函数图像变换公式大全

合集下载

函数移动规律公式

函数移动规律公式

在数学中,函数的移动规律通常涉及到函数图像的平移。

函数图像的移动遵循以下几个基本的规律:1. 水平移动(左移和右移):如果函数\( f(x) \) 的图像向左移动\( a \) 个单位,新的函数表达式为\( f(x + a) \);如果图像向右移动\( a \) 个单位,新的函数表达式为\( f(x a) \)。

2. 垂直移动(上移和下移):如果函数\( f(x) \) 的图像向上移动\( a \) 个单位,新的函数表达式为\( f(x) + a \);如果图像向下移动\( a \) 个单位,新的函数表达式为\( f(x) a \)。

3. 斜率变化(拉伸和压缩):如果函数\( f(x) \) 的图像在\( x \) 方向上被拉伸或压缩,可以通过乘以一个非零常数\( a \) 来完成。

如果\( a > 1 \),图像会被拉伸;如果\( 0 < a < 1 \),图像会被压缩。

新的函数表达式为\( a \cdot f(x) \)。

4. 对称变换:关于y 轴对称:如果函数\( f(x) \) 的图像关于y 轴对称,新的函数表达式为\( f(x) \)。

关于x 轴对称:如果函数\( f(x) \) 的图像关于x 轴对称,新的函数表达式为\( f(x) \)。

关于原点对称:如果函数\( f(x) \) 的图像关于原点对称,新的函数表达式为\( f(x) \)。

5. 周期变换:如果函数\( f(x) \) 的图像具有周期性,可以通过乘以一个非零常数\( a \) 来改变周期。

新的函数表达式为\( f(x \cdot a) \)。

这些规律可以帮助我们理解和预测函数图像在各种变换下的移动和变化。

在实际应用中,这些规律对于解决函数图像相关的问题非常有用。

函数图像的移动数学公式记忆口诀

函数图像的移动数学公式记忆口诀

函数图像的移动数学公式记忆口诀函数图像的移动规律:假设把一次函数解析式写成y=k(*+0)+b、二次函数的解析式写成y=a(*+h)2+k的形式,那么用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。

k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。

图在二、四正相反,两个分支分别添;线越长越近轴,永久与轴不沾边。

我为大家带来的是函数图像的移动规律,相信同学们都已经轻松掌控了吧,接下来会为大家继续带来更全更精的公式大全集锦,盼望同学们关注了。

中学数学正方形定理公式关于正方形定理公式的内容精讲知识,盼望同学们很好的掌控下面的内容。

正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且相互垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。

盼望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌控,相信同学们会取得很好的成果的哦。

中学数学平行四边形定理公式同学们仔细学习,下面是老师对数学中平行四边形定理公式的内容讲解。

平行四边形平行四边形的性质:①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线相互平分;平行四边形的判定:①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线相互平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。

上面对数学中平行四边形定理公式知识的.讲解学习,同学们都能很好的掌控了吧,相信同学们会从中学习的更好的哦。

中学数学直角三角形定理公式下面是对直角三角形定理公式的内容讲解,盼望给同学们的学习很好的援助。

直角三角形的性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半;③直角三角形的两直角边的平方和等于斜边的平方〔勾股定理〕;④直角三角形中30度角所对的直角边等于斜边的一半;直角三角形的判定:①有两个角互余的三角形是直角三角形;②假如三角形的三边长a、b 、c有下面关系a^2+b^2=c^2,那么这个三角形是直角三角形〔勾股定理的逆定理〕。

函数图像变换与旋转

函数图像变换与旋转

函数图像变换与旋转一.平移变换:1.y=f(x)→y=f(x±a)(a>0) 原图像横向平移a个单位(左+右-)2.y=f(x)→y=f(x)±b(b>0) 原图像纵向平移b个单位(上+下-)3.若将函数y=f(x)的图像右移a,上移b个单位,得到函数y=f(x-a)+b二.对称变换:1.y=f(x)→y=f(-x) 原图像与新图像关于y轴对称;对比:若f=(-x)=f(x)则函数自身的图像关于y轴对称;2.y=f(x)→y=-f(x) 原图像与新图像关于x轴对称;3.y=f(x)→y=-f(-x) 原图像与新图像关于原点对称;对比:若f(-x)=-f(x)则函数自身的图像关于原点对称;4.y=f(x)→y=f-1(x)原图像与新图像关于直线y=x对称;5.y=f(x)→y=f-1(-x)原图像与新图像关于直线y=-x对称;6.y=f(x)→y=f(2a-x)原图像与新图像关于直线x=a对称;7.y=f(x)→y=2b-f(x)原图像与新图像关于直线y=b对称;8.y=f(x)→y=2b-f(2a-x)原图像与新图像关于点(a,b)对称;三.翻折变换:1. y=f(x)→y=f(|x|)的图像在y轴右侧(x>0)的部分与y=f(x)的图像相同,在y 轴的左侧部分与其右侧部分关于y轴对称;2.y=f(x)→y=|f(x)|的图像在x轴上方部分与y=f(x)的图像相同,其他部分图像为y=f(x)图像下方部分关于x轴的对称图像;3. y=f(x)→y=f(|x+a|)变换步骤:法1:先平移|a|个单位(左+右-)保留直线x=a右边图像,后去掉直线x=a左边图像并作关于直线x=a对称图像y=f(x)→y=f(x+a)→y=f(|x+a|)法2:先保留y轴右边图像,去掉y轴左边图像,并作关于y轴对称图像,后平移|a|个单位(左+右-)y=f(x)→y=f(|x|)→y=f(|x+a|)四.伸缩变换:1.y=f(x)→y=af(x)(a>0)原图像上所有点的纵坐标变为原来的a倍,横坐标不变;2.y=f(x)→y=f(ax)(a>0)原图像上所有的横坐标变为原来的,纵坐标不变;五.对称性:1.函数自身对称性之轴对称:(1).若f(x)=f(2a-x)(或f(a+x)=f(a-x)或f(-x)=f(2a+x))则函数自身关于直线x=a对称;(2).若y=f(x)的图像关于直线对称等价于f(a+mx)=f(b-mx)等价于 f(a+b-mx)=f(mx);2.函数自身对称性之中心对称:(1).若f(mx+a)=-f(b-mx),则函数自身关于点(,0)对称;(2).若f(mx+a)+f(b-mx)=c,则函数自身关于点(,)对称;(3).若f(a+x)+f(a-x)=2b(或f(x)+f(2a-x)=2b或f(-x)+f(2a+x)=2b 则函数自身关于点(a,b)对称;3.不同函数之间的对称性:(1).函数y=f(a+x),y=f(b-x)的图像关于直线对称;推论:函数y=f(a+x)与f(a-x)的图像关于直线x=0对称;函数y=f(x)与y=f(2a-x)的图像关于直线x=a对称;函数y=f(-x)与y=f(2a+x)的图像关于直线x=-a对称;特例:函数y=f(a+x),y=f(a-x)的图像关于直线x=0对称;(2).函数y=f(a+x),y=-f(b-x)的图像关于点(,0)对称;特例:函数y=f(a+x)与y=-f(a-x)关于原点中心对称4.抽象函数的对称性:(1).性质一:若函数y=f(x)关于直线x=a轴对称,则以下三个时式子成立切等价: f(a+x)=f(a-x); f(2a-x)=f(x); f(2a+x)=f(-x);(2).性质二:若函数y=f(x)关于点(a,0)中心对称,则以下三个式子成立且等价:f(a+x)=-f(a-x); f(2a-x)=-f(x); f(2a+x)=-f(-x);易知,y=f(x)为偶(或奇)函数分别为性质一(或二)当a=0时的特例;六.周期性;1.f(x+a)=f(x)周期:|a|2.f(x+a)=-f(x)周期:2|a|3.f(x+a)=(或周期:2|a|4.f(x+a)=f(x-a)周期:2|a|5.f(x+a)=-f(x-a)周期:4|a|6.f(x+a)=(或)周期:4|a|7.f(x+2a)=f(x+a)-f(x) 周期:6|a|8.若p>0,f(px)=f(px-) 周期:七.对称性与周期性:1.若y=f(x)的图像关于直线x=a,x=b对称(a不等于b),则f(x)是周期函数,且周期T=2|a-b|;特例:若y=f(x)是偶函数且其图像关于直线x=a对称,则周期T=2|a|;2.若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期函数,且周期T=2|a-b|;3.若y=f(x)的图像关于直线x=a,对称中心(b,0)对称(a不等于b)则f(x)为周期函数,且周期T=4|a-b|;特例;若y=f(x)是奇函数且其图像关于直线x=a对称,则周期T=4|a|;综上:若函数的图像同时具备两种对称性,两条对称轴或两个对称中心,或一条对称轴一个对称中心,则函数必定为周期函数。

函数图像变换(整理)

函数图像变换(整理)

函数的图象变换函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。

由函数y = f (x)可得到如下函数的图象1. 平移:(1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。

(2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。

2. 对称:✧ 关于直线对称(Ⅰ) (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。

(2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。

(3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。

(4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。

(5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。

(6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。

(Ⅱ)(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x)右侧的图象沿y 轴翻折至左侧。

(留正去负,正左翻(关于y 轴对称));(8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x)在x 轴下侧的图象沿x 轴翻折至上侧。

(留正去负,负上翻;)一般地:函数y = f (a+mx)与y = f (b -mx)的图象关于直线m2a b x -=对称。

✧ 关于点对称(1) 函数y = - f (-x)与y = f (x)的图象关于原点对称。

(2) 函数y = 2b -f (2a -x)与y = f (x)的图象关于点(a,b)对称。

3. 伸缩(1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的m 1倍得到。

函数图像的四种变换形式

函数图像的四种变换形式

函数图像的四种变换1.平移变换左加右减,上加下减)()(axfyxfy+=−→−=沿x轴左移a个单位;)()(axfyxfy-=−→−=沿x轴右移a个单位;axfyxfy+=−→−=)()(沿y轴上移a个单位;axfyxfy-=−→−=)()(沿y轴下移a个单位。

2.对称变换同一个函数求对称轴或对称中心,则求中点或中心。

两个函数求对称轴或对称中心,则求交点。

(1)对称变换①函数)(xfy=与函数)(xfy-=的图像关于直线x=0(y轴)对称。

②函数)(xfy=与函数)(xfy-=的图像关于直线y=0(x轴)对称。

③函数)(axfy+=与)(xbfy-=的图像关于直线2ab x -=对称(2)中心对称①函数)(xfy=与函数)(xfy--=的图像关于坐标原点对称②函数)(xfy=与函数)2(2xafyb-=-的图像关于点(a,b)对称。

3伸缩变换(1))(xafy=的图像,可以将)(xfy=的图像纵坐标伸长(a>1)或缩短(a<1)到原来的a倍,横坐标不变。

(2))(axfy=(a>0)的图像,可以将)(xfy=的横坐标伸长(0<a<1)或缩短(a>1)到原来的1/a倍,纵坐标不变。

4.翻折变换(1)形如)(x f y =,将函数)(x f 的图像在x 轴下方的部分翻到x 轴上方,去掉原来x 轴下方的部分,保留原来在x 轴上方的部分。

(2)形如)(y x f =,将函数)(x f 在y 轴右边的部分沿y 轴翻到y 轴左边并替代原来y 轴左边部分,并保留)(x f y 轴左边部分,为)(y x f =的图像。

习题:①做出32y 2++=)(x 的图像 ②做出3+=x y 的图像。

函数图象的变换

函数图象的变换

函数图象的变换①平移变换:Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y =f (x )h左移→y =f (x +h);2)y =f (x ) h右移→y =f (x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y =f (x ) h上移→y =f (x )+h ;2)y =f (x ) h下移→y =f (x )-h 。

②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到;y =f (x ) 轴y →y =f (-x )Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y =f (x ) 轴x →y = -f (x )Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y =f (x ) 原点→y = -f (-x )Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。

y =f (x ) xy =→直线x =f (y )Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )ay ⨯→y =af (x )Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到。

函数图像变换公式大全(可编辑修改word版)

函数图像变换公式大全(可编辑修改word版)

蕾博士函数图像变换公式大全一、点的变换.设 P (x 0 , y 0 ) ,则它(1) 关于 x 轴对称的点为(x 0 ,- y 0 ) ;(2) 关于 y 轴对称的点为(-x 0 , y 0 ) ;(3) 关于原点对称的点为(-x 0 ,- y 0 ) ;(4) 关于直线 y = x 对称的点为( y 0 , x 0 ) ;(5) 关于直线 y = -x 对称的点为(- y 0 ,-x 0 ) ;(6) 关于直线 y = b 对称的点为(x 0 ,2b - y 0 ) ;(7) 关于直线 x = a 对称的点为(2a - x 0 , y 0 ) ;(8) 关于直线 y = x + a 对称的点为( y 0 - a , x 0 + a ) ;(9) 关于直线 y = -x + a 对称的点为(- y 0 + a , a - x 0 ) ;(10) 关于点(a , b ) 对称的点为(2a - x 0 ,2b - y 0 ) ;(11)按向量(a , b ) 平移得到的点为(x 0 + a , y 0 + b ) .二、曲线的变换.曲线 F (x , y ) = 0 按下列变换后所得的方程:(1) 按向量(a , b ) 平移,得到 F (x - a , y - b ) = 0 ;(2) 关于 x 轴对称,得到 F (x ,- y ) = 0 ;(3) 关于 y 轴对称,得到 F (-x , y ) = 0 ;(4) 关于原点对称,得到 F (-x ,- y ) = 0 ;(5) 关于直线 x = a 对称,得到 F (2a - x , y ) = 0 ;(6) 关于直线 y = b 对称,得到 F (x ,2b - y ) = 0 ;(7) 关于点(a , b ) 对称,得到 F (2a - x ,2b - y ) = 0 ;(8) 关于直线 y = x 对称,得到 F ( y , x ) = 0 ;(9) 关于直线 y = x + a 对称,得到 F ( y - a , x + a ) = 0 ;(10) 关于直线 y = -x + a 对称,得到 F (-x + a , a - y ) = 0 ; (11) 纵坐标不变横坐标变为原来的a 倍,得到方程 F ( x, y ) = 0 ;a(12) 横坐标不变纵坐标变为原来的b 倍,得到方程 F (x , y) = 0b三、两个函数的图象对称性1:左右平移: y = f (x ± a ) ( a > 0 )的图像可由 y = f (x ) 的图像向左(+)或向右(—)平移a 个单位而得到; y = f (mx ± a ) ( m > 0, a > 0 )的图像可由 y = f (mx ) 的图像向左(+)或向右(—)平移 a个单位而得到;m2. 上下平移: y = f (x ) ± b (b > 0)的图像可由 y = f (x ) 的图像向上(+)或向下(—)平移b 个单位而得到;3. y = f (-x ) 的图像与 y = f (x ) 的图像关于 y 轴对称;换句话说: y = f (x ) 与y = g (x ) 若满足 f (x ) = g (-x ) ,即它们关于 x = 0 对称。

函数图象变换

函数图象变换
∴ y = 2|x| 图象关于y轴对称.
y
y = 2|x-1|
把 y = 2|x| 图象向右平移1个单位 得到函数 y = 2|x-1| 的图象. 由图象知函数的对称轴为 x=1 ,
0
x
函数的单调增区间为 [1 ,+∞), 单调减区间为 (-∞,1].
函数图象的四大变换之
对称变换
1 例6设f(x)= (x>0),求函数y=-f(x)、y=f(-x)、y=x
∴ y = 2|x| 图象关于y轴对称.
y = 2|x|
0
x
例5.
先作出函数 y = 2|x| 的图象, 解: 2 x ••• x 0) x ( 2 •• x 0) ( | x| y 2 x 1 x 2 ( x 0) ( ) ( x 0) 2 又 y = 2|x| 是偶函数,
f(-x)的解析式及其定义域并分别作出它们的图象。
y
y=f(x) y=f(-x)
y
y=f(x)
y
y=f(x)
o
1
x
o
1
x
o
y=-f(-x)
1
x
y=-f(x)
对 称 变 换
图象关于 x轴对称
图象关于
图象关于
原点对称
y轴对称
例7.指数函数 y = 2x 的图象与函数 y = 2-x ,y=-2x ,y = -2-x 的图象的关系:
x 3
(3,4) 3 图象恒过定点 _________.
3 图象是由 y a 3
沿 x 轴向右平移 3 个单位,再
沿 y 轴向上平移 3 个单位所得 .
又 y a 图象过定点 0 , , ( 1 )

三种图象变换:平移变换、对称变换和伸缩变换

三种图象变换:平移变换、对称变换和伸缩变换

三种图象变换:平移变换、对称变换和伸缩变换①平移变换:(h>0)Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y=f(x)h 左移→y=f(x+h);2)y=f(x) h 右移→y=f(x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y=f(x) h 上移→y=f(x)+h ;2)y=f(x) h下移→y=f(x)-h 。

②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y=f(x) 轴y →y=f(-x)Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y=f(x) 轴x →y= -f(x)Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y=f(x) 原点→y= -f(-x)Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。

y=f(x) x y =→直线x=f(y)Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y=f(x) a x =→直线y=f(2a -x)。

③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y=f(x)ay ⨯→y=af(x)Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标压缩(1)a >或伸长(01a <<)为原来的1a倍得到。

函数图像变换公式大全

函数图像变换公式大全

蕾博士函数图像变换公式大全一、点的变换.设),(00y x P ;则它(1)关于x 轴对称的点为),(00y x -;(2)关于y 轴对称的点为),(00y x -;(3)关于原点对称的点为),(00y x --;(4)关于直线x y =对称的点为),(00x y ;(5)关于直线x y -=对称的点为),(00x y --;(6)关于直线b y =对称的点为)2,(00y b x -;(7)关于直线a x =对称的点为),2(00y x a -;(8)关于直线a x y +=对称的点为),(00a x a y +-;(9)关于直线a x y +-=对称的点为),(00x a a y -+-;(10)关于点),(b a 对称的点为)2,2(00y b x a --;(11)按向量),(b a 平移得到的点为),(00b y a x ++.二、曲线的变换.曲线0),(=y x F 按下列变换后所得的方程:(1)按向量),(b a 平移;得到0),(=--b y a x F ;(2)关于x 轴对称;得到0),(=-y x F ;(3)关于y 轴对称;得到0),(=-y x F ;(4)关于原点对称;得到0),(=--y x F ;(5)关于直线a x =对称;得到0),2(=-y x a F ;(6)关于直线b y =对称;得到0)2,(=-y b x F ;(7)关于点),(b a 对称;得到0)2,2(=--y b x a F ;(8)关于直线x y =对称;得到0),(=x y F ;(9)关于直线a x y +=对称;得到0),(=+-a x a y F ;(10)关于直线a x y +-=对称;得到0),(=-+-y a a x F ;(11)纵坐标不变横坐标变为原来的a 倍;得到方程0),(=y ax F ; (12)横坐标不变纵坐标变为原来的b 倍;得到方程0),(=by x F三、两个函数的图象对称性1:左右平移:)(a x f y ±=0>a 的图像可由)(x f y =的图像向左+或向右—平移a 个单位而得到;)(a mx f y ±=0,0>>a m 的图像可由)(mx f y =的图像向左+或向右—平移ma 个单位而得到; 2.上下平移:)(0)(>±=b b x f y 的图像可由)(x f y =的图像向上+或向下—平移b 个单位而得到;3. )(x f y -=的图像与)(x f y =的图像关于y 轴对称;换句话说:)(x f y =与)(x g y =若满足)()(x g x f -=;即它们关于0=x 对称..4. )(x f y -=的图像与)(x f y =的图像关于x 轴对称;换句话说:)(x f y =与)(x g y =若满足)()(x g x f -=;即它们关于0=y 对称..5. )(x f y --=的图像与)(x f y =的图像关于原点对称;6. |)(|x f y =的图像可如此得到:)(x f y =的图像在x 轴下方的部分以x 轴为对称轴翻折到x 轴的上方;其余不变;7. )||(x f y =的图像:保留)(x f y =的图像在y 轴右侧的部分;并沿y 轴翻折到y 轴左边部分代替原y 轴左边部分;8.)(a x f y +=与)(x b f y -=关于直线2a b x -=对称在函数()y f a x =+上任取一点11(,)x y ;则11()y f a x =+;点11(,)x y 关于直线2b a x -=对称点1b a x --;y 1..由于1111[()][]()f b b a x f b b a x f a x y ---=-++=+=;故点1b a x --;y 1在函数()y f b x =-上..由点11(,)x y 是函数()y f a x =+图象上任一点因此()y f a x =+与()y f b x =-关于直线2b a x -=对称..;换句话说;)(x a f y -=与)(b x f y -=关于直线2b a x +=对称; 换句话说; )(x f y -=与)(b x f y -=关于直线2b x =对称.9. )(x f y =与)(2x f a y -=关于直线a y =对称..换种说法:)(x f y =与)(x g y =若满足a x g x f 2)()(=+;即它们关于a y =对称;10. )2(2)(x a f b y x f y --==与关于点(,)a b 对称.. 换种说法:)(x f y =与)(x g y =若满足b x a g x f 2)2()(=-+;即它们关于点(,)a b 对称.. 特别提醒①函数()y f x =与函数()y f x =-的图象关于直线0x =即y 轴对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称 ③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =- ④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- ⑤函数()y f x =与()a x f a y -=-的图像关于直线x y a +=成轴对称..11.伸缩变换:)0)((>=A x Af y 的图像;可将)(x f y =的图像上每一个点的横坐标不变;纵坐标变为原来的A 倍而得到;12. )0)((>=k kx f y 的图像;可将)(x f y =的图像上每一个点的纵坐标不变;横坐标变为原来的k1倍而得到; 13.)(1x f y -=与)(x f y =关于直线x y =对称;14. )(1x f y --=-的图像与)(x f y =的图像关于直线x y -=对称;15. 函数)(mx a f y +=的图像与)(mx b f y -=的图象关于直线ma b x 2-=对称..四.单个函数的图象1. 若对任意,x )()(x b f a x f -=+;则)(x f y =的图像关于直线x =2b a +对称;反之亦然;若对任意x ;)()(xc f x f -=;则)(x f y =的图像关于直线x =2c 对称;反之亦然;若)(a x f +是偶函数;则)(x f y =关于a x =对称..在()y f x =上任取一点11(,)x y ;则11()y f x =;点11(,)x y 关于直线2a b x +=的对称点11(,)a b x y +-;当1x a b x =+-时11111()[()][()]()f a b x f a b x f b b x f x y +-=+-=--==;故点11(,)a b x y +-也在函数()y f x =图象上..由于点11(,)x y 是图象上任意一点;因此;函数的图象关于直线2a b x +=对称特别地;0==b a 时;该函数为偶函数. 2. 对任意x ;)()(x a f a x f -=+-或)2()(x a f x f --=的充分必要条件是)(x f y =的图像关于点)0,(a 对称;3. 若)(x f 有两条对称轴a x =和)(b a b x <=证明:∵()()f a x f a x +=-得()(2)f x f a x =-;()()f b x f b x +=-得()(2)f x f b x =-∴(2)(2)f a x f b x -=-; ∴()(22)f x f b a x =-+∴函数()y f x =是周期函数;且22b a -是一个周期..;或有两个对称点)0,(a 和)0,(b b a <;则)(2a b -是)(x f 的一个周期;4. 若)(x f 以a x =为对称轴;且以)0,(b 为对称中心;则)(4a b -是)(x f 的一个周期;5.)(x f y =的图像关于点),(b a 对称的充分必要条件是对任意,x b x a f x a f 2)()(=-++成立更一般地;若c x b f x a f =-++)()(;则)(x f y =的图像关于点2b a +;2c 对称在函数()y f x =上任取一点11(,)x y ;则11()y f x =;点11(,)x y 关于点2a b +;2c 的对称点1a b x +-;c -y 1;当1x a b x =+-时;1111()[()]()f a b x c f b b x c f x c y +-=---=-=-;即点1a b x +-;c -y 1在函数()y f x =的图象上..由于点11(,)x y 为函数()y f x =图象上的任意一点可知函数()y f x =的图象关于点2a b +;2c 对称..注:当a =b =c =0时;函数为奇函数.. 特别提醒:①函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ⇔=--.. ②函数()y f x =的图象关于原点对称奇函数)()(x f x f -=-⇔.. ③函数)(a x f y +=是奇函数)(x f ⇔关于点()0,a 对称..6.若)()(b x f a x f +=+;则)(x f 是周期函数;a b -是它的一个周期7. 对于非零常数A ;若函数()y f x =满足(A)()f x f x +=-;则函数()y f x =必有一个周期为2A ..8.对于非零常数A ;函数()y f x =满足1(A)()f x f x +=;则函数()y f x =的一个周期为2A ..9.对于非零常数A ;函数()y f x =满足1()()f x A f x +=-;则函数()y f x =的一个周期为2A ..10. 已知函数()x f y =对任意实数x ;都有()()b x f x a f =++;则()x f y =是以 2a 为周期的函数 11. 若函数)(x f y =对定义域中的任意x 的值;都满足 )()(mx b f mx a f -=+; 则函数)(x f y =的图象关于直线2b a x +=对称. 12. 对于非零常数A ;函数()y f x =满足1()()21()A f x f x f x ++=-或1()()21()A f x f x f x -+=+则函数()y f x =的一个周期为2A ..13.若函数()x f y =对任意实数x ;都有()()b x f x a f =++;则()x f y =是以 2a 为周期的函数()()f a x b f x +=-;(2)(())()(())()f x a f x a a b f x a b b f x f x +=++=-+=--=;或者:)()2()()()()()()(x f a x f a x f a x f b x f a x f b a x f x f =+⇒-=+⇒⎩⎨⎧=+-=++。

函数图象的四大变换

函数图象的四大变换
y y
y y
x
x
x
x
A
B
C
D
解析:由f(x)g(x)是偶函数否定A、D, 当x→±∞时,f(x)g(x) →-∞,故选C.
2、画函数图象,由图象求解析式
例2 已知函数y=f (x)是在R上以2为周期的奇函数,在区 间[0,1)上的图象如下图所示,并已知该区间上图象是 一个二次函数的图象的一部分,点(1,1)是其顶点.试作出 y=f (x)在区间[-2,2]上的图象,并求该区间上的解析式.
. .
-1
-1
-1
.
1
2
.
X
-2
. . . . .
1 -1 1 -1
2
2
X
C
D
分析:根据y=F(x)= xf `(x)的图象,得F(1)= f `(1)=0, F(-1)= - f `(- 1)=0, ∴ f `(1)= f `(- 1)=0, ∴ x=1和x= - 1是f (x)的极值点.故选C. Y 提问:本例除了从图形获取有效信息: 2 .1 f `(1)= f `(- 1)=0之外, .-2 -1. .1 还能获取什么有效信息? -1. [注:如1<x<2时,xf `(x)>0,∴ f `(x) >0,
(1)f(x-1)=(x-1)2 (2)f(x+1)=(x+1)2 (3)f(x)+1=x2+1 (4)f(x) -1=x2-1
y=f(x+1) 1 -1 O y=f(x)-1-1 1 y=f(x-1)
x
函数图象的平移变换:
左右平移 (a>0) 上下平移 (a>0)
y=f(x) y=f(x) y=f(x) y=f(x)

函数图像的变换法则

函数图像的变换法则

( 0,1 )和( 0,1 ) ( 2,0 )和( 2, 2 )
三﹑对称变换
y
(-x,y) .
(-x,-y) .
(y,x) . .(x,y)
x
.(x,-y)
函数图象对称变换的规律:
1. y f ( x) y f ( x)
关于x轴对称
2. y f ( x) y f ( x)
函数图象变换的应用:
①作图﹑② 识图﹑ ③用图
(2)方程 f(x)-a=x 的根的个数等价于 y=f(x)与 y=x-a 的交点的个数,所以可以借助图像进行分析.
规范解答 解
2 x-2 -1, x∈-∞,1]∪[3,+∞ f(x)= 2 -x-2 +1, x∈1,3
作出图像如图所示.
[2 分]
(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3]. [4 分] (2)原方程变形为 |x2-4x+3|=x+a, 于是,设 y=x+a,在同一坐标系下再作出 y=x+a 的图 像.如图. 则当直线 y=x+a 过点(1,0)时,a=-1; [6 分]
a a
1 x
a

a ax a a a
x

ax a ax
1 y 1
a a a
x

a
x
x
a a
f (1 x)
所以,函数y=f(x)的图象关于点(1/2,1/2)对称
(2)由对称性知f(1-x)+f(x)=1,所以 f(-2)+ f(-1)+ f(0)+ f(1)+ f(2)+ f(3)=3。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.

三角函数变换公式

三角函数变换公式

三角函数变换公式三角函数是初等数学中的重要概念,在许多数学和科学领域中都有广泛的应用。

在三角函数中,最常见的函数包括正弦函数、余弦函数和正切函数,它们都具有周期性和较为规律的变化。

然而,在实际应用中,有时我们需要对三角函数进行一些变换,以适应特定的需求。

这些变换包括平移、伸缩和反转等操作,可以使得函数图像更加灵活和有用。

一、平移变换平移变换是指在函数图像中将其整个图像沿横轴或纵轴方向平移一定距离。

平移变换可以改变函数图像的位置,使其整体向左或向右移动,或者向上或向下移动。

1.横向平移:设函数f(x)的图像为y=f(x),将其沿横轴方向平移h个单位,得到函数g(x)=f(x-h)。

根据平移的定义,可知g(x)的图像在x轴上的任意点P(x,y)的坐标变为P(x+h,y)。

因此,横向平移后的函数g(x)相当于在f(x)的图像上每个点向右平移h个单位。

2.纵向平移:设函数f(x)的图像为y=f(x),将其沿纵轴方向平移k个单位,得到函数g(x)=f(x)+k。

根据平移的定义,可知g(x)的图像在y轴上的任意点P(x,y)的坐标变为P(x,y+k)。

因此,纵向平移后的函数g(x)相当于在f(x)的图像上每个点向上平移k个单位。

二、伸缩变换伸缩变换是指将函数图像在横轴或纵轴方向进行拉伸或压缩。

伸缩变换可以改变函数图像的形状和走向,使其更加符合实际情况或数学要求。

1.横向伸缩:设函数f(x)的图像为y=f(x),将其沿横轴方向进行伸缩,得到函数g(x)=f(kx)。

根据伸缩的定义,可知g(x)的图像在x轴上的任意点P(x, y)的坐标变为P(x/k, y)。

因此,横向伸缩后的函数g(x)相当于在f(x)的图像上每个点的横坐标缩小k倍。

2.纵向伸缩:设函数f(x)的图像为y=f(x),将其沿纵轴方向进行伸缩,得到函数g(x)=kf(x)。

根据伸缩的定义,可知g(x)的图像在y轴上的任意点P(x, y)的坐标变为P(x, ky)。

函数图像平移公式

函数图像平移公式

函数图像平移公式设在直角坐标系xoy 中有一函数为)(x f y =则其图像平移公式有:1. 把图像向右平移(X 轴正方向)m (m>0)个单位,再向上平移(Y 轴的正方向)n (n>0)个单位后所得的图像的解析式为)(m x f n y -=-2. 把图像向右平移m (m>0)个单位,再向下平移n (n>0)个单位后所得的图像的解析式为)(m x f n y -=+3. 把图像向左平移m (m>0)个单位,再向上平移n (n>0)个单位后所得的图像的解析式为)(m x f n y +=-4. 把图像向左平移m (m>0)个单位,再向下平移n (n>0)个单位后所得的图像的解析式为)(m x f n y +=+这些规律可总结为:左右平移“X 左加右减”上下平移“下加上减”说明:利用这个规律写平移后函数图像的解析式只需要考查是用m x +还是用m x -替换)(x f y =中的x,是用n y +还是用n y -来替换)(x f y =中的y,使用起来很方便。

例一、 抛物线3422---=x x y 向左平移3个单位,再向下平移4个单位,求所得抛物线的解析式。

解:根据左右平移“X 左加右减”上下平移“下加上减”的规律分别用3+x 、4+y 去替换抛物线3422---=x x y 中的x 、y 就可以得到平移后的抛物线的解析式,所以平移后的抛物线的解析式为3)3(4)3(242-+-+-=+x x y即371622---=x x y例二、 将一抛物线向左平移2个单位,再向上平移3个单位所得到抛物线的解析式为322+-=x x y 求此抛物线的解析式。

解:所求抛物线可以看成是将抛物线322+-=x x y 向右平移2个单位,再向下平移3个单位所得。

所以所求抛物线的解析式为3)2(2)2(32+---=+x x y即862+-=x x y例三、 求将直线15-=x y 向左平移3个单位,再向上平移5个单位所得到直线的解析式解:所求直线的解析为1)3(55-+=-x y 即145+=x y例四、 已知两条抛物线C 1 :522+-=x x y ,C 2:742+-=x x y 问抛物线C 1经过怎样的平移后与C2:抛物线重合。

56. 函数的图像变换有哪些?

56. 函数的图像变换有哪些?

56. 函数的图像变换有哪些?56、函数的图像变换有哪些?在数学的世界里,函数的图像变换是一个非常重要的概念。

它不仅能够帮助我们更深入地理解函数的性质,还能在解决各种数学问题时提供有力的工具。

首先,咱们来说说平移变换。

平移变换包括水平平移和垂直平移。

水平平移,比如说函数 y = f(x) 向左平移 h 个单位,就变成了 y =f(x + h);要是向右平移 h 个单位呢,那就变成了 y = f(x h)。

这就好比是把函数图像在水平方向上“推”了一段距离。

打个比方,y = x²这个函数,如果向左平移 2 个单位,就变成了 y =(x + 2)²,原本顶点在(0, 0) ,现在顶点就到了(-2, 0) 。

垂直平移相对来说更容易理解。

函数 y = f(x) 向上平移 k 个单位,就得到了 y = f(x) + k ;向下平移 k 个单位,就变成了 y = f(x) k 。

比如说 y = x²向上平移 3 个单位,就成了 y = x²+ 3 ,图像整体往上“抬”了 3 个单位。

接下来是伸缩变换。

水平伸缩,对于函数 y = f(x) ,如果把它的横坐标变为原来的 1/a倍(a > 0),就得到了 y = f(ax) 。

比如说 y = sin x ,当 a = 2 时,y = sin 2x ,它的周期就从2π 变成了π ,图像在水平方向上被“压缩”了。

垂直伸缩呢,函数 y = f(x) ,纵坐标变为原来的 A 倍(A > 0),就变成了 y = Af(x) 。

比如 y = x ,当 A = 2 时,y = 2x ,图像在垂直方向上被拉长了。

然后是对称变换。

关于 x 轴对称,函数 y = f(x) 关于 x 轴对称的图像对应的函数是 y = f(x) 。

比如说 y = x²关于 x 轴对称的函数就是 y = x²。

关于 y 轴对称,函数 y = f(x) 关于 y 轴对称的图像对应的函数是 y = f(x) 。

函数图像的变换

函数图像的变换

函数图像的变换1、平移变换函数y = f(x)的图像向右平移a个单位失掉函数y = f(x - a)的图像;向上平移b个单位失掉函数y =f(x)+ b 的图像 ;左平移a个单位失掉函数y = f(x + a)的图像;向下平移b个单位失掉函数y =f(x)- b 的图像(a ,b&gt;0)。

2、伸缩变换函数 y = f(x)的图像上的点坚持横坐标不变纵坐标变为原来的k倍(01时,伸)失掉函数 y = k f(x)的图像;函数 y = f(x)的图像上的点坚持纵坐标不变横坐标变为原来的1/k倍(01时,缩)失掉函数y = f(k x)的图像(k&gt;0,且 k &ne;1)。

3、对称变换(1)函数y = f(x)的图象关于y轴对称的图像为 y =f(-x);关于x轴对称的图像为y =-f(x);关于原点对称的图像为y =-f(-x)。

(2)函数y = f(x)的图象关于x=a对称的图像为y=f(2a-x);关于y=b对称的图像为y =2b-f(x);关于点(a,b)中心对称的图像为y =2b-f(2a-x)。

(3)相对值效果①函数 y =f(x)x轴及其上方的图像坚持不变,把下方图像关于x轴对称的翻折到上方,再把下方的图像去掉失掉函数 y =| f(x)|的图像;②函数 y =f(x)y轴及其右侧的图像坚持不变,把左侧图像去掉,再把右侧图像关于y轴对称的翻折到左侧失掉函数 y =f(| x|)的图像;③函数y = f(x)先用第②步的方法失掉函数y =f(| x|)的图像,再平移a个单位失掉函数y =f(|x-a|)图象。

我们还可以失掉下面的结论:(1)函数y = f(x)与y =f(2a-x)图象关于直线x = a 对称;(2)函数y = f(x)与y =2b-f(x)图象关于直线y = b 对称;(3)函数y = f(x)与y =2b-f(2a-x)图象关于点(a,b)对称;附注:下面是有关函数图象自身的对称性的一些结论,我们把它放在这里来对比一下:(1)假定函数 f(x)满足:对恣意的实数x,都有f(a + x)=f(a -x)成立,那么函数 f(x)的图像关于x=a对称;(2)假定函数 f(x)满足:对恣意的实数x,都有f(bx)=f(2a -bx)成立,那么函数 f(x)的图像关于x=a对称;(b&ne;0)(3)假定函数 f(x)满足:对恣意的实数x,都有f(a + x)=-f(a -x)成立,那么函数 f(x)的图像关于点(a,0)对称;(4)假定函数 f(x)满足:对恣意的实数x,都有f(bx)=-f(2a -bx)成立,那么函数 f(x)的图像关于(a,0)对称;(b&ne;0)(5)假定函数 f(x)满足:对恣意的实数x,都有f(a + x)=2b -f(a -x)成立,那么函数 f(x)的图像关于点(a,b)对称;(6)假定函数 f(x)满足:对恣意的实数x,都有f(x)=2b -f(2a -x)成立,那么函数 f(x)的图像关于(a,b)对称。

函数转换公式范文

函数转换公式范文

函数转换公式范文一、函数的平移:1.左右平移:y=f(x±a)表示将原函数图像沿x轴左右平移a个单位。

2.上下平移:y=f(x)±a表示将原函数图像沿y轴上下平移a个单位。

二、函数的伸缩:1. 横向伸缩:y = f(bx) 表示将原函数图像沿y轴压缩为原来的1/b倍,b为正数,b>1时为压缩,b<1时为拉伸。

2. 纵向伸缩:y = af(x) 表示将原函数图像沿x轴压缩为原来的1/a倍,a为正数,a>1时为压缩,a<1时为拉伸。

三、函数的翻转:1.关于x轴翻转:y=-f(x)表示将原函数图像相对于x轴翻转,即纵坐标取相反数。

2.关于y轴翻转:y=f(-x)表示将原函数图像相对于y轴翻转,即横坐标取相反数。

四、函数的复合:1.f(g(x))表示将函数g(x)的输出作为函数f(x)的输入,得到f(g(x))函数。

2.g(f(x))表示将函数f(x)的输出作为函数g(x)的输入,得到g(f(x))函数。

五、函数的反函数:1. y = f(x) 的反函数记为 y = f^(-1)(x) (读作f inverse of x),表示由y = f(x)确定的输出反过来确定x。

六、函数的换元:1.变量替换:通过将函数中的变量替换为其他变量,得到新的函数。

2.坐标变换:通过对坐标轴进行线性变换来转换函数,如以点A(a,b)为中心旋转角度θ后的新坐标。

这些函数转换公式可以在解决数学问题中起到重要的作用。

例如,通过平移可以改变函数图像的位置,通过伸缩可以调整函数图像的大小,通过翻转可以倒置函数图像,通过复合可以得到多个函数的运算结果等。

函数的反函数和换元在求解方程和积分等数学问题中也有广泛的应用。

需要注意的是,在进行函数转换时,应该先对函数进行相应的变换,再进行替换等操作,以保证得到正确的结果。

此外,还需要注意函数转换后的定义域、值域等性质的变化,以便在应用中正确地使用转换后的函数。

函数图象变换的四种方式

函数图象变换的四种方式

函数图象变换的四种方式一,平移变换。

(1)水平平移:要由函数y=f(x)的图象得到函数y=f(x+a)的图象,只要将f(x)的图象向左平移a个单位。

要由函数y=f(x)的图象得到函数y=f(x-a)的图象,只要将f(x)的图象向右平移a个单位。

(简记:左加右减,这里的a>0。

)(2)上下平移:要由函数y=f(x)的图象得到函数y=f(x)+a的图象,只要将f(x)的图象向上平移a个单位。

要由函数y=f(x)的图象得到函数y=f(x)-a的图象,只要将f(x)的图象向下平移a个单位。

(简记:上加下减,这里的a>0)二,对称变换。

(1)y=f(x)与y=f(-x)的图象关于y轴对称。

所以由f(x)的图象得到f(-x)的图象,只需将f(x)的图象以y轴为对称轴左右翻折就可得到f(-x)的图象。

(简记:左右翻折)(2)y=f(x)与y=-f(x)的图象关于x轴对称。

所以由f(x)的图象得到-f(x)的图象,只需将f(x)的图象以x轴为对称轴上下翻折就可得到-f(x)的图象。

(简记:上下翻折)(3)y=f(x)与y=-f(-x)的图象关于原点对称。

所以由f(x)的图象得到-f-(x)的图象,只需将f(x)的图象以原点为对称中心旋转180度就可得到-f(-x)的图象。

(简记:旋转180度)三,翻折变换。

(1)如何由y=f(x)的图象得到y=f(|x|)的图象先画出函数y=f(x) y轴右侧的图象,再作出关于y轴对称的图形(简记:右不动,左对称)(2)如何由y=f(x)的图象得到y=|f(x)|的图象先画出函数y=f(x)的图象,再将x轴下方的图象以x轴为对称轴翻折到x轴上方去。

(简记:上不动,下上翻)四,伸缩变换。

(1)如何由函数y=f(x)的图象得到函数y=af(x)的图象(a>0)可将函数f(x)的图象上每个点的纵坐标变为原来的a倍,横坐标不改变,就可得到函数af(x)的图象。

(2)如何由函数y=f(x)的图象得到函数y=f(ax)的图象(a>0)可将函数f(x)的图象上每个点的横坐标变为原来的1/a倍,纵坐标不改变,就可得到函数f(ax)的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蕾博士函数图像变换公式大全一、点的变换.设),(00y x P ,则它(1)关于x 轴对称的点为),(00y x -;(2)关于y 轴对称的点为),(00y x -;(3)关于原点对称的点为),(00y x --;(4)关于直线x y =对称的点为),(00x y ;(5)关于直线x y -=对称的点为),(00x y --;(6)关于直线b y =对称的点为)2,(00y b x -;(7)关于直线a x =对称的点为),2(00y x a -;(8)关于直线a x y +=对称的点为),(00a x a y +-;(9)关于直线a x y +-=对称的点为),(00x a a y -+-;(10)关于点),(b a 对称的点为)2,2(00y b x a --;(11)按向量),(b a 平移得到的点为),(00b y a x ++.二、曲线的变换.曲线0),(=y x F 按下列变换后所得的方程:(1)按向量),(b a 平移,得到0),(=--b y a x F ;(2)关于x 轴对称,得到0),(=-y x F ;(3)关于y 轴对称,得到0),(=-y x F ;(4)关于原点对称,得到0),(=--y x F ;(5)关于直线a x =对称,得到0),2(=-y x a F ;(6)关于直线b y =对称,得到0)2,(=-y b x F ;(7)关于点),(b a 对称,得到0)2,2(=--y b x a F ;(8)关于直线x y =对称,得到0),(=x y F ;(9)关于直线a x y +=对称,得到0),(=+-a x a y F ;(10)关于直线a x y +-=对称,得到0),(=-+-y a a x F ;(11)纵坐标不变横坐标变为原来的a 倍,得到方程0),(=y ax F ; (12)横坐标不变纵坐标变为原来的b 倍,得到方程0),(=by x F 三、两个函数的图象对称性1:左右平移:)(a x f y ±=(0>a )的图像可由)(x f y =的图像向左(+)或向右(—)平移a 个单位而得到;)(a mx f y ±=(0,0>>a m )的图像可由)(mx f y =的图像向左(+)或向右(—)平移ma 个单位而得到; 2.上下平移:)(0)(>±=b b x f y 的图像可由)(x f y =的图像向上(+)或向下(—)平移b 个单位而得到;3.)(x f y -=的图像与)(x f y =的图像关于y 轴对称;换句话说:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=x 对称。

4.)(x f y -=的图像与)(x f y =的图像关于x 轴对称;换句话说:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=y 对称。

5.)(x f y --=的图像与)(x f y =的图像关于原点对称;6.|)(|x f y =的图像可如此得到:)(x f y =的图像在x 轴下方的部分以x 轴为对称轴翻折到x 轴的上方,其余不变;7.)||(x f y =的图像:保留)(x f y =的图像在y 轴右侧的部分,并沿y 轴翻折到y 轴左边部分代替原y 轴左边部分;8.)(a x f y +=与)(x b f y -=关于直线2a b x -=对称(在函数()y f a x =+上任取一点11(,)x y ,则11()y f a x =+,点11(,)x y 关于直线2b a x -=对称点(1b a x --,y 1)。

由于1111[()][]()f b b a x f b b a x f a x y ---=-++=+=,故点(1b a x --,y 1)在函数()y f b x =-上。

由点11(,)x y 是函数()y f a x =+图象上任一点因此()y f a x =+与()y f b x =-关于直线2b a x -=对称。

);换句话说,)(x a f y -=与)(b x f y -=关于直线2b a x +=对称;换句话说,)(x f y -=与)(b x f y -=关于直线2b x =对称.9.)(x f y =与)(2x f a y -=关于直线a y =对称。

换种说法:)(x f y =与)(x g y =若满足a x g x f 2)()(=+,即它们关于a y =对称;10.)2(2)(x a f b y x f y --==与关于点(,)a b 对称。

换种说法:)(x f y =与)(x g y =若满足b x a g x f 2)2()(=-+,即它们关于点(,)a b 对称。

特别提醒①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称. 特殊地:()y f x a =-与函数()y f a x =-的图象关于直线x a =对称 ③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =- ④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- ⑤函数()y f x =与()a x f a y -=-的图像关于直线x y a +=成轴对称。

11.伸缩变换:)0)((>=A x Af y 的图像,可将)(x f y =的图像上每一个点的横坐标不变,纵坐标变为原来的A 倍而得到;12.)0)((>=k kx f y 的图像,可将)(x f y =的图像上每一个点的纵坐标不变,横坐标变为原来的k1倍而得到; 13.)(1x f y -=与)(x f y =关于直线x y =对称;14.)(1x f y --=-的图像与)(x f y =的图像关于直线x y -=对称;15.函数)(mx a f y +=的图像与)(mx b f y -=的图象关于直线m a b x 2-=对称。

四.单个函数的图象1. 若对任意,x )()(x b f a x f -=+,则)(x f y =的图像关于直线x =2b a +对称;反之亦然;若对任意x ,)()(x c f x f -=,则)(x f y =的图像关于直线x =2c 对称,反之亦然;若)(a x f +是偶函数,则)(x f y =关于a x =对称。

(在()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于直线2a b x +=的对称点11(,)a b x y +-,当1x a b x =+-时11111()[()][()]()f a b x f a b x f b b x f x y +-=+-=--==,故点11(,)a b x y +-也在函数()y f x =图象上。

由于点11(,)x y 是图象上任意一点,因此,函数的图象关于直线2a b x +=对称(特别地,0==b a 时,该函数为偶函数)). 2. 对任意x ,)()(x a f a x f -=+-(或)2()(x a f x f --=的充分必要条件是)(x f y =的图像关于点)0,(a 对称;3. 若)(x f 有两条对称轴a x =和)(b a b x <=(证明:∵()()f a x f a x +=-得()(2)f x f a x =-,()()f b x f b x +=-得()(2)f x f b x =-∴(2)(2)f a x f b x -=-,∴()(22)f x f b a x =-+∴函数()y f x =是周期函数,且22b a -是一个周期。

),或有两个对称点)0,(a 和)0,(b (b a <),则)(2a b -是)(x f 的一个周期;4. 若)(x f 以a x =为对称轴,且以)0,(b 为对称中心,则)(4a b -是)(x f 的一个周期;5.)(x f y =的图像关于点),(b a 对称的充分必要条件是对任意,x b x a f x a f 2)()(=-++成立(更一般地,若c x b f x a f =-++)()(,则)(x f y =的图像关于点(2b a +,2c )对称(在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于点(2a b +,2c )的对称点(1a b x +-,c -y 1),当1x a b x =+-时,1111()[()]()f a b x c f b b x c f x c y +-=---=-=-,即点(1a b x +-,c -y 1)在函数()y f x =的图象上。

由于点11(,)x y 为函数()y f x =图象上的任意一点可知函数()y f x =的图象关于点(2a b +,2c )对称。

(注:当a =b =c =0时,函数为奇函数。

) 特别提醒:①函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ⇔=--。

②函数()y f x =的图象关于原点对称(奇函数))()(x f x f -=-⇔。

③函数)(a x f y +=是奇函数)(x f ⇔关于点()0,a 对称。

6.若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期7.对于非零常数A ,若函数()y f x =满足(A)()f x f x +=-,则函数()y f x =必有一个周期为2A 。

8.对于非零常数A ,函数()y f x =满足1(A)()f x f x +=,则函数()y f x =的一个周期为2A 。

9.对于非零常数A ,函数()y f x =满足1()()f x A f x +=-,则函数()y f x =的一个周期为2A 。

10.已知函数()x f y =对任意实数x ,都有()()b x f x a f =++,则()x f y =是以2a 为周期的函数11.若函数)(x f y =对定义域中的任意x 的值,都满足)()(mx b f mx a f -=+,则函数)(x f y =的图象关于直线2b a x +=对称. 12.对于非零常数A ,函数()y f x =满足1()()21()A f x f x f x ++=-或1()()21()A f x f x f x -+=+则函数()y f x =的一个周期为2A 。

13.若函数()x f y =对任意实数x ,都有()()b x f x a f =++,则()x f y =是以2a 为周期的函数(()()f a x b f x +=-,(2)(())()(())()f x a f x a a b f x a b b f x f x +=++=-+=--=;或者:)()2()()()()()()(x f a x f a x f a x f b x f a x f b a x f x f =+⇒-=+⇒⎩⎨⎧=+-=++)。

相关文档
最新文档