大型铝合金耐压壳体的低压铸造工艺

合集下载

铝合金低压铸造技术

铝合金低压铸造技术

铝合金低压铸造技术随着我国经济的快速发展,铝合金在房屋建铸中的应用越来越广泛,在生产铝合金上,当前应用最广泛的依旧是低压铸造技术,这种技术不仅成本较低,而且操作起来也比较简单。

本文先介绍了低压铸造路合金的基本原理与特点,然后详细分析了路合金低压铸造的过程以及发展前景。

标签:铝合金;低压铸造;生产流程铝合金是非常常用的铸件材料,被应用建铸、机械设备、艺术创作各个方面。

在铝合金的生产上,最常见的生产工业是低压铸造工艺,主要是指铝液在压力的作用下,完成充型与凝固的过程,利用该铸造工艺不仅能使铝合金获得较高的强度,还能塑造出各种复杂的铸件,使金属材料的利用率提高。

1铝合金低压铸造原理及特点铝合金中由于各组元的不同,合金会表现出不同的物理性能及化学性能,并且合金结晶的过程也不尽相同。

因此,在进行铝合金铸造时,必须针对铝合金的特性,选择合理的铸造方法,以便优化铸件。

1.1 低压铸造原理铝合金低压铸造的原理是将干燥的空气压缩到一个密封的容器中,容器中事先装有铝液,铝液在气体压力的作用下就会沿着深液管铸件上升,通过铸型浇口平稳的进入到铸件的腔内,在铸液过程中,铝液的气体压力一直保持同一水平,一直到铝液完全凝固后终止。

在铝液完全凝固后,就可以接触铝液表面的气体压力,使多余的铝液返回到容器中,铸型内凝固的铝液形状就是最终所需要的铸件。

因为该工艺所需要的容器压力较低,故被称为低压铸造工艺。

1.2 低压铸造特点低压铸造的特点是成分简单,铸造性能好,能够很方便的进行铸造,在铸造过程中也可以自由的控制压力与铝液的流速,这中铸造工艺可以应用于其他的浇铸作业中。

低压铸造所使用的容器是底注式充型容器,铝液的金属液面能够保持平稳的状态,在铸造过程中不存在溅射的情况,因此在铸造时也就能够避免卷入气体或者颗粒粉尘的情况,提高逐渐的密实度与合格率。

因为铸件是在空气压力的作用下完成凝固的,所以铸件的轮廓往往会比较清晰,表面呈光滑状,铸件的力学性能较高,这有利于大薄壁的铸型。

铝合金低压铸造

铝合金低压铸造

低压机
机架
坩埚炉
实用精品培训课件PPT
池式
16
实用精品培训课件PPT
17
实用精品培训课件PPT
18
实用精品培训课件PPT
19
低压机控制台
实用精品培训课件PPT
20
控制
实用精品培训课件PPT
21
控制面板
实用精品培训课件PPT
22
控制曲线
实用精品培训课件PPT
23
保温炉温度显示
实用精品培训课件PPT
4:附助装置(含尾气处理装置、平台、气罐等);
实用精品培训课件PPT
36
冷芯制芯车间
冷芯制芯车间
冷芯机
实用精品培训课件PPT
37
发生器
控制柜
实用精品培训课件PPT
38
实用精品培训课件PPT
39
实用精品培训课件PPT
40
实用精品培训课件PPT
41
实用精品培训课件PPT
42
实用精品培训课件PPT
求比较高)
5:只能生产型腔简单的铸件(目前) 6:只能生产中小型铸件
7:生产效率高 8:铸件内部有气孔 9:铸件不能热处理强化
实用精品培训课件PPT
4
低压铸造的原理图
实用精品培训课件PPT
5
工艺流程
1:熔化工艺流程 2:低压铸造工艺流程 3:模具准备工艺流程(浇注模具) 4:热芯工艺流程 5:壳芯工艺流程 6:冷芯工艺流程 7:震动去芯工艺流程
43
实用精品培训课件PPT
44
混砂机
实用精品培训课件PPT
45
实用精品培训课件PPT
46
实用精品培训课件PPT

铝合金电机壳低压砂型铸造工艺设计

铝合金电机壳低压砂型铸造工艺设计

铝合金电机壳低压砂型铸造工艺设计摘要:近年来,在节能减排和环保的需求下,汽车制造企业的研发重点正在由传统燃料汽车向新能源汽车转移。

铝合金电机壳作为新能源汽车的动力总成核心铸件,结构比较复杂,铸造难度大。

水冷电机壳体的侧壁环绕冷却水套的密封性是产品的重要技术要求,也是产品最大的铸造。

同时,电机壳体上、下端面以及侧壁的缩松也是工艺开发中需要避免的铸造缺陷。

随着计算机技术在铸造领域的迅速发展,通过铸造过程模拟仿真分析模拟可以预测铸造缺陷,评估工艺可行性。

关键词:铝合金电机壳;低压砂型铸造;工艺设计;前言:由于大型薄壁壳体类铸件壁的空间分布无明显规律,有必要在低压铸造设备完备的前提下针对树脂砂或石墨型低压铸造方法进行工艺试验研究,从而铸造成组织致密、尺寸精确的优质铸件这类铸件在核电装备中亦具有重要地位。

一、对象目前,型号弹上产品的壳体类铸件可以分为两大类:①四面体结构;②五面体结构。

四面体壳体铸件长一般为260~280 mm,宽140~150 mm,高120~150 mm,最小壁厚3 mm,最大壁厚10 mm。

在每个侧面的两端都有突出的台肩;要求铸件满足规定的各项技术要求;其材质选用ZL 104或ZL 114A,铸件毛坯重约20 kg;要求铸件不能有裂纹、气孔、缩松、夹杂等铸造缺陷;铸件针孔度要求为三级,局部允许四级。

以往所采用的砂型重力铸造方法不能满足技术要求。

二、铝合金电机壳低压砂型铸造工艺设计1.铸件的浇注位置。

铸件的浇注位置是指浇注时铸件在铸型中的位置。

浇注位置是根据零件的结构特点、尺寸、重量、技术要求、铸造合金特性、铸造方法以及生产车间的条件决定的。

正确的浇注位置应能保证获得健全的铸件,并使造型、造芯和清理方便。

铸件的加工面、主要工作面应尽量放在底部或侧面,以防止这些表面上产生沙眼、气孔、夹渣等铸造缺陷。

因此,根据上述要求和有利于铸件的凝固顺序,以及有利于砂心的定位和稳固支撑、使排气顺畅等的分析,砂箱中铸件数量的确定砂箱中铸件的数量一般要根据工艺要求和生产条件(生产批量及设备的相互要求和配合等)来确定。

铝合金低压铸造知识整理

铝合金低压铸造知识整理

第一章铝合金低压铸造知识整理2.1低压铸造概论2.1.1低压铸造定义铸型一般安置在密封的坩埚上方,坩埚中通入压缩空气,在熔融金属的表面上造成低压力(0.06~0.15MPa),使金属液由升液管上升填充铸型和控制凝固的铸造方法。

2.1.2基本原理在密闭的保持炉的熔汤表面上施加0.01~0.05Mpa的空气压力或惰性气体压力,熔汤通过浸放在熔汤里的给汤管上升,被充填进连接着的炉子上方的模具内。

因此熔汤是从型腔的下部慢慢开始充填,保持一段时间的压力后凝固。

凝固是从产品上部开始向浇口方向转移,浇口部分凝固的时刻就是加压结束的时间。

然后冷却至可以取出产品的强度后从模具中脱离。

于是就凭借浇口的方向性凝固和从浇口开始的冒口压力效果得到了完美的铸件。

低压铸造装置如图1所示。

缓慢地向坩埚炉内通入干燥的压缩空气,金属液受气体压力的作用,由下而上沿着升液管和浇注系统充满型腔,如图1b所示。

开启铸型,取出铸件,如图1c所示。

图12.1.3与其他铸造法的比较与压力铸造比较:1)低压铸造适用的合金范围广,而压力铸造一般只适用于铸造性能较好的合金;2)压力铸造一般用于生产批量大的中小铸件,而低压铸造可适用于不同大小,不同批量的铸件;3) 压力铸造是在高速高压下充型,型腔中的气体不易被排除,易于产生气孔,而低压铸造则与此相反;4) 低压铸造的设备比压力铸造的设备简单,制造容易;5) 低压铸造比压力铸造生产效率低。

与金属型铸造比较:1) 低压铸造可以大大简化浇注系统;2) 低压铸造更易于实现机械化自动生产;3) 低压铸造的设备比金属型铸造稍高。

与一般砂型重力铸造比较1) 低压铸造浇包中的合金液自下而上的从底部注入型腔,浇注平稳,因此成品率比砂型铸造高;2) 低压铸造是在低压下充型,又在较高的压力下结晶凝固,使铸件的组织、机械性能、气密性、耐压性能均比砂型重力铸造好;3) 低压铸造浇注系统比砂型重力铸造简单,并可以大大减小冒口,有的铸件甚至可以不设置冒口,从而简化了工艺,节省了金属材料;2.2 铝合金低压铸造工艺铝合金低压铸造的工艺过程如图2所示。

低压铝合金铸造工艺

低压铝合金铸造工艺

低压铝合金铸造工艺低压铝合金铸造工艺是一种常用的铝合金制造方法,也被广泛应用于各个领域。

本文将介绍低压铝合金铸造工艺的基本原理、工艺流程、优点和应用领域等方面的内容。

一、低压铝合金铸造工艺的基本原理低压铝合金铸造工艺是指在一个密封的铸造腔体中,通过施加气压将熔化的铝合金从铸造炉中注入到铸型中,然后通过冷却凝固形成所需的铸件。

该工艺的基本原理是利用气压将熔化的铝合金从铸造炉中推送到铸型中,并通过冷却凝固固化形成铸件。

低压铝合金铸造工艺的流程一般包括以下几个步骤:1. 铝合金熔炼:将所需的铝合金料放入熔炉中进行熔炼,确保铝合金的纯度和成分符合要求。

2. 铸型制备:根据需要制作相应的铸型,一般采用砂型或金属型。

3. 铝液注入:将熔化的铝合金倒入铸造炉中,然后通过加压将铝液注入到预先准备好的铸型中。

4. 冷却凝固:在铸型中加压注入铝液后,等待一定的冷却时间,让铝液凝固成型。

5. 铸件取出:待铸件冷却后,打开铸型,取出成型的铸件。

三、低压铝合金铸造工艺的优点低压铝合金铸造工艺相比其他铸造方法具有以下优点:1. 成品质量高:低压铝合金铸造工艺可以实现较高的铸件准确性和表面质量,铸件的尺寸精度、表面光洁度和机械性能都能够满足要求。

2. 生产效率高:低压铝合金铸造工艺具有快速生产的特点,一次注塑可以得到多个铸件,生产效率较高。

3. 设备投资少:低压铝合金铸造工艺相对于其他铸造方法,设备投资相对较少,维护成本也较低。

4. 适用范围广:低压铝合金铸造工艺适用于各种铝合金铸件的制造,例如汽车零部件、航空航天零部件等。

四、低压铝合金铸造工艺的应用领域低压铝合金铸造工艺广泛应用于各个领域,特别是在汽车、航空航天、电子、机械等行业中得到了广泛的应用。

它可以制造各种复杂形状的铝合金零部件,如汽车发动机缸体、飞机发动机壳体、电子设备外壳等。

低压铝合金铸造工艺是一种高效、高质量的铸造方法,具有成本低、生产效率高、适用范围广等优点,被广泛应用于各个领域。

铝合金低压铸造

铝合金低压铸造
5:只能生产型腔简单ቤተ መጻሕፍቲ ባይዱ铸件(目前) 6:只能生产中小型铸件
7:生产效率高 8:铸件内部有气孔 9:铸件不能热处理强化
低压铸造的原理图
工艺流程
1:熔化工艺流程 2:低压铸造工艺流程 3:模具准备工艺流程(浇注模具) 4:热芯工艺流程 5:壳芯工艺流程 6:冷芯工艺流程 7:震动去芯工艺流程
铝合金熔化工艺流程
2:喷砂机(含喷砂房、除尘器、模具放置小车、压送罐、 喷砂枪)
3:主要作用:用来清理模具表面的过期涂料层及新模具表 面的油污等杂物。
铸造模具(1)
常用铸造模具的分类 1:砂型铸造用模具 2:特种铸造模具 3:精密铸造模具 金属型低压铸造模具 1):金属型低压铸造模具的结构
金属型低压铸造模具一般可分为:上模、下模、侧模、 及抽芯(模具结构中可以没有侧模、抽芯);
件(可以生产200kg以上铸铝件) 7:生产效率比高压铸造低 8:铸件内部没有气孔 9:铸件可以热处理强化
高压铸造 1:压力高,可达到上百兆帕
2:金属液在行腔中的速度快,可达到 60m/s,最高可到120m/s.金属液 对型腔的冲刷大
3:金属液在型腔的流动不平稳 4:型腔只能是金属型(对型腔材料要
求比较高)
铝合金低压铸造
主要内容:
一 :低压铸造介绍: 1:铝合金低压铸造在我国的发展状况; 2:低压铸造的特点; 3:铝合金低压铸造与铝合金压铸的区别;
二:低压铸造 : 1:低压铸造的原理; 2:低压铸造的工艺流程;
三:低压铸造机及主要附属设备的: 1:低压机铸造机; 2:制芯设备; 2.1:冷芯机; 2.2:壳芯机; 2.3:热芯机; 3:振动去芯机; 4:模具预热炉、喷砂机
3:制芯系统(冷芯盒射芯机、三乙胺发生器); 冷芯盒射芯机(含射砂机构、吹气机构与上顶芯机构 一体、开合模机构、下顶芯机构)

低压铸铝工艺

低压铸铝工艺

低压铸铝工艺低压铸铝工艺是一种常见的铸造工艺,广泛应用于汽车、航空航天、电子等行业。

本文将从低压铸铝工艺的原理、特点以及应用领域等方面进行探讨。

一、低压铸铝工艺的原理低压铸铝工艺是指在铸造过程中,通过在铸型上施加一定的压力,使铝液充分填充铸型腔体,并保持一定的压力直至铝液凝固。

其主要原理是利用压力驱动铝液进入铸型,提高铝合金浇注的速度和压实度,从而获得高密度、无缺陷的铸件。

1. 高生产效率:低压铸铝工艺采用自动化生产线,能够实现连续、高效的生产。

同时,由于铝液在铸型中的充填速度较快,可以大大缩短铸件的生产周期。

2. 优良的铸造质量:低压铸铝工艺能够有效控制铝液的充填过程,减少气孔和夹杂等缺陷的产生,从而获得高密度、无缺陷的铸件。

3. 精密铸造能力:低压铸铝工艺能够生产出具有复杂形状和高精度要求的铸件,满足不同行业对于铸件的精密度要求。

4. 节约材料和能源:低压铸铝工艺采用闭模铸造,能够最大限度地减少材料的浪费。

此外,由于铝液在铸型中的充填速度较快,也能够降低能源消耗。

三、低压铸铝工艺的应用领域1. 汽车行业:低压铸铝工艺被广泛应用于汽车发动机缸盖、曲轴箱、传动壳体等零部件的生产。

采用低压铸铝工艺可以大大提高零部件的强度和耐热性能,同时减轻车身重量,提高燃油经济性。

2. 航空航天行业:低压铸铝工艺在航空航天领域的应用也非常广泛,例如飞机发动机零部件、航空电子设备外壳等。

低压铸铝工艺可以生产出轻量化、高强度的铝合金零部件,满足航空航天行业对于零部件强度和重量的要求。

3. 电子行业:低压铸铝工艺在电子行业中主要应用于电子设备外壳的生产。

采用低压铸铝工艺可以生产出外壳表面光洁、无缺陷的铝合金外壳,提高电子设备的质量和性能。

低压铸铝工艺以其高生产效率、优良的铸造质量、精密铸造能力和节约材料能源的特点,在汽车、航空航天、电子等行业得到了广泛应用。

随着科技的不断发展,低压铸铝工艺在未来的应用前景将更加广阔。

铝合金低压铸造

铝合金低压铸造

低压铸造的特点:
1:以压缩气体为动力(可以是惰性气体也可以使空气); 2:金属液从密闭的容器内,沿升液管至下而上流动,充满 型腔; 3:在压力的作用下,金属液从上而下冷却、结晶、凝固, 在凝固过程中不断有金属液补充; 4:整个过程可控(包括压力、时间、速度、温度)
低压铸造与高压铸造的工艺比较
低压铸造 1:压力较低一般<0.08Mpa 特 殊情况下可到0.12Mpa 2:金属液的流动速度比较低,正常的 浇注状态下150mm/s左右金属 液对型腔的冲刷小 3::金属液流动比较平稳 4:型腔可以是金属型、砂型也可以是 其它材料的型腔(对型腔材料要求 低) 5:可以生产型腔复杂的铸件 6:能生产中小铸件也能生产较大的铸 件(可以生产200kg以上铸铝件) 7:生产效率比高压铸造低 8:铸件内部没有气孔 9:铸件可以热处理强化 高压铸造 1:压力高,可达到上百兆帕 2:金属液在行腔中的速度快,可达到 60m/s,最高可到120m/s.金属 液对型腔的冲刷大 3:金属液在型腔的流动不平稳 4:型腔只能是金属型(对型腔材料要 求比较高) 5:只能生产型腔简单的铸件(目前) 6:只能生产中小型铸件 7:生产效率高 8:铸件内部有气孔 9:铸件不能热处理强化
铝合金低压铸造
主要内容:
一 :低压铸造介绍: 1:铝合金低压铸造在我国的发展状况; 2:低压铸造的特点; 3:铝合金低压铸造与铝合金压铸的区别; 二:低压铸造 : 1:低压铸造的原理; 2:低压铸造的工艺流程; 三:低压铸造机及主要附属设备的: 1:低压机铸造机; 2:制芯设备; 2.1:冷芯机; 2.2:壳芯机; 2.3:热芯机; 3:振动去芯机; 4:模具预热炉、喷砂机 四:低压模具: 1:浇注模具; 2:砂芯模具;
双工位热芯机
双工位热芯机

低压压铸铝合金件标准

低压压铸铝合金件标准

低压压铸铝合金件标准1、压铸工艺及压铸铝合金材料常识一、压铸工艺简介压力铸造(简称压铸)是近代金属成型加工工艺中发展较快的一种少无切削的特种铸造方法。

工艺实质是在高压作用下,使液态或半液态金属以较高的速度充填压铸型型腔,并在压力下成型和凝固而获得铸件的方法。

压铸工艺的特点:高速高压是压力铸造的主要特征。

常用的工作压力为数十兆帕,填充速度约为16~80m/s,金属液填充模具型腔时间极短,约为0.01~0.2s。

与其它铸造方法相比,压铸有以下三方面优点: 1.产品质量好铸件尺寸精度高,一般相当于6~7级,甚至可达4级;表面光洁度好,一般相当于5~8级;强度和硬度较高,强度一般比砂型铸造提高25~30%,但延伸率降低约70%;尺寸稳定,互换性好;可压铸薄壁复杂的铸件。

例如,当前锌合金压铸件最小壁厚可达0.3mm;铝合金铸件可达0.5mm;最小铸出孔径为0.7mm;最小螺距为0.75mm。

2.生产效率高机器生产率高,例如国产J1113型卧式冷空压铸机平均八小时可压铸600~700次,小型热室压铸机平均每八小时可压铸3000~7000次;压铸型寿命长,一付压铸型,压铸钟合金,寿命可达几十万次,甚至上百万次;易实现机械化和自动化。

3.经济效果优良由于压铸件尺寸精确,表泛光洁等优点。

一般不再进行机械加工而直接使用,或加工量很小,所以既提高了金属利用率,又减少了大量的加工设备和工时;铸件价格便易;可以采用组合压铸以其他金属或非金属材料。

既节省装配工时又节省金属。

压铸是最先进的金属成型方法之一,是实现少切屑,无切屑的有效途径,应用很广,发展很快。

目前压铸合金不再局限于有色金属的锌、铝、鎂和铜,而且也逐渐扩大用来压铸铸铁和铸钢件。

压铸件的尺寸和重量,取决于压铸机的功率。

由于压铸机的功率不断增大,铸件形尺寸可以从几毫米到1~2m;重量可以从几克到数十公斤。

国外可压铸直径为2m,重量为50kg的铝铸件。

二、压铸合金用于生产压铸件的金属材料有多为铝合金、纯铝、锌合金、铜合金、镁合金、铅合金、锡合金等有色金属,黑色金属很少采用。

低压铸造工艺(3篇)

低压铸造工艺(3篇)

第1篇一、概述低压铸造是一种金属铸造工艺,它通过在密封的容器中施加低压,使熔融金属在压力作用下充填型腔,凝固后获得铸件。

低压铸造具有熔体流动性好、铸件精度高、表面光洁、机械性能优良等优点,广泛应用于航空、航天、汽车、电子、精密仪器等领域。

二、低压铸造的基本原理低压铸造的基本原理是利用压力差,使熔融金属在压力作用下充填型腔。

具体过程如下:1. 将熔融金属加热至浇注温度,并通过浇注系统进入密封的容器中。

2. 在容器内施加低压,使熔融金属在压力作用下充填型腔。

3. 当熔融金属充满型腔后,保持压力一段时间,使铸件充分凝固。

4. 去除压力,使铸件在重力作用下脱离型腔,完成铸造过程。

三、低压铸造的特点1. 熔体流动性好:低压铸造过程中,熔融金属在压力作用下充填型腔,熔体流动性好,有利于铸件尺寸精度和表面光洁度的提高。

2. 铸件精度高:低压铸造工艺具有较好的铸造精度,可满足各种尺寸和形状的铸件生产。

3. 表面光洁:低压铸造过程中,熔融金属在压力作用下充满型腔,可减少铸件表面缺陷,提高表面光洁度。

4. 机械性能优良:低压铸造工艺可提高铸件的机械性能,如强度、硬度、耐磨性等。

5. 适应性强:低压铸造工艺适用于各种合金材料的铸造,包括铝、铜、镁、锌、钛等。

6. 生产效率高:低压铸造工艺可实现自动化生产,提高生产效率。

四、低压铸造的设备低压铸造设备主要包括以下几部分:1. 浇注系统:包括熔炉、浇包、浇注管等,用于将熔融金属送入密封容器。

2. 密封容器:用于容纳熔融金属和型腔,保证压力作用。

3. 压力系统:包括泵、阀门、压力表等,用于施加和维持低压。

4. 冷却系统:包括冷却水系统、冷却介质等,用于冷却铸件和型腔。

5. 控制系统:包括计算机、PLC、传感器等,用于控制低压铸造过程。

五、低压铸造的应用低压铸造工艺在以下领域得到广泛应用:1. 航空航天:低压铸造工艺可用于制造飞机、导弹等航空航天产品的关键部件。

2. 汽车:低压铸造工艺可用于制造汽车发动机、变速箱、悬挂系统等部件。

低压铸造

低压铸造

目录
1正文
1正文
在低压气体作用下使液态金属充填铸型并凝固成铸件的铸造方法。

气体压力一般为0. 6~1.5帕。

低压铸造的工艺过程是:在熔化金属的坩埚炉上加放密封盖,盖中心部位装有升液管,升液管插到金属液面以下,盖的上部安放铸型。

将干燥的压缩空气通过进气管送到坩埚内,使金属液通过升液管从浇口进入铸型(见图), 保持压力到铸型中的金属液完全凝固,然后解除压力,升液管中的金属液会自动落回坩埚中,这时可以开型,推出铸件。

通入坩埚的气体压力和流量可以控制,故金属液充填铸型的速度和气体压力可以根据铸件结构和铸型材料不同而调整。

低压铸造用的铸型可以是砂型、壳型、陶瓷型,也可以是金属型、石墨型等。

在低压铸造基础上进一步改进,使液态金属在差压下充型、在压力下凝固的方法称为差压铸造,它是低压铸造的一种特殊形式。

低压铸造最初主要用于铝合金铸件的生产,以后进一步扩展用途,生产熔点高的铜铸件、铁铸件和钢铸件。

中国已于20世纪70年代将这种方法成功地用于铸造万吨级大型船舶用铜合金螺旋桨和2000马力柴油机球墨铸铁曲轴等重要零件。

低压铸造的优点是:金属液在压力下充型有利于铸造薄壁铸件;铸件的致密性得到提高;底注充型平稳,可减少因金属液冲击飞溅而引起的氧化夹杂;浇冒口系统简单,金属利用率可达80%以上;劳动条件得到改善,并可实现机械化和自动化,生产效率高。

参考书目
宫克强主编:《特种铸造》,机械工业出版社,北京,1981。

铝合金熔炼及低压铸造实际操作指导

铝合金熔炼及低压铸造实际操作指导

铝合金熔炼及低压铸造实际操作指导铝合金的特点:比重小、强度大、导电导热效果好、耐腐蚀、可焊、无毒、光洁美丽及低温性能好。

被各厂家选用做汽车轮毂,目前汽轮生产厂家普遍选择合金牌号A356。

众所周知Na、Sr、Re、Sb等元素加入到AL-Si铸造合金中能起变质、细化作用,但是Sr、Sb是变质、细化作用时间最长的两种元素,故作A356铝轮毂时普遍选用A356-Sr与A356-Sb两种铝液。

用A356-Sr(锶)生产轮毂较普遍性,因为元素Sr无环境污染,无公害性,但解决铝液中的含氢量次于Sb元素。

用A356-Sb(锑)铝液中含渣量会增加,对环境污染的公害性大,被西方很多厂家禁用。

A356-Sr和A356-Sb各合金元素的作用Si(硅):强化作用。

加强铸件的抗拉强度、屈服强度等。

Mg(镁):强化作用。

加强铸件的抗拉强度、屈服强度,含量偏高时会降低铸件的伸长率。

Ti(钛):细化作用。

能够将Al的枝晶组织细化为花瓣状,基本上消除了组织中薄弱的板片状共晶体会提高力学性能。

Sr(锶)、Sb(锑):变质作用、细化作用。

可以使铝液中Si晶体由块状变成纤状,使内部组织更致密。

Cr(铬):能使铁相依次由针状向汉字状、块状、团状转变。

Cr的加入一方面可以消除Fe的危害,另一方面又形成复杂、耐热相,从而提高合金的高温性能。

当Cr增加时,强度、伸长率同步提高,且伸长率提高幅度更大。

所以当铝液中含Fe大于工艺标准值时,建议适当加入Cr来调整其成份。

有害元素Fe(铁):降低合金的抗拉强度、屈服强度及伸长率。

伸长率降幅最大,使铸件变脆Cu(铜):使A356合金的伸长率和耐蚀性降低。

Zn(锌):同样会降低合金的耐蚀性。

Mn(锰)、Co(钴)也可用于消除Fe的有害作用,其效果次于Cr。

消除Fe的有害作用合金元素加入量可按如下比例:Mn:Fe=(0.67-0.83):1 Co:Fe=9:1 Cr:Fe=0.35:1A纯铝熔点658.7℃,固态时密度2.70g/cm3铝温度达800℃时密度是2.36 g/cm3在1atm条件下100Kg铝液在700℃时含氢0.15 mm3,在800℃时含氢0.45 mm3,在900℃时含氢1.48 mm3建议:熔炼过程中铝液温度达660-670℃时,在液面洒一层覆盖剂,使炉料一熔化就处在覆盖剂层的保护之下,这样可以减小熔化过程中Al的烧损,同时减小吸气与氧化,并且又可保护炉体。

低压铸造在大型复杂薄壁结构铝合金铸件的工艺研究

低压铸造在大型复杂薄壁结构铝合金铸件的工艺研究

低压铸造在大型复杂薄壁结构铝合金铸件的工艺研究大型复杂薄壁结构铝合金铸件由于其内部结构复杂、薄壁安装支架及筋条密集,为满足设计要求,以往采用调压铸造制造,但由于设备及工艺特点其铸件合格率及生产效率均不高。

此次,通过低压铸造制造大型复杂薄壁结构铝合金铸件的工艺试验,制造出满足设计图样要求的大型复杂薄壁结构铝合金铸件,并确定铸件低压铸造工艺曲线,同时提高大型复杂薄壁结构铝合金铸件合格率。

标签:低压铸造;调压铸造;大型复杂薄壁结构铝合金铸件;工艺试验1 概述低压铸造是一种比较先进的反重力铸造工艺,具有充型平稳、结晶凝固时补缩压力大,铸件浇注过程工艺参数可实现自动控制等特点。

采用低压铸造工艺生产铸件具有合格率高、质量稳定及合金液利用率高等特点。

低压铸造和调压铸造都属于反重力铸造工艺中的铸造方法,金属液是在外界压力下强迫流动,相对提高了充型能力,特别适合浇注大型薄壁结构铸件,在航空工业中均都有很广的应用空间。

在无法正常采用调压铸造工艺方法进行大型复杂薄壁结构铝合金铸件的生产情况下,低压铸造工艺方法是一个强有力的替代工艺方法。

此次工艺研究的主要内容是:结合低压铸造工艺原理,确定低压铸造制造工艺试验方案,验证低压铸造生产大型复杂薄壁结构铝合金铸件可行性,为低压铸造制造大型复杂薄壁结构铝合金铸件提供试验数据,以解决实际生产问题。

2 低压铸造制造大型复杂薄壁结构铝合金铸件工艺可行性分析2.1 低压铸造和调压铸造工艺原理分析[1]低压铸造工艺和调压铸造工艺都属于反重力铸造工艺中的铸造方法。

大型复杂薄壁结构铝合金铸件之前采用调压铸造工艺生产主要是考虑到控制舱结构复杂,内腔薄壁筋板、支架较多,需要很强的充型能力。

低压铸造法是物理学中巴斯卡原理在铸造生产技术领域里的具体应用。

低压铸造是属于反重力铸造工艺中的一种铸造方法,低压铸造的基本原理示意图见图1,低压铸造的工艺曲线见图2。

如图1所示,低压铸造工作原理是在装有合金液的密封坩埚内,通入干燥的压缩空气,作用在保持一定浇注温度的合金液面上,在坩埚和型腔之间产生压力差,使合金液自下而上沿升液管经浇道进入型腔,待型腔充满后,增大坩埚气压,并保压至铸件完全凝固成形,然后卸除坩埚压力,使升液管和浇道中未凝固的合金液回流到坩埚中,即完成了一个低压铸造工艺过程,冷却后开型获得所需铸件。

大型薄壁耐压铝合金壳体特种铸造技术资料

大型薄壁耐压铝合金壳体特种铸造技术资料

项目名称:大型薄壁耐压铝合金壳体特种铸造技术一、总论1、项目背景大型薄壁耐压铝合金壳体铸件是高压超高压输变电设备的主要部件之一。

我国是电力需求大国,输变电设备关系到保护电力资源,减少能源消耗和浪费,是我国“十一五”国家规划重点开发能源和保护资源的重要项目之一。

近年来,国外发达国家看好了我国输变电设备的市场,纷纷在我国投资兴建输变电设备企业。

为了产品高质量要求,这些合资企业都是从国外进口大型、薄壁、耐压铝合金壳体进行装机,为了逐步实现国产化,在我国国内选择优秀的铝合金铸造厂家,提供高强度优质铝合金壳体。

在我国,由于技术上的相对落后,目前对于大型铝合金铸件一般采用重力浇注法生产,产品质量很难保证要求,利用低压铸造法一般只能生产300㎜以下的高性能的铝合金壳体。

营口经济技术开发区金达合金铸造有限公司根据国内外市场的需要,自主研制开发了大型薄壁耐压铝合金壳体特种铸造技术,能够生产出具有国际先进水平的优质铝合金壳体铸件,为电力设备制造企业配套,例如为高压、超高压GIS断路器壳体,为西门子产品468-27495电流互感器配套的壳体等。

同时还为航天、军工等企业配套生产高质量高性能的铝合金部件。

2、项目可行性、成熟性和创新性大型、薄壁、耐压铝合金壳体特种铸造技术,是在低压铸造技术基础上,通过自主创新,一是改造普通低压铸造机的外型结构,研发了适合铸造大型铸件的横向开合铸型机构,使之能容纳下大型铸件的箱体;二是改变了低压铸造机控压系统,增设一个补充压力控制阀,提高了成型后的铝合金铸件内部组织的致密度;三是利用自主研制的精炼剂、清渣剂,削除了铝合金铸件中的微小气孔和氧化夹渣物,降低了针孔度,提高了铸件的抗拉强度和气密性;四是对高精度机加工铸件,特别是用于火箭发射台用的铝合金铸件,在利用数控加工的基础上,采用特殊的加工工艺,确保了加工尺寸高精度的要求。

该项技术通过了省科技厅组织的科技成果鉴定,结论是通过自主创新,将低压铸造技术成功地应用在大型薄壁耐压铝合金壳体铸造,技术达到国际同类产品的先进水平,处于国内领先地位。

大型铝合金耐压壳体的低压铸造工艺

大型铝合金耐压壳体的低压铸造工艺

大型铝合金耐压壳体的低压铸造工艺摘要:针对大型铝合金耐压壳体的铸造工艺充分利用了低压铸造法进行了实验研究。

通过实验可以发现,在实际进行大型铝合金耐压壳体铸造过程中充分利用双升液管铸造工艺,并对相关的工艺参数进行合理设置,就能够有效提升铝合金耐压壳体批量铸造生产中的产品质量。

关键词:铝合金;耐压壳体;低压铸造;工艺参数引言某工程在施工过程中需要大量使用耐压壳体来作为全封闭组合电器的组装材料,针对耐压壳体铸件必须要求其水压破裂性实验强度超过3.75MPa,其属于一种大型的铝合金耐压壳体铸件,该设备在生产作业出去的时候主要使用的是树脂砂型动力铸造工艺,在该工艺流程下铸件产品的合格率仅仅能够达到50%,而且在针孔度、圆跳度以及平面度等几个指标方面,铸件都存在严重的超标现象,而且针对其气密性进行检查的过程中发现,一次性合格的成功率非常低。

1 铸造工艺设计该工程实际使用的铸件整体重量达到40kg,而是一种回转体形态,筒壁的厚度能够达到15mm,由于该铸件内腔部分本身存在一定的斜度,主要采取的分型方式如下图1所示,这样就能够铁芯的抽出提供方便。

图1 铸造工艺方案上述这种分型方式在实际进行工艺设计的过程中必须要对以下几点进行充分考虑。

首先,由于在该铸件中法兰面比较厚,这个铸件密封面的上顶面,因此在实际进行工艺设计过程中必须要对该位置产生缩孔或者针孔等缺陷给与高度重视;其次,由于该铸件两侧分布的凸台属于一种局部热节,要想实现补缩非常困难;再次,由于该铸件整体结构尺寸相对较大,而且其浇注的重量也比较大,在实际进行内浇道施工时可以通过多个引入口的方法来有效避免出现局部过热现象;最后,在整个铸造过程中法兰密封槽以及下焊接坡口是整个铸造过程中最主要的质量控制点[1]。

根据上图1所示的工艺设计方案进行知道,该方案主要的特点是充分利用了双升液管阶梯充型方式,这样不仅能够进一步提升整个铸件的致密度,也能够有效避免在铸件的入口位置发生局部过热现象,这样就能够实现铸造过程中铸件气孔以及缩松等缺陷。

铝合金低压铸造知识整理

铝合金低压铸造知识整理

第一章铝合金低压铸造知识整理2.1低压铸造概论2.1.1低压铸造定义铸型一般安置在密封的坩埚上方,坩埚中通入压缩空气,在熔融金属的表面上造成低压力(0.06~0.15MPa),使金属液由升液管上升填充铸型和控制凝固的铸造方法。

2.1.2基本原理在密闭的保持炉的熔汤表面上施加0.01~0.05Mpa的空气压力或惰性气体压力,熔汤通过浸放在熔汤里的给汤管上升,被充填进连接着的炉子上方的模具内。

因此熔汤是从型腔的下部慢慢开始充填,保持一段时间的压力后凝固。

凝固是从产品上部开始向浇口方向转移,浇口部分凝固的时刻就是加压结束的时间。

然后冷却至可以取出产品的强度后从模具中脱离。

于是就凭借浇口的方向性凝固和从浇口开始的冒口压力效果得到了完美的铸件。

低压铸造装置如图1所示。

缓慢地向坩埚炉内通入干燥的压缩空气,金属液受气体压力的作用,由下而上沿着升液管和浇注系统充满型腔,如图1b所示。

开启铸型,取出铸件,如图1c所示。

图12.1.3与其他铸造法的比较与压力铸造比较:1)低压铸造适用的合金范围广,而压力铸造一般只适用于铸造性能较好的合金;2)压力铸造一般用于生产批量大的中小铸件,而低压铸造可适用于不同大小,不同批量的铸件;3) 压力铸造是在高速高压下充型,型腔中的气体不易被排除,易于产生气孔,而低压铸造则与此相反;4) 低压铸造的设备比压力铸造的设备简单,制造容易;5) 低压铸造比压力铸造生产效率低。

与金属型铸造比较:1) 低压铸造可以大大简化浇注系统;2) 低压铸造更易于实现机械化自动生产;3) 低压铸造的设备比金属型铸造稍高。

与一般砂型重力铸造比较1) 低压铸造浇包中的合金液自下而上的从底部注入型腔,浇注平稳,因此成品率比砂型铸造高;2) 低压铸造是在低压下充型,又在较高的压力下结晶凝固,使铸件的组织、机械性能、气密性、耐压性能均比砂型重力铸造好;3) 低压铸造浇注系统比砂型重力铸造简单,并可以大大减小冒口,有的铸件甚至可以不设置冒口,从而简化了工艺,节省了金属材料;2.2 铝合金低压铸造工艺铝合金低压铸造的工艺过程如图2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大型铝合金耐压壳体的低压铸造工艺
发表时间:2019-10-28T10:25:27.487Z 来源:《文化时代》2019年16期作者:胡巨涛
[导读] 针对大型铝合金耐压壳体的铸造工艺充分利用了低压铸造法进行了实验研究。

通过实验可以发现,在实际进行大型铝合金耐压壳体铸造过程中充分利用双升液管铸造工艺,并对相关的工艺参数进行合理设置,就能够有效提升铝合金耐压壳体批量铸造生产中的产品质量。

胡巨涛
辽宁金美达科技发展有限公司辽宁省阜新市 123000
摘要:针对大型铝合金耐压壳体的铸造工艺充分利用了低压铸造法进行了实验研究。

通过实验可以发现,在实际进行大型铝合金耐压壳体铸造过程中充分利用双升液管铸造工艺,并对相关的工艺参数进行合理设置,就能够有效提升铝合金耐压壳体批量铸造生产中的产品质量。

关键词:铝合金;耐压壳体;低压铸造;工艺参数
引言
某工程在施工过程中需要大量使用耐压壳体来作为全封闭组合电器的组装材料,针对耐压壳体铸件必须要求其水压破裂性实验强度超过3.75MPa,其属于一种大型的铝合金耐压壳体铸件,该设备在生产作业出去的时候主要使用的是树脂砂型动力铸造工艺,在该工艺流程下铸件产品的合格率仅仅能够达到50%,而且在针孔度、圆跳度以及平面度等几个指标方面,铸件都存在严重的超标现象,而且针对其气密性进行检查的过程中发现,一次性合格的成功率非常低。

1 铸造工艺设计
该工程实际使用的铸件整体重量达到40kg,而是一种回转体形态,筒壁的厚度能够达到15mm,由于该铸件内腔部分本身存在一定的斜度,主要采取的分型方式如下图1所示,这样就能够铁芯的抽出提供方便。

图1 铸造工艺方案
上述这种分型方式在实际进行工艺设计的过程中必须要对以下几点进行充分考虑。

首先,由于在该铸件中法兰面比较厚,这个铸件密封面的上顶面,因此在实际进行工艺设计过程中必须要对该位置产生缩孔或者针孔等缺陷给与高度重视;其次,由于该铸件两侧分布的凸台属于一种局部热节,要想实现补缩非常困难;再次,由于该铸件整体结构尺寸相对较大,而且其浇注的重量也比较大,在实际进行内浇道施工时可以通过多个引入口的方法来有效避免出现局部过热现象;最后,在整个铸造过程中法兰密封槽以及下焊接坡口是整个铸造过程中最主要的质量控制点[1]。

根据上图1所示的工艺设计方案进行知道,该方案主要的特点是充分利用了双升液管阶梯充型方式,这样不仅能够进一步提升整个铸件的致密度,也能够有效避免在铸件的入口位置发生局部过热现象,这样就能够实现铸造过程中铸件气孔以及缩松等缺陷。

其次,上内浇道要比整个铸件的焊接坡口位置高,在此情形下,就能够有效避免在这一期出现接触热节从而导致缩松缺陷的出现,使得焊接坡口的质量得到了有效提升;再次,从法兰位置引入了下内浇道,这样就能够让压力实现有效的传递,从而使得处在较高位置的厚大法兰面在铸造过程中不会出现液态补缩现象。

2 模具设计
在实际的铸造过程中主要采取的是左右两个方向开型,而且是充分利用铁芯的上头来形成内腔,这样就能充分保证铸件在开型后能够停留在上型,并充分利用顶杆将整个铸件顶出。

或者能够充分保证整个法兰密封槽的铸造质量,主要使用的是压缩空气来实现对上行密封槽位置的冷却,并针对激冷效果进行进一步强化,这样就能够实现对针孔缺陷的有效抑制。

针对上下型设置了4个支撑柱,这样就能够充分保证上型再完成合型后,能够与左右半型顶面的间隙保持在0.2mm左右,也就是说,这种设计方式能够保证在完成上型开型之前让左右型实现顺利开型,也能够有效避免在充型过程中出现铝液向外喷射的现象,与此同时,也能够进一步促进整个型腔气体的顺利排出。

针对整个模具的外形充分利用了氧化氢涂料进行喷涂,而针对铁芯的外表面的充分利用石墨涂料进行喷涂,这样就能够对脱模形成促进作用[2]。

图2 低压铸造加压曲线
3 浇注工艺
浇注的整体重量达到了45kg,下面是整个浇注的工艺设计思路:通过有效降低升液速度,并进一步提升增加速度,以此来实现快速充型,这样才能有效避免在浇注过程中浇注口的远端位置这样浇注不足的缺陷,但是基础上就能够进一步提升铸件的致密度[3]。

图2所示为,整个浇注过程中相关浇注过程中的加压工艺曲线。

4 技术效果分析
在进行低压铸造法兰试生产的过程中,铸件所有的检验项目都达到了相关标准的要求,完全符合实际批量生产的工艺水平需求,与传统的原砂型工艺相比较,低压铸造工艺具有以下一些主要的技术效果。

(1)能够有效的提升铸件的内在质量。

在低压铸造工艺下,产品的气密性一次检测合格率超过了98%。

(2)有效提升了铸件的表面质量。

充分利用低压铸造工艺,使得铸件整体的轮廓更加清晰,而且其外观尺寸进度也得到了明显的改善,实现了晶粒的进一步细化,而且整个铸件表面粗糙度也进一步提升了2级。

(3)利用低压铸造工艺能够将大型铝合金耐压壳体铸件的产品合格率提升到95%以上;而且整体的加工量却得到了有效缩减,逐渐成型后整体质量下降非常明显。

工艺出品率也能有效提升25%以上。

5 结束语
综上所述,通过实验分析可以证明通过利用双升液管低压铸造工艺来进行大型回转体结构气密型铸件铸造具有较高的工艺适应性,而且能够有效提升铸件的充型平稳性,还能避免在浇注过程中内浇道出现局部过热的现象,也实现了对气孔以及缩松等缺陷的有效控制。

进一步提升了铸件的整体质量和精度。

参考文献:
[1]武郜宇. ADC12铝合金前机匣的低压铸造数值模拟及工艺优化[D].哈尔滨工程大学,2017.
[2]陈元芳,关国华,江华德,汤萌,袁亲松. 大型铝合金发动机壳体低压铸造充型速度研究[J]. 重庆理工大学学报(自然科学),2015,29(01):23-26. [3]丁苏沛,史学谦,朱亮,孙玉霞,康敬乐,田学雷. 两类铝合金砂型低压铸造设备和技术的研发进展[J]. 特种铸造及有色合金,2015,35(04):373-376.。

相关文档
最新文档