生物化学之新陈代谢概述
生物化学知识点2
脱氢酶:α-酮戊二酸异柠檬酸丙酮酸β-羟脂酰CoA 脱氢酶:琥珀酸α-P-甘油
2H 2H → FAD
二. 单糖的无氧氧化:在没有氧气的条件下,葡萄糖降解并释放能量的过程,是葡萄糖的不完全氧化过程,发生在胞浆中。
1. 糖酵解途径(EMP)
<1>物质代谢:见P319,注意其中的不可逆反应,每种物质的结构式自己查,也可见(B)P128,(课间显示)。
<2>能量代谢:消耗ATP:2
产生ATP:2*2
生物化学
下册
第一章 绪论 新陈代谢
一.代谢及其特点
代谢:新陈代谢,广义定义:生物体与环境之间的物质和能量交换。狭义定义:细胞内一切化学变化的总称。
代谢的类型:物质代谢
能量代谢
合成代谢:需能,还原
分解代谢:放能,氧化
FADH2:1
即1分子乙酰CoA净产生12个ATP,2分子就是24个。
<3>关于环内物质的氧化以及草酰乙酸的补充
TCA总的结果是乙酰CoA被完全氧化成了CO2和H2O,而环上其它的物质的量并没有改变,要使环上的物质也彻底氧化则需要另一途径来帮忙---丙酮酸羧化支路,其过程见P344或草图。把线粒体中的草酰乙酸变成了胞浆中的丙酮酸,下面就好氧化了。
<2>是物质代谢的总枢纽:许多非糖类物质(脂类、蛋白质)经其它代谢途径后可以转变成为单糖有氧氧化途径中的某些中间产物,因此也就可以被彻底氧化为CO2和H2O。反之,单糖有氧氧化途径中的某些中间产物也可以经其它代谢途径转变成为非糖类物质。
新陈代谢的解释
新陈代谢的解释
新陈代谢是生物体内有机物生成、分解、重组的代谢过程,有机物包括蛋白质、糖类、脂
肪等。
新陈代谢是涉及到很多细胞、组织和器官,它们之间共同参与形成整个生物体的系统。
新陈代谢的主要构成部分包括吸收代谢、生物化学代谢、能量代谢和结构代谢。
首先,吸收代谢是指从饮食中摄取的营养物质从消化道依靠消化酶生物分解,并经血液分发作用被细胞所吸收的流程。
其次,生物化学代谢是指细胞内生物化学反应,它包括运转代谢中所需要的化学反应,以及细胞内细胞管分枝等生物化学过程。
然后是能量代谢,它
是指细胞内的化学反应,通过氧化-还原反应,将有机物分解成无机物,能量被释放出来,形成生物体可利用的形式。
最后,结构代谢是指细胞内结构物质的合成,以及细胞信号传导系统的运转。
新陈代谢是生物体存活必须,也是一个生物系统的重要组成部分,需要有机物的产生、分解、转化、重组等。
各种有机物经过新陈代谢的过程,为生物体提供能量支持和生物物质
建造,保持生物系统正常运转,促进组织器官发育,在表观遗传学中发挥重要作用。
只有
当新陈代谢顺利进行时,才能够让生物体正常地保持健康,不出现疾病。
生物化学 6 新陈代谢概论
5
三、新陈代谢的类型
根据生物获取碳源或能量的主要途径,可将生 物分为不同类型,根据对碳的需要,可将生物 分为自养生物和异养生物。 自养生物(autotrophy) :是利用CO2作为唯一 碳源的生物。 异养生物(heterotrophs) :是利用有机碳合成 其自身必需的含碳化合物的生物。
新陈代谢(metabolism)概论
1
一、新陈代谢的一般概念
新陈代谢是生命最基本的特征之一,泛指生物 与周围环境进行物质交换和能量交换的过程。
生物一方面不断地从周围环境中摄取能量和物 质,通过一系列生物反应转变成自身组织成分, 即所谓同化作用(assimilation);另一方面, 将原有的组成成份经过一系列的生化反应,分 解为简单成分重新利用或排出体外,即所谓异 化作用(dissimilation ),通过上述过程不断 地进行自我更新。
新的分子生物学方法:RNAi、反义RNA 、基因敲除
及基因突变等。
14
物质代谢的研究方法
利用正常机体的方法 使用病变动物法 切除器官法 器官灌注法 组织切片法或匀浆法 纯酶法及酶抑制法 同位素示踪法 使用亚细胞成分的方法 致突变法 转基因法和基因敲除法
15
11Байду номын сангаас
能量代谢
物质和能量守恒
分解代谢
外界物质
合成代谢
分解产物
机体组织
化学能ΔH
热能q
自由能ΔF
(机械能、电能)
12
能量代谢在新陈代谢中的地位
吸能的反应必须由外界供给能量 ATP是能量代谢的“货币” 在能量贮存和传递中,起着重要作用的物质 1)辅酶I和辅酶II的递能作用 (VPP) 2)FMN和FAD递能作用(VB2) 3)CoA在能量代谢中的作用(VB3 ,泛酸)
生物化学的名词解释
19新陈代谢——指生物体内一些化学变化的总称,是生物体表现其生命活动的重要特征之一。
是由多种酶协同作用的化学反应网络。
从物质代谢来说,新陈代谢包括分解代谢和合成代谢。
分解代谢——生物大分子通过一系列的酶促反应步骤,转变为较小的、较简单的物质的过程。
合成代谢——生物体利用小分子或大分子的结构元件合成自身生物大分子的过程。
能量代谢——在生物体内,以物质代谢为基础,与物质代谢过程相伴随发生的,是蕴藏在化学物质中的能量转化,统称为能量代谢20机体内许多磷酸化合物,当其磷酰基水解时,释放出大量的自由能(一般水解时能释放出5kcal/mol以上的自由能)。
这类化合物称为高能磷酸化合物。
其释放高能量的化学键叫“高能键”,有符号“~”表示。
磷酸肌酸和磷酸精氨酸以高能磷酸基团的转移作为贮能物质统称为磷酸原21生物膜是构成细胞所有膜的总称,包括围在细胞质外围的质膜和细胞器的内膜系统。
被动运输 指物质从高浓度的一侧,通过膜运输到低浓度的一侧,物质顺浓度梯度的方向跨膜运输的过程。
不需要消耗代谢能的穿膜运输。
特点:物质的运送速率既依赖于膜两侧运送物质的浓度差;又与被运送物质的分予大小,电荷和在脂双层中的溶解性有关。
主动运输指物质逆浓度梯度的穿膜运输过程。
需消耗代谢能,并需专一性的载体蛋白。
特点:①专一性。
有的细胞膜能主动运输某些氨基酸,但不能运送葡萄糖。
有的则相反。
②运送速度可以达到“饱利“状态。
③方向性。
如细胞为了保持其内、外的K+、Na+的浓度梯度差以维持其正常的生理活动,细胞主动地向外运送Na+ ,而向内运送K+ 。
④选择性抑制。
各种物质的运送有其专一的抑制剂阻遏这种运送。
⑤需要提供能量。
如果一种物质的运输与另一种物质的运输相关而且方向相同,称为同向运输。
方向相反则称为反向运输,这二者又统称为协同运输。
Na+、K+-泵实际是分布在膜上的Na+、K+-ATP酶。
通过水解ATP提供的能量主动向外运输Na+,而向内运输K+ 。
新陈代谢专题复习
新陈代谢专题复习
一、新陈代谢(metabolism)是一种统称:
新陈代谢是指体内所有生物化学反应的集合,包括新陈代谢的细胞能量代谢、新陈代谢的细胞内合成和新陈代谢的细胞外分解。
这些生物化学反应维持细胞的营养状态,调节细胞的活动,维持生物体全能动物正常的活动以及对部分物质依赖而实现器官系统和身体需要的代谢修饰。
二、新陈代谢一般可分为三大类:
1、细胞能量代谢:细胞能量代谢指的是生物体内组成细胞的有机物(尤其指有机酸)在能量动力的作用下,不断调节所需物质,使其满足细胞的能量需要,也就是细胞能量代谢。
2、细胞内合成:细胞内合成指的是体内细胞在能量变换的控制下,将能量变换的基本构成物质,如有机酸、离子和微量元素等,合成新的有机物,以满足细胞内物质运转和变换的需要。
3、细胞外分解:细胞外分解指的是,在体内生物体的分解过程中,细胞内的各种有机物质在能量动力的作用下,转化为能量变换的基本物质,以满足有机体的能量需求。
细胞外分解和细胞内合成是新陈代谢的两部分,有机体的营养状态是这两部分综合反应的结果。
生物化学之新陈代谢概述
2、广义概念:是生物与外界环境进行 物质与能量交换的全过程。即:生物 体内所经历的一切化学变化。包括消 化、吸收、中间代谢及排泄等阶段。
新陈代谢包括生物体内所发生的
一切合成和分解作用。一方面,生物 体不断从周围环境中摄取物质,通过 一系列生化反应,转变为自己的组成 部分;另一方面,将原有的组成成分 经过一系列生化反应,分解成不能在 利用的物质排出体外,不断地进行自 我更新。生物体通过新陈代谢所产生 的生命现象是建立在合成代谢与分解 代谢矛盾对立和统一的基础上的,它 们之间既相互联系、相互依存,又相 互制约。
A变T化PΔ+HG20O’→= A-3D0P.5+1P4ki J(/m标ol准)自由能
b、在某些情况下,ATP的α和 β磷酸基团之间的高能键被水解 (即同时水解γ和β-磷酸基 团),形成பைடு நூலகம்MP和焦磷酸。
ATP+H2O→AMP+PPi (ΔG0’= -32.19kJ/mol)
(2)作为磷酸基团供体参与磷酸化反应 生化反应中,无论是分解代谢还是合成
表1-1 高能键及高能化合物
3、ATP的结构及意义
ATP(三磷酸腺苷,腺苷三磷酸, adenosine triphosphate)是一种很 重要的高能磷酸化合物。
生物体每天要消耗大量ATP,
安 静 状 态 的 成 年 人 : 每 天 消 耗 40kgATP;
激烈运动时:每分钟就消耗0.5kg。
例子1:研究维生素缺乏症,可给以 缺乏某种维生素的饲料,若干天后 观察其病变情况,在加入该种维生 素,观察其症状有否好转,从而确 定该种维生素的功能。
例子2: “人工糖尿病”。
例子3:生糖氨基酸;
生酮氨基酸
3、代谢物标记追踪实验
生物化学第五章糖代谢
糖酵解小结
⑴ 反应部位:胞浆 ⑵ 糖酵解是一个不需氧的产能过程 ⑶ 反应全过程中有三步不可逆的反应
G
G-6-P
ATP
ADP
己糖激酶
ATP
ADP
F-6-P
F-1,6-2P
磷酸果糖激酶-1
ADP
ATP
PEP
丙酮酸
丙酮酸激酶
(psicose,allulose)
D(-)-果糖
(fructose)
D(+)-山梨糖
(sorbose)
二羟丙酮
(dihytroasetone)
吡喃
呋喃
-D-吡喃果糖
-D-吡喃葡萄糖 吡喃型和呋喃型的D-葡萄糖和D-果糖(Haworth式)
-D-呋喃果糖
-D-呋喃葡萄糖
成环
转折
葡萄糖由Fischer式改写为Haworth式的步骤
核糖 + NADPH+H+
淀粉
消化与吸收
ATP
作为生物体的结构成分
糖类是细胞中非常重要的一类有机化合物,主要的生物学作用如下:
作为细胞识别的信息分子
作为生物体内的主要能源物质
合成的前体
作为其它生物分子如氨基酸、核苷酸、脂等
(四)糖类的生物学作用
一、双糖的酶促降解
糖复合物
糖—肽链
糖—核酸
糖—脂质
肽聚糖
(peptidoglycans)
脂多糖
(lipopolysauhards)
糖基酰基甘油
(glycosylacylglycerols)
糖鞘脂
(pglycosphingolipids)
糖蛋白
生物化学 代谢总论与生物氧化
~P ~P ATP
~P
~P
~P
6-磷酸葡萄糖 3-磷酸甘油
二 生物氧化
二、生物氧化
有机物质(糖、脂肪和蛋白质)在生
物细胞内进行氧化分解而生成CO2和H2O
并释放出能量的过程称为生物氧化。 生物氧化通常需要消耗氧,所以又称
O NH C N NH CH3
肌酸磷酸
O
O NH
P O
P O NH2
C NH O N CH3 CH2CH2CH2CHCOOH
磷酸精氨酸
CH2COOH
这两种高能化合物在生物体内起储存能量的作用。
3-磷酸腺苷-5’-磷酰硫酸
硫酯键型
酰基辅酶A
O SCoA
R C
甲硫键型
COO CH CH2 CH2 H3C S
(3) 水的生成方式是代谢物脱下的H与O结合
产生的。 (4) CO2的生成方式是有机酸脱羧产生的。
生物氧化的内容
(1)细胞如何在酶的催化下将有机化合物中的C变 成CO2—CO2如何形成? • 脱羧反应
(2)在酶的作用下细胞怎样利用分子氧将有机化 合物中的H氧化成H2O—H2O如何形成? • 电子传递链 (3)当有机物被氧化成CO2和H2O时,释放的能量怎 样转化成ATP—能量如何产生? • 底物水平磷酸化 • 氧化磷酸化
分解代谢与合成代谢
生物小分子合成大分子 • •
合成代谢 •
需要能量
能量代谢
新陈代谢
•
• •
释放能量
分解代谢
生物大分子分解成小分子
物 质 代 谢
新陈代谢的共同特点
生物化学_ 新陈代谢通论_81 新陈代谢通论_
每种代谢作用都包含两个方面: 物质代谢(substance metabolism), 物质的合成与分解;
能量代谢(energy metabolism),能 量的转换、储存和释放。
生长旺盛时: 合成代谢分解代谢 衰老或饥饿: 合成代谢分解代谢
在试管内进行:细胞切片、匀浆液、提 取液等。
2、同位素示踪法:
◼ 放射性同位素: 原子量不同,衰变中有射线辐射的同位素。 常用的有:氚(3H)、14C、32P、35S、131I等
◼ 仪器:
脉冲探测仪、γ-计数器、液体闪烁计数器等。 ◼ 特点:
特异性强、灵敏度高、方法简便。注意个人 防护。
3、代谢途径阻断等方 法பைடு நூலகம்
新陈代谢总论
(一) 新陈代谢的概念 生物小分子合成为 生物大分子
合成代谢 (同化作用)
新陈代谢
需要能量 能量 代谢
释放能量
物质代谢
分解代谢 (异化作用) 生物大分子分解为
生物小分子
中间代谢: 指代谢中的一系列酶促反应。
代谢途径( metabolism pathway) : 指糖、脂类、蛋白质、核酸及水、盐代谢的一 系列化学反应。
代谢物: 统指代谢反应中任一反应物、中间产物或产物。
3、代谢特点:
1)严格的细胞内定位; 2)由酶催化,反应条件温和; 3)共通的代谢间关联; 4)严谨的反应顺序; 5)高效率的调控机构。
(二)研究中间代谢的方法:
1、活体内与活体外实验: 1)在活体内(in vivo):
生物体内:动物实验、组织细胞培养等。 2)在活体外(in vitro):
生化代谢知识点总结高中
生化代谢知识点总结高中1. 新陈代谢的概念:新陈代谢是指机体内物质和能量的产生、转化和消耗以及由此引起的生理和生化变化的总和。
新陈代谢和代谢率有密切的关系。
2. 呼吸作用的基本概念:呼吸是一种生化作用,它是将空气中的氧气通过呼吸系统传送到细胞内,提供细胞所需的氧气,同时将细胞产生的二氧化碳从体内排出。
呼吸作用可分为外呼吸和内呼吸两部分。
3. 心肺循环系统的作用:心肺循环系统是指人体内血液循环的一部分,是将氧气和营养输送至全身各部分,并将代谢废物从组织细胞中清除出体外的系统。
它主要由心脏、血管、血和淋巴等组成。
4. 蛋白质代谢的基本过程:蛋白质是构成细胞和组织的基本物质,也是生命活动中不可缺少的组成成分。
蛋白质的代谢过程包括合成、分解和再生三个基本过程。
5. 脂质代谢的基本过程:脂质是一类具有高脂溶解性的生物大分子化合物。
脂质代谢主要包括脂肪酸的合成和分解、脂类酸的合成和分解等过程。
6. 糖类代谢的基本过程:糖类是生物体内非常重要的一类营养物质。
糖类代谢包括糖原的合成和分解、葡萄糖的合成和分解等过程。
7. ATP 的合成和水解: ATP 是细胞内的一种能量储存分子。
它的合成和水解是细胞内新陈代谢中一个重要的过程。
ATP 分子总是通过磷酸化和脱磷酸化的过程来提供能量。
8. 代谢速率和调节:代谢速率是生物体内代谢过程进行的速率,它受到内部和外部环境的多种因素的调节。
9. 细胞凋亡的相关知识:细胞凋亡是一种程序性细胞死亡过程,它在生物体生长发育、组织形态建立和维持中起着重要的作用。
10. 能量的转换:能量的转换是指生物体内一种形式的能量转换成另一种形式的能量的过程。
在生物体内,能量主要以生物体能力的形式储存和传递。
11. 糖原合成与糖原分解:糖原是一种多分枝的多聚糖,它主要储存在肝脏和肌肉组织中,是一种非常重要的能量储备物质。
12. 三酰甘油合成与分解:三酰甘油是一种脂肪酸基团与甘油通过酯键相连而成的一种脂类酸。
生物化学——第五章新陈代谢总论与生物氧化修改
14 2-磷酸烯醇式丙酮酸
磷 酸 基 团 转 移
12 10 8 6
1,3-二磷 酸甘油酸
磷酸
~P ~P
能4
2
0
~P ATP ~P
~P
磷酸肌酸 (磷酸基团储备物)
6-磷酸葡萄糖 3-磷酸甘油
生物系统中的能流
UTP、CTP、GTP的不同作用
• 在体内:包括整体器官或微生物细胞群进行研究 Knoop:脂肪酸的β-氧化学说,以犬为研究对象的 “体内研究”
• 在体外:用组织切片、匀浆提取液为原料进行研究三 羧酸循环、糖酵解、氧化磷酸化的研究 体外实验可同时进行多样本研究,可进行多次重复试 验。
2020/4/20
三、自由能和高能化合物
1、自由能
• 最常见最多的高能化合物:高能磷酸化合物
2020/4/20
高 能 化 合 物 类 型
3、ATP的特点
ATP:磷酸脂键、磷酸酐键 ATP分子水解释放自由能很大(ΔG°′= -30.51千焦/ 摩尔)。
O
O
O
腺嘌呤—核糖—
O
—
P
α —
O
—
β P—
O
—
P
γ—
O-
O-
O-
O-
Mg2+
ATP的特殊作用
2020/4/20
(1)烟酰胺脱氢酶类
特点:以NAD+ 或NADP+为辅酶,存在于线粒体 、基质或胞液中。
传递氢机理:
NAD(P) + + 2H+ +2e
2020/4/20
NAD(P)H + H+
高中生物新陈代谢知识点总结
高中生物新陈代谢知识点总结一、新陈代谢概述新陈代谢是生物体内所有化学反应的总和,这些反应使生物体能够维持生命,进行生长和繁殖。
新陈代谢可以分为两个基本类型:分解代谢(Catabolism)和合成代谢(Anabolism)。
分解代谢是能量释放的过程,而合成代谢则是能量消耗的过程。
二、酶在新陈代谢中的作用酶是生物体内的生物催化剂,大多数酶是由蛋白质构成的,但也有一些是由RNA构成的。
酶能够降低化学反应的活化能,从而加速反应的进行。
每种酶都有其特定的底物和作用方式,这种特异性是通过酶的活性位点与底物的精确配合实现的。
三、糖类的代谢1. 糖酵解:糖酵解是葡萄糖分解成丙酮酸的过程,这个过程在细胞质中进行,不需要氧气。
糖酵解的最终产物是两个丙酮酸分子、两个ATP 分子(净产量)和还原型NADH。
2. 有氧呼吸:有氧呼吸包括丙酮酸的氧化脱羧反应、柠檬酸循环和电子传递链。
这三个阶段共同作用,有效地将葡萄糖分解产生的能量转化为大量的ATP。
3. 无氧呼吸(发酵):在缺氧条件下,生物体通过发酵过程释放能量。
发酵过程中,丙酮酸转化为乳酸或乙醇,同时产生少量的ATP。
四、脂质的代谢1. 脂肪的消化和吸收:脂肪首先在小肠中通过胆汁的乳化作用被分解成小颗粒,然后通过胰脂肪酶的作用被水解成甘油和脂肪酸。
2. 脂肪酸的氧化:脂肪酸在细胞内经过一系列的反应,最终转化为乙酰辅酶A,进入柠檬酸循环进行氧化分解。
3. 脂肪的合成:在能量充足的情况下,葡萄糖和某些氨基酸可以转化为脂肪酸,并储存于脂肪细胞中。
五、蛋白质的代谢1. 蛋白质的消化:蛋白质的消化从胃开始,通过胃酸和胃蛋白酶的作用初步分解,然后在小肠中通过胰蛋白酶和肠蛋白酶的作用被完全水解成氨基酸。
2. 氨基酸的吸收和代谢:氨基酸通过主动运输进入细胞,在细胞内可以参与合成新的蛋白质,也可以通过脱氨基作用转化为其他物质。
3. 蛋白质的合成:氨基酸通过核糖体上的翻译过程,按照mRNA的编码顺序合成蛋白质。
生物化学中的代谢物和新陈代谢的分析
生物化学中的代谢物和新陈代谢的分析生物化学是一个复杂的领域,其中代谢物和新陈代谢是非常重要的概念。
在生物体内,代谢物是由代谢途径产生的化合物,包括蛋白质、核苷酸、脂质和糖类等生物大分子,以及代谢途径中的中间产物和终产物。
代谢物的种类繁多,其中一些代谢物是生命活动的必需物质,例如葡萄糖和氨基酸等,它们是构成生物体所有物质的原料。
而另一些代谢物则是有毒的,例如代谢氨基酸时产生的尿素,它需要通过尿液排出体外。
在正常情况下,代谢物的产生和消耗保持平衡,从而维持生命活动的正常进行。
在代谢物的研究中,新陈代谢是一个关键的概念。
新陈代谢指的是生物体内的所有化学反应,包括代谢途径的产物转化和能量的转移等。
新陈代谢可分为两类,一类是合成代谢,另一类是分解代谢。
合成代谢是指物质的合成,例如葡萄糖和蛋白质等,是一种能量消耗的过程。
分解代谢则是指物质的分解,例如蛋白质和脂质等,是一种能量释放的过程。
代谢途径是一个复杂而精密的系统,它包括多种反应途径和多种酶的参与。
代谢途径的研究对于理解生物的基本生理和生化过程非常重要,例如研究代谢异常和代谢疾病等领域。
最基本的代谢途径是糖分解,这是生物体内能量转移的基础。
在糖分解途径中,葡萄糖被分解成两个糖类分子,通过一系列反应最终产生ATP等能量分子。
此外,代谢途径还包括蛋白质代谢、脂质代谢和核酸代谢等。
在蛋白质代谢中,蛋白质被分解为氨基酸,然后通过合成途径合成新的蛋白质。
在脂质代谢中,脂肪酸被分解成乙酰辅酶A,然后通过三羧酸循环产生ATP。
在核酸代谢中,核苷酸被分解成碱基和糖类分子,然后通过嘌呤核苷酸合成途径和嘧啶核苷酸合成途径合成新的核苷酸。
代谢途径的研究对于疾病的诊断和治疗有重要的意义。
例如糖尿病是因为胰岛素的分泌障碍导致葡萄糖代谢异常,这就需要通过代谢途径的研究来研究糖尿病的机制和治疗方法。
另外,代谢组学是一种新兴的研究领域,它通过高通量的技术手段研究生物体内代谢物的产生和消耗,来诊断和治疗代谢性疾病等。
生物化学新陈代谢与氧代谢
O
NH
PO
C NH O
N CH3 CH2COOH
O
NH
PO
C NH O
N CH3 NH2 CH2CH2CH2CHCOOH
磷酸肌酸
磷酸精氨酸
(二)非磷酸化合物
(1)硫酯键型
O R C SCoA
酰基辅酶A
乙酰COA (R---CH3)
(2)甲硫键型
H3C
COOCH NH3+
CH2 CH2 S+ A
S-腺苷甲硫氨酸
第二节 生物氧化(本章重点)
一、生物氧化的特点和意义
➢概念:有机物质(糖、脂肪和蛋白质)在 生物细胞内进行氧化分解而生成CO2和H2O 并释放出能量的过程称为生物氧化。生物氧 化通常需要消耗氧,所以又称为呼吸作用。
生物氧化的意义在于为机体提供生命活动所需的能量。
生物氧化的特点
➢特点:生物氧化和有机物在体外氧化(燃 烧)的实质相同,都是氧化还原反应,都 是脱氢、失电子或与氧结合,消耗氧气, 都生成CO2和H2O,所释放的能量也相同。 但二者进行的方式和历程却不同。
• NAD
尼克酰胺腺嘌呤二核苷酸,或辅酶Ⅰ
• NADP 尼克酰胺腺嘌呤二核苷酸磷酸,或辅酶Ⅱ
• FMN
黄素单核苷酸
• FAD
黄素腺嘌呤二核苷酸
(一)呼吸链的主要成分
1、NAD+和NADP为辅酶的脱氢酶
【组成成分】 酶蛋白、尼克 酰胺(维生素 pp)核糖、磷 酸与AMP。
ΔG0’的求取
A+B
C+D
G G0' RT ln [C][D] [ A][B]
当△G=0时,反应处于平衡状态,则:
G0' RT ln [C][D] RT ln K [ A][B]
第十章__代谢总论--王镜岩《生物化学》第三版笔记(完美打印版)
四、信息来源
生物大分子有两种组装模式:
1.模板指导组装核酸和蛋白质的合成,都以先在的信息分子为模板。如DNA复制、转录以及反转录、翻译都是在模板指导下的聚合过程。所需的信息存在于模板分子的构件序列中,能量来自活化的构件分子或ATP等。生物大分子形成高级结构并构成亚细胞结构是自我组装过程,其信息存在于一级结构中,其能量来自非共价作用力,即组装过程中释放的自由能。
3.其它高能化合物
UTP参与多糖合成,CTP参与脂类合成,GTP参与蛋白质合成。
烯醇酯、硫酯等也是高能化合物,如磷酸烯醇式丙酮酸、乙酰辅酶A等。高能化合物根据键型可分为磷氧键型、氮磷键型、硫酯键型、甲硫键型等,绝大多数含磷酸基团。
磷酸肌酸和磷酸精氨酸可通过磷酸基团的转移作为储能物质,称为磷酸原。磷酸肌酸是易兴奋组织如肌肉、脑、神经等唯一能起暂时储能作用的物质ΔG0’为-10.3千卡/摩尔,是ATP的能量储存库。肌肉中的含量比ATP高3-4倍,可维持ATP水平的恒定。磷酸精氨酸是无脊椎动物肌肉中的储能物质,与磷酸肌酸类似。
2.酶促组装有些构件序列简单均一的大分子通过酶促组装聚合而成。其信息指令来自酶分子,不需要模板。如糖原、肽聚糖、一些小肽等,都在专一的酶指导Fra bibliotek催化下合成。
第三节 分解代谢
一、阶段性和趋同性
生物大分子的分解有三个阶段:水解产生构件分子、氧化分解产生乙酰辅酶A、氧化成二氧化碳和水。在这个过程中,随着结构层次的降低,倾向产生少数共同的分解产物,即具有趋同性。
2.ATP及其偶联作用
生物体内的放能和需能反应经常以ATP相偶联。ATP可分解为ADP或AMP。前者如各种激酶,后者如乙酰辅酶A的合成。反应过程中有的由一个酶催化,如谷氨酰胺合成酶,先生成磷酰谷氨酸中间物,它是谷氨酸的活化形式,再与氨反应;有的需多个酶参与,如蔗糖的合成需3个酶,首先生成葡萄糖6磷酸的活化形式;也有的没有ATP直接参与,如苹果酸生成草酰乙酸,是需能反应,利用下一步由草酰乙酸生成柠檬酸时高能硫酯键放能促进其反应。
细胞内生物分子的新陈代谢(共31张PPT)
2、糖酵解的能量问题
产生4个ATP,消耗2个ATP,每一分子葡萄糖经酵解成2分子丙酮酸净得2个ATP 。
3、糖酵解的生理意义 (1)糖酵解是缺氧条件下机体获得能量的主要方式。
(2)污水生物处理中缺氧环境时,微生物可通过加强糖酵解作用获得能量。污泥消化的生化机理
实际上就是有机物的无氧分解。
(3)糖酵解过程中的大量中间产物为有机物质的合成原料。
分子乙酰CoA(2C物)和比原脂肪酸少两个碳原子的脂酰CoA。如此重复多次β氧化,可使 一长链的脂酰CoA分解成许多小分子的乙酰CoA。
(2)化学过程
乙酰CoA进入TCA循环,彻底氧化成二氧化碳和水。
3、脂肪酸氧化中的能量变化
以棕榈酸(也叫软脂酸或十六烷酸)为例:
β氧化过程,反应如下: 软脂酰CoA+7CoA-SH+7FAD+7NAD+7H2O—— 8CH3CO-SCoA+7FADH2+7NADH2
淀粉可用酸水解,水解的最终产物是葡萄糖。 淀粉酶也可催化淀粉的水解。 1、α-淀粉酶
又称液淀粉酶或糊精淀粉酶,只能水解α-1,4糖苷键。产物:含有6个葡萄
糖分子的单位和糊精。主要存在于人和动物体内。
2、β-淀粉酶 又称糖化酶或生糖淀粉酶,只能水解α-1,4糖苷键。产物:麦芽糖和糊精 。主要存在于植物种子和块根内。
水(生氧动 化物、一—底、—物酮水直体平接的排的磷除合酸体成化外及、;分变位解、脱水、底物水平的磷酸化)
E葡M萄P糖和在TC有A酮氧的体的连条接(件点乙下是,酰丙通酮乙过酸酸丙、酮E、M酸P生和β成H-乙M羟P酰的丁C连o酸A接,和点再是经丙6三磷酮羧酸酸葡)循萄:环糖氧。肝化内成二合氧成化,碳和肝水外。组织分解利用;
新陈代谢名词解释生物化学
新陈代谢名词解释生物化学
新陈代谢是生物体内一系列化学反应的总称,涉及到物质的合成、分解和转化过程。
在生物化学中,以下名词可以用于解释新陈代谢相关的概念:
代谢(Metabolism):代谢是生物体内所有化学反应的总和,包括物质的合成反应(合成代谢,Anabolism)和物质的分解反应(分解代谢,Catabolism)。
代谢过程是维持生物体生命活动所必需的。
基础代谢率(Basal Metabolic Rate,BMR):基础代谢率指在安静状态下,人体为维持基本生命活动所需的最低能量消耗速率。
它受到多种因素的影响,如年龄、性别、体重、身体组成和环境温度等。
营养物质(Nutrients):营养物质是供给生物体生长、发育和代谢所必需的化学物质,包括碳水化合物、脂肪、蛋白质、维生素和矿物质等。
这些营养物质通过新陈代谢过程被分解和利用。
酶(Enzyme):酶是生物体内调节和促进化学反应的蛋白质分子。
酶在新陈代谢过程中起着催化剂的作用,加速化学反应的进行,从而实现物质的转化和合成。
ATP(Adenosine Triphosphate):ATP是细胞内常见的一种高能化合物,被视为细胞能量的通用单位。
在新陈代谢过程中,有机物质通过酶的作用逐步氧化分解,释放出能量,并以ATP的形式储存起来,供细胞进行各种生物活动的驱动。
这些名词提供了在生物化学中解释新陈代谢的基本概念。
新陈代谢是生物体维持生命所必需的重要过程,通过合成和分解物质来获取能量和维持生物体的结构和功能。
生物化学第四章1
D系酮糖的 系酮糖的 立体结构
D(-)-赤藓酮糖 D(-
(erythrulose)
二羟丙酮
(dihytroasetone)
D(-)-核酮糖 D(-
(ribulose)
(xylulose)
D(+)D(+)-核酮糖
D(+)D(+)-阿洛酮糖
D(-)-果糖 D(-
D(+)D(+)-山梨糖
D(-)-洛格酮糖 D(-
3.2.2 淀粉的磷酸解
淀粉+nH 淀粉+nH3PO4
淀粉磷酸化酶 脱支酶
nG- p+少量葡萄糖 nG-1-p+少量葡萄糖
其中,淀粉磷酸化酶又叫P 其中,淀粉磷酸化酶又叫P-酶。 又叫
此反应为可逆反应,但在植物体内, 此反应为可逆反应,但在植物体内,由于 (1)[Pi]很高(如施肥) [Pi]很高 如施肥) 很高( (2)[G-1-P]低(因不断被利用) [G- P]低 因不断被利用) 所以,反应向正方向进行。 所以,反应向正方向进行。
乳糖
3、 一些重要多糖的结构 、 直链淀粉
淀
粉
直链淀粉大约由200~ 个葡萄糖以α 1,4-糖苷键连接组成。 直链淀粉大约由200~300 个葡萄糖以α-1,4-糖苷键连接组成。 200 括号中的二糖基是一个相当于麦芽糖的基本结构单位, 括号中的二糖基是一个相当于麦芽糖的基本结构单位,直链淀 粉可以看成是这个基本单位的延伸。 粉可以看成是这个基本单位的延伸。
第四章 糖代谢
主要内容和要求: 主要内容和要求:
建立起物质代谢和能量代谢的整体概 念,进而讨论糖的分解与合成,重点掌握 进而讨论糖的分解与合成, 葡萄糖为代表的单糖的分解与合成的主 以葡萄糖为代表的单糖的分解与合成的主 要途径。 要途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、广义概念:是生物与外界环境进行 物质与能量交换的全过程。即:生物 体内所经历的一切化学变化。包括消 化、吸收、中间代谢及排泄等阶段。
新陈代谢包括生物体内所发生的
一切合成和分解作用。一方面,生物 体不断从周围环境中摄取物质,通过 一系列生化反应,转变为自己的组成 部分;另一方面,将原有的组成成分 经过一系列生化反应,分解成不能在 利用的物质排出体外,不断地进行自 我更新。生物体通过新陈代谢所产生 的生命现象是建立在合成代谢与分解 代谢矛盾对立和统一的基础上的,它 们之间既相互联系、相互依存,又相 互制约。
阻断代谢途径的方法有:造成微生物营 养缺陷性、使用抗代谢物、专一性抑制 剂等。
(1)微生物营养缺陷性(微生物基因突 变型)
采取诱变剂使微生物的基因发生突变, 从而造成某种酶缺损,代谢途径中断, 缺损酶前面的中间产物会大量积累,致
应用实例:乳糖的代谢机理。
利用微生物的遗传突变型研究新 陈代谢机制,比利用其他生物有 以下优越性:
(一)活体内实验和活体外实验
1、活体内实验(整体实验)
用整体生物材料或高等动物离体器官或 微生物细胞群体进行中间代谢实验研究 称为活体内实验,用“in vivo”表示。
活体内实验结果代表生物体在正常 生理条件下,在神经、体液等调节机制 下的整体代谢情况,比较接近生物体的 实际。
典型例子:1904年,德国化学家Knoop提 出的脂肪酸β-氧化学说。
这是探索代谢途径最有效的方法。
标记方法有:化学标记法、同位素标记 法。
(1)化学标记法
1904年,德国F.Knoop首次用苯环标记 脂肪酸探讨中间代谢途径,提出著名的 脂肪酸β-氧化学说。
缺点:化学标记法使天然代谢物分子结
(2)同位素标记法
1941年,Rudolf Schoenheimer首次采用 同位素标记法进行实验。
容易突变;经济;简便等。
(2)使用抗代谢物
抗代谢物,又叫代谢拮抗物,或代谢 物结构类似物。其分子结构与代谢物 的分子结构类似。
实质:竞争性抑制剂。
例子:丙二酸是琥珀酸的抗代谢物, 能对琥珀酸脱氢酶发生很强的竞争性 抑制作用,造成代谢中间产物“琥珀 酸”积累,从而证明了TCA循环中有 生成琥珀酸这一反应步骤。
但有许多代谢有共同途径, 称为“两用代谢途径” (amphibolic pathway)。
二、新陈代谢的研究方法
中间代谢的研究内容很多,研究目 的不同,所用的生物材料和实验方法也 不相同。为探讨代谢途径及其调节机理, 动物、植物、微生物材料都可以作为实 验对象。
根据实验材料的水平,常将实验分 为活体内实验和活体外实验。
生物化学
第一章
新陈代谢总论
一、新陈代谢的概念
(一)新陈代谢的概念
新陈代谢是生物体最基本的特征,是 生命存在的前提。
新陈代谢(metabolisim)的概念:
1、狭义概念:是指细胞内所发生的酶
促反应过程,称为中间代谢 (intermediary metabolisim)。
(这是代谢活动的主体,也是代谢研 究的主要内容)。
(二)新陈代谢的内容
1、包括:物质代谢和能量代谢。
(1)物质代谢:重点讨论各种生理活性 物质(如糖、蛋白质、脂类、核酸等) 在细胞内发生酶促反应的途径及调控机 理,包含旧分子的分解和新分子的合成;
(2)能量代谢:重点讨论光能或化学能 在细胞内向生物能(ATP)转化的原理和 过程,以及生命活动对能量的利用。
1、代谢平衡实验
通过活体内实验研究代谢物摄入和 产出排出的平衡关系,可以了解对代谢 物的利用能力及产物生成情况。
例如测定“呼吸商”(R.Q.)可以判断 体内能量利用情况。
R.Q.=产CO2量(升)/耗O2量(升)
糖类物质R.Q为1,脂肪R.Q为 0.7,蛋白质R.Q为0.8。人体正 常代谢时,R.Q介于0.85-0.95之 间,说明三大营养物质同时发生 了氧化分解。
(3)酶的专一性抑制剂
例子:碘乙酸是巯基酶的专一性抑 制剂,可抑制酵母的酒精发酵,造 成3-磷酸甘油醛和磷酸二羟丙酮积 累。由此证明了酵解途径中1,6-二 磷酸果糖是三三裂解生成了三碳糖。
(4)利用药物造成异常动物实验 (病变动物法)
用人工方法使动物发生某一过程的 代谢障碍,然后给以一定量受试物 质,研究其中间代谢过程。
2、活体外实验
用从生物体分离出来的组织切片, 组织匀浆或体外培养的细胞、细胞器及 细胞抽提物进行中间代谢实验研究称为 活体外实验,用“in vitro”表示。
典型例子:糖酵解、三羧酸循环、氧化 磷酸化等。
(二)代谢途径的探讨方法
探讨物质代谢途径的常用方法有: 代谢平衡实验、代谢障碍实验、代谢物 质标记追踪实验、特征性酶鉴定实验、 核磁共振波实验等。其中最有效的是代 谢物质标记追踪实验和核磁共振实验。
例子1:研究维生素缺乏症,可给以 缺乏某种维生素的饲料,若干天后 观察其病变情况,在加入该种维生 素,观察其症状有否好转,从而确 定该种维生素的功能。
例子2: “人工糖尿病”。
例子3:生糖氨基酸;
生酮氨基酸
3、代谢物标记追踪实验
将代谢底物分子适当“标记”,然后追 踪“标记”在细胞中的去向,就可以了 解底物分子在中间代谢中经过什么中间 产物,生成了什么终产物。
能量代谢和物质代谢是同一过程的两个 方面,能量转化寓于物质转化过程之中, 物质转化必然伴有能量转化。
2、合成代谢(anabolism)分解 代谢(catabolism)
合成代谢和分解代谢并非简 单可逆反应,发生于细胞不同部 位(尤其是真核生物中最常见)。
例如:脂肪酸分解成乙酰辅酶A 是在线粒体中进行,而乙酰辅酶 A合成脂肪酸则在细胞浆中进行。
饥饿状态下:R.Q?
糖尿病人:R.Q?
问题:若测得生物材料的R.Q接 近1,则表明能量主要来自于何 类物质分解?
2、代谢障碍实验(代谢途径阻断实验)
正常生物体的中间代谢过程中,中间产 物不会过多积累,不容易进行分析研究; 若用适当方法造成代谢障碍,阻断代谢 途径,则使中间产物积累,便于进行分 析研究。