式进行因式分解。

完全平方差公式:a^4-b^4=(a^2+b^2)(a^2-b^2)=(a^2+b^2)(a+b)(a-b)例如:x^4-y^4=(x^2+y^2)(x^2-y^2)=(x^2+y^2)(x+y)(x-y)七、当多项式为两个互为倒数的因子的形式时,可以利用互倒数公式进行因式分解。

八年级上册分解因式

八年级上册分解因式

八年级上册分解因式
在八年级上册,分解因式是一个重要的数学概念。

在这个阶段,你将开始学习如何将多项式进行因式分解。

下面是一些常见的分解因式的方法和示例:
1.公因式提取法:
当一个多项式中的每一项都有一个公共因子时,可以使用公因式提取法来分解因式。

例如:
将多项式2x+4分解为公因式2和多项式x+2:2(x+2)。

将多项式3x^2+6x分解为公因式3x和多项式x+2:3x(x+2)。

2.二次因式分解法:
当一个二次多项式可以被分解为两个一次因式的乘积时,可以使用二次因式分解法来分解因式。

例如:
将多项式x^2+5x+6分解为两个一次因式的乘积:(x+2)(x+3)。

将多项式x^24x5分解为两个一次因式的乘积:(x5)(x+1)。

3.特殊因式分解法:
在特定情况下,我们可以使用特殊因式分解法来分解因式。

例如:
将差平方公式应用于多项式x^24:(x2)(x+2)。

将平方差公式应用于多项式x^2y^2:(xy)(x+y)。

这些是分解因式的一些常见方法。

在八年级上册,你将继续学习更多的分解因式的技巧和方法。

记住,在处理多项式时要仔细观察其中的模式和规律,以便找到
正确的分解因式的方法。

初二数学因式分解的八种常见方法

初二数学因式分解的八种常见方法

初二数学因式分解的八种常见方法一.提取公因式法(一)公因式是单项式的因式分解1.分解因式确定公因式的方法①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式);③指数:取相同字母(或多项式)的最低次幂.注意:公因式可以是单独的一个数或字母,也可以是多项式,当第一项是负数时可先提负号,当公因式与多项式某一项相同时,提公因式后剩余项是1,不要漏项.解:原式=一4m²n(m²一4m+7).(二)公因式是多项式的因式分解2.因式分解15b(2a一b)²+25(b一2a)²解:原式=15b(2a一b)²+25(2a一b)²=5(2a一b)²(3b+5)二.公式法(一)直接用公式法3.分解因式(1).(x²+y²)²一4x²y²(2).(x²十6x)²+18(x²+6x)十81解:(1)原式=(x²+y²+2xy)(x²+y²一2xy)=(x十y)²(x一y)²(2)原式=(x²十6x+9)²=[(x+3)²]²=(x+3)的四次方(二)先提再套法4.分解因式(三)先局部再整法5.分解因式9x²一16一(x十3)(3x+4)解:原式=(3x十4)(3x一4)一(x十3)(3x十4)=(3x+4)[(3x一4)一(x+3)]=(3x十4)(2x 一7)(四)先展开再分解法6.分解因式4x(y一x)一y²解:原式=4xy一4x²一y²=一(4x²一4xy+y²)=一(2x一y)²三.分组分解法7.分解因式x²一2xy+y²一9解:原式=(x一y)²一9=(x一y十3)(x一y一3)四.拆、添项法8.分解因式五.整体法(一)"提"整体9.分解因式a(x+y一z)一b(z一x一y)一c(x一z+y)解:原式=a(x十y一z)十b(x十y一z)一c(x十y一z)=(x十y一z)(a+b一c)(二)"当"整体10.分解因式(x+y)²一4(x+y一1)解:原式=(x+y)²一4(x+y)+4=(x十y一2)²(三)"拆"整体11.分解因式ab(c²+d²)+cd(a²+b²)解:原式=abc²+abd²+cda²+cdb²=(abc²+cda²)+(abd²+cdb²)=ac(bc十ad)+bd(ad+bc)=(bc十ad)(ac+bd)(四)"凑"整体12.分解因式x²一y²一4x+6y一5解:原式=(x²一4x十4)一(y²一6y+9)=(x一2)²+(y一3)²=[(x一2)十(y一3)][(x 一2)一(y一3)]=(x+y一5)(x一y十1)六.换元法13.分解因式(a²十2a一2)(a²+2a+4)+9解:设a²+2a=m,则原式=(m一2)(m+4)十9=m²十4m一2m一8+9=m²+2m十1=(m+1)²=(a ²+2a十1)²=(a+1)的四次方七.十字相乘法公式:x²十(a十b)x十ab=(x+a)(x十b)或(a+b)x对于一个三项式若能象上边一样中间左侧上下相乘得x²,中间右侧上下相乘得ab,中间上下斜对角相乘之和为(a+b)x,则能进行分解,如:14.x²一5x一14解:原式=(x一7)(x十2)十字相乘法分解因式非常重,在以后有关代数式的运算,解方程等知识中常常用到.八.待定系数法15.分解因式x²+3xy+2y²十4x+5y+3解:因为x²+3xy+2y²=(x+y)(x+2y)设原式=(x+y+m)(x+2y十n)=x²十3xy+2y²十(m+n)x+(2m+n)y+mn.m+n=42m+n=5mn=3∴m=1,n=3∴原式=(x+y+1)(x+2y+3)。

初中因式分解方法总结完整版

初中因式分解方法总结完整版

初中因式分解方法总结 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】因式分解的十二种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式. 例1、分解因式x-2x-x(2003淮安市中考题) x-2x-x=x(x-2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a+4ab+4b(2003南通市中考题)a+4ab+4b=(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m+5n-mn-5mm+5n-mn-5m=m-5m-mn+5n=(m-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x-19x-6分析:1-3722-21=-197x-19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x+3x-40解x+3x-40=x+3x+()-()-40=(x+)-()=(x++)(x+-)=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7、分解因式2x-x-6x-x+22x-x-6x-x+2=2(x+1)-x(x+1)-6x=x[2(x+)-(x+)-6令y=x+,x[2(x+)-(x+)-6=x[2(y-2)-y-6]=x(2y-y-10)=x(y+2)(2y-5)=x(x++2)(2x+-5)=(x+2x+1)(2x-5x+2)=(x+1)(2x-1)(x-2)8、求根法令多项式f(x)=0,求出其根为x,x,x,……x,则多项式可因式分解为f(x)=(x-x)(x-x)(x-x)……(x-x)例8、分解因式2x+7x-2x-13x+6令f(x)=2x+7x-2x-13x+6=0通过综合除法可知,f(x)=0根为,-3,-2,1则2x+7x-2x-13x+6=(2x-1)(x+3)(x+2)(x-1)9、图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x,x,x,……x,则多项式可因式分解为f(x)=f(x)=(x-x)(x-x)(x-x)……(x-x)例9、因式分解x+2x-5x-6令y=x+2x-5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x+2x-5x-6=(x+1)(x+3)(x-2)10、主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10、分解因式a(b-c)+b(c-a)+c(a-b)分析:此题可选定a为主元,将其按次数从高到低排列a(b-c)+b(c-a)+c(a-b)=a(b-c)-a(b-c)+(bc-cb)=(b-c)[a-a(b+c)+bc]=(b-c)(a-b)(a-c)11、利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11、分解因式x+9x+23x+15令x=2,则x+9x+23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x+9x+23x+15=(x+1)(x+3)(x+5)12、待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12、分解因式x-x-5x-6x-4分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式. 设x-x-5x-6x-4=(x+ax+b)(x+cx+d)=x+(a+c)x+(ac+b+d)x+(ad+bc)x+bd所以解得则x-x-5x-6x-4=(x+x+1)(x-2x-4)。

初中数学因式分解的常用方法及常出的32个习题陷阱

初中数学因式分解的常用方法及常出的32个习题陷阱

初中数学因式分解的常用方法及常出的32个习题陷阱初中数学中,因式分解是一个非常重要的内容,因为它不仅是理解代数式的基础,还在后续学习中有很多的应用。

在这篇文章中,我们将介绍初中数学中因式分解的常用方法以及解题的32个难点。

一、因式分解的常用方法1. 公因式提取法公因式提取法是指将一个代数式中所有项的公共因子提取出来,变成一个公因式和剩下的部分的积的形式。

如:24a+12ab可以写成12a(2+b)。

2. 分组分解法分组分解法是指将一个代数式按照特定的规则进行分组再进表达,一般用于在特殊条件下的因式分解。

如:4a²-12ab+9b²可以分为(2a)²-2×2a×3b+(3b)²,然后用(a-b)²=a²-2ab+b²得到(2a-3b)²。

3. 平方法平方差公式可以用于因式分解,公式为:a²-b²=(a+b)(a-b)。

如:a²-25可以写成(a+5)(a-5)。

4. 公式法在初中数学中,有一些常用公式,如二次公式、高斯定理等,这些公式在因式分解中也可以起到帮助作用。

如:x²-y²可以用公式(x+y)(x-y)表示。

二、32个习题陷阱1.习题一:将5x²+10xy+4y²分解。

(答案:(x+2y)(5x+2y))难点:很多学生容易忽略+4y²这项,就没有括在括号里,直接公因式提取或分组分解,结果变成(x+2y)5(x+2y),这个式子明显有误。

2.习题二:将x²+10xy+16y²分解。

(答案:(x+4y)(x+4y))难点:这个题如果直接公因式提取或分组分解会很困难,事实上,这个题可以通过列方程、用辗转相除法来解决,但需要一定的运算技巧。

3.习题三:将3x²-12x+9分解。

(答案:3(x-1)(x-3))难点:这个题目会引起很多同学的困惑,因为-12x这个项和常数项9很相似,容易认为是“平方差”,从而想到用(a-b)²=a²-2ab+b²这个公式来解,但其实这个式子不适用于这个题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中因式分解的基本方法因式分解(factorization)因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.⑴提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的~.②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.am+bm+cm=m(a+b+c)③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.⑵运用公式法①平方差公式:. a2-b2=(a+b)(a-b)②完全平方公式:a2±2ab+b2=(a±b)2※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.③立方和公式:a3+b3=(a+b)(a2-ab+b2).立方差公式:a3- b3=(a-b)( a2+ab+ b2).③完全立方公式:a3±3 a2b+3a b2±b3=(a±b)3④a n-b n=(a-b)[a(n-1)+a(n-2)b+……+b(n-2)a+b(n-1)]a m +b m =(a+b)[a(m-1)-a(m-2)b+……-b(m-2)a+b(m-1)] (m为奇数)⑶分组分解法分组分解法:把一个多项式分组后,再进行分解因式的方法.分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.⑷拆项、补项法拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.例:分解因式bc(b+c)+ca(c-a)-ab(a+b)解bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)⑸十字相乘法①x2+(p q)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p q)x+pq=(x+p)(x+q)这个很实用,但用起来不容易.在无法用以上的方法进行分解时,可以用下十字相乘法.例:x2+5x+6首先观察,有二次项,一次项和常数项,可以采用十字相乘法.一次项系数为1.所以可以写成1*1常数项为6.可以写成1*6, 2*3, -1*-6, -2*-3(小数不提倡)然后这样排列1 - 21 - 3(后面一列的位置可以调换,只要这两个数的乘积为常数项即可)然后对角相乘,1*2=2,1*3=3.再把乘积相加.2+3=5,与一次项系数相同(有可能不相等,此时应另做尝试),所以可一写为(x+2)(x+3) (此时横着来就行了)我再写几个式子,楼主再自己琢磨下吧.x2-x-2=(x-2)(x+1)2 x2+5x-12=(2x-3)(x+4)②mx2 +px+q型的式子的因式分解对于mx2 +px+q形式的多项式,如果a×b=m, c×d=q且ad+bc=p,则多项式可因式分解为(ax+ c)(bx+ d)例:分解因式7x2 -19x-6分析: 1 --37- 21×2+(-3×7)= -19解:7 x2 -19x-6=(x-3)(7x+2)⑸双十字相乘法难度较之前的方法要提升许多。

用来分解形如2ax+bxy+c2y+dx+ey+f 的二次六项式在草稿纸上,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列和第2,3列都满足十字相乘规则。

则原式=(mx+py+j)(nx+qy+k)要诀:把缺少的一项当作系数为0,0乘任何数得0,例:a b+2b+a-b-2分解因式解:原式=0×1×2a+a b+2b+a-b-2=(0×a+b+1)(a+b-2)=(b+1)(a+b-2)(7) 应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。

如f(x)= x2+5x+6,f(-2)=0,则可确定(x+2)是x2+5x+6的一个因式。

经典例题:1. 分解因式 (1+y)2-2 x 2 (1+y 2)+x 4(1-y)2解:原式=(1+y)2+2(1+y) x 2 (1-y)+ x 4 (1-y)2-2(1+y) x 2 (1-y)-2 x 2 (1+y 2)=[(1+y)+ x 2 (1-y)]2-2(1+y) x 2 (1-y) -2 x 2 (1+ y 2)=[(1+y)+ x 2 (1-y)]2-(2x)2=[(1+y)+ x 2 (1-y)+2x] [(1+y)+ x 2 (1-y) -2x]=( x 2-x 2y+2x+y+1) ( x 2- x 2y -2x+y+1)=[(x+1)2-y(x 2-1)] [(x-1)2-y(x 2-1)]=(x+1) (x+1-xy+y) (x -1) (x -1-xy -y)2.证明:对于任何数x, y ,下式的值都不会为33x 5+3x 4y -5x 3y 2-15x 2y 3+4xy 4+12y 5解:原式=( x 5+3x 4y)-( 5x 3 y 2+15x 2y 3)+(4xy 4+12y 5)= x 4 (x+3y)-5 x 2 y 2 (x+3y)+4 y 4 (x+3y)=(x+3y)( x 4-5 x 2 y 2+4 y 4)=(x+3y)( x 2-4 y 2)( x 2- y 2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y)当y=0时,原式= x 5不等于33;当y 不等于0时,x+3y,x+y,x-y,x+2y,x-2y 互不相同,而33不能分成四个以上不同因数的积,所以原命题成立(8)、 换元法整体代入,免去繁琐的麻烦,亦是建立的之前的基础上例:2)(y x +-2(x+y)+1分解因式考虑到x+y 是以整体出现,展开是十分繁琐的,用a 代替x+y那么原式=122+-a a=2)1(-a回代原式=2)1(-+y x(9)、求根法令多项式f(x)=0,求出其根为x 1 , x 2 , x 3 ,……x n ,则多项式可因式分解为f(x)=(x- x1 )(x- x2 )(x- x3)……(x- x n)例8、分解因式2x4 +7 x3 -2 x2 -13x+6解:令f(x)= 2x4 +7 x3 -2 x2 -13x+6=0通过综合除法可知,f(x)=0根为1,-3,-2,1则2x4 +7 x3 -2 x2 -13x+6=(2x-1)(x+3)(x+2)(x-1)(10)、图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x1 , x2 , x3,……x n,则多项式可因式分解为f(x)= (x- x1 )(x- x2 )(x- x3)……(x- x n)例:因式分解x3 +2 x2 -5x-6解:令y= x3 +2 x2 -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x3 +2 x2 -5x-6=(x+1)(x+3)(x-2)(11)、主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

(备注:这种方法要难一些,多练即可即把一个字母作为主要的未知数,另一个作为常数)例:分解因式a2 (b-c)+b2 (c-a)+c2 (a-b)分析:此题可选定a为主元,将其按次数从高到低排列解:a2 (b-c)+b2 (c-a)+c2 (a-b) = a2 (b-c)-a(b2 - c2 )+( b2 c- c2 b)=(b-c) [a -a(b+c)+bc]=(b-c)(a-b)(a-c)(12)、利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例11、分解因式x3 +9x2 +23x+15解:令x=2,则x3 +9x2 +23x+15 =8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x3 +9x2 +23x+15 =(x+1)(x+3)(x+5)(13)、待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

将式子看成方程,将方程的解代入这时就要用到(1)中提到的知识点了当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式例:2x + x- 2该题可以用十字相乘来做,这里介绍一种待定系数法我们可以把它当方程做,2x +x-2=0一眼看出,该方程有一根为x=1那么必有一因式为(x-1)结合多项式展开原理,另一因式的常数必为2(因为乘-1要为-2)一次项系数必为1(因为与1相乘要为1)所以另一因式为(x+2)原式分解为:2x + x- 2 =(x-1)(x+2)(14) 、 列竖式法原理和小学的除法差不多要建立在待定系数法的方程法上不足的项要用0补除的时候,一定要让第一项抵消例:33x +52x -2分解因式提示:x=-1可以使该式=0,有因式(x+1) 2230 (2)2...............22...............22.........02 (332)0531222323-+----+++-+++x x x x xx xx x x x x x x解 原式=(x+1)(32x +2x-2)(15) 、 解方程法此方法是对c bx ax ++2分解的万能方法,但在学过解方程后才会使用设 02=++c bx ax解得方程得 21,x x x x ==∴))((212x x x x a c bx ax --=++例:2x -x-1 分解因式设 012=--x x解得方程得 251,25121-=+=x x ∴)251)(251(12--+-=--x x x x ※ 多项式因式分解的一般步骤:①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ③ 分解因式,必须进行到每一个多项式因式都不能再分解为止.考虑到每种方法只有一个例题,下面提供一些题目,供大家练习。

相关文档
最新文档