《数值计算方法》精彩试题集及问题详解1-6 2

合集下载

《数值计算方法》试题集及答案

《数值计算方法》试题集及答案

《数值计算方法》复习试题四、计算题:1、用高斯-塞德尔方法解方程组 ⎪⎩⎪⎨⎧=++=++=++225218241124321321321x x x x x x x x x ,取T)0,0,0()0(=x ,迭代四次(要求按五位有效数字计算)。

答案:迭代格式⎪⎪⎪⎩⎪⎪⎪⎨⎧--=--=--=++++++)222(51)218(41)211(41)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x2、求A 、B 使求积公式⎰-+-++-≈11)]21()21([)]1()1([)(f f B f f A dx x f 的代数精度尽量高,并求其代数精度;利用此公式求⎰=211dxx I (保留四位小数)。

答案:2,,1)(x x x f =是精确成立,即⎪⎩⎪⎨⎧=+=+32212222B A B A 得98,91==B A求积公式为)]21()21([98)]1()1([91)(11f f f f dx x f +-++-=⎰-当3)(x x f =时,公式显然精确成立;当4)(x x f =时,左=52,右=31。

所以代数精度为3。

69286.014097]321132/11[98]311311[91311113221≈=+++-++++-≈+=⎰⎰--=dt t dx x x t3、已知分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数)。

答案:)53)(43)(13()5)(4)(1(6)51)(41)(31()5)(4)(3(2)(3------+------=x x x x x x x L)45)(35)(15()4)(3)(1(4)54)(34)(14()5)(3)(1(5------+------+x x x x x x差商表为)4)(3)(1(41)3)(1()1(22)()(33---+----+==x x x x x x x N x P5.5)2()2(3=≈P f4、取步长2.0=h ,用预估-校正法解常微分方程初值问题⎩⎨⎧=+='1)0(32y yx y )10(≤≤x答案:解:⎪⎩⎪⎨⎧+++⨯+=+⨯+=++++)]32()32[(1.0)32(2.0)0(111)0(1n n n n n n n n n n y x y x y y y x y y即 04.078.152.01++=+n n n y x y5、已知求)(x f 的二次拟合曲线)(2x p ,并求)0(f '的近似值。

《数值计算办法》试题集及参考答案

《数值计算办法》试题集及参考答案

精心整理《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,式为。

答案:-1,)3)(1(2)3)(2(21)(2-----=x x x x x L 4、近似值5、设)(x f ();答案1n x =+6、对)(x f =]4,3,2,1(0);78n 次后的误差限为(12+-n ab ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。

14、 求解方程组⎩⎨⎧=+=+042.01532121x x x x 代矩阵的谱半径)(M ρ=121。

15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l (1l )1(716)(2-+=x x x x N 。

16、(高斯型)求积公式为最高,具有(12+n )次代21]内的根精确到三位小数,需对分(10)次。

22、已知≤≤≤≤3110(x x S 是三次样条函数,则a =(3 ),b 23、(),(10l x l Lagrange 插值基函数,则∑==nk kx l)((1),=k 0(j),当时=++=)()3(204x l x xk k k k (324++x x )。

完整word版,《数值计算方法》试题集及答案(1-6) 2..

完整word版,《数值计算方法》试题集及答案(1-6) 2..

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

数值计算方法试题及答案解析

数值计算方法试题及答案解析

数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

《数值计算方法》试题集及答案(1-6)#优选.

《数值计算方法》试题集及答案(1-6)#优选.

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

(完整版)数值计算方法试题及答案

(完整版)数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题和答案解析(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x x k k n k k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。

(完整word版)数值计算方法试题及答案

(完整word版)数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n Λ是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法》试题集和答案(1_6)2

数值计算方法》试题集和答案(1_6)2

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:,2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 ,1 ,进行两步后根的所在区间为 , 。

《数值计算方法》试题集和答案(1_6)2

《数值计算方法》试题集和答案(1_6)2

《计算方法》期中复习试题一、填空题:1、已知/(1)= 1°,/⑵=12 /⑶= 1.3,则用辛普生(辛卜生)公式计算求2、/(1)= 7 /⑵=2, /(3) = 11则过这三点的二次插值多项式中疋的系数为 _____ ,拉格朗日插值多项式为 ________________________ o3、近似值^=0 231关于真值A = 0.229有(2 )位有效数字;4、设/(X )可微,求方程x = f^的牛顿迭代格式是();5、 对/U )= X 3 + A + 1J 差商/[0,1,2,3] =( 1/[0,1,2,3,4] =();6、 计算方法主要研究(截断)误差和(舍入)误差;7、用二分法求非线性方程f (x )=0在区间(s,®内的根时,二分力次后的误差限b_a为(诃 );8、已知f (l )=2, f (2)=3, f (4)=,则二次Newton 插值多项式中#系数为( );f/Wdv打⑴血-+ 八2^)]11、两点式高斯型求积公式J 。

八^(Jo22血2厲 ),代数精度为(5 );“34 6 y = 10 H ------ 1 --------- ------------12、 为了使计算x-1 (x-1)- (x-1)-的乘除法次数尽量地少,应将V2ooi - 71999"改写为、/^55T+Vi^ 。

得丄"如 答案:,用三点式求得广⑴〜 ____________答案:心+1 =心答案1 一广(占)该表达式改写为 y = 10+(3 + (4 — 6小)人 t =x-l ,为了减少舍入误差,应将表达式13、用二分法求方程/(X)= Q + x_ 1 = 0在区间[0, 1]内的根,进行一步后根的所在区间为,1 ,进行两步后根的所在区间为,。

14、计算积分匚5低肚,取4位有效数字。

用梯形公式计算求得的近似值为—,用辛卜生公式计算求得的近似值为梯形公式的代数精度为1 ,辛卜生公式的代数精度为3 。

《数值计算方法》试题集及答案(1-6) 2

《数值计算方法》试题集及答案(1-6) 2

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

《数值计算方法》试题集和答案(1_6)

《数值计算方法》试题集和答案(1_6)

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

数值计算方法答案

数值计算方法答案

数值计算方法习题一(2)习题二(6)习题三(15)习题四(29)习题五(37)习题六(62)习题七(70)2009.9,9习题一1.设x >0相对误差为2%4x 的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)++; (2)+(+)哪个较精确 解:(1)++ ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+=2(0.3443100.1352)fl ⨯+=210⨯(2)+(+)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯ =210⨯易见++=210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==%5.下面计算y 的公式哪个算得准确些为什么(1)已知1x <<,(A )11121xy x x-=-++,(B )22(12)(1)x y x x =++; (2)已知1x>>,(A )y=,(B )y = (3)已知1x <<,(A )22sin x y x =,(B )1cos2xy x-=;(4)(A)9y =-(B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

数值计算方法试题与解答

数值计算方法试题与解答

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

《数值计算方法》试题集及答案(1-6) 2-推荐下载

《数值计算方法》试题集及答案(1-6) 2-推荐下载

18、 设 f (1)=1, f(2)=2,f (3)=0,用三点式求 f (1) ( 2.5 )。
19、如果用二分法求方程 x3 x 4 0 在区间[1,2]内的根精确到三位小数,需对分( 10 )次。
20、已知
S(x)

x3
1 2
(
x
1)3
a =( 3 ), b =( 3 ), c =( 1
一、填空题:
《计算方法》期中复习试题
1、已知 f (1) 1.0, f (2) 1.2, f (3) 1.3,则用辛普生(辛卜生)公式计算求得
3
1
f
( x )dx
答案:2.367,0.25

_________
,用三点式求得
2、 f (1) 1, f (2) 2, f (3) 1,则过这三点的二次插值多项式中 x2 的系数为
答案:-1,
,拉格朗日插值多项式为
L2 (x)

1 2
(x


2)(x

3、近似值 x* 0.231 关于真值 x 0.229 有( 2 )位有效数字;
4、设 f (x) 可微,求方程 x f (x) 的牛顿迭代格式是(
答案
x n 1

xn

xn 1 f
f (xn ) (xn )

2)

);
f(
3 1)] 23
0.15 );
),代数精
1
2001 1999 改写为
2 2001 1999 。
13、 用二分法求方程 f (x) x3 x 1 0 在区间[0,1]内的根,进行一步后根的所在区间

(完整版),数值计算方法试题及答案,推荐文档

(完整版),数值计算方法试题及答案,推荐文档

1
0
e
x
dx
时,
(1) (1) 试用余项估计其误差。
(2)用 n 8 的复化梯形公式(或复化 Simpson 公式)计算出该积
分的近似值。
四、1、(15 分)方程 x3 x 1 0 在 x 1.5 附近有根,把方程写成三种
不同的等价形式(1) x 3 x 1 对应迭代格式 xn1 3 xn 1 ;(2)
-1.75 -1
0.25 2
4.25
所确定的插值多项式的次数是( )。
(1)二次; (2)三次; (3)四次; (4)五次
4、若用二阶中点公式
y n 1
yn
hf
(xn
h, 2
yn
h 4
f
(xn , yn )) 求解初值问题
y 2y, y(0) 1,试问为保证该公式绝对稳定,步长 h 的取值范围为
数 ,使其代数精确度尽量高,并指出其代数精确度的次数。
五、(8 分)已知求 a (a 0) 的迭代公式为:
xk 1
1 2 (xk
a xk
)
x0 0 k 0,1,2
证明:对一切 k 1,2,, xk a ,且序列xk 是单调递减的,
从而迭代过程收敛。
六、(9
3
分)数值求积公式 0
f
( x)dx
六、(下列 2 题任选一题,4 分)
1、 1、 数值积分公式形如
1
xf
( x)dx
S(x)
Af
(0)
Bf
(1)
Cf
(0)
Df
(1)
0
(1)(1) 试确定参数 A, B,C, D 使公式代数精度尽量高;
1
(2)设 f (x) C 4[0,1] ,推导余项公式 R(x) 0 xf (x)dx S(x) ,

《数值计算方法》试题集和答案(1_6)2

《数值计算方法》试题集和答案(1_6)2

《数值计算⽅法》试题集和答案(1_6)2《计算⽅法》期中复习试题⼀、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则⽤⾟普⽣(⾟⼘⽣)公式计算求得≈31_________)(dx x f ,⽤三点式求得≈')1(f 。

答案:,2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的⼆次插值多项式中2x 的系数为,拉格朗⽇插值多项式为。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求⽅程)(x f x =的⽜顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算⽅法主要研究( 截断 )误差和( 舍⼊ )误差;7、⽤⼆分法求⾮线性⽅程f (x )=0在区间(a ,b )内的根时,⼆分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=,则⼆次Newton 插值多项式中x 2系数为( ); 11、两点式⾼斯型求积公式?1d )(xx f ≈(++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍⼊误差,应将表达式19992001-改写为 199920012+ 。

13、⽤⼆分法求⽅程01)(3=-+=x x x f 在区间[0,1]内的根,进⾏⼀步后根的所在区间为,1 ,进⾏两步后根的所在区间为,。

数值计算方法试题卷和的答案解析

数值计算方法试题卷和的答案解析

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 );11、 两点式高斯型求积公式⎰10d )(x x f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为 199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

14、 计算积分⎰15.0d xx ,取4位有效数字。

用梯形公式计算求得的近似值为 0.4268 ,用辛卜生公式计算求得的近似值为 0.4309 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。

15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿插值多项式为 )1(716)(2-+=x x x x N 。

16、 求积公式⎰∑=≈ba k nk k x f A x x f )(d )(0的代数精度以( 高斯型 )求积公式为最高,具有( 12+n )次代数精度。

17、 已知f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求⎰51d )(xx f ≈( 12 )。

18、 设f (1)=1, f (2)=2,f (3)=0,用三点式求≈')1(f ( 2.5 )。

19、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( 10 )次。

20、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( 3 ),b =( 3 ),c =( 1 )。

21、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)((1 ),∑==nk k jk x lx 0)((jx ),当2≥n 时=++∑=)()3(204x l x xk k n k k( 324++x x )。

22、区间[]b a ,上的三次样条插值函数)(x S 在[]b a ,上具有直到_____2_____阶的连续导数。

23、改变函数f x x x ()=+-1 (x >>1)的形式,使计算结果较精确 ()x x x f ++=11。

24、若用二分法求方程()0=x f 在区间[1,2]内的根,要求精确到第3位小数,则需要对分 10 次。

25、设()⎩⎨⎧≤≤+++≤≤=21,10,2233x c bx ax x x x x S 是3次样条函数,则 a= 3 , b= -3 , c= 1 。

26、若用复化梯形公式计算⎰10dxe x ,要求误差不超过610-,利用余项公式估计,至少用 477个求积节点。

27、若4321()f x x x =++,则差商2481632[,,,,]f = 3 。

28、数值积分公式11218019()[()()()]f x d x f f f -'≈-++⎰的代数精度为2 。

选择题1、三点的高斯求积公式的代数精度为( B )。

A . 2 B .5 C . 3 D . 42、舍入误差是( A )产生的误差。

A. 只取有限位数 B .模型准确值与用数值方法求得的准确值 C . 观察与测量 D .数学模型准确值与实际值 3、3.141580是π的有( B )位有效数字的近似值。

A . 6B . 5C . 4D . 7 4、用 1+x 近似表示e x 所产生的误差是( C )误差。

A . 模型 B . 观测 C . 截断 D . 舍入5、用1+3x近似表示31x +所产生的误差是( D )误差。

A . 舍入B . 观测C . 模型D . 截断 6、-324.7500是舍入得到的近似值,它有( C )位有效数字。

A . 5 B . 6 C . 7 D . 87、设f (-1)=1,f (0)=3,f (2)=4,则抛物插值多项式中x 2的系数为( A )。

A . –0.5 B . 0.5 C . 2 D . -2 8、三点的高斯型求积公式的代数精度为( C )。

A . 3 B . 4 C . 5 D . 2 9、( D )的3位有效数字是0.236×102。

(A) 0.0023549×103 (B) 2354.82×10-2 (C) 235.418 (D) 235.54×10-1 10、用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=ϕ(x),则f(x)=0的根是( B )。

(A) y=ϕ(x)与x 轴交点的横坐标 (B) y=x 与y=ϕ(x)交点的横坐标 (C) y=x 与x 轴的交点的横坐标 (D) y=x 与y=ϕ(x)的交点 11、拉格朗日插值多项式的余项是( B ),牛顿插值多项式的余项是( C ) 。

(A) f(x,x0,x1,x2,…,xn)(x -x1)(x -x2)…(x -xn -1)(x -xn),(B))!1()()()()()1(+=-=+n f x P x f x R n n n ξ (C) f(x,x0,x1,x2,…,xn)(x -x0)(x -x1)(x -x2)…(x -xn -1)(x -xn), (D))()!1()()()()(1)1(x n f x P x f x R n n n n +++=-=ωξ12、用牛顿切线法解方程f(x)=0,选初始值x0满足( A ),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。

)()()D (0)()()C (0)()()B (0)()()A (0000<'<''>'>''x f x f x f x f x f x f x f x f13、为求方程x3―x2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是(A )。

(A)11:,1112-=-=+k k x x x x 迭代公式(B)21211:,11kk x x x x +=+=+迭代公式(C)3/12123)1(:,1k k x x x x +=+=+迭代公式(D)11:,122123+++==-+k k kk x x x x x x 迭代公式14、在牛顿-柯特斯求积公式:⎰∑=-≈bani i n i x f C a b dx x f 0)()()()(中,当系数)(n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。

(1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n ,(1)二次; (2)三次; (3)四次; (4)五次151732.≈计算41)x =,下列方法中哪种最好?( )(A)28-(B)24(-; (C;。

26、已知330221224()()()x x S x x a x b x ⎧≤≤=⎨-+-+≤≤⎩是三次样条函数,则,a b 的值为( )(A )6,6; (B)6,8; (C)8,6; (D)8,8。

)(A); (B)4; (C) ; (D ) 2。

17、形如112233()()()()baf x dx A f x A f x A f x ≈++⎰的高斯(Gauss )型求积公式的代数精度为( )(A)9; (B)7; (C ) 5; (D) 3。

18的Newton 迭代格式为( )(A)132k k k x x x +=+;(B )1322k k k x x x +=+;(C) 122k k k x x x +=+;(D) 133k k k x x x +=+。

19、用二分法求方程324100x x +-=在区间12[,]内的实根,要求误差限为31102ε-=⨯,则对分次数至少为( )(A )10; (B)12; (C)8; (D)9。

20、设()i l x 是以019(,,,)k x k k ==为节点的Lagrange 插值基函数,则90()ik kl k ==∑( ) (A)x ; (B )k ; (C )i ; (D )1。

33、5个节点的牛顿-柯特斯求积公式,至少具有( )次代数精度 (A )5; (B)4; (C)6; (D)3。

21、已知330221224()()()x x S x x a x b x ⎧≤≤=⎨-+-+≤≤⎩是三次样条函数,则,a b 的值为( ) (A )6,6; (B)6,8; (C)8,6; (D)8,8。

35、已知方程3250x x --=在2x =附近有根,下列迭代格式中在02x =不收敛的是( )(A)1k x +=; (B)1k x += (C )315k k k x x x +=--; (D)3122532k k k x x x ++=-。

(A ) 4; (B)2; (C)1; (D)3。

相关文档
最新文档