列车运行图MATLAB程序讲课教案
《计算机编制列车运行图》课程教学大纲
《计算机编制列车运行图》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:列车运行图是轨道交通组织运输生产的基础,其编制周期的长短、编制质量的优劣,直接影响轨道交通企业的经济效益和社会效益。
采用计算机编制列车运行图是适应市场需要的重要技术举措,本课程使学生了解计算机编制列车运行图的相关原理与方法,培养学生的实践动手能力。
课程主要涉及列车运行图编制的相关要素、步骤、方法,重点介绍计算机编图的相关背景、原理和方法,主要内容是通过上机操作熟悉、掌握计算机编图的使用方法及相关技术。
(二)课程目标:课程目标1:掌握计算机编制列车运行图的背景和基本原理,能通过上机操作,熟悉和掌握计算机编图系统的使用方法及相关技术。
课程目标2:能够用计算机编图系统在规定时间内编制出一套符合实际需要且可用的列车运行计划图。
(三)课程目标与毕业要求、课程内容的对应关系本课程支撑专业培养计划中毕业要求3和毕业要求5:毕业要求观测点3-2. 能够针对交通运输特定需求,完成交通运输各子系统的方案设计。
毕业要求观测点5-2. 能够选择与使用恰当的设备设施、信息资源、工程工具和专业模拟软件,对交通运输复杂工程问题进行分析、计算与设计。
表2:课程目标与毕业要求的对应关系表表3:课程目标与课程内容的对应关系表三、教学内容实践一、基础数据管理1、实践目的(1)了解基础数据在编图系统中的作用和地位。
(2)熟悉编图系统中基础数据的详细构成。
(3)掌握线路基础数据、车站基础数据、区间基础数据的添加、删除、修改等编辑功能的详细操作方法。
2、主要实践内容(1)线路基础数据管理:包括新建线路、插入线路、删除线路和修改线路名称等操作。
(2)车站基础数据管理:包括新建车站、插入车站、删除车站、修改车站、移动车站和到发线使用设置等操作。
(3)区间基础数据管理:包括新建区间、插入区间、删除区间、修改区间、移动区间和自动产生区间等操作。
3、重难点掌握线路基础数据、车站基础数据、区间基础数据的添加、删除、修改等编辑功能的详细操作方法。
matlab的教学课程设计
matlab 的教学课程设计一、教学目标本课程的教学目标是使学生掌握 MATLAB 的基本功能和操作,能够运用MATLAB 进行简单的数学计算、数据分析、图形绘制等。
具体目标如下:1.理解 MATLAB 的基本概念,如矩阵、数组、变量等。
2.掌握 MATLAB 的基本运算,如加减乘除、指数对数、三角函数等。
3.熟悉 MATLAB 的数据类型和数据结构。
4.了解 MATLAB 的编程语法和控制结构。
5.能够使用 MATLAB 进行基本的数学计算和数据分析。
6.能够使用 MATLAB 绘制二维和三维图形。
7.能够编写简单的 MATLAB 脚本程序,实现数学模型的求解和优化。
8.能够使用 MATLAB 与其他软件进行数据交换和协同工作。
情感态度价值观目标:1.培养学生的计算思维和问题解决能力。
2.培养学生对科学计算和数据分析的兴趣和热情。
3.培养学生的团队合作意识和交流沟通能力。
二、教学内容本课程的教学内容主要包括 MATLAB 的基本概念、基本运算、数据类型和数据结构、编程语法和控制结构等。
具体安排如下:第 1 课时:MATLAB 简介和基本概念1.MATLAB 的历史和发展2.MATLAB 的界面和基本操作3.MATLAB 的数据类型和数据结构第 2 课时:MATLAB 的基本运算1.矩阵运算2.数组运算3.数学函数运算第 3 课时:MATLAB 的数据类型和数据结构1.数值类型2.字符串类型3.结构体类型第 4 课时:MATLAB 的编程语法和控制结构1.变量和赋值2.循环结构3.条件结构第 5 课时:MATLAB 二维和三维图形绘制1.二维图形绘制2.三维图形绘制第 6 课时:MATLAB 脚本程序设计1.脚本程序的基本结构2.脚本程序的调试和优化三、教学方法本课程的教学方法包括讲授法、案例分析法、实验法等。
具体方法如下:1.讲授法:通过教师的讲解和演示,让学生掌握 MATLAB 的基本概念和操作。
(完整版)matlab第六讲教案
西南科技大学本科生课程备课教案计算机技术在安全工程中的应用——Matlab入门及应用授课教师:徐中慧班级:专业:安全技术及工程第六章 逻辑函数与控制结构课型:新授课教具:多媒体教学设备,matlab 教学软件一、目标与要求能够正确使用函数find ,正解和正确使用if/else 系列命令,理解switch/case 结构,正确使用for 循环和while 循环。
二、教学重点与难点本堂课教学的重点在于引导学生在编写matlab 程序时能够熟练运用控制结构的相关函数实现相应的功能。
三、教学方法本课程主要通过讲授法、演示法、练习法等相结合的方法来引导学生掌控本堂课的学习内容。
四、教学内容上机内容回顾(1)创建温度换算表。
下列等式描述了华氏温度(T F )、摄氏温度(T C )、开氏温度(T K )和兰金温度(T R )之间的换算关系:009595459.6732F R F C R KT T RT T F T T =-=+=根据表达式解答以下问题:(a )创建数据表,把00F 到2000F 的华氏温度换算成开氏温度。
由用户输入华氏温度的步长,用disp 和fprintf 给表格添加标题和表头并输出格式化数据。
x=input('请输入步长');tf=0:x:200;tk=5/9*(tf+459.67);disp(' 温度换算表');disp('华氏 开氏');fprintf('%3.0f %6.2f\n',[tf;tk])请输入步长20温度换算表华氏 开氏0 255.3720 266.4840 277.5960 288.7180 299.82120 322.04140 333.15160 344.26180 355.37200 366.48>>(b)创建一个有25行数据的表,把摄氏温度换算成兰金温度。
由用户输入起始温度和合适的步长,用disp和fprintf给表格添加标题和表头并输出格式化数据。
matlab课程设计完整版
matlab课程设计完整版一、教学目标本节课的教学目标是让学生掌握MATLAB的基本语法和操作,能够利用MATLAB进行简单的数学计算和数据分析。
具体来说,知识目标包括:了解MATLAB的历史和发展,掌握MATLAB的基本语法和数据类型,熟悉MATLAB的工作环境。
技能目标包括:能够使用MATLAB进行矩阵运算,编写简单的MATLAB脚本程序,进行数学计算和数据分析。
情感态度价值观目标包括:培养学生对科学计算软件的兴趣,增强学生的动手能力和团队协作能力。
二、教学内容本节课的教学内容主要包括MATLAB的基本语法和操作。
首先,介绍MATLAB的历史和发展,使学生对MATLAB有一个整体的认识。
然后,讲解MATLAB的基本语法和数据类型,如矩阵的创建和操作,数据的输入和输出等。
接着,介绍MATLAB的工作环境,包括命令窗口、变量浏览器和脚本文件等。
最后,通过实例演示和练习,使学生能够熟练使用MATLAB进行简单的数学计算和数据分析。
三、教学方法为了达到本节课的教学目标,将采用讲授法、实践法和讨论法等多种教学方法。
首先,通过讲授法向学生介绍MATLAB的基本概念和语法。
然后,通过实践法,让学生动手操作MATLAB软件,进行实际的数学计算和数据分析。
在实践过程中,引导学生进行讨论,分享自己的心得和经验,互相学习和进步。
最后,通过讨论法,对学生的学习情况进行总结和评价,及时调整教学策略。
四、教学资源为了保证本节课的教学质量,将准备教材、多媒体资料和实验设备等多种教学资源。
教材是学生学习的基础,多媒体资料可以丰富教学手段,实验设备则是学生进行实践操作的重要工具。
此外,还将利用网络资源,如在线教程和讨论区,为学生提供更多的学习资料和实践机会。
五、教学评估本节课的教学评估将采用多元化的评价方式,以全面、客观、公正地评估学生的学习成果。
评估方式包括平时表现、作业和考试等。
平时表现主要考察学生的课堂参与度和团队合作能力,通过观察和记录学生在课堂上的表现来进行评估。
matlab的教学课程设计
matlab 的教学课程设计一、课程目标知识目标:1. 掌握MATLAB的基础知识,包括数据类型、矩阵运算、程序流程控制等;2. 学会使用MATLAB进行数据可视化、图像处理、数值计算等操作;3. 了解MATLAB在工程领域的应用,并能结合所学专业进行简单的数据分析。
技能目标:1. 能够熟练运用MATLAB编写程序,解决实际问题;2. 学会使用MATLAB进行数据导入、导出,以及与Excel、Word等软件的数据交互;3. 培养学生运用MATLAB进行科学计算和工程问题求解的能力。
情感态度价值观目标:1. 培养学生对MATLAB编程的兴趣和热情,激发学生主动探索精神;2. 培养学生严谨的科学态度,提高学生的团队协作能力;3. 引导学生认识到MATLAB在现代工程技术中的重要性,树立正确的价值观。
课程性质:本课程为实践性较强的课程,旨在培养学生的编程能力和实际应用能力。
学生特点:学生具备一定的数学基础和编程兴趣,但对MATLAB编程可能较为陌生。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,以案例教学为主,培养学生的实际操作能力。
在教学过程中,关注学生的个体差异,鼓励学生提问、讨论,提高学生的参与度和积极性。
通过课程学习,使学生能够独立完成MATLAB程序编写,解决实际问题。
二、教学内容1. MATLAB基础知识:数据类型、矩阵运算、程序流程控制等;教材章节:第一章 MATLAB概述,第二章 MATLAB基础知识。
2. 数据可视化与图像处理:绘图函数、图像处理基本操作等;教材章节:第三章 数据可视化,第四章 图像处理。
3. 数值计算:线性方程组求解、数值积分、插值等;教材章节:第五章 数值计算。
4. MATLAB在实际工程中的应用:结合所学专业,进行数据分析与处理;教材章节:第六章 MATLAB在工程中的应用。
5. MATLAB与其他软件的数据交互:数据导入、导出,与Excel、Word等软件的数据交互;教材章节:第七章 MATLAB与其他软件的数据交互。
列车运行图课程设计
列车运行图课程设计一、教学目标本课程旨在让学生掌握列车运行图的基本概念、绘制方法和运用技巧。
知识目标方面,学生应了解列车运行图的组成部分、编制原则和运行规律;技能目标方面,学生应能够熟练运用绘图工具,绘制出标准的列车运行图;情感态度价值观目标方面,学生应通过学习列车运行图,培养对交通运输行业的兴趣和责任感。
二、教学内容本课程的教学内容主要包括以下几个部分:第一部分,列车运行图的基本概念,包括列车运行图的定义、作用和类型;第二部分,列车运行图的编制方法,包括运行图的编制原则、步骤和技巧;第三部分,列车运行图的运用,包括运行图的分析、优化和调整。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式。
首先,运用讲授法,向学生系统地传授列车运行图的基本知识和编制方法;其次,采用案例分析法,让学生通过分析实际案例,掌握运行图的运用技巧;最后,利用实验法,让学生动手实践,提高绘制和分析列车运行图的能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:教材《列车运行图原理与应用》,为学生提供理论知识的学习;参考书《交通运输规划与管理》,为学生提供更深入的行业发展知识;多媒体资料,包括视频、图片等,为学生提供直观的学习材料;实验设备,如绘图板、软件等,为学生提供实践操作的机会。
五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分。
平时表现主要评估学生的课堂参与度和提问回答情况,占总评的20%;作业包括绘制和分析列车运行图等实践性任务,占总评的30%;考试为书面考试,涵盖理论知识和应用能力,占总评的50%。
评估方式旨在全面客观地反映学生的学习成果。
六、教学安排本课程的教学安排共分为12课时,每课时45分钟。
教学时间安排在每周三下午2:00-4:30,地点为教室302。
教学进度安排合理紧凑,确保在有限的时间内完成教学任务,同时考虑学生的实际情况和需要。
七、差异化教学针对学生的不同学习风格、兴趣和能力水平,我们将设计差异化的教学活动和评估方式。
《列车图运行图》课件
功能特点
了解列车图的运用场景, 以及信息在列车图中的 表示方式基本概念
列车图是一种用于展示列车运行时刻和线路的图表,它通过线路图、车站时刻表、运行图等要素, 为旅客提供清晰易懂的信息。
列车线路调研
在制作列车图之前,需要进 行详细的线路调研,了解线 路布局和站点情况,为后续 制作提供准确的数据。
列车图制作软件介绍
介绍专门用于制作列车图的 软件工具,包括功能和操作 界面,帮助学习者选择适合 的工具进行制作。
制作步骤及注意事项
提供一套完整的列车图制作 步骤,以及在制作过程中需 要注意的要点,帮助学习者 顺利完成列车图的制作。
1
定义及作用
介绍列车图的定义和作用,它是列车运行信息的可视化展示,有助于旅客了解列 车服务和出行计划。
2
要素
讲解列车图的基本要素,包括线路图、车站时刻表、运行图等,它们共同构成了 完整的列车图信息。
制作流程
制作列车图需要进行详细的线路调研,使用专门的列车图制作软件,并严格按照制作步骤和注意 事项进行操作。
3 更新和修改方法
介绍修改列车图的方法,包括添加新班次、路线调整和时刻表变更等,为铁路事业的发 展提供灵活性。
结束语
总结列车图运行图在铁路事业中的重要性和应用价值,鼓励学习者参与制作 和使用列车图,推动铁路事业的发展和提升服务质量。
功能特点
列车图具有多种运用场景,同时采用不同的信息表示方式,方便更新和修改列车图以适应实际运 行需求。
1 运用场景
介绍列车图在铁路事业中的应用场景,包括旅客查询、列车调度和站务管理等方面。
2 信息表示方式
探讨列车图中信息的具体表示方式,如时间线、车次图标、服务等级标识等,确保信息 传达的准确和易懂。
数学建模MATLAB教案
数学建模MATLAB教案第一章:MATLAB简介1.1 课程目标了解MATLAB的发展历程和应用领域熟悉MATLAB的工作环境掌握MATLAB的基本命令和操作1.2 教学内容MATLAB的历史和发展MATLAB的应用领域MATLAB的工作环境MATLAB的基本命令和操作1.3 教学方法讲解和示范相结合学生上机实践1.4 教学资源MATLAB软件PPT课件1.5 教学评估课后作业上机实践第二章:MATLAB基本操作2.1 课程目标掌握MATLAB的变量和数据类型熟悉MATLAB的运算符和表达式学会在MATLAB中进行矩阵操作2.2 教学内容MATLAB的变量和数据类型MATLAB的运算符和表达式矩阵的创建和操作矩阵的运算2.3 教学方法讲解和示范相结合学生上机实践2.4 教学资源MATLAB软件PPT课件2.5 教学评估课后作业上机实践第三章:MATLAB函数3.1 课程目标了解MATLAB内置函数的分类和用法学会自定义函数掌握MATLAB脚本文件的编写和运行MATLAB内置函数的分类和用法自定义函数的创建和调用MATLAB脚本文件的编写和运行3.3 教学方法讲解和示范相结合学生上机实践3.4 教学资源MATLAB软件PPT课件3.5 教学评估课后作业上机实践第四章:MATLAB绘图4.1 课程目标熟悉MATLAB绘图的基本命令掌握MATLAB绘图的格式和技巧学会使用MATLAB绘制各种图形4.2 教学内容MATLAB绘图的基本命令MATLAB绘图的格式和技巧绘制各种图形的函数和方法讲解和示范相结合学生上机实践4.4 教学资源MATLAB软件PPT课件4.5 教学评估课后作业上机实践第五章:数学建模基本方法5.1 课程目标了解数学建模的基本概念和方法学会使用MATLAB进行数学建模掌握数学建模的常用算法和技巧5.2 教学内容数学建模的基本概念和方法使用MATLAB进行数学建模的步骤和技巧数学建模的常用算法和实例5.3 教学方法讲解和示范相结合学生上机实践5.4 教学资源MATLAB软件PPT课件5.5 教学评估课后作业上机实践第六章:线性方程组求解6.1 课程目标理解线性方程组的数学理论学会使用MATLAB解线性方程组掌握MATLAB中求解线性方程组的多种方法6.2 教学内容线性方程组的数学描述MATLAB中的线性方程组求解函数(如`解方程组`函数)稀疏矩阵在线性方程组求解中的应用使用`linsolve`函数求解线性方程组使用`guess`函数进行参数估计6.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习6.4 教学资源MATLAB软件线性方程组求解实例6.5 教学评估课后练习题上机练习第七章:最优化问题求解7.1 课程目标理解最优化问题的数学模型学会使用MATLAB解决最优化问题掌握最优化问题的常见求解算法7.2 教学内容最优化问题的数学基础MATLAB中的最优化工具箱概述使用`fmincon`函数求解约束最优化问题使用`fminunc`函数求解无约束最优化问题了解其他最优化函数和算法7.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习7.4 教学资源MATLAB软件最优化问题求解实例7.5 教学评估课后练习题上机练习第八章:微分方程求解8.1 课程目标理解微分方程的基本概念学会使用MATLAB求解微分方程掌握MATLAB中微分方程求解工具的使用8.2 教学内容微分方程的分类和基本概念MATLAB中的微分方程求解函数(如`ode45`)边界值问题的求解(如`bvp4c`)参数估计和敏感性分析8.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习8.4 教学资源MATLAB软件PPT课件微分方程求解实例8.5 教学评估课后练习题上机练习第九章:概率论与数理统计9.1 课程目标掌握概率论和数理统计的基本概念学会使用MATLAB进行概率论和数理统计分析能够运用概率论和数理统计方法解决实际问题9.2 教学内容概率论基本概念和公式数理统计基本方法MATLAB中的概率论和数理统计函数随机数和概率分布函数的绘制假设检验和置信区间的计算9.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习9.4 教学资源MATLAB软件PPT课件概率论和数理统计实例9.5 教学评估课后练习题上机练习第十章:综合案例分析10.1 课程目标能够综合运用所学的数学建模和MATLAB知识解决实际问题学会分析问题、建立模型、选择合适的算法和工具求解10.2 教学内容综合案例的选择和分析建立数学模型的方法MATLAB在模型求解中的应用数学建模报告的结构和要求10.3 教学方法案例分析与讨论学生分组实践10.4 教学资源MATLAB软件PPT课件综合案例数据和背景资料10.5 教学评估数学建模报告评分学生口头报告和讨论第十一章:非线性方程和方程组的求解11.1 课程目标理解非线性方程和方程组的概念学会使用MATLAB求解非线性方程和方程组掌握MATLAB中非线性求解的多种方法11.2 教学内容非线性方程和方程组的数学描述MATLAB中的非线性方程求解函数(如`fsolve`)非线性方程组的求解方法(如`ode45`)图像法求解非线性方程和方程组初始参数的选择和影响11.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习11.4 教学资源MATLAB软件PPT课件非线性方程和方程组求解实例11.5 教学评估课后练习题第十二章:插值与拟合12.1 课程目标理解插值和拟合的概念学会使用MATLAB进行插值和拟合掌握MATLAB中插值和拟合的多种方法12.2 教学内容插值和拟合的基本概念MATLAB中的插值函数(如`interp1`)MATLAB中的拟合函数(如`fit`)插值和拟合的误差分析插值和拟合在数学建模中的应用12.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习12.4 教学资源MATLAB软件PPT课件插值和拟合实例12.5 教学评估课后练习题第十三章:数值分析13.1 课程目标理解数值分析的基本概念学会使用MATLAB进行数值分析掌握MATLAB中数值分析的多种方法13.2 教学内容数值分析的基本概念MATLAB中的数值分析函数误差和稳定性分析数值分析在数学建模中的应用常见数值方法的比较和选择13.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习13.4 教学资源MATLAB软件PPT课件数值分析实例13.5 教学评估课后练习题第十四章:MATLAB在信号处理中的应用14.1 课程目标理解信号处理的基本概念学会使用MATLAB进行信号处理掌握MATLAB中信号处理的基本方法14.2 教学内容信号处理的基本概念MATLAB中的信号处理函数信号的时域和频域分析信号处理在实际应用中的例子MATLAB在信号处理中的优势和局限性14.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习14.4 教学资源MATLAB软件PPT课件信号处理实例14.5 教学评估课后练习题第十五章:MATLAB在图像处理中的应用15.1 课程目标理解图像处理的基本概念学会使用MATLAB进行图像处理掌握MATLAB中图像处理的基本方法15.2 教学内容图像处理的基本概念MATLAB中的图像处理函数图像的增强、滤波和边缘检测图像处理在实际应用中的例子MATLAB在图像处理中的优势和局限性15.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习15.4 教学资源MATLAB软件PPT课件图像处理实例15.5 教学评估课后练习题重点和难点解析重点:1. MATLAB的工作环境及基本命令和操作。
列车运行图教案
教案续页
教学程序及讲授提纲或讲稿
方法手段
时间
以上分类,都是针对列车运行图的某一特性进行区分的。实际上,每张列车运行图都有若干方面的特点,它是双线、平行、成对和追踪的运行图。
3.列车运行图的要素
列车运行图要素的实质是把列车运行过程按空间或时间上衔接的特征划分为若干单项作业。
在空间关系上,把列车运行过程划分为列车在区间运行、列车进站停车、列车启动出站、停站、折返等;
4)确定全日行车计划;
5)计算所需运用列车数量;
6)计算所需运用列车与草图;
7)征求调度部门、行车和客运部门、车辆部门的意见,对行车运行方案
多媒体授课。
30min
30min
教案续页
教学程序及讲授提纲或讲稿
方法手段
时间
进行调整;
8)根据列车运行方案铺画详细的列车运行图、列车运行时刻表和编制说明;
9)对列车运行图的编制质量进行全面的检查,并计算列车运行图的指标;
7)车号与车次:列车运行图上每个列车均有不同的车号与车次。一般按不同列车类别规定代号与列车号。
多媒体授课。
10min
5min
30min
教案续页
教学程序及讲授提纲或讲稿
方法手段
时间
2.列车运行图的分类***
(1)按照时间划分不同来分
1)一分格运行图:横轴以1min为单位,以细竖线加以划分。主要用于地铁、轻轨线路使用;
1)单线运行图:在单线区段,上下行方向列车都在同一正线上运行。
2)双线运行图:在双线区段,上下行方向列车在各自的正线上运行。
3)单双线运行图:在有部分双线的区段,单线区间和双线区间各按单线运行图和双线运行图的特点铺画运行线。
《Matlab教案》课件
《MATLAB教案》PPT课件第一章:MATLAB概述1.1 MATLAB简介介绍MATLAB的历史和发展解释MATLAB的含义(Matrix Laboratory)强调MATLAB在工程和科学计算中的应用1.2 MATLAB界面介绍MATLAB的工作空间解释MATLAB的菜单栏和工具栏演示如何创建、打开和关闭MATLAB文件1.3 MATLAB的基本操作介绍MATLAB的数据类型演示如何进行矩阵运算解释MATLAB中的向量和矩阵运算规则第二章:MATLAB编程基础2.1 MATLAB脚本编程解释MATLAB脚本文件的结构演示如何编写和运行MATLAB脚本强调注释和代码的可读性2.2 MATLAB函数编程介绍MATLAB函数的定义和结构演示如何创建和使用MATLAB函数强调函数的重用性和模块化编程2.3 MATLAB编程技巧介绍变量和函数的命名规则演示如何进行错误处理和调试强调代码的优化和性能提升第三章:MATLAB数值计算3.1 MATLAB数值解算介绍MATLAB中的数值解算工具演示如何解线性方程组和不等式解释MATLAB中的符号解算和数值解算的区别3.2 MATLAB数值分析介绍MATLAB中的数值分析工具演示如何进行插值、拟合和数值积分解释MATLAB中的误差估计和数值稳定性3.3 MATLAB优化工具箱介绍MATLAB优化工具箱的功能演示如何使用优化工具箱进行无约束和约束优化问题解释MATLAB中的优化算法和参数设置第四章:MATLAB绘图和可视化4.1 MATLAB绘图基础介绍MATLAB中的绘图命令和函数演示如何绘制二维和三维图形解释MATLAB中的图形属性设置和自定义4.2 MATLAB数据可视化介绍MATLAB中的数据可视化工具演示如何绘制统计图表和散点图解释MATLAB中的数据过滤和转换4.3 MATLAB动画和交互式图形介绍MATLAB中的动画和交互式图形功能演示如何创建动画和交互式图形解释MATLAB中的图形交互和数据探索第五章:MATLAB应用案例5.1 MATLAB在信号处理中的应用介绍MATLAB在信号处理中的基本概念演示如何使用MATLAB进行信号处理操作解释MATLAB在信号处理中的优势和应用场景5.2 MATLAB在控制系统中的应用介绍MATLAB在控制系统中的基本概念演示如何使用MATLAB进行控制系统分析和设计解释MATLAB在控制系统中的优势和应用场景5.3 MATLAB在图像处理中的应用介绍MATLAB在图像处理中的基本概念演示如何使用MATLAB进行图像处理操作解释MATLAB在图像处理中的优势和应用场景《MATLAB教案》PPT课件第六章:MATLAB Simulink基础6.1 Simulink简介介绍Simulink作为MATLAB的一个集成组件解释Simulink的作用:模型化、仿真和分析动态系统强调Simulink在系统级设计和多领域仿真中的优势6.2 Simulink界面介绍Simulink库浏览器和模型窗口演示如何创建、编辑和运行Simulink模型解释Simulink中的块和连接的概念6.3 Simulink仿真介绍Simulink仿真的基本过程演示如何设置仿真参数和启动仿真解释Simulink仿真结果的查看和分析第七章:MATLAB Simulink高级应用7.1 Simulink设计模式介绍Simulink的设计模式,包括连续、离散、混合和事件驱动模式演示如何根据系统特性选择合适的设计模式解释不同设计模式对系统性能的影响7.2 Simulink子系统介绍Simulink子系统的概念和用途演示如何创建和管理Simulink子系统解释子系统在模块化和层次化设计中的作用7.3 Simulink Real-Time Workshop介绍Simulink Real-Time Workshop的功能演示如何使用Real-Time Workshop进行代码解释代码对于硬件在环仿真和嵌入式系统开发的重要性第八章:MATLAB Simulink库和工具箱8.1 Simulink库介绍Simulink库的结构和分类演示如何访问和使用Simulink库中的块解释Simulink库对于模型构建和功能复用的意义8.2 Simulink工具箱介绍Simulink工具箱的概念和功能演示如何安装和使用Simulink工具箱解释Simulink工具箱在特定领域仿真和分析中的作用8.3 自定义Simulink库介绍如何创建和维护自定义Simulink库演示如何将自定义块添加到库中解释自定义库对于个人和组织级模型共享的重要性第九章:MATLAB Simulink案例分析9.1 Simulink在控制系统中的应用介绍控制系统模型在Simulink中的构建演示如何使用Simulink进行控制系统设计和分析解释Simulink在控制系统教育和研究中的应用9.2 Simulink在信号处理中的应用介绍信号处理模型在Simulink中的构建演示如何使用Simulink进行信号处理仿真解释Simulink在信号处理领域中的优势和实际应用9.3 Simulink在图像处理中的应用介绍图像处理模型在Simulink中的构建演示如何使用Simulink进行图像处理仿真解释Simulink在图像处理领域中的优势和实际应用第十章:MATLAB Simulink项目实践10.1 Simulink项目实践流程介绍从需求分析到模型验证的Simulink项目实践流程演示如何使用Simulink进行项目规划和实施解释Simulink在项目管理和协作中的作用10.2 Simulink与MATLAB的交互介绍Simulink与MATLAB之间的数据交互方式演示如何在Simulink中使用MATLAB函数和脚本解释混合仿真模式对于复杂系统仿真的优势10.3 Simulink项目案例分析具体的Simulink项目案例演示如何解决实际工程问题解释Simulink在工程教育和项目开发中的应用价值《MATLAB教案》PPT课件第十一章:MATLAB App Designer入门11.1 App Designer简介介绍App Designer作为MATLAB中的应用程序开发环境解释App Designer的作用:快速创建跨平台的MATLAB应用程序强调App Designer在简化MATLAB代码部署和用户交互中的优势11.2 App Designer界面介绍App Designer的用户界面和工作流程演示如何创建新应用和编辑应用界面解释App Designer中的组件和布局的概念11.3 App Designer编程介绍App Designer中的MATLAB编程模式演示如何使用App Designer中的MATLAB代码块解释App Designer中事件处理和应用程序生命周期管理的重要性第十二章:MATLAB App Designer高级功能12.1 App Designer用户界面设计介绍App Designer中用户界面的定制方法演示如何使用样式、颜色和主题来美化应用界面解释用户界面设计对于提升用户体验的重要性12.2 App Designer数据模型介绍App Designer中的数据模型和模型视图概念演示如何创建、使用和绑定数据模型和视图解释数据模型在应用程序中的作用和重要性12.3 App Designer部署和分发介绍App Designer应用程序的部署和分发流程演示如何打包和发布应用程序解释如何为不同平台安装和运行App Designer应用程序第十三章:MATLAB App Designer案例研究13.1 图形用户界面(GUI)应用程序设计介绍使用App Designer设计的GUI应用程序案例演示如何创建交互式GUI应用程序来简化MATLAB脚本解释GUI应用程序在数据输入和结果显示中的作用13.2 数据分析和可视化应用程序设计介绍使用App Designer进行数据分析和可视化的案例演示如何创建应用程序来处理和显示大型数据集解释App Designer在数据分析和决策支持中的优势13.3 机器学习和深度学习应用程序设计介绍使用App Designer实现机器学习和深度学习模型的案例演示如何将MATLAB中的机器学习和深度学习算法集成到应用程序中解释App Designer在机器学习和深度学习应用部署中的作用第十四章:MATLAB App Designer实战项目14.1 App Designer项目规划和管理介绍App Designer项目的规划和管理方法演示如何组织和维护大型应用程序项目解释项目管理和版本控制对于团队协作的重要性14.2 App Designer与MATLAB的集成介绍App Designer与MATLAB之间的数据和功能集成演示如何在App Designer中调用MATLAB函数和脚本解释集成MATLAB强大计算和分析能力的重要性14.3 App Designer项目案例实现分析具体的App Designer项目案例实现过程演示如何解决实际工程项目中的问题解释App Designer在工程项目实践中的应用价值第十五章:MATLAB App Designer的未来趋势15.1 App Designer的新功能和技术介绍App Designer的最新功能和技术发展演示如何利用新功能和技术提升应用程序的性能和用户体验强调持续学习和适应新技术的重要性15.2 App Designer在跨平台开发中的应用介绍App Designer在跨平台应用程序开发中的优势演示如何创建适用于不同操作系统的应用程序解释跨平台开发对于扩大应用程序市场的重要性15.3 App Designer的未来趋势和展望讨论App Designer在未来的发展趋势和潜在应用领域激发学生对于应用程序开发和创新的兴趣强调持续探索和创造新应用的重要性重点和难点解析本文档为您提供了一份详尽的《MATLAB教案》PPT课件,内容涵盖了MATLAB 的基本概念、编程基础、数值计算、绘图和可视化、应用案例、Simulink的基础知识、高级应用、库和工具箱的使用、案例分析以及项目实践、App Designer 的基础知识、高级功能、案例研究、实战项目和未来趋势等方面的内容。
MATLAB程序设计及应用第2版课件全全书教学教程完整版电子教案最全幻灯片
第1章 MATLAB入门与基本操作
1.3 MATLAB的安装启动 与操作桌面简介
1.3.1 MATLAB的安装和启动
MATLAB 可以在Windows环境下直接安装。在
MATLAB安装完成后,会在Windows桌面上自动生成
MATLAB的快捷方式图标
。
1.3.1 MATLAB的安装和启动
双击图标
1.3.2 MATLAB默认窗口简介
• 指令窗(Command Window) 该窗口是进行各种MATLAB操作的最主要窗口。它位于 MATLAB默认窗口的正中间。用户可以在该窗口中提示符 “fx>>”后直接键入指令,按“Enter”键后,即可运行并 显示除窗口外的所有运行结果。当指令窗口提示符为 “fx>>”时,表示系统已经准备好,用户可以输入指令、函 数、表达式,按“Enter”键后便可执行。
1.4 MATLAB指令窗操作入门
,就打开了如图1.1所示的MATLAB默认窗口
(Desktop)。
图1.1
1.3 MATLAB的安装启动 与默认窗口简介
1.3.2 MATLAB默认窗口简介
图1.1所示的MATLAB默认窗口分为5个区域:指令窗、 当前目录窗、历史指令窗、工作空间窗和Details窗。 另外,在MATLAB默认窗口的上方,还嵌入了菜单栏 和工具栏,如图1.1所示。它们的使用及选择方式与 Windows环境中的相同。
图1.2
第1章 MATLAB入门与基本操作
1.4 MATLAB指令窗操作入门
1.4.1 MATLAB指令窗简介
MATLAB指令窗位于MATLAB默认窗口的正中间,如图 1.1所示。如果用户希望得到脱离默认窗口的几何独立的指 令窗,只要单击图1.2中的图标 ,并在下拉菜单中选择
matlab教案(全)
济南大学教案2007-2008 学年第1 学期学院机械工程学院教研室机械电子工程课程名称专业英语课程编号课程类型任选课授课班级任课教师苏东宁济南大学教务处制专业英语课程类型:任选课课程代码:总计学时:24 学时课堂教学:24 学时授课方式:多媒体教学适用专业:机械工程及自动化机械设计制造及其自动化工业工程使用教材:大学英语阅读教程主编:马玉真李国平济南大学授课序号:1本课内容:序言第一章基础准备及入门1.1 MATLAB 的安装1.2 操作桌面授课时间:90 分钟一、教学目的与意义本节课程首先分析计算机算法语言的几大工具,并在分析比较的基础上阐述MATLAB 软件的强大功能,以及学习该课程的重要性。
并从安装该软件开始,了解该软件的基本功能及操作界面。
本课是课程的基础。
二、教学重点序论:分析四大数学计算工具的特点,论证MATLAB 软件的强大功能第一章:安装MATLAB 软件,熟悉安装过程,以及基本的软件界面;三、教学难点MATLAB 软件的特点,与其他工具的优势;MATLAB 软件的安装要求,需要的软硬件条件;MATLAB 软件的安装过程,需要安装的内容,建议都选取最大。
四、讲授内容介绍目前在科技和工程界上比较流行和著名的四个数学软件,Maple、MATLAB 、MathCAD 和Mathematica,介绍他们不同的特色;数学软件四大家之适用范围;MATLAB 应用概况,软件的组成,语言特点,运行环境;MATLAB 的安装和内容选择;操作桌面简介;五、讲授方法要点1.如何选用数学软件? 一般按照以下情况分别选用。
1)如果仅仅是要求一般的计算或者是普通用户日常使用:首选的是MathCAD ,它在高等数学方面所具有的能力,足够一般客户的要求,而且它的输入界面也特别友好。
2)如果要求计算精度、符号计算和编程方面使用:最好同时使用Maple 和Mathematica,3)如果要求进行矩阵方面或图形方面的处理:则选择MATLAB ,它的矩阵计算和图形处理方面则是它的强项,同时利用MATLAB 的NoteBook 功能,结合Word的编辑功能,可以很方便地处理科技文章。
matlab程序课程设计
matlab程序课程设计一、教学目标本课程的教学目标是使学生掌握MATLAB编程的基本知识和技能,能够运用MATLAB解决简单的数学和工程问题。
具体目标如下:1.理解MATLAB的基本概念,如变量、矩阵、数组等。
2.掌握MATLAB的基本语法,如运算符、函数、循环和条件语句等。
3.了解MATLAB的绘图功能,能够绘制基本的图形。
4.能够使用MATLAB进行简单的数学计算和数据分析。
5.能够编写MATLAB脚本程序,解决实际问题。
6.能够使用MATLAB的绘图功能,进行数据可视化。
情感态度价值观目标:1.培养学生的计算机编程思维,提高解决问题的能力。
2.培养学生团队合作的精神,提高沟通与协作能力。
3.培养学生对科学研究的兴趣,提高创新意识。
二、教学内容根据教学目标,本课程的教学内容主要包括以下几个方面:1.MATLAB概述:介绍MATLAB的发展历程、功能特点和应用领域。
2.MATLAB基本语法:变量、矩阵、数组、运算符、函数、循环和条件语句等。
3.MATLAB绘图功能:基本图形绘制、图形编辑和格式设置等。
4.MATLAB编程实践:数学计算、数据分析、实际问题解决等。
5.第1周:MATLAB概述和基本语法。
6.第2周:MATLAB绘图功能。
7.第3周:MATLAB编程实践(数学计算和数据分析)。
8.第4周:MATLAB编程实践(实际问题解决)。
三、教学方法为了达到教学目标,本课程将采用以下教学方法:1.讲授法:讲解MATLAB的基本概念、语法和绘图功能。
2.案例分析法:分析实际问题,引导学生运用MATLAB编程解决。
3.实验法:上机操作,让学生亲手编写MATLAB程序,巩固所学知识。
4.小组讨论法:分组完成项目任务,培养团队合作和沟通能力。
四、教学资源为了支持教学内容和教学方法的实施,本课程将采用以下教学资源:1.教材:《MATLAB程序设计》。
2.参考书:提供一些MATLAB编程的参考书籍,供学生自主学习。
(完整版)matlab第九讲教案
(完整版)matlab第九讲教案西南科技⼤学本科⽣课程备课教案计算机技术在安全⼯程中的应⽤——Matlab⼊门及应⽤授课教师:徐中慧班级:专业:安全技术及⼯程第九章⾼级绘图课型:新授课教具:多媒体教学设备,matlab 教学软件⼀、⽬标与要求掌握matlab 如何处理三种不同类型的图形⽂件,使⽤句柄图形指定绘图的句柄并调整特性,通过matlab 两种技术的任意⼀种创建动画。
⼆、教学重点与难点本堂课教学的重点与难点在于引导学⽣掌握句柄图形的使⽤,并掌握matlab 创建动画的⽅法。
三、教学⽅法本课程主要通过讲授法、演⽰法、练习法等相结合的⽅法来引导学⽣掌控本堂课的学习内容。
四、教学内容(1)⽕箭垂直向上发射。
在t=0时⽕箭发动机关闭,此时⽕箭的⾼度为海拔500,速度为125m/s ,考虑重⼒加速度,根据等式29.8()125500,02h t t t t =-++f ①创建函数heigh t ,以时间为输⼊变量,⽕箭的飞⾏⾼度为输出变量。
利⽤函数对下⾯的②和③进⾏求解。
②时间增量为0.5秒,变化范围0到30秒,画出函数height 与时间的关系曲线。
③计算⽕箭开始向地⾯降落的时间(可以使⽤函数max )。
④创建函数height 的函数句柄height_handle 。
⑤以height_handle 作为函数fplot 的输⼊参数,画出0到60秒内的函数曲线。
⑥⽤函数fzero 求⽕箭返回地⾯所⽤的时间(当⽕箭返回地⾯时,函数height 的值应该等于0)。
fzero 是复合函数,可以⽤函数或函数句柄作为输⼊参数。
调⽤⽅法如下:fzero(function_handl e ,x_guess)函数fzero 的两个输⼊参数分别是函数句柄和函数值接近0时的x 的估算值。
读者可以根据绘出的曲线选择合理的x_guess 值。
①function output=height(t)output=-4.9.*t.^2+125.*t+500;②%% two t=0:0.5:30; h=height(t); plot(t,h,'o-r') hold on %% three [a,b]=max(h); t_max=t(b) %% fourheight_handle=@(t) height(t);%% fivefplot(height_handle,[0,60]);%% sixfzero(height_handle,30)(2)①创建匿名函数my_function,计算下式:253x---+x x e②⽤函数fplot画出x在-5到+5之间的函数曲线。
MATLAB实用教程电子教案讲课文档
型。
第二十一页,共289页。
聚合矩阵的特殊函数
下表列出了聚合矩阵的一些特殊函数。
函数
cat horzcat vertcat repmat blkdiag
描述
沿指定的维聚合矩阵 水平聚合矩阵 垂向聚合矩阵 通过复制和叠置矩阵来创建新矩阵 用已有矩阵创建块对角矩阵
变量的数据类型
数组
逻辑型
字符型
数值型 单元数组 结构数组
函数句柄
int8, uint8 int16, uint16 int32, uint32
Single
定制类 Double
Java类
第十一页,共289页。
数组和矩阵
MATLAB中,所有数据都用数组 或矩阵形式进行保存。 数组 矩阵
第十二页,共289页。
B(1:3:end) = -10
第二十七页,共289页。
字符串
字符串的创建 类型转换 字符串的比较 字符串的聚合 字符串的搜索和替换
第二十八页,共289页。
创建字符串
通过把字符放到单引号中来指定字符数据。如,下面创建 一个1×5的字符串country。
country = 'China';
MATLAB的桌面环境
启动按钮
命令窗口
命令历史窗口 工作空间窗口 当前目录浏览器
第五页,共289页。
主界面
当前目录浏览工具 工作空间窗口
第六页,共289页。
命令窗口
启动按钮
命令历史窗口
MATLAB的帮助系统
帮助浏览工具 help函数和doc函数
第七页,共289页。
第2章 数据类型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列车运行图M A T L A B程序%第一个%设6:42时间为0时刻,转换如下。
a1=[6 7 7 7 7 7 7 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 12 12 12 12 13 13 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 20 21];b1=[42 0 10 22 33 40 52 15 30 12 17 22 27 40 5 10 15 28 45 50 33 43 7 13 34 43 5 18 25 43 6 40 45 0 18 35 57 3 19 32 37 2 12 36 42 22 47 6]; c1=7*ones(1,length(a1));d1=60*(a1-c1)+b1+18;e1=[7 7 7 8 8 8 8 8 9 9 9 10 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 14 15 15 15 16 16 16 16 17 17 18 18 18 18 18 19 19 19 20 21 21]; f1=[23 41 58 3 15 28 37 56 11 53 58 10 15 21 46 51 3 9 26 31 14 24 48 54 15 24 46 15 6 24 47 21 26 48 59 23 38 0 7 13 18 43 0 17 30 17 35 47];g=7*ones(1,length(a1));h1=60*(e1-g)+f1+18;%输入经历时间,求众数,得到一个差值矩阵f。
x1=[414148414248454141414148484141414841414141414141414141574141414141484148415748414141484148554841]';v1=mode(x1)j1=x1-v1;disp(j1)%矩阵剔除,将f中大于0的用0代替得以矩阵m,将f小于0的数代替得一矩阵n,n,m都是1*20的矩阵。
n1=(j1+abs(j1))/2;m1=j1;m1(find(j1>0))=0;%选取可行列车z1=zeros(1,d1(end)-d1(1)+1);%(或zeros(1,d(end)-d(1)))y11=d1(1):1:d1(end);for k=1:length(x1)-1for i=1:d1(end)-d1(1)+1if d1(k+1)-y11(i)+m1(k+1)>=5 && y11(i)-d1(k)-n1(k)>=5;z1(i)=y11(i);endendend%将满足条件的列车再进行剔除,求数量最大且满足条件的列车r=0;g=0;k=1;p=1;l1=zeros(1,length(d1)+50);t1=zeros(1,d1(end)-d1(1)+1);for i=1:d1(end)-d1(1)if z1(i)+1==z1(i+1)k=k+1;endif z1(i)>z1(i+1)r=floor((k-1)/5)+1;for u=1:rg=i-k+1+5*(u-1);if g>d1(end)-d1(1)+1g=d1(end)-d1(1)+1;endl1(g)=z1(g);endk=1;endendl1(find(l1==0))=[];%找到l中0的位置,并令其为空,即删除w1=l1+v1;y13=0.1*ones(1,length(l1));y14=41*ones(1,length(w1));for i=1:length(l1)plot([l1(i),w1(i)],[y13(i),y14(i)]);hold onendy11=0.1*ones(1,length(d1));y12=41*ones(1,length(h1));for i=1:length(d1)plot([d1(i),h1(i)],[y11(i),y12(i)]);hold onend%第二个%设6:42时间为0时刻,转换如下。
a2=[8 8 8 10 10 10 11 13 14 15 16 19 20];b2=[6 44 58 0 24 53 16 32 23 58 28 19 19];c2=7*ones(1,length(a2));d2=60*(a2-c2)+b2+18;e2=[8 9 9 10 10 11 11 13 14 16 16 19 20];f2=[24 4 16 18 42 11 34 50 43 16 46 37 37];g=7*ones(1,length(a2));h1=60*(e2-g)+f2+18;%输入经历时间,求众数,得到一个差值矩阵f。
x2=[18201818181818182018181818]';v2=mode(x2)j2=x2-v2;disp(j2)%矩阵剔除,将f中大于0的用0代替得以矩阵m,将f小于0的数代替得一矩阵n,n,m都是1*20的矩阵。
n2=(j2+abs(j2))/2;m2=j2;m2(find(j2>0))=0;%选取可行列车z2=zeros(1,d2(end)-d2(1)+1);%(或zeros(1,d(end)-d(1)))y21=d2(1):1:d2(end);for k=1:length(x2)-1for i=1:d2(end)-d2(1)+1if d2(k+1)-y21(i)+m2(k+1)>=5 && y21(i)-d2(k)-n2(k)>=5;z2(i)=y21(i);endendend%将满足条件的列车再进行剔除,求数量最大且满足条件的列车r=0;g=0;k=1;p=1;l2=zeros(1,length(d2)+50);t2=zeros(1,d2(end)-d2(1)+1);for i=1:d2(end)-d2(1)if z2(i)+1==z2(i+1)k=k+1;endif z2(i)>z2(i+1)r=floor((k-1)/5)+1;for u=1:rg=i-k+1+5*(u-1);if g>d2(end)-d2(1)+1g=d2(end)-d2(1)+1;endl2(g)=z2(g);endk=1;endendl2(find(l2==0))=[];%找到l中0的位置,并令其为空,即删除w2=l2+v2;y23=41*ones(1,length(l2));y24=59*ones(1,length(w2));for i=1:length(l2)plot([l2(i),w2(i)],[y23(i),y24(i)]);hold onendy21=41*ones(1,length(d2));y22=59*ones(1,length(h1));for i=1:length(d2)plot([d2(i),h1(i)],[y21(i),y22(i)]);hold onend%第三个%设6:42时间为0时刻,转换如下。
a3=[7 8 9 9 10 10 11 11 12 13 14 15 16 16 17 18 19 19 19 20];b3=[50 26 6 18 20 50 13 36 56 52 52 51 28 48 26 10 10 39 58 39]; c3=7*ones(1,length(a3));d3=60*(a3-c3)+b3+18;e3=[8 8 9 9 10 11 11 11 13 14 15 16 16 17 17 18 19 20 20 21];f3=[13 49 31 41 43 13 36 59 19 15 16 21 51 11 49 33 33 2 21 2]; g=7*ones(1,length(a3));h3=60*(e3-g)+f3+18;%输入经历时间,求众数,得到一个差值矩阵f。
x3=[2323252323222323232324302322232323232323]';v3=mode(x3)j3=x3-v3;disp(j3)%矩阵剔除,将f中大于0的用0代替得以矩阵m,将f小于0的数代替得一矩阵n,n,m都是1*20的矩阵。
n3=(j3+abs(j3))/2;m3=j3;m3(find(j3>0))=0;%选取可行列车z3=zeros(1,d3(end)-d3(1)+1);%(或zeros(1,d(end)-d(1)))y31=d3(1):1:d3(end);for k=1:length(x3)-1for i=1:d3(end)-d3(1)+1if d3(k+1)-y31(i)+m3(k+1)>=5 && y31(i)-d3(k)-n3(k)>=5;z3(i)=y31(i);endendend%将满足条件的列车再进行剔除,求数量最大且满足条件的列车r=0;g=0;k=1;p=1;l3=zeros(1,length(d3)+50);t3=zeros(1,d3(end)-d3(1)+1);for i=1:d3(end)-d3(1)if z3(i)+1==z3(i+1)k=k+1;endif z3(i)>z3(i+1)r=floor((k-1)/5)+1;for u=1:rg=i-k+1+5*(u-1);if g>d3(end)-d3(1)+1g=d3(end)-d3(1)+1;endl3(g)=z3(g);endk=1;endendl3(find(l3==0))=[];%找到l中0的位置,并令其为空,即删除w3=l3+v3;y33=59*ones(1,length(l3));y34=82*ones(1,length(w3));for i=1:length(l3)plot([l3(i),w3(i)],[y33(i),y34(i)]);hold onendy31=59*ones(1,length(d3));y32=82*ones(1,length(h3));for i=1:length(d3)plot([d3(i),h3(i)],[y31(i),y32(i)]);hold onend%第四个%设6:42时间为0时刻,转换如下。
a4=[7 8 8 8 8 8 9 9 9 10 10 11 11 11 13 13 13 13 15 15 16 16 16 18 18 19 20 20];b4=[0 0 21 28 48 57 9 15 25 51 59 16 39 57 21 32 42 56 7 47 5 24 54 4 36 42 9 39];c4=7*ones(1,length(a4));d4=60*(a4-c4)+b4+18;e4=[7 8 8 8 9 9 9 9 10 11 11 11 12 12 13 14 14 14 15 16 16 16 17 18 19 20 20 21];f4=[27 27 49 56 16 32 37 42 0 19 27 44 15 25 49 0 10 24 35 15 33 59 29 31 4 10 37 7];g=7*ones(1,length(a4));h4=60*(e4-g)+f4+18;%输入经历时间,求众数,得到一个差值矩阵f。