MS中,PDOS DOS的分析
常用的网络命令详解
常用的网络命令详解一、Ping相信玩过网络的人都会对;Ping;这个命令有所了解或耳闻。
Ping命令是MS-DOS中集成的一个专用于TCP/IP协议的测试工具,在目前所有的WINDOWS系列操作系统中都有内置。
ping命令是用于查看网络上的主机是否在工作,它是通过向该主机发送ICMP ECHO_REQUEST包进行测试而达到目的的。
一般凡是应用TCP/IP协议的局域或广域网络,不管你是内部只有几台电脑的家庭、办公室局域网,还是校园网、企业网甚至Internet国际互联网络,当客户端与客户端之间无法正常进行访问或者网络工作出现各种不稳定的情况时,大家一定要先试试用 Ping这个命令来测试一下网络的通信是否正常。
(在命令提示符下键入ping回车可获得ping的使用帮助。
)主要功能:用来测试一帧数据从一台主机传输到另一台主机所需的时间,从而判断主响应时间。
1、Ping命令的语法格式ping [-t] [-a] [-n count] [-l length] [-f] [-i ttl] [-v tos] [-r count] [-s count] <-j -Host list] | [-k Host-list> [-w timeout] destination-list(从这个命令格式中就可以看出它的复杂程度了吧,这好象已经完全不是我们所熟悉的ping命令了哦!)参数介绍:-t让用户所在的主机不断向目标主机发送数据,直到你按下Control-C。
-a以IP地址格式来显示目标主机的网络地址,也就是解析主机的NETBIOS主机名。
如果你想知道你所ping的计算机在网络中的计算机名就要用上这个参数了。
-n count定义用来测试所发出的测试包的个数,缺省值为4,具体次数由后面的count来指定。
通过这个命令可以自己定义发送的个数,对衡量网络速度很有帮助,比如我想测试发送20个数据包的返回的平均时间为多少,最快时间为多少,最慢时间为多少就可以通过执行带有这个参数的命令获知。
MS常见问题及解答( Materials Studio )
MS常见问题及解答1、问:用MS构造晶体时要先确立空间群,可是那些空间群的代码是啥意思啊,看不懂,我想做的是聚乙烯醇的晶体,嘿嘿,也不知道去哪可以查到它的空间群答:A、要做晶体,首先要查询晶体数据,然后利用晶体数据再建立模型。
晶体数据来源主要是文献,或者一些数据库,比如CCDC。
(你都不知道这个晶体是怎么样的,怎么指定空间群呢?要反过来做事情哦:)B、我不知道你指示的代码是数字代码还是字母代码,数字代码它对应了字母的代码,而字母的代码它含盖了一些群论的知识(晶系,对称操作等),如果要具体了解你的物质或者材料属于那一个群,你可以查阅一下相关的手册,当然你要了解一些基本的群论知识.MS自带了一些材料的晶体结构,你可以查询一下.2、问:各位高手,我用ms中的castep进行运算。
无论cpu是几个核心,它只有一个核心在工作。
这个怎么解决呢?答:请先确认以下几个问题:1,在什么系统下装,是否装了并行版本。
2,计算时设置参数的地方是否选择了并行。
3,程序运算时,并不是时时刻刻都要用到多个CPU3、问:我已经成功地安装了MS3.1的Linux版本,串行的DMol3可以成功运行。
但是运行并行的时候出错。
机器是双Xeon5320(四核)服务器,rsh和rlogin均开启,RHEL4.6系统。
其中hosts.equiv的内容如下:localhostibm-c*****olemachines.LINUX的内容如下:localhost:8现在运行RunDMol3.sh时,脚本停在$MS_INSTALL_ROOT/MPICH/bin/mpirun $nolocal -np $nproc$MS_INSTALL_ROOT/DMol3/bin/dmol3_mpi.exe $rootname$DMOL3_DATA这一处,没法执行这一命令并行运算时,出现以下PIxxxx(x为数字)输出ibm-c*****ole 0 /home/www/MSI/MS3.1/DMol3/bin/dmol3_mpi.exelocalhost 3 /home/www/MSI/MS3.1/DMol3/bin/dmol3_mpi.exe请问这是什么原因?谢谢!答:主要是rsh中到ibm-c*****ole的没有设置把/etc/hosts改为127.0.0.1 localhost.localdomain localhost ibm-c*****ole在后面加个ibm-c*****ole也希望对大家有帮助!4、问:在最后结果的dos图中,会显示不同电子spd的贡献,我想问的是,假设MS考虑的原子Mg的电子组态为2p6 3s2,那么最后的dos结果中的s,p是不是就是2p,跟3s的贡献.比如更高能量的3p是否可能出现在dos中?如果可能的话,在这种情况下,如何区分2p和3p的贡献,谢谢.答:A、取决于你的餍势势里面没有3p电子,DOS怎么会有呢?自然,你的1p1s也不会出现在你的DOS中。
声子谱分态密度pdos和态密度
声子谱分态密度(PDOS)和态密度(DOS)是描述材料中声子分布的两个重要概念。
态密度(DOS)是从量子力学角度描述材料中声子处于某种状态的概率分布。
具体而言,它表示单位体积、单位能量间隔内的声子数目。
态密度曲线是将归一化之后的态密度图形与坐标轴围成的面积绘制成的曲线,可以反映材料中声子的分布情况。
声子谱分态密度(PDOS)则更进一步,它不仅考虑了声子处于某种状态的概率,还考虑了该状态对应的声子模。
声子模是晶胞内所有原子振动模式的一种周期性扰动,可以理解为一种特殊的声波。
因此,PDOS 可以理解为材料中声子处于某种特定状态(对应于特定的声子模)的概率分布。
理论上,如果体系足够大,声子模足够多,态密度曲线和声子谱分态密度曲线应该重合。
这是因为它们都描述了材料中声子的分布情况。
总的来说,态密度和声子谱分态密度都是描述材料中声子分布的重要概念,但它们从不同的角度进行描述。
ping DOS 命令
ping是DOS命令,一般用于检测网络通与不通PING (Packet Internet Grope),因特网包探索器,用于测试网络连接量的程序。
Ping发送一个ICMP回声清求消息给目的地并报告是否收到所希望的ICMP回声应答。
它是用来检查网络是否通畅或者网络连接速度的命令。
作为一个生活在网络上的管理员或者黑客来说,ping命令是第一个必须掌握的DOS命令,它所利用的原理是这样的:网络上的机器都有唯一确定的IP地址,我们给目标IP地址发送一个数据包,对方就要返回一个同样大小的数据包,根据返回的数据包我们可以确定目标主机的存在,可以初步判断目标主机的操作系统等。
Ping 是Windows系列自带的一个可执行命令。
利用它可以检查网络是否能够连通,用好它可以很好地帮助我们分析判定网络故障。
应用格式:Ping IP地址。
该命令还可以加许多参数使用,具体是键入Ping按回车即可看到详细说明。
1.Ping本机IP例如本机IP地址为:172.168.200.2。
则执行命令Ping 172.168.200.2。
如果网卡安装配置没有问题,则应有类似下列显示:Replay from 172.168.200.2 bytes=32 time<10msPing statistics for 172.168.200.2Packets Sent=4 Received=4 Lost=0 0% lossApproximate round trip times in milli-secondsMinimum=0ms Maxiumu=1ms Average=0ms如果在MS-DOS方式下执行此命令显示内容为:Request timed out,则表明网卡安装或配置有问题。
将网线断开再次执行此命令,如果显示正常,则说明本机使用的IP地址可能与另一台正在使用的机器IP地址重复了。
如果仍然不正常,则表明本机网卡安装或配置有问题,需继续检查相关网络配置。
MATERIAO STUDIO中,PDOS_DOS的分析
用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。
电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。
唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。
所谓"差分"是指原子组成体系(团簇)之后电荷的重新分布,"二次"是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。
通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。
分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。
能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。
但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。
关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。
首先当然可以看出这个体系是金属、半导体还是绝缘体。
判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则为半导体或者绝缘体。
对于本征半导体,还可以看出是直接能隙还是间接能隙:如果导带的最低点和价带的最高点在同一个k点处,则为直接能隙,否则为间接能隙。
ms使用
1、问:用MS构造晶体时要先确立空间群,可是那些空间群的代码是啥意思啊,看不懂,我想做的是聚乙烯醇的晶体,嘿嘿,也不知道去哪可以查到它的空间群答:A、要做晶体,首先要查询晶体数据,然后利用晶体数据再建立模型。
晶体数据来源主要是文献,或者一些数据库,比如CCDC。
你都不知道这个晶体是怎么样的,怎么指定空间群呢?要反过来做事情哦:)B、我不知道你指示的代码是数字代码还是字母代码,数字代码它对应了字母的代码,而字母的代码它含盖了一些群论的知识(晶系,对称操作等),如果要具体了解你的物质或者材料属于那一个群,你可以查阅一下相关的手册,当然你要了解一些基本的群论知识.MS自带了一些材料的晶体结构,你可以查询一下.2、问:各位高手,我用ms中的castep进行运算。
无论cpu是几个核心,它只有一个核心在工作。
这个怎么解决呢?答:请先确认以下几个问题:1,在什么系统下装,是否装了并行版本。
2,计算时设置参数的地方是否选择了并行。
3,程序运算时,并不是时时刻刻都要用到多个CPU3、问:我已经成功地安装了MS3.1的Linux版本,串行的DMol3可以成功运行。
但是运行并行的时候出错。
机器是双Xeon5320(四核)服务器,rsh和rlogin均开启,RHEL4.6系统。
其中hosts.equiv的内容如下:localhost ibm-console machines.LINUX的内容如下:localhost:8 现在运行RunDMol3.sh时,脚本停在$MS_INSTALL_ROOT/MPICH/bin/mpirun $nolocal -np $nproc $MS_INSTALL_ROOT/DMol3/bin/dmol3_mpi.exe $rootname $DMOL3_DATA这一处,没法执行这一命令并行运算时,出现以下PIxxxx(x为数字)输出ibm-console 0/home/www/MSI/MS3.1/DMol3/bin/dmol3_mpi.exe localhost 3/home/www/MSI/MS3.1/DMol3/bin/dmol3_mpi.exe 请问这是什么原因?谢谢!答:主要是rsh中到ibm-console的没有设置把/etc/hosts改为127.0.0.1 localhost.localdomain localhost ibm-console 在后面加个ibm-console 也希望对大家有帮助!4、问:在最后结果的dos图中,会显示不同电子spd的贡献,我想问的是, 假设MS考虑的原子Mg的电子组态为2p6 3s2,那么最后的dos结果中的s,p是不是就是2p,跟3s的贡献.比如更高能量的3p是否可能出现在dos中? 如果可能的话,在这种情况下,如何区分2p和3p 的贡献,谢谢.答:A、取决于你的餍势势里面没有3p电子,DOS怎么会有呢?自然,你的1p1s也不会出现在你的DOS中。
MS电荷密度图
MS电荷密度图、能带结构、态密度的分析如何分析第一原理的计算结果用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。
电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。
唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(deformation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。
所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。
通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。
分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。
能带结构分析现在各个领域的第一原理计算工作中用得非常普遍了。
但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。
关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。
首先当然可以看出这个体系是金属、半导体还是绝缘体。
判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则为半导体或者绝缘体。
对于本征半导体,还可以看出是直接能隙还是间接能隙:如果导带的最低点和价带的最高点在同一个k点处,则为直接能隙,否则为间接能隙。
能带结构和态函数图的绘制及初步分析
能带结构和态密度图的绘制及初步分析前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。
MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。
(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究研究,看看有没有实现的可能性)。
能带结构、态密度和布居分析是很重要的内容,在分析能带结构和态密度的时候,往往是先作图,然后分析。
软件本身提供的作图功能并不是很强,比如说能带结构(只能带只能做point图和line图),不美观不说,对于每一个能带的走势也不好观察,感觉无从下手。
所以我一般用origin作图(右图是用origin做的能带图)。
能带结构和态密度的作图过程请参考我给大家提供的动画。
接下来我们先开看看能带结构的分析和制作!第一部分:能带结构这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。
^_^第一个问题是:1、能带是怎样形成——轨道和一维体系的能带。
这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。
其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。
先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试:①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。
这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。
dos系统是什么操作系统 常用dos命令大全及其用法详解
dos系统是什么操作系统常用dos命令大全及其用法详解1.dos系统是什么操作系统DOS实际上是Disk Operation System(磁盘操作系统)的简称。
顾名思义,这是一个基于磁盘管理的操作系统。
与我们现在使用的操作系统最大的区别在于,它是命令行形式的,靠输入命令来进行人机对话,并通过命令的形式把指令传给计算机,让计算机实现操作的。
DOS是1981~1995年的个人电脑上使用的一种主要的操作系统。
由于早期的DOS系统是由微软公司为IBM的个人电脑(Personal Computer)开发的,故而即称之为PC-DOS,又以其公司命名为MS-DOS,因此后来其他公司开发的与MS-DOS兼容的操作系统,也延用了这种称呼方式,如:DR-DOS、Novell-DOS ....等等。
我们平时所说的DOS一般是指MS-DOS。
从早期1981年不支持硬盘分层目录的DOS1.0,到当时广泛流行的DOS3.3,再到非常成熟支持CD-ROM的DOS6.22,以及后来隐藏到Windows9X下的DOS7.X,前前后后已经经历了20年,至今仍然活跃在PC舞台上,扮演着重要的角色。
只要我们打开计算机,计算机就开始运行程序,进入工作状态。
计算机运行的第一个程序就是操作系统。
为什么首先运行操作系统,而不直接运行像WPS、Word这样的应用程序呢?操作系统是应用程序与计算机硬件的"中间人",没有操作系统的统一安排和管理,计算机硬件没有办法执行应用程序的命令。
操作系统为计算机硬件和应用程序提供了一个交互的界面,为计算机硬件选择要运行的应用程序,并指挥计算机的各部分硬件的基本工作。
最初的计算机采用的都是DOS操作系统,后来,微软公司开发了Windows操作系统,又叫做Windows操作平台。
由于Windows操作平台简单易学,不必记忆大量的英文命令,而且功能也越来越完善,所以特别受大家的欢迎。
2.常用dos命令大全及其用法详解1、DIR含义:显示指定路径上所有文件或目录的信息格式:DIR [盘符:][路径][文件名][参数]参数:/W:宽屏显示,一排显示5个文件名,而不会显示修改时间,文件大小等信息;/P:分页显示,当屏幕无法将信息完全显示时,可使用其进行分页显示;/A:显示具有特殊属性的文件;/S:显示当前目录及其子目录下所有的文件。
能带,态密度图分析
能带结构和态密度图的绘制及初步分析前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。
MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。
(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究研究,看看有没有实现的可能性)。
能带结构、态密度和布居分析是很重要的内容,在分析能带结构和态密度的时候,往往是先作图,然后分析。
软件本身提供的作图功能并不是很强,比如说能带结构(只能带只能做point图和line图),不美观不说,对于每一个能带的走势也不好观察,感觉无从下手。
所以我一般用origin作图(右图是用origin做的能带图)。
能带结构和态密度的作图过程请参考我给大家提供的动画。
接下来我们先开看看能带结构的分析和制作!第一部分:能带结构这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。
^_^第一个问题是:1、能带是怎样形成——轨道和一维体系的能带。
这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。
其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。
先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试:①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。
这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。
能带_态密度图分析
能带结构和态密度图的绘制及初步分析前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。
MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。
(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究研究,看看有没有实现的可能性)。
能带结构、态密度和布居分析是很重要的内容,在分析能带结构和态密度的时候,往往是先作图,然后分析。
软件本身提供的作图功能并不是很强,比如说能带结构(只能带只能做point图和line图),不美观不说,对于每一个能带的走势也不好观察,感觉无从下手。
所以我一般用origin作图(右图是用origin做的能带图)。
能带结构和态密度的作图过程请参考我给大家提供的动画。
接下来我们先开看看能带结构的分析和制作!第一部分:能带结构这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。
^_^第一个问题是:1、能带是怎样形成——轨道和一维体系的能带。
这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。
其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。
先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试:①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。
这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。
什么是DOS,DOS的重要性,以及DOS命令详细解析
什么是DOS?(一)DOS是什么?有什么用?我们使用电脑接触最频繁的就是DOS。
DOS是英文Disk Operating System的缩写,意思是“磁盘操作系统”,顾名思义,DOS主要是一种面向磁盘的系统软件,说得简单些,DOS 就是人与机器的一座桥梁,是罩在机器硬件外面的一层“外壳”,有了DOS,我们就不必去深入了解机器的硬件结构,也不必与死记硬背那些枯燥的机器命令,只需通过一些接近于自然语言的DOS命令,我们就可以轻松地完成绝大多数的日常操作。
另外,DOS还能有效地管理各种软硬件资源,对它们进行合理的调度,所有的软件和硬件都在DOS的监控和管理之下,有条不紊地进行着自己的工作。
(二)MS-DOS与PC-DOS在使用DOS时,我们还会经常听到MS-DOS和PC-DOS,对初学者来说,可以认为二者没有大的区别。
事实上,MS-DOS由世界软件大王--Microsoft(微软公司)出品,而PC-DOS 则由世界电脑大王--IBM(国际商务机器公司)对MS-DOS略加改动而推出。
由于微软在世界软件业的垄断性优势,所以其产品MS-DOS已成为主流操作系统,至于PC -DOS,虽然在功能上不见得逊于MS-DOS,无奈MS-DOS 先入为主,PC-DOS纵然使出浑身解数,却也始终不能动摇MS-DOS分毫。
(三)DOS的版本DOS 在1981年推出其1.0版,功能还非常基本和薄弱;1983年推出2.0,主要增加了目录操作功能,使文件管理上了一个新台阶(目录和文件的概念我们将在讲解DOS内部命令时介绍);1984年推出3.0,主要支持1.2MB的5.25英寸高密软盘(1.X和2.X只支持低密盘)和大容量硬盘;1987 推出目前普及率最高的DOS 3.3,主要支持3.5英寸软盘和网络。
至此,DOS已经发展的相当成熟,尽管后续版本(目前PC-DOS的最新版本为7.0版,MS-DOS 公布的最新版本为6.22)不断推出,但均无重大的内核改进,只不过增加了许多实用功能,如检测磁盘,清除病毒,硬盘增容等。
帕金森病嗅觉障碍量表(PDOS)
帕金森病嗅觉障碍量表(PDOS)帕金森病嗅觉障碍量表 (PDOS)简介帕金森病 (Parkinson's Disease) 是一种神经系统疾病,以运动障碍为主要症状,如震颤、肌肉僵硬和运动迟缓。
然而,这种疾病还会引起其他一些非运动症状,如睡眠问题和嗅觉障碍。
嗅觉障碍是帕金森病患者常见的非运动症状之一。
为了评估患者的嗅觉功能,帕金森病嗅觉障碍量表 (Parkinson's Disease Olfactory Scale, PDOS) 被广泛应用。
PDOS 量表设计目的PDOS 量表旨在评估帕金森病患者的嗅觉功能,并能够提供一个定量的测量结果。
它包含一系列对常见气味的辨别和识别任务,通过被试的表现来确定嗅觉障碍的程度。
量表内容PDOS 量表由16个气味任务组成,被试需要对每个任务进行辨别、识别或评级。
这些气味任务包括常见的水果、花朵和其他物体的气味。
在辨别任务中,被试需要从四个选项中选择正确的气味。
在识别任务中,被试需要观察和闻气味,并从六个选项中选择与气味匹配的物体。
在评级任务中,被试需要根据气味的强度和愉悦度分别对其进行评分。
每个任务都被分配了一个特定的得分范围,从0到4分不等。
通过对每个任务的得分进行相加,可以得到被试的总嗅觉障碍得分。
得分越高,表示被试的嗅觉功能越受损。
应用与解读PDOS 量表可以用于临床实践中的帕金森病患者嗅觉功能评估,也可以作为研究工具来探索嗅觉障碍与帕金森病其他症状之间的关系。
根据被试的总得分,可以将嗅觉功能分为不同的等级:轻度障碍 (0-10分)、中度障碍 (11-20分)、重度障碍 (21-30分) 和极重度障碍 (31-64分)。
这些等级可以帮助医生和研究人员了解患者的嗅觉功能受损情况,确定合适的治疗和研究策略。
结论PDOS 量表是一种简单、有效的工具,用于评估帕金森病患者的嗅觉功能。
它提供了一个定量的测量结果,可以帮助医生和研究人员了解嗅觉障碍在帕金森病中的表现和影响,进一步改善临床诊断和治疗策略。
半导体 ph的dos
半导体 ph的dos半导体是一种特殊的材料,具有独特的物理特性和应用价值。
它在电子行业中扮演着重要的角色,被广泛应用于各种电子设备中,例如计算机、手机、电视等。
半导体的特性与其能带结构密切相关。
在半导体中,存在着价带和导带,两者之间存在一定的能隙。
当半导体处于绝缘态时,价带和导带之间的能隙非常大,几乎没有载流子的存在。
而当半导体被掺杂或加热时,价带和导带之间的能隙会变小,使得载流子能够被激发出来,从而使半导体具有导电性。
半导体的导电性可以通过其本征载流子和杂质载流子来解释。
本征载流子是由半导体材料本身的原子组成的,例如硅(Si)和锗(Ge)。
而杂质载流子则是由外部杂质原子掺入半导体中形成的,例如掺入磷(P)和硼(B)的硅材料。
这些杂质原子的掺入会在半导体晶格中引入额外的能级,从而改变了半导体的导电性。
半导体的导电性还可以通过控制其杂质浓度和结构来实现。
例如,通过在半导体材料中引入P型杂质和N型杂质,可以形成PN结构。
在PN结构中,P型区域富含正电荷,N型区域富含负电荷。
当PN 结受到外加电压时,正负电荷之间的结界区域将形成电场,从而使得载流子在半导体中流动,实现电流的导通。
半导体的DOS(态密度)是指在能量空间中,每个能级上存在的电子的数量。
不同能级上的电子数量可以通过DOS来描述。
在半导体中,由于能带结构的影响,DOS在导带和价带之间存在一定的差异。
导带中的DOS较高,意味着存在大量的自由电子,而价带中的DOS 较低,意味着几乎没有自由电子。
通过控制半导体材料的DOS,可以实现对其导电性的调控。
例如,通过控制杂质浓度和结构,可以改变半导体的DOS分布,从而改变其导电性。
此外,通过在半导体材料中引入局域缺陷,也可以调控其DOS分布,进而影响半导体的电子输运性质。
半导体的DOS对于其电子性质具有重要影响。
通过研究和理解半导体的DOS,可以更好地设计和优化半导体器件,提高其性能和应用价值。
在未来的发展中,随着对半导体材料和器件的深入研究,我们相信半导体技术将会有更广阔的应用前景。
计算机的DOS操作系统详解
计算机的DOS操作系统详解计算机的DOS操作系统详解DOS操作系统即为英文Disk Operating System的缩写,意思是“磁盘操作系统”。
DOS是一个单用户、单任务的操作系统,采用的是对计算机手动输入命令行的方式下,对计算机进行操作和控制。
由于 DOS 可以直接访问硬件,因此它很适合拿来控制嵌入式设备。
接下来是店铺为大家收集的计算机的DOS操作系统详解,希望能帮到大家。
计算机的DOS操作系统详解DOS是一种个人计算机(PC)的操作系统,简言之,DOS是人与计算机的一个界面,人通过这个界面来运行和控制计算机。
DOS(磁盘操作系统)使用一些接近于自然语言或其缩写的命令,就可以轻松地完成绝大多数的日常操作。
另外,DOS作为操作系统能有效地管理、调度、运行个人计算机各种软件和硬件资源。
Windows 9x系列以及Windows ME操作系统的底层系统还是DOS。
Windows XP和 Windows 7 在“附件”中有一个“命令提示符”(CM D),其模拟了一个DOS环境,可以使用相关的命令来操作计算机和网络。
DOS家族包括MS-DOS、PC-DOS、DR-DOS、FreeDOS、PTS-DOS、ROM-DOS、JM-OS和CC-DOS等,常见的DOS有两种:IBM公司的PC-DOS和微软公司的MS-DOS,它们的功能、命令用途格式都相同,我们常用的是MS-DOS。
在Microsoft后续开发下,基于MS-DOS源发出Win9x系统。
尽管这些系统常被简称为"DOS",但也有几个也和DOS无关,虽然在非x86的微计算机系统上运行的磁盘操作系统在名称中也有"DOS" 字眼,而且在专门讨论该机器的场合中也会简称为"DOS"(例如:AmigaDOS、AMSDOS、ANDOS、Apple DOS、Atari DOS、Commodore DOS、CSI-DOS、ProDOS、 TRS-DOS等),但这些系统和DOS运行档以及MS-DOS API并不兼容。
DOS
DOS:是态密度,是某个能量处的态的数目。
这个数目包含了各个分子轨道的贡献(包括占据轨道和未占据轨道,占据轨道的贡献一般在能量较低的位置,未占据轨道的贡献一般在能量较高处)。
因为DOS对能量空间积分后的数值等于计算中用的基函数的数量。
而基函数的数量等于计算出来的本征波函数(或分子轨道,这样称呼有时候不合适,但是为了方便还是这样叫吧)。
PDOS:是把DOS投影到各个基函数上。
要想计算一个原子轨道的PDOS,只需要将构成这个原子轨道的各个基函数的PDOS求和。
要想求某个原子对PDOS 的贡献,只需要将该原子在计算的时候使用的原子轨道求和就可以了。
既然原子轨道是定域的,也就是说以原子核为中心的,所以对某一个原子求PDOS实际上就算出LDOS了,LDOS是表现在某个能量范围内,态密度在空间的分布。
是表现在某一个能量范围内,原子上某个原子轨道上DOS的分布。
侧重点不同。
画PDOS实际上就是指明了空间位置了相当于研究的是LDOS的某一个空间点上的情况。
当然PDOS可以分析某一元素对DOS的贡献,这个就不是局域的了。
能带:金属、半导体和绝缘体的区别。
能带可分为价带、禁带和导带三部分,倒带和价带之间的空隙称为能隙,基本概念如图所示:如何能隙很小或为0 ,则固体为金属材料,在室温下电子很容易获得能量而跳跃至导带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。
一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。
因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。
能带用来定性地阐明了晶体中电子运动的普遍特点。
价带(valence band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。
在导带(conduction band)中,电子的能量范围高于价带,而所有在传导带中的电子均可经由外在的电场加速而形成电流。
对与半导体以及绝缘体而言,价带的上方有一个能隙(band gap),能隙上方的能带则是传导带,电子进入传导带后才能在固体材料内自由移动,形成电流。
MS常见问题及解答( Materials Studio )
MS常见问题及解答1、问:用MS构造晶体时要先确立空间群,可是那些空间群的代码是啥意思啊,看不懂,我想做的是聚乙烯醇的晶体,嘿嘿,也不知道去哪可以查到它的空间群答:A、要做晶体,首先要查询晶体数据,然后利用晶体数据再建立模型。
晶体数据来源主要是文献,或者一些数据库,比如CCDC。
(你都不知道这个晶体是怎么样的,怎么指定空间群呢?要反过来做事情哦:)B、我不知道你指示的代码是数字代码还是字母代码,数字代码它对应了字母的代码,而字母的代码它含盖了一些群论的知识(晶系,对称操作等),如果要具体了解你的物质或者材料属于那一个群,你可以查阅一下相关的手册,当然你要了解一些基本的群论知识.MS自带了一些材料的晶体结构,你可以查询一下.2、问:各位高手,我用ms中的castep进行运算。
无论cpu是几个核心,它只有一个核心在工作。
这个怎么解决呢?答:请先确认以下几个问题:1,在什么系统下装,是否装了并行版本。
2,计算时设置参数的地方是否选择了并行。
3,程序运算时,并不是时时刻刻都要用到多个CPU3、问:我已经成功地安装了MS3.1的Linux版本,串行的DMol3可以成功运行。
但是运行并行的时候出错。
机器是双Xeon5320(四核)服务器,rsh和rlogin均开启,RHEL4.6系统。
其中hosts.equiv的内容如下:localhostibm-c*****olemachines.LINUX的内容如下:localhost:8现在运行RunDMol3.sh时,脚本停在$MS_INSTALL_ROOT/MPICH/bin/mpirun $nolocal -np $nproc$MS_INSTALL_ROOT/DMol3/bin/dmol3_mpi.exe $rootname$DMOL3_DATA这一处,没法执行这一命令并行运算时,出现以下PIxxxx(x为数字)输出ibm-c*****ole 0 /home/www/MSI/MS3.1/DMol3/bin/dmol3_mpi.exelocalhost 3 /home/www/MSI/MS3.1/DMol3/bin/dmol3_mpi.exe请问这是什么原因?谢谢!答:主要是rsh中到ibm-c*****ole的没有设置把/etc/hosts改为127.0.0.1 localhost.localdomain localhost ibm-c*****ole在后面加个ibm-c*****ole也希望对大家有帮助!4、问:在最后结果的dos图中,会显示不同电子spd的贡献,我想问的是,假设MS考虑的原子Mg的电子组态为2p6 3s2,那么最后的dos结果中的s,p是不是就是2p,跟3s的贡献.比如更高能量的3p是否可能出现在dos中?如果可能的话,在这种情况下,如何区分2p和3p的贡献,谢谢.答:A、取决于你的餍势势里面没有3p电子,DOS怎么会有呢?自然,你的1p1s也不会出现在你的DOS中。
能带结构和态密度图的绘制及初步分析
能带结构和态密度图的绘制及初步分析前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。
MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。
(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究研究,看看有没有实现的可能性)。
能带结构、态密度和布居分析是很重要的内容,在分析能带结构和态密度的时候,往往是先作图,然后分析。
软件本身提供的作图功能并不是很强,比如说能带结构(只能带只能做point图和line图),不美观不说,对于每一个能带的走势也不好观察,感觉无从下手。
所以我一般用origin作图(右图是用origin做的能带图)。
能带结构和态密度的作图过程请参考我给大家提供的动画。
接下来我们先开看看能带结构的分析和制作!第一部分:能带结构这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。
^_^第一个问题是:1、能带是怎样形成——轨道和一维体系的能带。
这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。
其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。
先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试:①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。
这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。
DOS与PDOS的介绍以及获取方法,注意事项
DOS与PDOS的介绍以及获取方法,注意事项dos与pdos要得到总的态密度dos和pdos按照侯老师的方法去搞,先优化、静态,再算出来dos,获得doscar.接着就要用小程序split_dos对doscar进行分割。
可以得到dos0、dos1、dos2............其中dos0是总的态密度,dos1、dos2............分别是第一、第二............个原子的分波态密度。
dos1就是第一个原子的分波态密度值,其中第一列就是能量,第二、三、四列数据分别对应于s、p、d态的分波态密度值。
split_dos做出来的tdos,费米能级就在0ev处,意思就是说将费米能3.1653归零处理,其他的能量其实都是相对于3.1653ev的相对值推论溶解稳定性先看结合能,然后再分析电荷转移情况,再分析pdos以判断来源。
稳定与否应该可以通过对应吸附原子的pdos往低能移动来解释楼主可以结合态密度、分波态密度和电荷密度以及溶解能够四项去综合实地考察费米能级附近态密度越阔,表明成键越平衡不确认,等待核实总的态密度为什么和分波态密度不相等?这与排序态密度的时候所对原子空间的分割方法有关~只要横坐标的能量对应上了就好了。
纵坐标累加不等tdos是完全在正常的。
总态密度的单位是电子/单胞体积分波态密度的单位是电子/原子数分态dos强度和总dos强度不成正比就是很正常的,关键看看峰值的能量范围若想和总的dos对应出来,且分态的dos也就是只图画单原子的即可,没有必要加和。
dos图中怎么判断非金属性,半金属性,金属性只看看整体,如果单个元素的分波态密度越过费米能级,那整体必须就是金属性或者有可能就是半金属性的dos与bandstructure都能看出导体、半导体、半金属等,在费米面处存在能隙的,则为非金属或半导体。
能带结构的分析:推论的标准就是看看费米能级和导带(也即为在低对称点附近对数成开口向上的抛物线形状的能带)与否平行,若平行,则为金属,否则为半导体或者绝缘体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:
1、电荷密度图(charge density);
2、能带结构(Energy Band Structure);
3、态密度(Density of States,简称DOS)。
电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。
唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。
所谓"差分"是指原子组成体系(团簇)之后电荷的重新分布,"二次"是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。
通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。
分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。
能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。
但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。
关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。
首先当然可以看出这个体系是金属、半导体还是绝缘体。
判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则为半导体或者绝缘体。
对于本征半导体,还可以看出是直接能隙还是间接能隙:如果导带的最低点和价带的最高点在同一个k点处,则为直接能隙,否则为间接能隙。
在具体工作中,情况要复杂得多,而且各种领域中感兴趣的方面彼此相差很大,分析不可能像上述分析一样直观和普适。
不过仍然可以总结出一些经验性的规律来。
主要有以下几点:
1)因为目前的计算大多采用超单胞(supercell)的形式,在一个单胞里有几十个原子以及上百个电子,所以得到的能带图往往在远低于费米能级处非常平坦,也非常密集。
原则上讲,这个区域的能带并不具备多大的解说/阅读价值。
因此,不要被这种现象吓住,一般的工作中,我们主要关心的还是费米能级附近的能带形状。
2)能带的宽窄在能带的分析中占据很重要的位置。
能带越宽,也即在能带图中的起伏越大,说明处于这个带中的电子有效质量越小、非局域(non-local)的程度越大、组成这条能带的原子轨道扩展性越强。
如果形状近似于抛物线形状,一般而言会被冠以类sp带(sp-like band)之名。
反之,一条比较窄的能带表明对应于这条能带的本征态主要是由局域于某个格点的原子轨道组成,这条带上的电子局域性非常强,有效质量相对较大。
3)如果体系为掺杂的非本征半导体,注意与本征半导体的能带结构图进行对比,一般而言在能隙处会出现一条新的、比较窄的能带。
这就是通常所谓的杂质态(doping state),或者按照掺杂半导体的类型称为受主态或者施主态。
4)关于自旋极化的能带,一般是画出两幅图:majority spin和minority spin。
经典的说,分别代表自旋向上和自旋向下的轨道所组成的能带结构。
注意它们在费米能级处的差异。
如果费米能级与majority spin的能带图相交而处于minority spin的能隙中,则此体系具有明显的自旋极化现象,而该体系也可称之为半金属(half metal)。
因为majority spin与费米能级
相交的能带主要由杂质原子轨道组成,所以也可以此为出发点讨论杂质的磁性特征。
5)做界面问题时,衬底材料的能带图显得非常重要,各高对称点之间有可能出现不同的情况。
具体地说,在某两点之间,费米能级与能带相交;而在另外的k的区间上,费米能级正好处在导带和价带之间。
这样,衬底材料就呈现出各项异性:对于前者,呈现金属性,而对于后者,呈现绝缘性。
因此,有的工作是通过某种材料的能带图而选择不同的面作为生长面。
具体的分析应该结合试验结果给出。
(如果我没记错的话,物理所薛其坤研究员曾经分析过$\beta$-Fe的(100)和(111)面对应的能带。
有兴趣的读者可进一步查阅资料。
)
原则上讲,态密度可以作为能带结构的一个可视化结果。
很多分析和能带的分析结果可以一一对应,很多术语也和能带分析相通。
但是因为它更直观,因此在结果讨论中用得比能带分析更广泛一些。
简要总结分析要点如下:
1)在整个能量区间之内分布较为平均、没有局域尖峰的DOS,对应的是类sp带,表明电子的非局域化性质很强。
相反,对于一般的过渡金属而言,d轨道的DOS一般是一个很大的尖峰,说明d电子相对比较局域,相应的能带也比较窄。
2)从DOS图也可分析能隙特性:若费米能级处于DOS值为零的区间中,说明该体系是半导体或绝缘体;若有分波DOS跨过费米能级,则该体系是金属。
此外,可以画出分波(PDOS)和局域(LDOS)两种态密度,更加细致的研究在各点处的分波成键情况。
3)从DOS图中还可引入"赝能隙"(pseudogap)的概念。
也即在费米能级两侧分别有两个尖峰。
而两个尖峰之间的DOS并不为零。
赝能隙直接反映了该体系成键的共价性的强弱:越宽,说明共价性越强。
如果分析的是局域态密度(LDOS),那么赝能隙反映的则是相邻两个原子成键的强弱:赝能隙越宽,说明两个原子成键越强。
上述分析的理论基础可从紧束缚理论出发得到解释:实际上,可以认为赝能隙的宽度直接和Hamiltonian矩阵的非对角元相关,彼此间成单调递增的函数关系。
4)对于自旋极化的体系,与能带分析类似,也应该将majority spin和minority spin分别画出,若费米能级与majority的DOS相交而处于minority的DOS的能隙之中,可以说明该体系的自旋极化。
5)考虑LDOS,如果相邻原子的LDOS在同一个能量上同时出现了尖峰,则我们将其称之为杂化峰(hybridized peak),这个概念直观地向我们展示了相邻原子之间的作用强弱。
1. partial density of states 局部(能)态密度
2. projected density of states 投影(能)态密度
3 Phonon Density of States (PDOS)。