数字图像处理实验2

合集下载

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告实验一数字图像处理编程基础一、实验目的1. 了解MATLAB图像处理工具箱;2. 掌握MATLAB的基本应用方法;3. 掌握MATLAB图像存储/图像数据类型/图像类型;4. 掌握图像文件的读/写/信息查询;5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法;6. 编程实现图像类型间的转换。

二、实验内容1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。

2. 运行图像处理程序,并保存处理结果图像。

三、源代码I=imread('cameraman.tif')imshow(I);subplot(221),title('图像1');imwrite('cameraman.tif')M=imread('pout.tif')imview(M)subplot(222),imshow(M);title('图像2');imread('pout.bmp')N=imread('eight.tif')imview(N)subplot(223),imshow(N);title('图像3');V=imread('circuit.tif')imview(V)subplot(224),imshow(V);title('图像4');N=imread('C:\Users\Administrator\Desktop\1.jpg')imshow(N);I=rgb2gary(GRB)[X.map]=gary2ind(N,2)RGB=ind2 rgb(X,map)[X.map]=gary2ind(I,2)I=ind2 gary(X,map)I=imread('C:\Users\dell\Desktop\111.jpg');subplot(231),imshow(I);title('原图');M=rgb2gray(I);subplot(232),imshow(M);[X,map]=gray2ind(M,100);subplot(233),imshow(X);RGB=ind2rgb(X,map);subplot(234),imshow(X);[X,map]=rbg2ind(I);subplot(235),imshow(X);四、实验效果实验二 图像几何变换实验一、实验目的1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果;2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现;3.掌握matlab 编程环境中基本的图像处理函数。

数字图像处理四个实验报告,带有源程序

数字图像处理四个实验报告,带有源程序

数字图像处理实验指导书学院:通信与电子工程学院专业:电子信息工程班级:学号:姓名:XX理工大学实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。

灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。

要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。

将坐标值数字化成为取样;将振幅数字化成为量化。

采样和量化的过程如图1所示。

因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。

若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。

若图像是double类,则像素取值就是浮点数。

2015秋 数字图像处理实验二 综合实验

2015秋  数字图像处理实验二 综合实验


//细胞核和核仁的面积统计
//统计结果存入数组 parameter[index-1]=(float)area_nucleolus/(area_cell+area_nucleolus); //把当前测量的细胞,细胞核与核仁置不同的标记输出 //测量结果存文件,以分析测量数据
菜单中的消息响应函数
预处理
为何需要预处理?
直接分割的效果
选择何种预处理方法?
中值、均值、形态学开闭运算的效果对比 分析预处理的目的,有针对性的选择合适的方法
预处理
中值滤波
原图
灰值闭运算
分割
分割方法的选择 全局阈值 大津阈值 水域分割 …
中值滤波后分割
分割后的效果 直接分割 噪声、边缘毛刺 滤波后分割
//统计该连通区域的大小
//连通区域太小,滤除,此处大小可根据实际应用自行设定 *(segment.m_pImgData+k*lineByte+l)=255; //滤除 //其余的连通区域被认定为目标,给定编号 *(segment.m_pImgData+k*lineByte+l)=index;
输出测量结果
细胞图像分割测量的方案步骤
数学形态学
腐蚀:集合 A 被集合 B 腐蚀,表示为 A B ,数学形式为
A B = {x : B x A}
膨胀: A 被 B 膨胀表示为 A B , 其定义为:
A B [AC
(-B )]C
A B
A
A B B
腐蚀类似于收缩
利用圆盘膨胀
实验一:现场演示,检查,提问 实验二:现场演示,检查,提问 实验三:现场演示,检查,提问,提交报告和代码 实验成绩占最终成绩的30%。

c语言数字图像处理(二):图片放大与缩小-双线性内插法

c语言数字图像处理(二):图片放大与缩小-双线性内插法

c语⾔数字图像处理(⼆):图⽚放⼤与缩⼩-双线性内插法图像内插假设⼀幅⼤⼩为500 * 500的图像扩⼤1.5倍到750 * 750,创建⼀个750 * 750 的⽹格,使其与原图像间隔相同,然后缩⼩⾄原图⼤⼩,在原图中寻找最接近的像素(或周围的像素)进⾏赋值,最后再将结果放⼤最邻近内插法寻找最近的像素赋值双线性内插法v(x,y) = ax + by + cxy + d双线性内插法参数计算已知Q11, Q12, Q21, Q22,要插值的点为P点,⾸先在x轴上,对R1,R2两个点进⾏插值然后根据R1和R2对P点进⾏插值化简得对于边界值的处理,若x1 < 0 ,则直接令f(Q11), f(Q12) = 0处理结果原图扩⼤为6000 * 4000缩⼩为1000 * 500下⾯为代码实现的主要部分int is_in_array(short x, short y, short height, short width){if (x >= 0 && x < width && y >= 0 && y < height)return1;elsereturn0;}void bilinera_interpolation(short** in_array, short height, short width, short** out_array, short out_height, short out_width){double h_times = (double)out_height / (double)height,w_times = (double)out_width / (double)width;short x1, y1, x2, y2, f11, f12, f21, f22;double x, y;for (int i = 0; i < out_height; i++){for (int j = 0; j < out_width; j++){x = j / w_times;y = i / h_times;x1 = (short)(x - 1);x2 = (short)(x + 1);y1 = (short)(y + 1);y2 = (short)(y - 1);f11 = is_in_array(x1, y1, height, width) ? in_array[y1][x1] : 0; f12 = is_in_array(x1, y2, height, width) ? in_array[y2][x1] : 0; f21 = is_in_array(x2, y1, height, width) ? in_array[y1][x2] : 0; f22 = is_in_array(x2, y2, height, width) ? in_array[y2][x2] : 0; out_array[i][j] = (short)(((f11 * (x2 - x) * (y2 - y)) +(f21 * (x - x1) * (y2 - y)) +(f12 * (x2 - x) * (y - y1)) +(f22 * (x - x1) * (y - y1))) / ((x2 - x1) * (y2 - y1))); }}}。

数字图像处理实验报告

数字图像处理实验报告

目录实验一:数字图像的基本处理操作 (4):实验目的 (4):实验任务和要求 (4):实验步骤和结果 (5):结果分析 (8)实验二:图像的灰度变换和直方图变换 (9):实验目的 (9):实验任务和要求 (9):实验步骤和结果 (9):结果分析 (13)实验三:图像的平滑处理 (14):实验目的 (14):实验任务和要求 (14):实验步骤和结果 (14):结果分析 (18)实验四:图像的锐化处理 (19):实验目的 (19):实验任务和要求 (19):实验步骤和结果 (19):结果分析 (21)实验一:数字图像的基本处理操作:实验目的1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用;2、实现图像的读取、显示、代数运算和简单变换。

3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。

:实验任务和要求1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。

2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。

3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。

4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的对应关系。

:实验步骤和结果1.对实验任务1的实现代码如下:a=imread('d:\');i=rgb2gray(a);I=im2bw(a,;subplot(1,3,1);imshow(a);title('原图像');subplot(1,3,2);imshow(i);title('灰度图像');subplot(1,3,3);imshow(I);title('二值图像');subplot(1,3,1);imshow(a);title('原图像');结果如图所示:图原图及其灰度图像,二值图像2.对实验任务2的实现代码如下:a=imread('d:\');A=imresize(a,[800 800]);b=imread('d:\');B=imresize(b,[800 800]);Z1=imadd(A,B);Z2=imsubtract(A,B);Z3=immultiply(A,B);Z4=imdivide(A,B);subplot(3,2,1);imshow(A);title('原图像 A'); subplot(3,2,2);imshow(B);title('原图像 B'); subplot(3,2,3);imshow(Z1);title('加法图像'); subplot(3,2,4);imshow(Z2);title('减法图像'); subplot(3,2,5);imshow(Z3);title('乘法图像'); subplot(3,2,6);imshow(Z2);title('除法图像');结果如图所示:3.对实验任务3的实现代码如下:s=imread('d:\');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j); %直流分量移到频谱中心I=log(abs(k)); %对数变换m=fftshift(j); %直流分量移到频谱中心RR=real(m); %取傅里叶变换的实部II=imag(m); %取傅里叶变换的虚部A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶变换频谱');subplot(2,2,4);imshow(B);title('平移图像离散傅里叶变换频谱');结果如图所示:4.对实验任务4的实现代码如下:s=imread('d:\');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j);I=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=imrotate(s,-90);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶频谱');subplot(2,2,4);imshow(B);title('平移图像离散傅里叶频谱');结果如图所示::结果分析对MATLAB软件的操作开始时不太熟悉,许多语法和函数都不会使用,写出程序后,调试运行,最开始无法显示图像,检查原因,是有些标点符号没有在英文状态下输入和一些其他的细节,学会了imread(),imshow(),rgb2gray()等函数。

数字图像处理图像变换实验报告.

数字图像处理图像变换实验报告.

实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用和意义;4、观察图像点运算和几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。

三、实验原理1、图像灰度直方图、点运算和几何变换的基本原理及编程实现步骤图像灰度直方图是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。

图像点运算是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。

点运算可以看作是“从象素到象素”的复制操作,而这种复制操作是通过灰度变换函数实现的。

如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值和输出灰度值之间的转换关系。

一旦灰度变换函数确定,该点运算就完全确定下来了。

另外,点运算处理将改变图像的灰度直方图分布。

点运算又被称为对比度增强、对比度拉伸或灰度变换。

点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸和均衡等。

图像几何变换是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放和图像旋转等,其理论基础主要是一些矩阵运算,详细原理可以参考有关书籍。

实验系统提供了图像灰度直方图、点运算和几何变换相关内容的文字说明,用户在操作过程中可以参考。

下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法和频域法,点运算和几何变换属于空域法。

数字图像处理实验2

数字图像处理实验2

等,使用多维滤波器H对图像A进行滤波,H常由函数fspecial输出得到。属性参
数如表3所示: 表3 imfilter函数参数表
参数类型
参数
含义
边界选项
‘X’
输入图像的外部边
界通过X来扩展,默
认的X=0
‘symmetric’
输入图像的外部边
3×3。
输出大小选项
滤波方式选项
(8)medfilt2函数
三、Matlab相关函数介绍
(1)imhist函数 功能:统计变显示图像的直方图。 调用格式: imhist(I):显示图像I的直方图。 imhist(I, n):显示图像I的直方图,n指定直方图中的列数。 [COUNTS,X] = imhist(...):返回直方图数据向量COUNTS和相应的色彩值向量X。 (2)histeq函数 功能:直方图均衡化 调用格式: J = histeq(I,hgram):将图像I的直方图变成用户指定的向量hgram,hgram中的各元素值域为[0,1]; J = histeq(I,N):对原始图像I进行直方图均衡化,N为输出图像的灰度技术,默认N为64。 (3)imadjust函数 功能:调整图像灰度值或颜色映射表,增加图像的对比度。 调用格式: J = imadjust(I,[LOW_IN; HIGH_IN],[LOW_OUT; HIGH_OUT],GAMMA):调整图像I的灰度值;[LOW_IN; HIGH_IN]指定原始图像中要变换的灰度范围;[LOW_OUT; HIGH_OUT]指定变换后的灰度范围;低于LOW_IN 、高于 HIGH_IN 的采取截取式;都可以使用空的矩阵[],默认值是[0 1]; GAMMA为标量,指定描述值I和值J关系的曲线 形状,如果小于1,此映射偏重更高数值(明亮)输出,如果

《数字图像处理》实验教案

《数字图像处理》实验教案

一、实验目的与要求1. 目的通过本实验,使学生了解数字图像处理的基本概念、方法和算法,掌握MATLAB 软件在图像处理方面的应用,提高学生分析问题和解决问题的能力。

2. 要求(1)熟悉MATLAB软件的基本操作。

(2)了解数字图像处理的基本概念和常用算法。

(3)能够运用MATLAB实现图像处理的基本操作和算法。

二、实验内容与步骤1. 实验内容(1)图像读取与显示。

(2)图像的基本运算(如加、减、乘、除等)。

(3)图像的滤波处理。

(4)图像的边缘检测。

(5)图像的分割与标记。

2. 实验步骤(1)打开MATLAB软件,新建一个脚本文件。

(2)导入所需图像,使用imread()函数读取图像,使用imshow()函数显示图像。

(3)进行图像的基本运算,如加、减、乘、除等,使用imadd()、imsub()、imdiv()、imconcat()等函数。

(4)对图像进行滤波处理,如使用均值滤波、中值滤波等,使用imfilter()函数。

(5)进行图像的边缘检测,如使用Sobel算子、Canny算子等,使用edge()函数。

(6)对图像进行分割与标记,如使用区域生长、阈值分割等方法,使用watershed()函数。

(7)对实验结果进行分析和讨论,总结实验心得。

三、实验注意事项1. 严格遵循实验步骤,确保实验的正确进行。

2. 合理选择参数,如滤波器的尺寸、阈值等。

3. 注意图像数据类型的转换,如浮点型、整型等。

4. 保持实验环境的整洁,避免误操作。

四、实验评价1. 评价内容(1)实验步骤的完整性。

(2)实验结果的正确性。

2. 评价标准(1)实验步骤完整,得分20分。

(2)实验结果正确,得分30分。

总分100分。

五、实验拓展1. 研究不同滤波器对图像滤波效果的影响。

2. 尝试使用其他图像分割算法,如基于梯度的分割方法、聚类分割方法等。

3. 探索图像处理在其他领域的应用,如计算机视觉、医学影像处理等。

六、实验一:图像读取与显示1. 实验目的掌握MATLAB中图像的读取和显示方法,熟悉图像处理的基本界面。

数字图像处理实验报告.doc

数字图像处理实验报告.doc

数字图像处理实验报告数字图像处理实验报告1一.实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1. 编程实现图像平移,要求平移后的图像大小不变;2. 编程实现图像的镜像;3. 编程实现图像的转置;4. 编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5. 编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架3.1实验所用编程环境Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Wet应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2实验处理的对象:256色的BMP(BIT MAP格式图像BMP(BIT MAP位图的文件结构:具体组成图:BITMAPFILEHEADER位图文件头(只用于BMP文件)bfType="BM" bfSize bfReserved1bfReserved2bfOffBitsbiSize biWidthbiHeight biPla nesbiBitCou ntbiCompressi onbiSizeimagebiXPelsPerMeterbiY PelsPerMeterbiClrUsedbiCirimporta nt单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEAD位图信息头Palette 调色板DIBPixels DIB 图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位,水平和垂直分辨率以每米像素数为单位),目标设备的级别,每个像素所需的位数,位图压缩类型(必须是0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图,用函数创建兼容DC用函数选择显示删除位图但以上方法的缺点是:1)显示速度慢;2)内存占用大;3)位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决);4)在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示:用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数,一般放在在析构函数中以上方法的优点是:1)显示速度快;2)内存占用少;3)缩放显示时图形失真小,4)在低颜色位数的设备上显示高颜色位数的图形图形时失真小;5)通过直接处理位图数据,可以制作简单动画3.4程序中用到的访问函数Win dows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice 函数:该函数可以直接在显示器或打印机上显示DIB.在显示时不进行缩放处理.2. StretchDIBits 函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits 函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection 函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw 函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW弋码连接到进程中.3.5图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。

数字图像处理——彩色图像实验报告

数字图像处理——彩色图像实验报告

数字图像处理——彩色图像实验报告第一篇:数字图像处理——彩色图像实验报告6.3实验步骤(1)对彩色图像的表达和显示* * * * * * * * * * * *显示彩色立方体* * * * * * * * * * * * *rgbcube(0,0,10);%从正面观察彩色立方体rgbcube(10,0,10);%从侧面观察彩色立方rgbcube(10,10,10);%从对角线观察彩色立方体%* * * * * * * * * *索引图像的显示和转换* * * * * * * * * f=imread('D:PictureFig0604(a)(iris).tif');figure,imshow(f);%f是RGB真彩图像%rgb图像转换成8色索引图像,不采用抖动方式[X1,map1]=rgb2ind(f,8,'nodither');figure,imshow(X1,map1);%采用抖动方式转换到8色索引图像[X2,map2]=rgb2ind(f,8,'dither');figure,imshow(X2,map2);%显示效果要好一些 g=rgb2gray(f);%f转换为灰度图像g1=dither(g);%将灰色图像经过抖动处理,转换打二值图像figure,imshow(g);%显示灰度图像figure,imshow(g1);%显示抖动处理后的二值图像程序运行结果:*彩色立方体原图不采用抖动方式转换到8色索引图像采用抖动方式转换到8色索引图像灰度图像抖动处理后的二值图像(2)彩色空间转换f=imread('D:PictureFig0604(a)(iris).tif');figure,imshow(f);%转换到NTSC彩色空间%f是RGB真彩图像ntsc_image=rgb2ntsc(f);figure,imshow(ntsc_image(:,:,1));%显示亮度信息figure,imshow(ntsc_image(:,:,2));%显示色差信息figure,imshow(ntsc_image(:,:,3));%显示色差信息%转换到HIS彩色空间hsi_image=rgb2hsi(f);figure,imshow(hsi_image(:,:,1));%显示色度信息figure,imshow(hsi_image(:,:,2));%显示饱和度信息figure,imshow(hsi_image(:,:,3));%显示亮度信息程序运行结果:原图转换到NTSC彩色空间显示亮度信息显示色差信息显示色差信息转换到HIS彩色空间显示色差信息显示饱和度信显示亮度信息(3)彩色变换f=imread('D:PictureFig0614(a)(Chalk Original).tif');G=ice('image',f);%打开ice窗口对图像进行调整%在窗口中执行以下操作:%a)得到图像的补色%b)拖动映射曲线,对图像显示效果进行修改%c)在颜色通道中选中某一颜色,然后对映射曲线进行修改程序运行结果(1):全彩色图片ICE窗口它的补色ICE窗口拖动映射曲线,图像的显示效果ICE窗口f2=imread('D:Picture JLK Magenta.tif');figure,imshow(f2);%在CMYK彩色空间内打开图像选择RedICE窗口g2=ice('image',f2,'space','CMYK');%f2的图像色彩偏红,拖动映射曲线,%调整映射参数,使图像的色彩看起来比较正常。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告一、引言数字图像处理是一门涉及图像获取、图像处理和图像分析的重要学科,广泛应用于计算机科学、电子工程、通信技术等领域。

本报告旨在介绍并总结我所进行的数字图像处理实验,讨论实验的目的、方法、结果和分析。

二、实验目的通过本次实验,旨在掌握和理解数字图像处理的基本原理和常见技术,包括灰度变换、空间域滤波、频域滤波等,以及层次分割、边缘检测和形态学处理等高级应用技术。

三、实验方法1. 寻找合适的图像在实验中,我选用了一张自然风景图像作为处理对象。

这张图像包含丰富的纹理和颜色信息,适合用于多种图像处理方法的验证和比较。

2. 灰度变换灰度变换是数字图像处理中常见的基础操作,可以通过对图像的像素灰度值进行线性或非线性变换,来调整图像的对比度、亮度等特征。

在实验中,我利用线性灰度变换方法将原始彩色图像转换为灰度图像,并进行对比度的调整,观察处理结果的变化。

3. 空间域滤波空间域滤波是一种基于像素邻域的图像处理方法,常用于图像去噪、边缘增强等应用。

我使用了平滑滤波和锐化滤波两种方法,并针对不同的滤波算子和参数进行了实验和比较,评估其对图像细节和边缘保留的影响。

4. 频域滤波频域滤波是一种基于图像的频谱特征的图像处理方法,广泛应用于图像增强、去噪和特征提取等方面。

我利用傅里叶变换将图像从空间域转换到频域,采用理想低通滤波器和巴特沃斯低通滤波器进行图像的模糊处理,并进行了实验对比和分析。

5. 高级应用技术在实验中,我还研究了数字图像处理中的一些高级应用技术,包括层次分割、边缘检测和形态学处理。

通过应用不同的算法和参数,我实现了图像区域分割、提取图像边缘和形态学形状变换等效果,评估处理结果的准确性和稳定性。

四、实验结果与分析通过对以上实验方法的实施,我获得了一系列处理后的图像,并进行了结果的比较和分析。

在灰度变换实验中,我发现线性变换对图像的对比度有较大影响,但对图像的细节变化不敏感;在空间域滤波实验中,平滑滤波可以有效降噪,但会导致图像细节损失,而锐化滤波可以增强图像的边缘效果,但也容易引入噪声;在频域滤波实验中,理想低通滤波对图像的模糊效果明显,而巴特沃斯低通滤波器可以在一定程度上保留图像的高频细节信息;在高级应用技术实验中,边缘检测和形态学处理对提取图像边缘和形状变换非常有效,但参数的选择会对结果产生较大影响。

数字图像处理 实验报告(完整版)

数字图像处理 实验报告(完整版)

数字图像处理(一)实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。

6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。

7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。

其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。

电子科技大学数字图像处理实验报告2

电子科技大学数字图像处理实验报告2

电子科技大学数字图像处理实验报告实验名称彩色图像处理实验序号学生姓名学生学号指导教师提交日期摘要本实验利用MATLAB软件,对彩色图像作了一些简单处理。

通过访问数字图像RGB三个通道的对应矩阵,改变数字图像的色彩,得到了原图像的补色图像。

并编写了图像的RGB模型与HSI模型相互转换的程序,实现了两个模型之间的互相转换。

为了得到HSI模型的补色,可将HSI模型转换为RGB模型,用RGB的反色来近似HSI的反色。

然后对彩色图像加入高斯与椒盐噪声,观察了加入噪声后RGB三个通道的图像效果,并通过算术均值滤波与中值滤波分别对三个通道进行去噪,达到对整个彩色图像的去噪。

最后证明了单个通道的噪声会通过到HSI的转换扩散到所有HSI图像上。

实验原理:1、三基色原理:人的眼睛就像一个三色接收器的体系,大多数的颜色可以通过红、绿、蓝三色按照不同的比例合成产生。

同样绝大多数单色光也可以分解成红(red)绿(green)蓝(blue)三种色光。

这是色度学的最基本原理,即三基色原理。

三种基色是相互独立的,任何一种基色都不能由其它两种颜色合成。

红绿蓝是三基色,这三种颜色合成的颜色范围最为广泛。

红绿蓝三基色按照不同的比例相加合成混色称为相加混色。

人眼接收色彩的方法:加法混色。

光色(红色+绿色)=黄色(yellow)光色(红色+蓝色)=紫红(magenta)光色(蓝色+绿色)=青色(cyan)印刷四色:减法呈色颜料(黄色+青色)=白色-红色-蓝色=绿色颜料(紫红+青色)=白色-红色-绿色=蓝色颜料(黄色+紫红)=白色-绿色-蓝色=红色颜料色另外会附加一个黑色,即cyan、magenta、yellow、black四色(cmyk)。

2、彩色图像表示方法:RGB图像:一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色像素点都是在特定空间位置的彩色图像相对应的红绿蓝三个分量。

RGB图像可以看成是一个有三幅灰度图像形成的“堆”,形成一幅RGB图像的三个图像常称为红、绿或蓝分量图像。

数字图像处理2-真彩色,灰度图像,索引色图像等的相互转化

数字图像处理2-真彩色,灰度图像,索引色图像等的相互转化

timg 真彩色timg1 灰度图像timg2 索引色图像(64色)timg3 二值图像(阈值为0.5)这里从网上找到了timg真彩色图像作为本次作业中进行数字处理的图像。

首先在ps中调整了图像模式,并进行了另存为,生成了timg1与timg2,又在MATLAB中将灰度图像转化为了二值图像timg3,其中阈值为0.5。

这一步操作的代码如下:A = imread('timg1.jpg');B = im2bw(A, 0.5);imshow(B)imwrite(B,'timg3.jpg');随后我们来对每个图像imread的返回值进行观察。

对于timg处理的程序如下:A = imread('timg.jpg');disp(A);whos Aimshow(A)由于disp显示数据过多,这里不放原始数据了。

其具体内容为3个数组,每个数组都是320*200的,分别代表图片中每个像素的rgb值。

而whos语句显示出的内容如下:Bytes Class Name Size192000 uint8A 200x320x3其中200*320*3说明图像像素为200*320而且为rgb格式,有3个矩阵。

192000为图片大小,而其rgb值是用unit8即8位无符号整数存储,0-255的值代表了某一点像素某一颜色分量的强度。

同理,若将上述程序中的timg改为timg1灰度图像,显示出来的矩阵则只有一个,大小仍为200*320但是每个点的数值则代表对应像素的灰度值。

whos语句显示出的内容如下:Name SizeBytes Class64000 u int8A 200x320由于灰度图像只需要存储灰度而不是rgb3个分量,其大小便没有最后的*3,因此其大小也只为timg的1/3。

对于索引图进行的操作与其他图像不同,由于其本身存储的是索引值,需要导入索引表才能还原原本的图像,因此程序如下:[IM, map] = imread('timg2.png','png');disp(IM);IMrgb(:,:,:) = ind2rgb(IM,map);whos IMrgbimshow(IMrgb)这里如果直接imshow原本图像的话会根据灰度图像的方式显示错误的图像,因此采用了一个ind2rgb函数通过之前导入的索引表和索引值矩阵将图像恢复为rgb图像矩阵。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告一、引言数字图像处理是计算机科学与工程领域中的一个重要研究方向。

通过使用数字化技术,对图像进行采集、传输、存储和处理,可以实现对图像的增强、恢复、分析和识别等功能。

本实验旨在通过对数字图像处理算法的实践应用,探索图像处理的原理和方法。

二、实验目的本实验的主要目的是掌握数字图像处理的基本概念和算法,并通过实际操作加深对图像处理原理的理解。

具体目标包括:1. 学习使用图像处理软件,如Photoshop或Matlab等。

2. 掌握图像增强的方法,如直方图均衡化、滤波和锐化等。

3. 理解图像压缩和编码的原理,如JPEG和PNG等格式。

4. 了解图像分割和边缘检测的基本算法,如阈值分割和Canny边缘检测等。

三、实验过程1. 图像增强图像增强是指通过一系列算法和技术,改善图像的质量和视觉效果。

在实验中,我们可以使用直方图均衡化算法来增强图像的对比度和亮度。

该算法通过将图像的像素值映射到一个更大的范围内,使得图像的亮度分布更加均匀。

2. 图像滤波图像滤波是指通过一系列滤波器对图像进行处理,以实现去噪、平滑和锐化等效果。

在实验中,我们可以使用平滑滤波器(如均值滤波器和高斯滤波器)来去除图像中的噪声。

同时,我们还可以使用锐化滤波器(如拉普拉斯滤波器和Sobel滤波器)来增强图像的边缘和细节。

3. 图像压缩和编码图像压缩是指通过减少图像的数据量来减小图像文件的大小,从而实现存储和传输的效率提升。

在实验中,我们可以使用JPEG和PNG等压缩算法来对图像进行压缩和编码。

JPEG算法通过对图像的频域进行离散余弦变换和量化,实现对图像的有损压缩。

而PNG算法则采用无损压缩的方式,通过对图像的差值编码和哈夫曼编码,实现对图像的高效压缩。

4. 图像分割和边缘检测图像分割是指将图像分成若干个区域,以实现对图像的目标提取和图像分析的目的。

而边缘检测是指通过检测图像中的边缘和轮廓,实现对图像的形状分析和目标识别。

《数字图像处理》实验教案

《数字图像处理》实验教案

《数字图像处理》实验教案一、实验目的1. 理解数字图像处理的基本概念和原理;2. 掌握常用的数字图像处理方法和技术;3. 培养实际操作数字图像处理工具的能力;4. 提高对数字图像处理问题的分析和解决能力。

二、实验内容1. 图像读取与显示:使用图像处理软件,读取、显示和保存不同格式的图像文件;2. 图像基本运算:进行图像的加、减、乘、除等基本运算;3. 图像滤波:使用低通滤波器、高通滤波器、带通滤波器等对图像进行滤波处理;4. 图像增强:采用直方图均衡化、对比度增强等方法改善图像质量;5. 边缘检测:使用Sobel算子、Canny算子等方法检测图像边缘。

三、实验原理1. 图像读取与显示:介绍图像处理软件的基本操作,掌握图像文件格式的转换;2. 图像基本运算:介绍图像像素的运算规则,理解图像基本运算的原理;3. 图像滤波:介绍滤波器的原理和应用,掌握滤波器的设计和实现方法;4. 图像增强:介绍图像增强的目的和方法,理解直方图均衡化和对比度增强的原理;5. 边缘检测:介绍边缘检测的原理和算法,掌握不同边缘检测方法的特点和应用。

四、实验步骤1. 图像读取与显示:打开图像处理软件,选择合适的图像文件,进行读取、显示和保存操作;2. 图像基本运算:打开一幅图像,进行加、减、乘、除等基本运算,观察结果;3. 图像滤波:打开一幅图像,选择合适的滤波器,进行滤波处理,观察效果;4. 图像增强:打开一幅图像,选择合适的增强方法,进行增强处理,观察质量改善;5. 边缘检测:打开一幅图像,选择合适的边缘检测方法,进行边缘检测,观察边缘效果。

五、实验要求1. 熟练掌握图像处理软件的基本操作;2. 能够正确进行图像的基本运算;3. 能够合理选择和应用不同类型的滤波器;5. 能够根据图像特点选择合适的边缘检测方法。

六、实验环境1. 操作系统:Windows 10或更高版本;2. 图像处理软件:MATLAB或OpenCV;3. 编程环境:MATLAB或C++;4. 硬件要求:普通计算机或服务器。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告第一章总论数字图像处理是计算机图形学、数字信号处理等学科交叉的一门学科。

它是基于数字计算机对图像信号进行数字处理的一种方法。

数字图像处理技术已广泛应用于医学影像诊断、遥感图像处理、图像识别、安防监控等领域,在当今社会中具有不可替代的重要作用。

本次实验主要介绍了数字图像处理的基本方法,包括图像采集、图像增强、图像恢复、图像分割、图像压缩等几个方面。

在实验过程中,我们采用了一些常用的数字图像处理方法,并通过 Matlab 图像处理工具箱进行实现和验证。

第二章实验过程2.1 图像采集在数字图像处理中,图像采集是一个重要的步骤。

采集到的图像质量直接影响到后续处理结果的准确性。

本次实验使用的图像是一张 TIF 格式的彩色图像,通过 Matlab 读取图像文件并显示,代码如下:```Matlabim = imread('test.tif');imshow(im);```执行代码后,可以得到如下图所示的图像:![image_1.png](./images/image_1.png)2.2 图像增强图像增强是指利用某些方法使图像具有更好的视觉效果或者变得更适合某种应用。

本次实验我们主要采用直方图均衡化、灰度变换等方法进行图像增强。

2.2.1 直方图均衡化直方图均衡化是一种常用的增强方法,它可以增加图像的对比度和亮度,使图像更加清晰。

代码实现如下:```Matlabim_eq = histeq(im);imshow(im_eq);```执行代码后,会得到直方图均衡化后的图像,如下图所示:![image_2.png](./images/image_2.png)可以看出,经过直方图均衡化处理后,图像的对比度和亮度得到了明显提高。

2.2.2 灰度变换灰度变换是一种用于调整图像灰度级别的方法。

通过变换某些像素的灰度级别,可以增强图像的视觉效果。

本次实验我们采用对数变换和幂函数变换两种方法进行灰度变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称数字图像处理基础
实验项目MATLAB图像的空间变换及相邻区域和块的处理
实验仪器 PC
系别____信息与通信工程学院__
专业____ _电子信息工程_____
班级/学号_ _
学生姓名________ ______ __ _
实验日期______2016.5.8______ __
成绩_______________________
指导教师____ _ ____ __
实验二图像的空间变换及相邻区域和块的处理
一、实验目的
1.掌握MATLAB的基本应用方法。

2.熟悉MATLAB的4个内置函数:clc, clear, close ,cputime
3.掌握MATLAB空间变换--图像插值、缩放、旋转。

4.掌握MATLAB相邻区和块的处理-滑动窗和图像块操作。

二、实验的硬件、软件平台
1、硬件:计算机;
2、软件:操作系统——Win7;
应用软件——MATLAB R2010b。

三、实验编程实现的MATLAB图像处理代码及其功能注释
1、编程实现放大和缩小一幅图像(imresize)
I = imread('text.png');
J = imresize(I, 0.5);
K=imresize(I,1.5);
figure, imshow(I),
figure, imshow(J),
figure, imshow(K)
2、编程实现旋转一幅图像(imrotate)
I = imread('pears.png');
I = mat2gray(I);
J = imrotate(I,-10,'bilinear','crop');
figure, imshow(I), figure, imshow(J)
3、编程实现滑动邻域操作(nlfilter)
A = imread('westconcordorthophoto.png');
fun = @(x) median(x(:));
B = nlfilter(A,[3 3],fun);
imshow(A), figure, imshow(B)
4、编程实现图像块操作(blockproc)
fun = @(block_struct) std2(block_struct.data) *
ones(size(block_struct.data));
I2 = blockproc('mri.tif',[32 32],fun); figure;
imshow('mri.tif');
figure;
imshow(I2,[]);
I = imread('coloredChips.png');
fun = @(block_struct) block_struct.data(:,:,[2 1 3]); blockproc(I,[200 200],fun,'Destination','grb_peppers.tif'); figure;
imshow('coloredChips.png');
figure;
imshow('grb_peppers.tif');
I = imread('liftingbody.png');
I = im2double(I);
T = dctmtx(8);
dct = @(block_struct) T * block_struct.data * T';
B = blockproc(I,[8 8],dct);
mask=[1 1 1 0 1 0 0 0
1 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0];
B2 = blockproc(B,[8 8],@(block_struct) mask .* block_struct.data); invdct = @(block_struct) T' * block_struct.data * T;
I2 = blockproc(B2,[8 8],invdct);
imshow(I), figure, imshow(I2)
六、实验体会
这次实验过程中,我掌握了MATLAB的基本应用方法,熟悉了MATLAB 的4个内置函数:clc, clear, close 以及cputime函数。

同时我也掌握了MATLAB空间变换--图像插值、缩放、旋转和MATLAB相邻区和块的处理-滑动窗和图像块操作。

提高了自己的实践操作能力,增加了对数字图像处理的认识,并且培养了自己的学习兴趣。

11。

相关文档
最新文档