2021年压缩机防喘振的两种方法

合集下载

压缩机喘振原因及预防措施

压缩机喘振原因及预防措施

压缩机喘振原因及预防措施压缩机喘振原因及预防措施0 引言压缩机运行中一个特殊现象就是喘振。

防止喘振是压缩机运行中极其重要的问题。

许多事实证明,压缩机大量事故都与喘振有关。

喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。

喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。

喘振在运行中是必须时刻提防的问题。

在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。

判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。

1 喘振发生的条件根据喘振原理可知,喘振在下述条件下发生:1.1 在流量小时,流量降到该转速下的喘振流量时发生压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。

当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。

上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。

在一定转速下使流量大于喘振流量就不会发生喘振。

1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。

2 在运行中造成喘振的原因在运行中可能造成喘振的各种原因有:2.1 系统压力超高造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。

压缩机防喘振方案

压缩机防喘振方案

压缩机防喘振方案费希尔压缩机防喘振方案压缩机大概是工艺系统中最关键和昂贵的设备。

保护压缩机免受喘振损坏的任务由防喘振系统完成,防喘振系统的关键部件就是防喘振阀。

喘振可以定义为压缩机不能输出足够压力克服下游阻力时发生的流量不稳定现象。

简而言之,就是压缩机出口压力小于下游系统压力。

这会导致气量从压缩机出口反向涌入压缩机。

喘振也会由于进口流量不足引发。

图1 所示为一组典型的压缩机曲线(也称作压缩机图、性能曲线或叶轮图)。

X 轴表示流量,Y 轴表示出口压力。

平行的一组曲线表示压缩机在不同转速下的性能曲线,连接这些曲线的最小流量点,就得到喘振极限曲线。

压缩机操作点落在喘振极限曲线左边会发生不稳定(喘振),操作点落在曲线右边可稳定操作。

假设压缩机在稳定区域的A 点操作,当阻力增加而压缩机转速不变时,操作点就会向左方移动。

当操作点移动到喘振极限曲线,压缩机就会发生喘振。

喘振特征■ 快速逆流(毫秒级)。

■ 压缩机振动剧增。

■ 介质温度升高。

■ 噪声。

■ 可能导致压缩机“失效”。

喘振影响■ 压缩机寿命缩短。

■ 效率降低。

■ 压缩机出气量减少。

■ 密封、轴承、叶轮等受到机械损坏。

通过防喘振阀将部分或全部压缩机出口气量再循环至进口通常可控制喘振。

部分压缩机系统设计将部分出口气量持续循环回进口。

这是一种控制压缩机喘振的有效方法,但增加了能耗。

防喘振阀选用要求■流量——防喘振阀必须能够输送压缩机全部出口气量。

不过通常给压缩机流量乘上一个系数。

■噪声控制——在喘振过程中阀门承受的压降和流量会很高,将会引发过度噪声。

这点必须在阀门选型时充分考虑,虽然在阀门整个行程范围内可能不需要噪声控制。

极端喘振现象要求阀门在短时间(通常小于10秒)内全行程打开,如果阀门开启时间过长,压缩机将会由于其它原因停机(通常是高温或振动超标)。

因此可能需要采用特性化阀笼。

■速度——防喘振阀必须动作迅速(一般仅为开启方向)。

例如阀门必须在0.75 秒内完成20 英寸的行程。

乙烯装置裂解气压缩机防喘振控制策略浅析

乙烯装置裂解气压缩机防喘振控制策略浅析

乙烯装置裂解气压缩机防喘振控制策略浅析发布时间:2021-05-08T03:10:21.506Z 来源:《中国电业》(发电)》2021年第1期作者:崔芳[导读] 通过扩压器的作用来减缓气体流速度,从而将失去的动能转换为气体压力上升的流体机械。

中国石化扬子石油化工有限公司电仪中心江苏南京 210000摘要:本文简要介绍了离心式压缩机的控制策略,详细阐述了防喘振控制,并以乙烯装置裂解气压缩机为例,论述了该控制策略的实际应用以及存在的缺陷、改进的方向,为下一步优化运行指明了思路。

关键词:乙烯;压缩机;防喘振控制;固定极限流量法;可变极限流量法1、压缩机的分类及控制策略1.1、压缩机的分类压缩机是石油化工装置中的核心设备。

压缩机按照压缩气体的方式不同,可分为速度型与容积型两种型式。

速度型主要可分为轴流式与离心式;容积型则分为往复式与回转式两种型式。

速度型的离心式压缩机作用机制是通过压缩机叶轮与压缩气体之间的相互作用,提升气体的压力与动能,通过扩压器的作用来减缓气体流速度,从而将失去的动能转换为气体压力上升的流体机械。

由于石化装置的特点——高温、高压、易燃、易爆,且从经济上考虑要求长周期连续生产,故要求压缩机机组系统必须运行可靠平稳、结构紧凑、工作效率高、空间占用率低[1]、平均无故障时间MTBF长。

离心压缩机以其结构简单、体积较小、维护便捷、易损件少、供气均匀、排气量大且运输介质不易污染等特点,在石化行业得到广泛的应用。

1.2、离心式压缩机的控制策略虽然离心式压缩机具有很多优点,但在大容量机组中,有许多技术问题必须很好地解决。

例如喘振、轴向推力等,微小的偏差很可能造成严重事故,而且事故的出现往往迅速、猛烈,单靠操作人员处理,常常措手不及。

因此,为保证压缩机能够在工艺所要求的工况下安全运行,必须配备一系列的自控系统和安全联锁系统。

一台大型离心式压缩机通常有下列控制策略:1)转速控制(包括转速调节、超速跳车等);2)防喘振控制;3)过程控制(包括:气量控制系统、超压保护、压缩机各段吸入温度控制、分离罐液位控制等);4)辅助控制(密封系统控制、油路系统的控制、蒸汽冷凝系统的控制、SS蒸汽减温减压控制);5)联锁保护控制(开车启动、停车联锁、压缩机轴振动/位移监控等)。

压缩机喘振原因及预防措施

压缩机喘振原因及预防措施

转自海川论坛0 引言压缩机运行中一个特殊现象就是喘振。

防止喘振是压缩机运行中极其重要的问题。

许多事实证明,压缩机大量事故都与喘振有关。

喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。

喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。

喘振在运行中是必须时刻提防的问题。

在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。

判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。

1 喘振发生的条件根据喘振原理可知,喘振在下述条件下发生:1.1 在流量小时,流量降到该转速下的喘振流量时发生压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。

当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。

上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。

在一定转速下使流量大于喘振流量就不会发生喘振。

1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。

2 在运行中造成喘振的原因在运行中可能造成喘振的各种原因有:2.1 系统压力超高造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。

压缩机喘振与调节方法

压缩机喘振与调节方法

压缩机喘振与调节方法压缩机的喘振是指压缩机在运行过程中出现的振动和噪音现象,通常产生的原因有两个方面:机械方面和气动方面。

喘振会严重影响压缩机的正常运行,甚至导致设备故障和损坏。

因此,对于压缩机的喘振问题,需要采取一些调节方法来减少和消除。

一、机械方面1.检查压缩机的支撑结构和基础,确保其稳定性。

如果支撑结构不牢固或基础不稳定,容易引发振动和噪音,导致喘振问题。

2.检查压缩机的叶轮、轴承和其他转动部件的装配情况和磨损程度。

如果叶轮装配不当或者轴承磨损严重,都会导致不平衡振动和喘振现象。

需要及时更换磨损严重的部件,并确保装配的正确性。

3.清洗和维护压缩机的冷却系统,确保冷却效果良好。

如果冷却系统存在堵塞或冷却水流量不足,会导致压缩机过热,引发振动和喘振。

4.对于柱塞式压缩机,要定期检查气缸套的磨损情况,及时更换磨损严重的气缸套,并确保柱塞的正确配合度。

柱塞不良配合度会引发气缸内部的振动和噪音。

二、气动方面1.检查压缩机的进气阀和排气阀的工作情况。

如果阀门存在卡滞或密封不良,会导致气体回流和压力不稳定,引发喘振现象。

需要及时清洗和维护阀门,确保其正常工作。

2.对于容积式压缩机,要调节气缸的容积比。

容积比过大或过小都会引发振动和噪音,需要根据实际情况进行调整。

3.检查压缩机的冷却器的工作情况,确保冷却器散热良好。

如果散热不良,会导致压缩机过热,引发振动和喘振。

4.检查压缩机的管道系统,确保管道的密封性和稳定性。

如果管道存在泄漏或支撑不稳定,会导致气体流动不畅,引发喘振。

在调节压缩机喘振时,应先排除机械方面的问题,检查和维护压缩机的各个部件。

如果机械方面的问题已经解决,但喘振问题仍然存在,则需要进一步检查和调节气动方面的问题。

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施压缩机是工业生产中常见的设备,用于将气体或蒸气压缩成高压气体的装置。

在压缩机运行过程中,可能会出现喘振现象,给生产带来一系列的问题,防止压缩机出现喘振现象是非常重要的。

本文将就压缩机防喘振系统出现的问题及防范措施进行探讨。

1. 噪音过大当压缩机出现喘振现象时,会导致机器工作不稳定,产生较大的噪音。

噪音过大不仅会影响生产场地的环境,也会对工人的身心健康造成影响。

2. 设备损坏喘振现象会导致压缩机产生振动,长期下去会导致机器损坏,减少设备的使用寿命,增加维护成本。

3. 产能下降当压缩机出现喘振现象时,会导致机器输出功率下降,从而使得生产产能受到严重影响。

4. 安全隐患喘振现象会给设备运行带来了不稳定因素,可能会引发设备故障,造成安全隐患。

二、压缩机防喘振系统的防范措施1. 定期维护检查要定期对压缩机进行维护检查,包括检查连接螺栓是否松动,轴承是否磨损,润滑油是否足够等,确保设备运行的稳定性。

2. 安装减振装置在压缩机设备上安装减振装置,如减振脚,减振垫等,能有效地减少设备的震动。

3. 保持压缩机平稳运行在使用压缩机时,要保持设备的平稳运行,避免频繁启停和负载变化,减少机器运行过程中的工况变化,降低喘振的发生几率。

4. 定期清洗要定期对压缩机进行清洗,清理设备内部的灰尘和杂物,保持设备的通风性能,防止因灰尘积聚导致设备运行不畅。

5. 合理设置控制系统通过合理设置控制系统,如安装变频器、压力传感器等,对压缩机的运行状态进行监控和调节,提高设备的运行效率,减少喘振现象的发生。

6. 增强员工培训对操作压缩机的员工进行专业的培训,使其能够正确地使用和保养压缩机设备,及时发现并解决设备运行中的异常情况。

7. 定期更换易损件对压缩机设备的易损件进行定期更换,避免因零部件磨损或老化导致设备产生异常振动。

三、总结在工业生产中,压缩机是一个非常重要的设备,防止压缩机出现喘振现象对生产的稳定性和效率有着重要的影响。

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施【摘要】压缩机防喘振系统在工业生产中起着至关重要的作用,但是在运行过程中会出现一些问题,例如振动过大、压缩机故障频繁、能效降低等。

为了预防这些问题的发生,可以通过定期检查系统、调整系统参数、安装振动吸收器、提高设备维护水平等方式来加强防范措施。

本文总结了压缩机防喘振系统问题及防范措施的重要性,并展望了未来对该系统的研究方向。

通过加强对压缩机防喘振系统问题的认识和采取有效的预防措施,可以提高设备的稳定性和运行效率,从而确保工业生产的顺利进行。

【关键词】压缩机防喘振系统、问题、防范措施、振动、故障、能效、定期检查、系统参数、振动吸收器、设备维护、重要性、研究方向、展望。

1. 引言1.1 介绍压缩机防喘振系统的重要性压缩机是工业生产中常用的设备,用于将气体压缩成高压气体以供各种设备使用。

在压缩机工作过程中,由于压力的变化和内部构件的运动,容易产生振动,并可能演变成压缩机喘振,给设备和工作环境带来严重影响。

压缩机防喘振系统的重要性不言而喻,它可以有效地控制振动频率和振幅,减轻喘振对设备的损害,提高设备的可靠性和稳定性。

通过引入防喘振系统,可以实时监测压缩机振动情况,一旦发现异常振动就及时采取措施处理,避免振动进一步恶化导致严重故障。

而且,防喘振系统的使用还有助于提高压缩机的运行效率,减少能源消耗,降低生产成本,提升设备的使用寿命。

压缩机防喘振系统的建立和运行对于保障设备安全稳定运行、提高生产效率具有重要意义。

在工业生产中,对压缩机防喘振系统的关注和重视,不仅有利于生产的顺利进行,也为企业节约成本,增加竞争力奠定了基础。

1.2 阐述本文的研究意义本文旨在探讨压缩机防喘振系统出现的问题及相应的防范措施,旨在帮助工程师和维护人员更好地理解并处理此类系统中可能出现的振动、故障和能效降低等问题。

通过对压缩机防喘振系统的问题进行深入分析和研究,本文旨在为相关领域的工作人员提供有效的解决方案,帮助他们更好地维护和保养压缩机防喘振系统,提高设备运行效率和使用寿命。

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施离心式压缩机因其运行平稳、效率高、在正常运行条件下无脉动等特点,在企业中得到了广泛的应用。

与往复压缩机相比,具有流量大、重量轻、运转率高、零部件薄弱、维修方便、风量控制范围广、压缩机排油量大等优点,对压力、流量、温度变化比较敏感。

喘振是影响压缩机安全运行的重大隐患,持续的喘振会对压缩机造成内部损坏,造成严重的设备损坏。

本文介绍了离心式压缩机防喘振措施及日常运行维护注意事项。

标签:压缩机;防喘振;问题;防范措施当前,离心式压缩机被广泛地应用于化工、石油等行业内部,但它在流量、温度和气体压力的影响下很容易发生喘振现象。

因此,接下来我们将具体分析离心式压缩机的喘振原因,并提出一些预防的策略,以保证压缩机机组的安全、稳定运行。

1 喘振现象的特征(1)當机械零件、机身或轴承发生剧烈震动时,这表明压缩机具有更严重的喘振现象。

(2)压缩机的流量和吐出压力周期性地变动,由于流量计和压力计的强振动而产生了喘振。

(3)当人的耳朵能够听到周期性的空气的轰鸣时,这也是一种喘振现象。

但是,人的耳朵,可能无法区分噪音多的环境和喘振现象。

若有预测,可通过设备状态和操作参数的性能曲线检查喘振现象。

2 离心式压缩机喘振故障原因分析(1)压缩机进气口温度变化。

标准大气压-25℃中的压缩量,即离心压缩机的设计中的压缩量,由于过程气体的温度不受人的行为控制,所以经常变化。

在定压下,当温度上升时,过程气体的密度就会下降,压缩机的实际压缩过程气体流量下降,压缩机的输出压不足,就会形成冲浪现象。

实际上,夏季比起冬季,喘振发生的可能性更高。

(2)压缩机扩散器的腐蚀。

由于高速转弯因子的作用,过程气体会变得高速且高压。

在静态扩散器中,由于在扩散器中特别设计的曲线腔壁,过程气体的流量减少,压力再次上升。

在扩散器,压力通常增加1 / 3左右。

当腐蚀和磨损严重时,扩散器内的特殊弯曲的腔壁容易形成滚动,降低吸气,降低空气压,降低压缩机的输出压力,容易产生冲击现象。

【专业知识】离心式制冷压缩机防喘振措施

【专业知识】离心式制冷压缩机防喘振措施

【专业知识】离心式制冷压缩机防喘振措施【学员问题】离心式制冷压缩机防喘振措施?【解答】1、喘振产生的机理离心压缩机的基本工作原理是利用高速回转的叶轮对气体做功,将机械能加给气体,负气体压力升高,速度增大,气体获得压力能和速度能。

在叶轮后面设置有通流面积逐渐扩大的扩压元件,高压气体从叶轮流出后,再流经扩压器进行降速扩压,负气体流速降低,压力继续升高,即把气体的一部分速度能转变为压力能,完成了压缩过程。

扩压器流道内的边界层分离现象:扩压器流道内气流的活动,来自叶轮对气流所做功转变成的动能,边界层内气流活动,主要靠主流中传递来的动能,边界层内气流活动时,要克服壁面的摩擦力,由于沿流道方向速度降低,压力增大,主流的动能也不断减小。

当主流传递给边界层的动能不足以使之克服压力差继续前进时,终极边界层的气流停滞下来,进而发生旋涡和倒流,负气流边界层分离。

气体在叶轮中的活动也是一种扩压活动,当流量减小或压差增大时也会出现这种边界层分离现象。

当流道内气体流量减少到某一值后,叶道进口气流的方向就和叶片进口角很不一致,冲角α大大增加,在非工作面引起流道中气流边界层严重分离,使流道进出口出现强烈的气流脉动。

当流量大大减小时,由于气流活动的不均匀性及流道型线的不均匀性,假定在B流道发生气流分离的现象,这样B流道的有效通流面积减小,使原来要流过B流道的气流有一部分要流向相邻的A流道和C流道,这样就改变了A流道,C流道原来气流的方向,它使C流道的冲角有所减小,A流道的冲角更加增大,从而使A流道中的气流分离,反过来使B流道冲角减小而消除了分离现象,于是分离现象由B流道转移到A流道。

这样分离区就以和叶轮旋转方向相反的方向旋转移动,这种现象称为旋转脱离。

扩压器同样存在旋转脱离。

在压缩机的运转过程中,流量不断减小到Qmin值时,在压缩机流道中出现如上所述严重的旋转脱离,活动严重恶化,使压缩机出口压力忽然大大下降,低于冷凝器的压力,气流就倒流向压缩机,一直到冷凝压力低于压缩机出口压力为止,这时倒流停止,压缩机的排量增加,压缩机恢复正常工作。

离心式压缩机防喘振措施

离心式压缩机防喘振措施

离心式压缩机防喘振措施离心式压缩机是工业生产中常用的一种压缩机,其工作原理是通过离心力将气体压缩。

然而,在使用离心式压缩机的过程中,有时会出现喘振现象,严重影响设备的正常运行和使用寿命。

为了解决离心式压缩机的喘振问题,我们需要采取一系列的防喘振措施。

我们需要对压缩机的系统进行合理的设计和优化。

在设计过程中,应根据实际工况和使用要求,选择合适的压缩机型号和规格。

同时,要合理安排压缩机的进出口管道,保证气流的顺畅和均匀。

此外,还应考虑到系统的冷却和排放问题,避免过热和堵塞导致喘振。

我们需要对离心式压缩机进行定期的维护和保养。

定期检查压缩机的各个部件和连接件,确保其处于良好的工作状态。

特别要注意清洁压缩机的滤芯和冷却器,避免因积尘和杂质堆积导致系统阻塞和喘振。

我们还可以采取一些降低压缩机喘振的技术手段。

例如,可以通过在系统中增加减振器来吸收和分散喘振产生的冲击力。

减振器的选择应根据系统的工作条件和压力来确定,以提高系统的稳定性和可靠性。

还可以采用自动控制系统来监测和调节压缩机的运行状态。

通过实时监测和分析压缩机的振动和压力数据,及时发现和预防喘振现象的发生。

同时,可以通过调整系统的工作参数和控制策略,降低压缩机的负荷和运行压力,减少喘振的可能性。

还需培养和提高操作人员的技术水平和安全意识。

操作人员应具备一定的机械和压缩机知识,能够正确操作和维护离心式压缩机。

同时,要加强安全教育和培训,提高操作人员对喘振危害的认识,遵守安全操作规程,减少人为因素导致的喘振事故。

离心式压缩机的喘振问题是一个需要重视和解决的技术难题。

通过合理设计和优化系统、定期维护保养、采用技术手段和加强人员培训等一系列措施,可以有效预防和降低喘振的发生率,提高离心式压缩机的工作效率和安全性。

压缩机的喘振与预防

压缩机的喘振与预防

离心式压缩机的喘振及预防离心式压缩机发生喘振时,转子及定子元件受交变应力,级间压力失调引起的强烈振动,使密封及轴承损坏,甚至发生转子与定子元件相碰、压送的气体外泄、引起爆炸等恶性事故。

因此,离心式压缩机严禁在喘振区域内运行。

一、喘振机理喘振的产生包含两方面因素:内在因素是离心式压缩机中的气流在一定条件下出现“旋转脱离”;外界条件是压缩机管网系统的特性。

当外界条件适合内在因素时,便发生喘振。

1.喘振的内在因素当在设计工况M点工作时Q=Q设(图1、图2),气流的进气角基本上等于叶轮的进口安装角,气流通畅地进入流道,基本上不出现气流附面层脱离现象,时,由于气体流量的减少,气流的轴向速度随之减小,冲损失也很小。

当Q<Q设角i随之增加,气流射向叶片的工作面,而在非工作面上出现气流分离现象。

当流量减少到某一程度时,由于叶栅距不相等以及进气气流、叶片几何尺寸不均匀性等原因,气流先在某一个或某几个叶片上产生脱离,形成一个或几个脱离团。

脱离团沿圆周方向移动,其移动方向与转子旋转方向相同。

这种脱离团的移动现象称之为“旋转脱离”。

2.喘振与管网的关系离心压缩机的喘振是其本身的固有特性。

压缩机是否在喘振工况点附近运行,主要取决于管网的压力流量特性曲线P=P a+AQ2。

图2为离心压缩机和管网联合工作性能曲线。

交点M为稳定工况点,当出气管路中的闸阀关小到一定程度时,管道中的阻力系数A增大,管网特性曲线左移到图2中曲线4的位置时,与压缩机性能曲线2交于N点,压缩机出现喘振工况,N点即为喘振点。

相反闸阀开大时,管道中的阻力系数A减小,管网特性曲线1右移,压缩机流量达到Q max时,出现滞止工况。

最小流量与滞止流量之间的流量为离心压缩机的稳定工况范围。

3.喘振的产生从图2可以看出,由于管网阻力的增加,管网特性曲线左移,致使压缩机工况点向小流量偏移。

压缩机的流量Q j减少,气体进入叶轮和叶片扩压器的正冲角i增加,附面层分离区扩大,产生相对于叶轮旋转方向的“旋转脱离”,使叶轮前后压力产生强烈脉动。

压缩机防喘振操作经验交流

压缩机防喘振操作经验交流

尿素CO2压缩机防喘振操作经验交流喘振作为离心压缩机的固有特性, 具有较大危害性, 是压缩机损坏的主要原因之一。

在生产过程中, 由于对喘振的危害性认识不足, 导致判断喘振工况滞后, 使机器损伤严重, 有时甚至导致机器功能丧失。

为了保证压缩机稳定运行, 必须准确判断并迅速处理使其脱离喘振工况。

一、喘振危害喘振对压缩机的危害主要表现在以下5 个方面:( 1) 喘振引起流量和压力强烈脉动和周期性振荡, 会造成工艺参数( 压力、流量等) 大幅度波动, 破坏生产系统的稳定性。

( 2) 受气体强烈、不稳定冲击, 叶轮应力大大增加, 使叶片强烈振动, 噪声加剧, 大大缩短整个转子的使用寿命,同时, 也会引起机组内部动、静部件的摩擦与碰撞, 使压缩机的轴弯曲变形, 碰坏叶轮, 最终造成整个转子报废。

机器多次发生喘振, 轻者会缩短压缩机使用寿命, 重者会损坏压缩机本体以及连接压缩机的管道和设备, 造成被迫停车。

( 3) 由于流量和压力高速振荡,压缩机内部部件产生强烈振动,破坏润滑油膜的稳定性, 加剧轴承、轴颈的磨损, 使轴承合金产生疲劳裂纹或脱层, 甚至烧毁。

严重时会烧毁推力轴承的轴瓦, 使转子产生超过设计值的轴向窜动量, 甚至造成窜轴,转子、隔板损毁的危险。

( 4) 会损坏压缩机级间、段间密封及轴封, 使压缩机效率降低, 迷宫密封齿片磨损, 间隙增大, 造成气体泄漏量增大。

( 5) 喘振可能使压缩机的固定联结部位松动, 造成机组联轴器对中数据偏移, 进而引起联轴器对中不良, 导致联轴器的使用寿命缩短, 甚至有可能发生疲劳性断裂,影响压缩机的正常运转。

( 6)导致测量仪表准确性降低, 甚至失灵, 如轴承测温探头、主轴振动探头、主轴位移量探头和各级进排气流量、压力、温度仪表等。

二、喘振现象( 1) 透平转速出现大幅波动, 机组运行工况不稳定,甚至超速跳车。

( 2) 压缩机流量指示值急剧下降并大幅波动。

( 3) 喘振TI3001温度升高,主要是由于高温气体倒流至压缩机进口所致(HC3113有开度,四回一开度大,高温气体返回)。

压缩机喘振及其预防方法

压缩机喘振及其预防方法

压缩机喘振及其预防方法摘要:喘振现象是离心式压缩机固有的机械特性,在压缩机的运行生产中,喘振有着较大的危害和隐患,所以在生产的过程中,要结合实践,弄清喘振机理和引起喘振的影响因素,根据问题的实际情况,采取相对应的有效防止和抑止喘振的措施,同时准确地判断喘振现象并加以控制,喘振现象就能够完全避免,从而实现提高离心式压缩机的工作效率,确保离心式压缩机运行稳定性和可靠性。

文章重点介绍了压缩机喘振及其预防方法,以供同行参考。

关键词:压缩机喘振,预防方法前言压缩机的控制在化工企业中是相当重要的,而抗喘振控制系统是离心式压缩机的一个重要控制系统,它的可靠性将直接关系到压缩机的安全稳定运行。

充分认识和理解其控制方案对于改进和优化压缩机的控制是有益的,随着科技的进步和发展,相信更加合理和先进的控制方案将会随时出现。

一、空气压缩机喘振原因探讨某空气压缩机是通过燃气轮机驱动,是轴流式和两缸三段式离心式组合压缩机,该空气压缩机的高压缸冷饮轴流式结构,而低压缸利用离心式结构。

空气压缩机在正常工作时,入口过滤器吸入空气,通过入口消音器将大部分固体杂质除去的空气送入空气压缩机一段,空气被压缩到180℃,0.20Mpa 后,通过出口冷却器后温度降低到42℃,利用分离器把冷凝液除去,在空气压缩机二段将空气继续压缩,温度达到200℃,压强达到0.81Mpa 经过二段冷却器出口进行冷却,温度降低到42℃,再次通过分离器将冷凝液除去;此时,被压缩的其他一部分作为仪表空气及公用空气被送到合成装置及成品装置;剩余的空气将继续被压缩,经过预热盘管之后,作为燃烧空气。

如果空气压缩机的空气系统停车,那么用气量就会变为零,此时随着PC109 输出值的增加,PV109 没有及时的放空空气有时间的出口气,从而造成了空气压缩机出口压力越来越高,此时压缩比变化迅速,从而引起了管网特性曲线向左移动,使得空气压缩机工作的工况点由小流量进入到了喘振区,从而引起了空气压缩机的喘振现象。

工艺空气压缩机的喘振及预防(三篇)

工艺空气压缩机的喘振及预防(三篇)

工艺空气压缩机的喘振及预防工艺空气压缩机是工业生产中常见的设备之一,其主要作用是将环境空气压缩成高压气体供给生产过程中所需的能源。

然而,在使用过程中,有时会出现喘振现象,严重影响设备的正常运行。

本文将详细介绍工艺空气压缩机喘振的原因及预防措施。

一、喘振的原因1.系统失稳:系统失稳是造成工艺空气压缩机喘振的主要原因之一。

工艺空气压缩机的压缩比一般比较高,当压缩比过高时,系统失去稳定性,容易引起振动。

2.过流现象:过流现象是指空气压缩机运行过程中,过度增加系统的流量。

当系统的气流量明显超过设计工况时,气流的动能将会增大,导致系统不稳定。

3.系统泄漏:系统泄漏是喘振的常见原因之一。

当系统中存在泄漏现象时,将会引起气流的变化,导致系统压力和温度的不稳定,从而诱发喘振。

4.系统阻力不平衡:系统阻力不平衡也是喘振的一个重要因素。

当系统不同部分的阻力不平衡时,将会导致气流的分布不均匀,从而引起系统的不稳定。

5.气源压力波动:气源压力波动是导致工艺空气压缩机喘振的一个主要原因。

当进气口的气体压力波动较大时,将会引起系统的紊乱和不稳定。

二、喘振的预防措施1.选择合适的压缩机:在购买工艺空气压缩机时,应根据实际需求选择合适的型号和规格。

压缩机的功率和排气量应与生产工艺的需求相匹配,避免过大或过小的情况发生。

2.增加系统的稳定性:通过增加系统的稳定性来预防喘振。

可采取的方法包括增加系统的负反馈,提高反馈控制系统的带宽,优化系统的控制算法等。

3.控制系统的总能量:在运行过程中,应更加注重控制系统的总能量,避免气体的过度压缩或过流现象的发生。

通常可以通过调整进气口的开度和调整压缩机的运行参数来实现。

4.加强系统的泄漏检测和修复:定期对系统进行泄漏检测,及时发现和修复泄漏现象。

可以通过检查气体管道、阀门和接口等部位进行泄漏检测,并采取相应的修复措施。

5.优化系统的通风和降温:保持压缩机周围的通风良好,有效降低设备及系统的温度。

离心压缩机的防喘振控制措施

离心压缩机的防喘振控制措施

转子和静态部分相撞,对压缩机正常运行,带来非常大的威胁,甚至导致压缩机报废,需要在压缩机实际运行的过程中,认真做好相关应对工作。

2 离心式压缩机性能曲线离心压缩机喘振的产生与流体机械和管道特性有着非常密切的关系,在离心压缩机运行的过程中,若压缩机的排气量与进气量二者之间相等,并且压缩形成的排气压力与管网压力相等,说明压缩机与管网性能之间具有良好的协调性,在实际操作中,应该及时查看离心压缩机的性能曲线,关注压缩机的运行状况,避免压缩机进入喘振区域,为压缩机的安全稳定运行奠定基础。

3 离心式压缩机发生喘振的原因3.1 流量因素离心压缩机在运行过程中,当压缩机流量降低,压缩机出口压力增大,当达到这一转速时的最高出口压力时,机组就会进入喘振区,此时压缩机出口压力下降,导致压缩机出现喘振[2]。

同时,在流量一定的情况下,压缩机转速越高越容易出现喘振现象。

离心压缩机之所以出现喘振,其根本原因是流量小所造成的,所以在压缩机的运行中,增加压缩机的流量,是离心压缩机预防喘振的重要条件。

3.2 入口压力压缩机入口压力降低,压缩机就越接近喘振区域,这是由于入口过滤器的压差增加,造成进入压缩机气体流量减少,从而导致压缩机出现了喘振,在离心压缩机操作的过程中需要及0 引言离心压缩机是通过叶轮高速旋转,在离心力的作用下将叶轮中心的气体甩向叶轮的边缘,气体的动能增加,被甩出后的气体,进入扩压器之中,通过这一过程降低气体速度,使得动能与静压能之间转化,压力得到提升。

而在叶轮的中心区域就会成为低压真空地带,此时外界新鲜气体被吸入,之后又会随着叶轮旋转,在不断吸入和甩出气体的过程中,使得气体得以持续流动。

喘振的发生使压缩机不能正常工作,压缩机性能恶化,效率降低,对压缩机组造成严重损伤,离心式压缩机不可以在喘振时运行,所以做好喘振预防,能够进一步提升离心压缩机的安全运行效果。

1 离心式压缩机喘振现象在离心式压缩机运行的过程中,当压缩机入口流量不断降低,就会在压缩机流道中产生严重的旋转脱离现象,堵塞流道,造成压缩机出口压力大幅下降,难以保证管网的输气压力,此时管网中的气体会倒流入压缩机中,直到管网压力下降到与压缩机出口压力相等时倒流停止。

压缩机喘振现象及处理方法

压缩机喘振现象及处理方法

压缩机喘振现象及处理方法压缩机喘振现象及处理方法1. 喘振现象的定义喘振是指在压缩机工作过程中发生的一种流动性现象,表现为压缩机机体及管道内的气流产生剧烈的振荡。

喘振会导致压缩机性能下降、噪音增大,并且对设备寿命和安全造成影响。

2. 喘振的原因喘振的产生原因较为复杂,主要有以下几个方面:•气流回流现象:当气流经过突然的节流或阻碍,会产生压力波,并引起喘振。

•气体返流:由于管路系统设计不当或安装错误,会导致气体返流,进而引起压缩机喘振。

•系统过载:当压缩机运行在过载工况下,过多的气体被压缩,产生的压力波会引起喘振。

•系统堵塞:管道内的污染物或异物堵塞,导致气流不畅,也会引起喘振。

3. 处理喘振的方法为了解决压缩机喘振问题,可以采取以下方法:安装减振装置•在压缩机的进气口和排气口安装减振器,可以有效降低振动的传导和扩散,减少喘振的发生。

•在压缩机和管道连接处安装减振垫,起到缓冲作用,减少振动对管道的影响。

调整压缩机的工况•根据压缩机的额定工况,合理设置压缩机的运行参数,避免过载运行,减少喘振的可能性。

•对于多台压缩机并联运行的系统,需要合理分配压缩机的负荷,避免负载不均衡引起的喘振。

清洁管道和过滤器•定期清洗管道和过滤器,防止污染物和异物堵塞管道,保持气流通畅,减少喘振的概率。

优化系统设计•在设计压缩机系统时,合理选用管道材料和直径,减小阻力,降低压缩机运行时的压力波。

•合理设计气流通道,避免急转弯、突变节流等情况,减少压力波的产生。

总结压缩机喘振是一个常见且严重的问题,但通过合适的处理方法,可以有效地降低喘振的发生。

在实际操作过程中,需要根据具体情况综合考虑上述方法,并结合实际经验进行处理,以确保压缩机正常工作,延长设备寿命,保障工作安全。

4. 使用软启动装置•软启动装置可以帮助降低压缩机的启动冲击,减少振动和喘振的发生。

•软启动可以逐渐增加电流和转速,避免突然的负载变化,降低喘振的风险。

5. 定期维护和检查•定期维护和检查压缩机,包括清洁和更换滤芯、润滑油等。

压缩机喘振原因分析及处理措施

压缩机喘振原因分析及处理措施

《装备维修技术》2021年第12期—391—压缩机喘振原因分析及处理措施黄立富(河南省濮阳市中国石化中原石油化工有限责任公司,河南濮阳457000)摘要:离心空压机的主要故障是喘振,喘振对于离心压缩机有着很严重的危害。

喘振分为真喘振和假喘振。

是叶片式压缩机在流量减少到一定程度时所发生的一种非正常工况下的振动。

喘振时空压机会发生一种如同喘息病患者呼吸时的“呼哧、呼哧”的噪音。

并使整个机组振动增大,喘振使压缩机的转子等元件受交变动应力,级间压力失调引起强烈振动,碳环密封和轴承损坏,导致级间温度过高,等恶性事故。

需要深入的研究一下喘振现象,以便于采取措施,消除喘振现象,确保装置安全生产平稳运行。

关键词:压缩机喘振原因分析处理措施一、喘振的表现形式离心式压缩机发生喘振时,现象如下:1:压缩机出口压力不断升高,随后急剧下降2:空压机流量急剧下降,大幅度波动,有可能发生空气到流3:机器产生强烈振动,同时发出呼哧噪声。

二、离心空压机喘振原理研究结果表明,喘振是离心压缩机运行某一工况下产生的特有现象,离心式压缩机是一种利用叶轮的高速旋转来提高气体压力的转动设备,气体的升压过程主要在叶轮和扩压器内完成,当压缩机气体流量降低至某一值时,压缩机叶轮的叶道就会出现气流旋转脱离现象,旋转脱离的气流在叶道中形成气流旋涡,占据大部分叶道,这时气体就会受到严重阻塞,致使压缩机出口压力明显下降。

管网具有一定的容积,由于管网中的气体压力不可能很快下降,于是就会出现管网中的气体压力大于压缩机出口压力的现象,使管网中气体倒流,直到管网中的气体压力下降与压缩机出口压力相同时,气体倒流才停止,随后在旋转叶轮作用下气体压力升高,当气体压力大于管网压力时,气体正向流动并向管网供气。

管网气体压力迅速上升。

气体流量再次下降,系统中的气体再次出现倒流,气体在压缩机组和管网系统中反复出现逆流现象,使整个系统发生了周期性低频、大振幅的气流振动现象,这种现象称之为喘振。

工艺空气压缩机的喘振及预防(三篇)

工艺空气压缩机的喘振及预防(三篇)

工艺空气压缩机的喘振及预防工艺空气压缩机是氨厂的重要设备。

我厂的工艺空气压缩机分低压缸2MCL805和高压缸3MCL457,由MS3002型燃气透平驱动。

由于影响工艺空气压缩机正常运行的因素较多,因此全面分析易引起压缩机喘振的因素,及时采取预防措施,是维持工艺空气压缩机安全运行的有效手段。

1 工艺空气压缩机在系统中的作用我广工艺空气压缩机在工艺系统中的任务主要有两个:一是向二段转化炉提供工艺空气,空气中的氮作为合成气制氨的一个组分,而氧则用来使原料气燃烧,以提高二段炉的温度,二是提供仪表空气,以作为全厂气动仪表的动力来源。

经过改造后,工艺空气压缩机还有两个用处,一是向空分装置提供压缩空气,以节约电能;二是向成品车间提供除尘空气。

2 引起工艺空气压缩机喘振的因素及预防从喘振产生的基本原因来看,主要是由于通过压缩机的容积流量小于相应转速下的喘振流量,或是与管网联合运行要求的实际升压比超过压缩机在该转速下的喘振升压比。

但实际造成这些条件的因素是多种多样的,下面具体分析。

2.1 开、停车时产生的喘振我厂工艺空气压缩机的防喘振系统是这样设计的:一条线从二段出口引至一段入口,由防喘阀HV0xx控制,用于低压缸防喘振;一条线从五段出口放空,由FV0xx控制,用于高压缸防喘振。

对低压缸来说,在机组开车时,若防喘振阀不在打开位置,在升速过程中,中间级会形成较高的压强,并发生喘振。

这是因为压缩机的中间级的通流面积是为正常转速时最大效率设计的,在启动时不能满足。

因此,空气压缩机在启动前,必须把低压缸和高压缸防喘振阀打开,在燃气轮机升速到一定转速后,才允许把低压缸防喘振阀关上。

至于高压缸放空阀,应在低压缸防喘振阀关上后,按照工艺对空气量的需要及是否加空气来决定。

相反,在停车降速前,应先降负荷,将防喘振阀按先高后低的次序打开,以防止发生喘振。

2.2 燃气轮机进入温控引起的喘振我厂工艺空气压缩机由燃气轮机驱动,由于燃气轮机自身有一套控制系统,也会产生一些特殊的情况。

压缩机防喘振的两种方法之欧阳美创编

压缩机防喘振的两种方法之欧阳美创编

压缩机防喘振的两种方法压缩机防喘振的两种方法1一、离心式压缩机喘振的原因1二、防喘振自控系统的可行性分析1三、防喘振自控系统的几种实现方法21.固定极限流量法2精品文档,超值下载2.可变极限流量法2四、防喘振控制系统的实现方法3五、结束语5一、离心式压缩机喘振的原因喘振是离心式压缩机的固有特性。

产生喘振的原因首先得从对象特性上找。

从图1中可见压缩机的压缩比P2/P1与流量Q 的曲线上都有一个P2/P1值的最高点。

在此点右面的曲线上工作,压缩机是稳定的。

在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。

当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。

喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。

二、防喘振自控系统的可行性分析为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。

只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。

即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。

三、防喘振自控系统的几种实现方法目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法1.固定极限流量法固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。

此法优点是控制系统简单,使用仪表较少。

缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。

2.可变极限流量法在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极限流量法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压缩机防喘振的两种方法
欧阳光明(2021.03.07)
压缩机防喘振的两种方法1
一、离心式压缩机喘振的原因1
二、防喘振自控系统的可行性分析1
三、防喘振自控系统的几种实现方法2
1.固定极限流量法2精品文档,超值下载
2.可变极限流量法2
四、防喘振控制系统的实现方法3
五、结束语5
一、离心式压缩机喘振的原因
喘振是离心式压缩机的固有特性。

产生喘振的原因首先得从对象特性上找。

从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。

在此点右面的曲线上工作,压缩机是稳定的。

在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。

当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。

喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。

二、防喘振自控系统的可行性分析
为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。

只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。

即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。

三、防喘振自控系统的几种实现方法
目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法
1.固定极限流量法
固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。

此法优点是控制系统简单,使用仪表较少。

缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。

2.可变极限流量法
在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极限流量法。

常用控制方案有两种:一是采用测量压缩机转速,经函数发生器作为流量调节器给定值(图2)。

二是根据防喘振控制线的数学表达式,用常规仪表来模拟表达式(1),控制流程如图3所示。

近年来随着数字仪表和微处理器的发展,这样的控制系统已容易实现。

其中a、b由压缩机制造厂决定,C是一个常数。

式中M—分子量
z—压缩系数
R—气体常数
k—综合流量系数
四、防喘振控制系统的实现方法
水气厂一英格索兰空气压缩机,型号为C90M ×3,三级压缩,流量11942m3/h,进气压力(绝)0.09MPa,排气压力(绝)0.9MPa,功率1305kW。

防喘振控制系统如图4所示。

此防喘振系统是通过测量机组出口压力接近喘振点(旁通阀打开点)时,打开旁通阀来放出部分空气实现的。

旁通阀打开点的设定很重要。

设定过高时,压缩机在低负荷下消耗更大的能量。

设定过低时,压缩机将被允许穿过喘振线而发生喘振。

而压缩机的CMC可自动调整旁通阀打开点,使其高于喘振线的值来修正。

该压缩机也曾发生喘振,从自控系统分析,有几种情况会造成压缩机喘振:
1.出口压力的检测出现故障,使CMC接受的信号是假信号,造成旁通阀不能开到位。

2.旁通阀故障,打不开。

3.斜坡时间(旁通阀从关到开的时间)设定过长,使旁通阀打开过于滞后。

4.入口过滤器脏,过滤器阻力大,入口流量减小。

5. CMC故障,使旁通阀失控。

五、结束语。

相关文档
最新文档