中考复习全等三角形复习
中考数学复习《全等三角形》专题(卷1)
《全等三角形》中考复习一. 选择题1. 如图,AB=AC,点D,E分别在AB,AC上,添加下列条件,不能判定△ABE≅△ACD的是( )A.BD=CEB.∠BDC=∠BECC.∠ACD=∠ABED.BE=CD2. 如下图,在△ABC中,∠C=90∘,∠B=30∘,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N 为圆心,大于12MN的长为半径画弧,两弧交于点P ,连结AP 并延长交BC于点D.则下列说法中正确的是()①AD是∠BAC的角平分线;②∠ADC=60∘;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.①②③④B.②③④C.①②D.①②③3. 如图,若△MNP≅△MEQ,则点Q应是图中的()A.点AB.点BC.点CD.点D4. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图①,若运动方向相反,则称它们是镜面合同三角形如图②,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合如图①,两个镜面合同三角形要重合,则必须将其中一个翻转180∘如图②,下列各组合同三角形中,是镜面合同三角形的是( )A. B. C. D.5. 对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理6. 如图,已知∠AOB,用直尺和圆规按照以下步骤作图:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画射线O′A′,以O′为圆心,OC的长为半径画弧,交O′A′于点C′③以C′为圆心,CD的长为半径画弧,与第②步中所画的弧相交于点D′④过点D′画射线O′B′根据以上操作,可以判定△OCD≅ΔO′C′D′,其判定的依据是()A.SSSB.SASC.ASAD.HL7. 如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD//OA交OB于点D,点I是△OCD 的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.180∘−βB.180∘−12β C.90∘+12β D.90∘+β8. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A.第1块B.第2块C.第3块D.第4块二. 填空题三角形具有稳定性,所以要使六边形木架不变形,至少要钉上________根木条.如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B 为圆心,以大于12AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,−a+8),则a=________.如图,在菱形ABCD中,已知AB=4,∠ABC=60∘,∠EAF=60∘,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∼△EFC;④若∠BAE=15∘,则点F到BC的距离为2√3−2.正确序号________.如图,△ABC中,点A的坐标为(0, 1),点C的坐标为(4, 3),如果要使△ABD与△ABC全等,那么点D的坐标是________.三. 解答题如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE//CD,∠A=12∠C,∠B=120∘.(1)∠D+∠E=________度;(2)求∠A的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上________根相同宽度的木条.根据要求完成下列各题.(1)如图1,在∠AOB的内部有一点P.①过点P画直线PC//OA交OB于点C;②过点P画直线PD⊥OA,垂足为D.(2)如图2,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E在下面解答中填空.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠________=90∘(________),∴AB//CD(________)∵∠1=∠2(已知),∴AB//EF(________),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(________)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF= BD,连接BF.(1)线段BD与CD有何数量关系,为什么?(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.(3)当△ABC满足________条件时,四边形AFBD是正方形?(直接写出结论,不用说明理由)一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案)参考答案与试题解析一. 选择题1.【答案】D【解析】欲使△ABE≅△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.2.【答案】A【解析】①连接NP,MP,根据SSS定理可得△ANP≅△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30∘,根据直角三角形的性质可知∠ADC=60∘;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30∘,CD=12AD,再由三角形的面积公式即可得出结论.3.【答案】D【解析】此题暂无解析4.【答案】B【解析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.5.【答案】B【解析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.6.【答案】A【解析】此题暂无解析7.【答案】B 【解析】此题暂无解析8.【答案】B【解析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.二. 填空题【答案】3【解析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【答案】2【解析】此题暂无解析【答案】①②【解析】①只要证明△BAE≅△CAF即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F到BC的距离即可判断.【答案】(4, −1)或(−1, 3)或(−1, −1)【解析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.三. 解答题【答案】180(2)五边形的内角和为(5−2)×180∘=540∘,由(1)可知,∠D+∠E=180∘,又∠B=120∘,∠A=12∠C.设∠A=x,则∠C=2x,∴∠A+∠B+∠C+∠D+∠E=540∘,即x+120∘+2x+180∘=540∘,解得x=80∘,∴∠A=80∘.2【解析】(1)根据平行线性质,两直线平行同旁内角互补即可得到180∘.先由AE//CD,根据平行线的性质得出∠E+∠D=180∘.再根据∠B=120∘,∠A=12∠C,设∠A=x∘,则∠C=2x∘.利用五边形的内角和为540∘列出方程x+120+2x+180=540,求解即可.根据五边形不具有稳定性,而三角形具有稳定性即可求解.【答案】解:(1)①如图,直线PC即为所求;②如图,直线PD即为所求;(2)解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠CDF=90∘(垂直的定义),∴AB//CD(同位角相等,两直线平行)∵∠1=∠2(已知),∴AB//EF(内错角相等,两直线平行),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(两直线平行,同位角相等)【解析】此题暂无解析【答案】解:(1)BD=CD.理由如下:依题意得AF // BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,{∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≅△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF // BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90∘,∴四边形AFBD是矩形.AB=AC,∠BAC=90∘【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90∘,由等腰三角形三线合一的性质可知必须是AB=AC.【答案】解:在河南岸AB的垂线BF上取两点C、E,使CE=BE,再定出BF的垂线CD,使A、E、D在同一条直线上,这时测得CD的长就是AB的长.如图所示:【解析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.。
专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮
专题16 全等三角形的核心知识点精讲1.熟悉全等三角形常考5种模型2.掌握全等三角形性质,并运用全等三角形性质解答。
考点1:全等三角形的概念及性质考点2:全等三角形的判定模型一:平移型模型分析:此模型特征是有一组边共线或部分重合,另两组边分别平行,常要在移动的方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.模型示例概念两个能完全重合的三角形叫做全等三角形.性质1.两全等三角形的对应边相等,对应角相等.2.全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.3.全等三角形的周长、面积相等.模型二:轴对称模型模型分析:所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意隐含条件,即公共边或公共角相等.模型三:旋转型模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.旋转后的图形与原图形存在两种情况:①无重叠:两个三角形有公共顶点,无重叠部分,一般有一对隐含的等角②有重叠:两个三角形含有一部分公共角,运用角的和差可得到等角.模型四:一线三垂直型模型解读:一线:经过直角顶点的直线;三垂直:直角两边互相垂直,过直角的两边向直线作垂直,利用“同角的余角相等”转化找等角【题型1:平移型】【典例1】(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.1.(2022•淮安)已知:如图,点A、D、C、F在一条直线上,且AD=CF,AB=DE,∠BAC=∠EDF.求证:∠B=∠E.2.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=D F,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【题型2:对称型】【典例2】(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.1.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.2.(2022•西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【题型3:旋转型】【典例3】(2023•大连)如图,AC=AE,BC=DE,BC的延长线与DE相交于点F,∠ACF+∠AED=180°.求证:AB=AD.1.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.2.(2023•泸州)如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.3.(2023•西藏)如图,已知AB=DE,AC=DC,CE=CB.求证:∠1=∠2.【题型4:一线三等角】【典例4】(2023•陕西)如图,在△ABC中,∠B=90°,作CD⊥AC,且使CD=AC,作DE⊥BC,交BC 的延长线于点E.求证:CE=AB.1.(2021•南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥A D于点F.求证:AF=BE.一.选择题(共8小题)1.下列各组图案中,不是全等形的是()A.B.C.D.2.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°3.如图,△ABC≌△DEC,点E在AB边上,∠B=70°,则∠ACD的度数为()A.30°B.40°C.45°D.50°4.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10B.6C.4D.25.如图,点B、F、C、E在一条直线上,∠A=∠D=90°,AB=DE,添加下列选项中的条件,能用HL 判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠ACB=∠DFE D.BC=EF6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE7.如图,BE⊥AC于点E,CF⊥AB于点F,若BE=CF,则Rt△BCF≌Rt△CBE的理由是()A.AAS B.HL C.SAS D.ASA8.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.填空题(共4小题)9.如图是两个全等三角形,图中的字母表示三角形的边长,那么∠1的度数为.10.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC ≌△BAD.11.请仔细观察用直尺和圆规作一个角∠A'O'B'等于已知角∠AOB的示意图.请你根据所学的三角形全等的有关知识,说明画出∠A'O'B'=∠AOB的依据是.12.如图,若AC平分∠BCD,∠B+∠D=180°,AE⊥BC于点E,BC=13cm,CD=7cm,则BE=.三.解答题(共4小题)13.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠D=45°,求∠EGC的大小.14.如图,∠ACB=90°,∠BAC=45°,AD⊥CE,BE⊥CE,垂足分别是D,E,BE=0.8,DE=1.7,求AD的长.15.如图,点A,B,C在一条直线上,△ABD、△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q.(1)求证:△ABE≌△DBC;(2)求∠DMA的度数.16.如图,AC=DC,E为AB上一点,EC=BC,并且∠1=∠2.(1)求证:△ABC≌△DEC;(2)若∠B=75°,求∠3的度数.一.选择题(共7小题)1.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBA:S△PCA=AB:AC,其中正确的个数是()个.A.5B.4C.3D.22.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CE F.其中正确的是()A.①③B.②③④C.①③④D.①②③④3.如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接A F,下列结论:①BD=CE②∠AEF=∠ADF③BD⊥CE④AF平分∠CAD⑤∠AFE=45°其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤4.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠F AB.有下列结论:①∠B=∠C;②ED=FD;③AC=BE;④△ACN≌△ABM.其中正确结论的个数是()A.1个B.2个C.3个D.4个5.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+2S2+2S3+S4=()A.6B.8C.10D.126.如图,△ABC和△CDE都是等边三角形,B,C,D三点在一条直线上,AD与BE相交于点P,AC、B E相交于点M,AD、CE相交于点N,则下列四个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④CP平分∠MCN.其中,一定正确的结论的个数是()A.1B.2C.3D.47.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB 交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③MD平分∠E DF;④若AE=3,则AB+AC=6.其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共5小题)8.如图,以△ABC的每一条边为边,在边AB的同侧作三个正三角形△ABD、△BCE和△ACF.已知这三个正三角形构成的图形中,甲、乙阴影部分的面积和等于丙、丁阴影部分的面积和.则∠FCE=°.9.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣8,3),点B的坐标是.10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,则下列结论中,正确的是(填序号).①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.11.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③A C=AO+AP;④S△ABC=S四边形AOCP,其中正确的是.(填序号)12.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,点D是AB的中点,E、F在射线AC 与射线CB上运动,且满足AE=CF,则在运动过程中△DEF面积的最小值为.三.解答题(共4小题)13.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°,求证:AD=BE;(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.14.如图所示,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:AP=AQ;(2)试判断△APQ是什么形状的三角形?并说明你的理由.15.(1)【模型启迪】如图1,在△ABC中,D为BC边的中点,连接AD并延长至点H,使DH=AD,连接BH,则AC与BH的数量关系为,位置关系为.(2)【模型探索】如图2,在△ABC中,D为BC边的中点,连接AD,E为AC边上一点,连接BE交A D于点F,且BF=AC.求证:AE=EF.16.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.1.(2023•甘孜州)如图,AB与CD相交于点O,AC∥BD,只添加一个条件,能判定△AOC≌△BOD的是()A.∠A=∠D B.AO=BO C.AC=BO D.AB=CD2.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB <BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③3.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件,使△AOB≌△COD.4.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.5.(2023•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B 作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为3.6.(2023•南通)如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是.7.(2023•淮安)已知:如图,点D为线段BC上一点,BD=AC,∠E=∠ABC,DE∥AC.求证:DE=B C.8.(2023•吉林)如图,点C在线段BD上,△ABC和△DEC中,∠A=∠D,AB=DE,∠B=∠E.求证:AC=DC.9.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠B AD=∠EAC,∠C=50°,求∠D的大小.10.(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.。
中考数学考点专题复习 三角形与全等三角形
剖析
先看一个事实,如图,将等腰△ABC 的底边 BC 延长线上的任一点和顶 点 A 相连,所得的△DAB 和△DAC 无疑是不全等的,由此可知,有两边及 其一边的对角对应相等的两个三角形(简称“边边角”)不一定全等.因此, 在判定三角形全等时,一定要留心“边边角”,别上当哟.
正解 证明:∵EB=EC,∴∠3=∠4.又∵∠1=∠2,∴∠1+∠3= ∠2+∠4,即∠ABC=∠ACB,∴AB=AC.在△AEB和△AEC中, ∵EB=EC,∠1=∠2,AB=AC,∴△AEB≌△AEC(SAS), ∴∠BAE=∠CAE
的长可能是下列哪个值( B )
A.11
B.5 C.2 D.1
(2)(2015·巴中)若 a,b,c 为三角形的三边,且 a,b 满足 a2-9+(b-
2)2=0,则第三边 c 的取值范围是 1<c<5
.
【点评】 三角形三边关系性质的实质是“两点之间,线段最 短”.根据三角形的三边关系,已知三角形的两边a,b,可确 定三角形第三边长c的取值范围|a-b|<c<a+b.
[对应训练] 1.(1)(2014·宜昌)已知三角形两边长分别为3和8,则该三角形第 三边的长可能是( )B A.5 B.10 C.11 D.12
(2)(2014·淮安)若一个三角形三边长分别为2,3,x,则x的值可 以为___4_.(只需填一个整数)
【例2】 (1)(2014·赤峰)如图,把一块含有30°角(∠A=30°)的 直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌 面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么 ∠AFE=( ) D
A.40° B.50° C.60° D.70°
4.(2015·柳州)如图,下列条件中,不能证明△ABC≌△DCB 的是( D )
初中中考复习之三角形全等(精编含答案)
中考复习之三角形全等一、选择题:1.图是一个风筝设计图,其主体部分(四边形ABCD ABCD)关于)关于BD 所在的直线对称,所在的直线对称,AC AC 与BD 相交于点O ,且AB≠AD,则下列判断不正确...的是【的是【 】】 A .△ABD≌△CBD .△ABD≌△CBD B B B.△ABC≌△ADC .△ABC≌△ADC .△ABC≌△ADC C C C.△AOB≌△COB .△AOB≌△COB .△AOB≌△COB D D D.△AOD≌△COD .△AOD≌△COD .△AOD≌△COD2.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD≌△ACD 的条件是【的条件是【 】】A. AB=ACB. ∠BAC=90°C. BD=AC A. AB=AC B. ∠BAC=90° C. BD=ACD. ∠B=45°D. ∠B=45°D. ∠B=45°3.如图,已知点A 、D 、C 、F 在同一条直线上,在同一条直线上,AB=DE AB=DE AB=DE,,BC=EF BC=EF,要使△ABC≌△DEF,还需要添加一个条件,要使△ABC≌△DEF,还需要添加一个条件是【是【 】】 A A.∠BCA=∠F .∠BCA=∠F .∠BCA=∠F B B B.∠B=∠E .∠B=∠E .∠B=∠EC .BC∥EF .BC∥EFD .∠A=∠EDF .∠A=∠EDF4.如图,AB∥CD,如图,AB∥CD,E E ,F 分别为AC AC,,BD 的中点,若AB=5AB=5,,CD=3CD=3,则,则EF 的长是【的长是【 】】A .4B .3C .2D .15.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是【等的是【 】】 (A) (A)两条边长分别为两条边长分别为4,5,它们的夹角为β (B) (B)两个角是两个角是β,它们的夹边为4(C) (C)三条边长分别是三条边长分别是4,5,5 (D)5 (D)两条边长是两条边长是5,一个角是β6.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO≌△NMO,则只需测出其长度的线段是【的线段是【 】】 A A..PO B .PQ C PQ C..MO D .MQ7.如图,在菱形ABCD 中,对角线AC AC,,BD 相交于点O ,且AC≠BD,则图中全等三角形有【AC≠BD,则图中全等三角形有【 】】A.4对B. 6对.C.8对D.10对二、填空题:1.在Rt△ABC 中,∠ACB=90°,中,∠ACB=90°,BC=2cm BC=2cm BC=2cm,CD⊥AB,在,CD⊥AB,在AC 上取一点E ,使EC=BC EC=BC,过点,过点E 作EF⊥AC 交CD 的延长线于点F ,若EF=5cm EF=5cm,则,则AE= cm AE= cm..2.如图所示,如图所示,AB=DB AB=DB AB=DB,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件 ,, 使使ΔABC≌ΔDBE DBE.. ( (只需添只需添加一个即可加一个即可) )3.如图所示,已知点A 、D 、B 、F 在一条直线上,在一条直线上,AC=EF AC=EF AC=EF,,AD=FB AD=FB,要使△ABC≌△FDE,还需添加一个条件,,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是这个条件可以是 ..(只需填一个即可)(只需填一个即可)4.如图,点D ,E 分别在线段AB AB,,AC 上,上,BE BE BE,,CD 相交于点O ,AE=AD AE=AD,要使△ABE≌△ACD,需添加一个条,要使△ABE≌△ACD,需添加一个条件是件是 (只需一个即可,图中不能再添加其他点或线)(只需一个即可,图中不能再添加其他点或线).5.如图.点D 、E 在△ABC 的边BC 上,AB=AC AB=AC,,AD=AE AD=AE..请写出图中的全等三角形请写出图中的全等三角形 ( ( (写出一对即可写出一对即可写出一对即可)).6.如图,己知AC=BD AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是 ( ( (填一个即可填一个即可填一个即可) )三、解答题:1.已知:如图,AB AE =,1=2ÐÐ,=B E ÐÐ,求证:BC ED =2.如图,已知AB=DC AB=DC,,DB=AC(1)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.(2)在()在(11)的证明过程中,需要作辅助线,它的意图是什么?)的证明过程中,需要作辅助线,它的意图是什么?3.如图,点D 在AB 上,点E 在AC 上,上,AB=AC AB=AC AB=AC,∠B=∠C.求证:,∠B=∠C.求证:,∠B=∠C.求证:BE=CD BE=CD BE=CD..4.如图,AB∥CD,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB AB,,AC 于E ,F 两点,再分别以E ,F为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP AP,交,交CD 于点M 。
备战2023年中考数学一轮复习考点08 全等三角形
考点08 全等三角形全等三角形主要包括全等图形、全等三角形的概念与性质,全等三角形的判定和角平分线的性质。
在中考中,全等三角形的直接考查主要以选择和填空为主,有时也会以证明的形式考查,难度一般较小;但大多数情况下,全等三角形的知识多作为工具性质与其他几何知识结合,用于辅助证明线段相等、角相等,考查面较广,难度较大,需要考生能够熟练运用全等三角形的性质和判定定理。
一、全等三角形的性质;二、全等三角形的判定;三、角平分线的线的性质。
考向一:全等三角形的性质1.全等三角形的对应边相等,对应角相等;2.全等三角形的周长相等,面积相等;3.全等三角形对应的中线、高线、角平分线、中位线都相等.1.下列四个图形中,属于全等图形的是( )A .③和④B .②和③C .①和③D .①和②2.下图所示的图形分割成两个全等的图形,正确的是( )A .B .C .D .3.如图,ABC DBC ∆∆≌,45A ∠=︒,86ACD ∠=︒,则ABC ∠的度数为( )A .102︒B .92︒C .100︒D .98︒4.如图,将ABC 沿着BC 方向平移6cm 得到DEF △,若AB BC ⊥,10cm AB =,4cm DH =,则四边形HCFD 的面积为( )2cm .A.40B.24C.48D.645.如图,△ABC≌△ADE,若∠B=80°,∠E=30°,则∠C的度数为()A.80°B.35°C.70°D.30°考向二:全等三角形的判定(一)三角形全等的判定定理:1.边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);2.边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);3.角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);4.角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS”);5.对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).(二)灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:①遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”; ②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”; ⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.1.在如图所示33⨯的小正方形组成的网格中,ABC 的三个顶点分别在小正方形的顶点(格点)上.这样的三角形叫做格点三角形,图中能画出( )个与ABC 全等的格点三角形(不含ABC ).A .3B .4C .7D .82.如图,B C ∠=∠,要使ABE ACD △△≌.则添加的一个条件不能是( )A .ADC AEB ∠=∠ B .AD AE =C .AB AC =D .BE CD =3.一块三角形玻璃不慎被小明摔成了四片碎片(如图所示),小明经过仔细的考虑认为只要带其中的两块碎片去玻璃店,就可以让师傅配一块与原玻璃一样的玻璃.你认为下列四个答案中考虑最全面的是( )A .带其中的任意两块去都可以B .带1、4或2、3去就可以了C .带1、4或3、4去就可以了D .带1、2或2、4去就可以了4.数学课上,同学们探讨利用不同画图工具画角的平分线的方法.小旭说:我用两块含30°的直角三角板就可以画角平分线.如图,取OM =ON ,把直角三角板按如图所示的位置放置,两直角边交于点P ,则射线OP 是∠AOB 的平分线,小旭这样画的理论依据是( )A .SSAB .HLC .ASAD .SSS5.如图,△ABC ≌△EBD ,∠E =50°,∠D =62°,则∠ABC 的度数是( )A .68°B .62°C .60°D .50°考向三:角平分线的线的性质1.角的平分线的性质定理:角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理:角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线:三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.1.(2022·重庆八中模拟)下列命题是真命题的是( )A .三角形的外心到这个三角形三边的距离相等B .三角形的重心是这个三角形的三条角平分线的交点C .三角形的三条高线所在的直线一定相交于三角形的内部D .三角形的任意两边之和大于第三边2.如图,在ABC 中,ABC ∠,ACB ∠的平分线交于点O ,OD BC ⊥于D ,如果25cm AB =,20cm BC =,15cm AC =,且2150cm =ABC S △,那么OD 的长度是( )A .2cmB .3cmC .4cmD .5cm3.(2022·上海徐汇·二模)如图,两把完全相同的长方形直尺按如图方式摆放,记两把尺的接触点为点P .其中一把直尺边缘恰好和射线OA 重合,而另一把直尺的下边缘与射线OB 重合,上边缘与射线OA 于点M ,联结OP .若∠BOP =28°,则∠AMP 的大小为( )A .62°B .56°C .52°D .46°4.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知AOB ∠是一个任意角,在边,OA OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M N ,重合,则过角尺顶点C 的射线OC 便是AOB ∠的平分线.在证明MOC NOC ≌时运用的判定定理是( )A .SSSB .SASC .ASAD .AAS5.如图,Rt △ABC 中,∠C =90°,用尺规作图法作出射线AE ,AE 交BC 于点D ,CD =5,P 为AB 上一动点,则PD 的最小值为( )A .2B .3C .4D .51.下列命题错误的是( )A .三角形的三条高交于一点B .三角形的三条中线都在三角形内部C .直角三角形的三条高交于一点,且交点在直角顶点处D .三角形的三条角平分线交于一点,且这个交点到三角形三边的距离相等2.如图,已知ABC A BC ''≌,A C BC ''∥,∠C =25°,则ABA '∠的度数是( )A .15°B .20°C .25°D .30°3.(2022·福建·模拟)如图,AD 是AEC △的角平分线,2AC AB =,若4ACD S =,则ABD △的面积为( )A .3B .2C .32D .14.如图,在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DE //AB ,交AC 于点E ,DF AB ⊥于点F ,5,3DE DF ==,则下列结论错误的是( )A .1BF =B .3DC = C .5AE =D .9AC =5.(2022·河北·石家庄市第四十一中学模拟)如图,已知ABC ,90C ∠=︒,按以下步骤作图:①以点A为圆心,以适当长为半径画弧,分别交边AB ,AC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在ABC 的内部相交于点P ;③作射线AP 交BC 于点D .下列说法一定成立的是( )A .BD AD =B .BD CD >C .>BD AC D .2BD CD =6.(2022·河南·一模)在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是( )A .图2B .图1与图2C .图1与图3D .图2与图37.(2022·山东威海·一模)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为M .若∠ABC =30°,∠C =38°,则∠CDE 的度数为( )A .68°B .70°C .71°D .74°8.(2022·福建三明·模拟)如图,BD 平分∠ABC ,F ,G 分别是BA ,BC 上的点(BF BG ≠),EF EG =,则∠BFE 与∠BGE 的数量关系一定满足的是( )A .90BFE BGE ∠+∠=B .180BFE BGE ∠+∠=C .2BFE BGE ∠=∠D .90BFE BGE ∠-∠=9.(2022·重庆十八中两江实验中学一模)如图,在ABC 中,AD BC ⊥,垂足为点D .下列条件中,不一定能推得ABD △与ACD 全等的条件是( )A .AB AC = B .BD CD =C .B DAC ∠=∠D .BAD CAD ∠=∠ 10.(2022·安徽滁州·二模)如图,OC 为∠AOB 的角平分线,点P 是OC 上的一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 为OC 上另一点,连接DF ,EF ,则下列结论:①OD =OE ;②DF =FE ; ③∠DFO =∠EFO ;④S △DFP =S △EFP ,正确的个数为( )A .1个B .2个C .3个D .4个11.如图,D 为Rt ABC △中斜边BC 上的一点,且BD AB =,过D 作BC 的垂线,交AC 于E .若6cm AE =,则DE 的长为 __cm .12.如图,ABC ∆中,90,6,8ACB AC BC ︒∠===.点P 从A 点出发沿A →C →B 路径向终点B 点运动;点Q 从B 点出发沿B →C →A 路径向终点A 点运动.点P 和Q 分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动.在某时刻,分别过P 和Q 作PE l ⊥于E ,QF l ⊥于F .点P 运动________秒时,PEC ∆与QFC ∆全等.13.如图,在ABC 中,∠BAC =90°,AD 是BC 边上的高,BE 是AC 边的中线,CF 是∠ACB 的角平分线,CF 交AD 于点G ,交BE 于点H ,①ABE 的面积=BCE 的面积;②∠F AG =∠FCB ;③AF =AG ;④BH =CH .以上说法正确的是_____.14.如图,小虎用10块高度都是4cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离为______.15.如图,E ABC AD ≅∆∆,BC 的延长线经过点E ,交AD 于F ,105AED ∠=︒,10CAD ∠=︒,50B ∠=︒,则EAB ∠=__︒.16.(2022·黑龙江哈尔滨·三模)如图,在△ABC 中,高AE 交BC 于点E ,若1452ABE C ∠+∠=︒,5CE =,△ABC 的面积为10,则AB 的长为___________.17.(2022·山东济南·三模)如图,正方形ABCD 的边长为3,P 、Q 分别在AB ,BC 的延长线上,且BP=CQ ,连接AQ 和DP 交于点O ,分别与边CD 和BC 交于点F 和E ,连接AE ,以下结论:①AQ ⊥DP ;②AOD S =OECF S 四边形;③OA 2=OE•OP ;④当BP =1时,tan ∠OAE =1316,其中正确的是______.(写出所有正确结论的序号)18.(2022·贵州铜仁·一模)如图,在ABC 中,8BC =,6AC =按下列步骤作图:步骤1:以点C 为圆心,小于AC 的长为半径作弧分别交BC 、AC 于点D 、E ;步骤2:分别以点D 、E 为圆心,大于12DE 的长为半径作弧,两弧交于点M ; 步骤3:作射线CM 交AB 于点F ,若 4.5AF =,则AB =______.19.(2022·湖北襄阳·一模)如图,已知AC BD =,A D ∠=∠,添加一个条件______,使AFC DEB △≌△(写出一个即可).20.如图,在△ABC 中,90ACB ∠=︒,AC =8cm ,BC =10cm .点C 在直线l 上,动点P 从A 点出发沿A →C 的路径向终点C 运动;动点Q 从B 点出发沿B →C →A 路径向终点A 运动.点P 和点Q 分别以每秒1cm 和2cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P 和Q 作PM ⊥直线l 于M ,QN ⊥直线l 于N .则点P 运动时间为____秒时,△PMC 与△QNC 全等.21.已知:如图所示,PC PD C D =∠=∠,.求证:PCB PDA ≌.22.如图所示,点E 在线段BC 上,12∠=∠,AD AB AE AC ==,,求证:DE BC =23.(2022·江苏淮安·中考真题)已知:如图,点A 、D 、C 、F 在一条直线上,且AD CF =,AB DE =,BAC EDF ∠=∠.求证:B E ∠=∠.24.如图,己知正方形ABCD,点E是BC边上的一点,连接DE.(1)请用尺规作图法,在CD的延长线上截取线段DF,使=DF CE;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接AF.求证:△AFD≌△DEC.25.(2022·陕西延安·二模)如图,已知ABC,请用尺规作图法在BC上求作一点E,使得点E到、的距离相等.(保留作图痕迹,不写作法)AB AC26.如图,已知等边ABC,AD是BC边上的高,请用尺规作图法,在AD上求作一点O,使∠=︒.(保留作图痕迹,不写作法)60BOD,,,与MN分别交于点27.如图,已知直线MN与▱ABCD的对角线AC平行,延长DA DC AB CB,,,.E H G F(1)求证:EF GH =;(2)若FG AC =,试判断AE 与AD 之间的数量关系,并说明理由.28.如图(1)所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.29.如图,已知EB CF ∥,OA =OD ,AE =DF .求证:(1)OB=OC ;(2)AB ∥CD .30.如图,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到①的位置时,求证:①ADC △≌CEB ;②DE AD BE =+;(2)当直线MN 绕点C 旋转到②的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到③的位置时,试问DE 、AD 、BE 具有怎样的数量关系?请直接写出这个等量关系,不需要证明.1.(2022·江苏扬州·中考真题)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ABC ∆,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A .,,AB BC CA B .,,AB BC B ∠ C .,,AB AC B ∠D .,,∠∠A B BC4.(2021·江苏盐城·中考真题)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB ∠的两边OA 、OB 上分别在取OC OD =,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是AOB ∠的平分线.这里构造全等三角形的依据是( )A .SASB .ASAC .AASD .SSS5.(2022·江苏南通·中考真题)如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,要使△ABC ≌△DEF ,还需添加一个..条件是________.(只需添一个)6.(2020·江苏扬州·中考真题)如图,在ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交AB 、BC 于点D 、E .②分别以点D 、E 为圆心,大于12DE 的同样长为半径作弧,两弧交于点F . ③作射线BF 交AC 于点G .如果8AB =,12BC =,ABG 的面积为18,则CBG 的面积为________.7.(2022·江苏扬州·中考真题)如图,在ABCD 中,BE 、DG 分别平分ABC ADC ∠∠、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ⊥,垂足为F .若ABCD 的周长为56,6EF =,求ABC ∆的面积.8.(2020·江苏南京·中考真题)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C ,求证:BD =CE9.(2020·江苏镇江·中考真题)如图,AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC 的度数.1.(2022·江苏南京·二模)如图,在ABC 中,点D 在AC 上,BD 平分ABC ∠,延长BA 到点E ,使得BE BC =,连接DE .若38ADE ∠=︒,则ADB ∠的度数是( )A .68°B .69°C .71°D .72°2.(2022·江苏常州·一模)如图,已知四边形ABCD 的对角互补,且BAC DAC ∠=∠,15AB =,12AD =.过顶点C 作CE AB ⊥于E ,则AE BE的值为( )A B .9 C .6 D .7.23.(2022·江苏·南通市陈桥中学一模)如图,在锐角三角形ABC 中,AB =4,△ABC 的面积为10,BD 平分∠ABC ,若M 、N 分别是BD 、BC 上的动点,则CM +MN 的最小值为( )A .4B .5C .4.5D .64.(2022·江苏盐城·一模)如图,点E ,F 在AC 上,AD =BC ,DF =BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是( )A .∠A =∠CB .∠D =∠BC .AD ∥BC D .DF ∥BE5.(2022·江苏南通·二模)如图,在ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交AB ,BC 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在ABC ∠的内部交于点F ; ③作射线BF ,交AC 于点G .如果6AB =,9BC =,ABG 的面积为9,则ABC 的面积为______.6.(2022·江苏·模拟)如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 于点D ,CD =2,则点D 到AB 的距离是_________.7.(2022·江苏·南通市陈桥中学一模)如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心、适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,5AB =,则ABD △的面积是________.8.(2022·江苏·苏州市振华中学校二模)已知:如图,AC BD =,AD BC =,AD ,BC 相交于点O ,过点O 作OE AB ⊥,垂足为E .求证:(1)ABC BAD ≌.(2)AE BE =.9.(2022·江苏镇江·模拟)如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.10.(2022·江苏·宜兴市实验中学二模)如图,在△ABC 中,O 为BC 中点,BD ∥AC ,直线OD 交AC 于点E .(1)求证:△BDO≌△CEO;(2)若AC=6,BD=4,求AE的长.11.(2022·江苏徐州·模拟)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=1∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)2(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF ∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并=12证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关2系,并证明.12.(2022·江苏盐城·一模)【提出问题】如图1,在等边三角形ABC内一点P,P A=3,PB=4,PC=5.求∠APB的度数?小明提供了如下思路:如图2,将△APC绕A点顺时针旋转60°至△AP'B ,则AP'=AP=3,P'C=PB=4,∠P'AC=∠P AB ,所以∠P'AC+∠CAP=∠P AC+∠BAP ,即∠P'AP=∠BAC=60° ,所以△AP'P为等边三角形,所以∠A P'P=60° ,……按照小明的解题思路,易求得∠APB= ;【尝试应用】如图3,在等边三角形ABC外一点P,P A=6,PB=10,PC=8.求∠APC的度数?【解决问题】如图4,平面直角坐标系xoy中,直线AB的解析式为y=-x+b(b>0),在第一象限内一点P,满足PB:PO:P A=1:2:3,则∠BPO= 度(直接写出答案)1.下列四个图形中,属于全等图形的是( )A .③和④B .②和③C .①和③D .①和②【答案】D【分析】根据全等图形的定义逐一判断即可.【详解】①和②,是全等图形,将①顺时针旋转180°即可和②完全重合,其它两个图形不符合 故选D .2.下图所示的图形分割成两个全等的图形,正确的是( )A .B .C .D .【答案】B【分析】直接利用全等图形的概念进而得出答案. 【详解】解:图形分割成两个全等的图形,如图所示:故选B .3.如图,ABC DBC ∆∆≌,45A ∠=︒,86ACD ∠=︒,则ABC ∠的度数为( )A .102︒B .92︒C .100︒D .98︒【答案】B【分析】根据全等三角形的性质得出ACB DCB ∠=∠,求出ACB ∠,根据三角形内角和定理求出即可. 【详解】解:ABC DBC ∆∆≌,ACB DCB ∴∠=∠,86ACD ∠=︒, 43ACB ︒∴∠=,45A ∠=︒,18092ABC A ACB ∴︒--∠︒∠=∠=;故选:B .4.如图,将ABC 沿着BC 方向平移6cm 得到DEF △,若AB BC ⊥,10cm AB =,4cm DH =,则四边形HCFD 的面积为( )2cm .A .40B .24C .48D .64【答案】C【分析】根据平移的性质可得ABC ≌DEF △,则四边形HCFD 的面积等于DEFEHCABCEHCABEH SSSSS -=-=梯形即可求解.【详解】解:∵将ABC 沿着BC 方向平移6cm 得到DEF △, ∴ABC ≌DEF △,6BE =cm , ∴ABC 的面积等于DEF △的面积, 又AB BC ⊥,10cm AB =,4cm DH =, ∴1046HE DE DH AB DH =-=-=-=(cm ), ∴四边形HCFD 的面积等于DEFEHCABCEHCABEH S SSSS -=-=梯形()12AB HE BE =+⋅ ()11066482=+⨯=(2cm ) 故选C .5.如图,△ABC ≌△ADE ,若∠B =80°,∠E =30°,则∠C 的度数为( )A.80°B.35°C.70°D.30°【答案】D【分析】根据全等三角形的性质即可得到结论.【详解】解:△ABC≌△ADE,∠E=30°,∠C=∠E=30°,故选:D.考向二:全等三角形的判定(一)三角形全等的判定定理:1.边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);2.边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);3.角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);4.角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS”);5.对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).(二)灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:①遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.的小正方形组成的网格中,ABC的三个顶点分别在小正方形的顶点(格点)上.这样1.在如图所示33的三角形叫做格点三角形,图中能画出()个与ABC全等的格点三角形(不含ABC).A.3B.4C.7D.8【答案】C【分析】根据SSS判定两三角形全等.认真观察图形可得答案.【详解】如图所示大正方形上都可作两个全等的三角形,所以共有八个全等三角形,除去ABC 外有7个与ABC 全等的三角形. 故选C .2.如图,B C ∠=∠,要使ABE ACD △△≌.则添加的一个条件不能是( )A .ADC AEB ∠=∠ B .AD AE =C .AB AC =D .BE CD =【答案】A【分析】根据全等三角形的判定进行解答即可得. 【详解】解:在ABE 和ACD 中,AEB ADC A BB C ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩∴无法证明ABE ACD △△≌, 选项A 说法错误,符合题意; 在ABE 和ACD 中, A AB C AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABE ACD △△≌(AAS ),选项B 说法正确,不符合题意; 在ABE 和ACD 中,A A AB AC BD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABE ACD △△≌(ASA ),选项C 说法正确,不符合题意; 在ABE 和ACD 中, A AB C BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABE ACD △△≌(AAS ),选项D 说法正确,不符合题意; 故选A .3.一块三角形玻璃不慎被小明摔成了四片碎片(如图所示),小明经过仔细的考虑认为只要带其中的两块碎片去玻璃店,就可以让师傅配一块与原玻璃一样的玻璃.你认为下列四个答案中考虑最全面的是( )A .带其中的任意两块去都可以B .带1、4或2、3去就可以了C .带1、4或3、4去就可以了D .带1、2或2、4去就可以了【答案】C【分析】带1、3去,只有两角,没有完整边不能确定三角形,带1、2或2、3去,只有一角,没有完整边,不能确定三角形,带2、4去,有一角,可以延长边还原出原三角形,带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形.即可得出答案【详解】解:带1、3去,只有两角,没有完整边不能确定三角形,带1、2或2、3去,只有一角,不能确定三角形,带2、4去,有一角,可以延长边还原出原三角形,带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形,所以A 、B 、D 不符合题意,C 符合题, 故选:C .4.数学课上,同学们探讨利用不同画图工具画角的平分线的方法.小旭说:我用两块含30°的直角三角板就可以画角平分线.如图,取OM =ON ,把直角三角板按如图所示的位置放置,两直角边交于点P ,则射线OP 是∠AOB 的平分线,小旭这样画的理论依据是( )A .SSAB .HLC .ASAD .SSS【答案】B【分析】根据题意可得OP OP =,OM ON =,90PMO PNO ∠=∠=︒,根据全等三角形的判定方法,即可求解.【详解】解:根据题意可得OP OP =,OM ON =,90PMO PNO ∠=∠=︒, 根据全等三角形的判定方法可得()POM PON HL △≌△ 故选B5.如图,△ABC ≌△EBD ,∠E =50°,∠D =62°,则∠ABC 的度数是( )A .68°B .62°C .60°D .50°【答案】A【分析】根据三角形内角和定理求出∠EBD ,根据全等三角形的性质解答. 【详解】∵∠E =50°,∠D =62°, ∴∠EBD =180°−50°−62°=68°, ∵△ABC ≌△EBD , ∴∠ABC =∠EBD =68°, 故选:A .考向三:角平分线的线的性质1.角的平分线的性质定理:角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理:角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线:三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.1.(2022·重庆八中模拟)下列命题是真命题的是( ) A .三角形的外心到这个三角形三边的距离相等 B .三角形的重心是这个三角形的三条角平分线的交点 C .三角形的三条高线所在的直线一定相交于三角形的内部 D .三角形的任意两边之和大于第三边 【答案】D【分析】根据三角形的外心、重心等有关性质,对选项逐个判断即可.【详解】解:A 、三角形的内心到这个三角形三边的距离相等,为假命题,不符合题意; B 、三角形的重心是这个三角形的三条中线的交点,为假命题,不符合题意;C 、只有锐角三角形的三条高线所在的直线相交于三角形的内部,为假命题,不符合题意;D 、三角形的任意两边之和大于第三边,为真命题,符合题意; 故选:D2.如图,在ABC 中,ABC ∠,ACB ∠的平分线交于点O ,OD BC ⊥于D ,如果25cm AB =,20cm BC =,15cm AC =,且2150cm =ABC S △,那么OD 的长度是( )A .2cmB .3cmC .4cmD .5cm【答案】D【分析】作OE AC ⊥交于点E ,作OF AB ⊥交于点F ,连接OA ,证明OD OE OF ==,再利用2150cm =++=ABC BOC AOB AOC S S S S △△△△即可求出OD 的长度.【详解】解:作OE AC ⊥交于点E ,作OF AB ⊥交于点F ,连接OA ,。
2025年中考数学总复习+微专题7 全等三角形之六大模型++++课件
39
【解析】(1)∵△ADB与△ADF关于直线AD对称,∴AB=AF,∠BAD=∠FAD,
∵AB=AC,
∴AF=AC,
∵∠FAD+∠FAE=∠DAE=45°,∠BAD+∠CAE=∠CAB-∠DAE=45°,
∴∠FAE=∠CAE,
在△AEF与△AEC中,
=
∠ = ∠ ,
=
∠AOB的平分线,请说明此做法的理由;
拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB和AC,汇聚形成了一个岔路口A,
现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路
灯E到岔路口A的距离和休息椅D到岔路口A的距离相等,试问路灯应该安装在哪个位置?请用
4.(2024·淄博沂 源县二 模 ) 如图 , 点E 在△ABC的 外 部,点 D 在BC 上,DE 交 AC 于点
F,∠1=∠2=∠3,AB=AD.
求证:△ABC≌△ADE.
14
【证明】∵∠1=∠2=∠3,∠AFE=∠CFD,
∴∠1+∠DAF=∠2+∠DAF,∠C=180°-∠3-∠DFC,∠E=180°-∠2-∠AFE,
∴AE=ED,
∴∠EAD=∠EDA.
30
(2)∵∠AED=∠C=60°,AE=ED,
∴△AED为等边三角形,
∴AE=AD=ED=4,
过A点作AF⊥ED于F,
∴EF= ED=2,
∴AF= − = − =2 ,
∴S△AED= ED·AF= ×4×2
=4 .
∴AP= AM,
∴AB+AN= AM.
全等三角形-中考数学总复习精品课件
三角形全等的条件
如何找边相等、 角相等
1.找“角”相等的途径主要有:对顶角相等;两直线平行,同位角、 内错角相等;余角等角代换;角平分线;平行四边形对角相等等.
2.找“边”相等主要借助中点、平行四边形对边相等来证明.
三角形全等的证明
如何找边相等、 角相等
3.判定两个三角形全等的三个条件中,“边”是必不可少的.
垂足分别是点 D,E,AD=3,BE=1,则 DE 的长是( B )
3 A.2
B.2
C.2 2
D. 10
61.2如0° 图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.
7.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB, ③AB=DC,其中不能确定△ABC≌△DCB的是_②_____(只填序号).
A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC
平移加翻折型
2.如图,在△ABC和△DEF中,AB=DE,AC=DF,BE=CF,且 BC=5,∠A=70°,∠B=75°,EC=2,则下列结论中错误的是
( C)
A.BE=3 B.∠F=35° C.DF=5 D.AB∥DE
平移型
3.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果
对称型
解:(1)在△ABC 和△ADC 中,AABC= =AADC,,∴△ABC≌△ADC(SSS), BC=DC,
∴∠BAC=∠DAC,即 AC 平分∠BAD (2) 由 (1) 得 ∠BAE = ∠ DAE , 在 △BAE 和 △DAE 中 ,
BA=DA, ∠BAE=∠DAE,∴△BAE≌△DAE(SAS),∴BE=DE AE=AE,
2024年中考数学复习+全等三角形课件
3.(2020·衡阳8分)如图,在△ABC中,∠B=∠C,过BC的中点D作 DE⊥AB,DF⊥AC,垂足分别为点E,F. (1)求证:DE=DF;
证明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90° ∵D是BC的中点,∴BD=CD. 在△BED和△CFD中,
∠BED=∠CFD ∠B=∠C
BD=CD
强调:两角一边一定能判定三角形全等
方法指 ----全等常见的判定思路: 引
已知一角一边: 找角的邻边 找边的邻角 找边的对角
已知两边:
找第三边 找夹角 找直角
已知两角: 找夹边
找对边 找第三边
方法指 引
E
全等与图形的变换:
D
F
G 轴对称
直观发现全等
平移
旋转
通过图形的变换, 直观发现全等;发现相等的边、相等的角.
1.(2022·衡阳6分)如图,在△ABC中,AB=AC,D,E是BC边上的 点,且BD=CE.求证:AD=AE.
证明:∵AB=AC, ∴∠B=∠C.
在△ABD和△ACE中,
AB=AC
∠B=∠C
全等五行
∴△BADB=DC≌E △ACE(SAS).
∴AD=AE.
2.(2021·衡阳6分)如图,点A,B,D,E在同一条直线上,AB=DE, AC∥DF,BC∥EF.求证:△ABC≌△DEF.
4.(2018·衡阳6分)如图,线段AC,BD相交于点E,AE=DE,BE=CE. (1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.
(1)证明:在△ABE和△DCE中,
AE=DE
∠AEB=∠DEC
BE=CE
∴△ABE≌△DCE(SAS).
(2)解:∵△ABE≌△DCE,∴AB=CD. ∵AB=5,∴CD=5.
全等三角形复习专题
全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。
全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。
如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。
二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。
2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。
3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。
4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。
5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。
三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。
如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。
四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。
2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。
3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。
4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。
5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。
全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。
全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。
动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。
将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。
初三复习专题--全等三角形
•
OA=OC,EA=EC,
•
请阐明∠ A=∠C。
AO C
DB
E
• 分析:欲证明∠A= ∠C,有三条思路,一 是证明△AOD与△COB全等,而由已知条件 不可直接得到,二是连结OE,阐明△AOE与 △COE全等,这条路显而易得, ∠A=∠C, 三是证明 △ABE与△CDE全等,这也是不能 直接证明到的,因此应采用第二条思路。
全等三角形
• 一:考纲规定与命题趋势
• 1. 理解并掌握五种识别三角形全等的办法, 会灵活的对的选择适宜的识别办法判断两 个三角形与否全等。
• 2. 对的运用全等三角形的性质计算三角形 中未知的边或角,逐步培养逻辑推理能力 和形象思维能力。
• 3. 全等三角形的应用是学习几何证明题的 基础,因此它自然是中考必考知识点,同 窗们务必学好它。
• 阐明:在解决几何问题的过程中,有时根 据条件不能较顺利的得到结论,这时添加 必要的辅助线是十分重要的捷径。
• 例3.P是线段AB上一点,△APC与△BPD都是
等边三角形,请你判断:AD与BC相等吗?
试阐明理由。
D
C
AP
B
• 分析:观察图形发现它们所在的三角形全
等,故考虑通过全等来阐明。
• 解:由△APC和△BPD都是等边三角形可知 AP=PC,BP=DP,∠APC=∠BPD=60°,
变化,结论往往仍然成立,解决大同小异,
要善于抓住规律。
A
A
B
l
3
E
12
D
C
E
①
D
1
l
2
B
C
②
• 例9.如图,等边△ABC的边长为a,在BC的 延长线上取点D,使CD=b,在BA的延长线 上取点E,使AE=a+b,证明EC=ED。
中考一轮复习--第17讲 全等三角形
2
考点梳理
自主测试
2.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作
PM∥AB交AF于M,作PN∥CD交DE于N.
(1)①∠MPN=
;
②求证:PM+PN=3a;
(2)如图2,点O是AD的中点,连接OM,ON,求证:OM=ON;
(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否
1
1
1
1
=BP,PC=DN. ∴GM=2AM,HP=2BP,PL=2PC,NK=2ND,
∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=
MG+GH+HP+PL+LK+KN=3a.
考点梳理
自主测试
(2)证明:如图2,连接OE,
∵六边形ABCDEF是正六边形,AB∥MP,PN∥DC,O为AD中点,
考点梳理
自主测试
考点二
类型
一般
三角
形的
判定
全等三角形的判定
图
形
已知条件
A1B1=A2B 2,
B1C1=B2C2,
A1C1=A2C2
∠B1=∠B2,
B1C1=B2C2,
∠C1=∠C2
∠B1=∠B2,
∠C1=∠C2,
A1C1=A2C2
A1B1=A2B 2,
∠B1=∠B2,
B1C1=B2C2
是否全等 形成结论
应邻边.
考法
对应练1如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一
C
个条件后,仍然不能证明△ABC≌△DEF,这个条件是( )
全等三角形中考复习12
5.如图,△ABC中,∠BAC=90°,AB=AC,
AD⊥BC,垂足是D,AE平分∠BAD,交BC
于点E.在△ABC外有一点F,使FA⊥AE,
G
FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接
MC,交AD于点N,连接ME.
求证:①ME⊥BC;②DE=DN.
②∵AD⊥BC,
(2)若 AC 2 3, BD 2 ,求四边形ABCD的周长;
(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.
(2)解:∵△ABC≌△ADC, ∴△ABC和△ADC是轴对称图形, ∴OB=OD,BD⊥AC,
∵OA=OC,
∴四边形ABCD是菱形,
∴ OA 1 AC 3,OB 1 BD 1
(1)证明:在△ABC和△ADC中, AB=AD BC=DC AC=AC, ∴△ABC≌△ADC(SSS), ∴∠BCA=∠DCA, 在△CBF和△CDF中, BC=DC ∠BCA=∠DCA CF=CF, ∴△CBF≌△CDF(SAS)
如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA ,若E是CD上任意一点,连接BE交AC于点F,连接DF. (1)证明:△CBF≌△CDF;
高频考点
命题趋势
1.全等三角形的定义及性质 2.全等三角形的判定 3.全等三角形的综合应用
全等三角形是证明线段、
角的数量关系的有力工具,在 中考中主要考查全等三角形的 性质及判定的综合应用,大多 数是以选择题、填空题或开放 探索题的形式出现
1、能够完全 _重__合__ 的两个三角形叫做全等三角形.
课堂小结
1、全等三角形的概念—— 能够重合的三角形 2、全等三角形的性质—— 对应边相等、对应角相等 3、全等三角形的判定方法—— (SSS)(SAS)(ASA)(AAS)(HL)
中考数学专题复习全等三角形
∴△ADE≌△ADC。DE=CD,∠AED=∠C
∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE
∠B=∠EDB
∠C=∠B+∠EDB=2∠B
12证明:
∵BE‖CF
∴∠E=∠CFM,∠EBM=∠FCM
∵BE=CF
∴△BEM≌△CFM
∴BM=CM
∴AM是△ABC的中线。
9作AG∥BD交DE延长线于G
AGE全等BDE
AG=BD=5
AGF∽CDF
AF=AG=5
所以DC=CF=2
10证明:
做BE的延长线,与AP相交于F点,
∵PA//BC
∴∠PAB+∠CBA=180°,
又∵,AE,BE均为∠PAB和∠CBA的角平分线
∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形
13证明:因为AB=AC,
所以∠EBC=∠DCB
因为BD⊥AC,CE⊥AB
所以∠BEC=∠CDB
BC=CB (公共边)
则有三角形EBC全等于三角形DCB
所以BE=CD
14
11.证明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∵CF⊥AD
∴∠ACF+∠DCF=90°
∵∠ACF+∠CAF=90°
∴∠CAF=∠DCF
∵AC=CB∠ACG=∠B
∴△ACG≌△CBE
∴CG=BE
∵∠DCG=∠B CD=BD
∴△CDG≌△BDE
天津市河北区中考《全等三角形》复习练习题及答案
中考数学复习专题练习全等三角形一、选择题:1、如图,已知△ABC≌△ADE,∠D=55°,∠AED=76°,则∠C的大小是()A.50° B.6O° C.76° D.55°2、如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA3、如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.PO B.PQ C.MO D.MQ4、如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC△BPA,连接PQ,则以下结论错误的是()A. △BPQ是等边三角形B. △PCQ是直角三角形C. APB=150°D. APC=135°5、如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30° B.40° C.50° D.60°6、如图,点E、F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.AD∥BC B.DF∥BE C.∠D=∠B D.∠A=∠C7、玻璃三角板摔成三块如图,现在到玻璃店在配一块同样大小的三角板,最省事的方法()A.带①去 B.带②去 C.带③去 D.带①②③去8、如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.609、如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B.2 C.5 D.410、如图所示,m∥n,点B,C是直线n上两点,点A是直线m上一点,AB与AC的长不相等,在直线m上另找一点D,使得以点D,B,C为顶点的三角形和△ABC全等,这样的点D()A.不存在 B.有1个 C.有3个 D.有无数个11、边长为7,24,25的△ABC内有一点P到三边的距离相等,则这个距离是()A.1 B. 3 C.4 D.612、如图,已知BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④二、填空题:13、如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,若△ABC的面积为9,DE=2,AB=5,则AC长是.14、如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC面积是.15、如图△ABC≌△ADE,BC延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=15°,则∠DGB= .16、如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有个(不含△ABC).17、如图,矩形ABCD沿AE折叠,使D点落在BC边上点F处,如果∠BAF=60°,则∠DAE= 度.18、如图所示,△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E,AB=8cm,BC=6cm,S△ABC=14cm2,则DE的长是 cm.19、如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为.20、如图,在等边△ABC中,BD=CE,AD与BE相交于点F,则∠AFE=______.21、如图,在△ABC中(AB<BC),在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为3,则△BPC的面积为.22、如图,在面积为4的等边△ABC的BC边上有一点D,连接AD,以AD为边作等边△ADE,连接BE.则四边形AEBD的面积是.23、如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD= .24、如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有.(把你认为正确的序号都填上)三、简答题:25、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.求证:(1)△BEC≌△CDA;(2)DE=AD﹣BE.26、如图,锐角△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,DF=DC.求证:BF=AC.27、两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.28、如图,画∠AOB=90°,并画∠AOB的平分线OC,将三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F,试猜想PE、PF的大小关系,并说明理由.29、如图所示,在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE⊥AB 交 AB于点 E,点 F 在 AC 上,BD=DF.证明:(1)CF=EB;(2)AB=AF+2EB.参考答案1、C.2、D.3、B.4、B.5、B.6、C.7、C.8、B.9、D.10、B.11、B. 12、D.13、答案为:4 14、答案为:31.5.15、答案为:65°16、答案为:7.17、答案为:15.18、答案为:2.19、答案为:60°.20、答案为:60°.21、答案为:.22、答案为:4.23、答案为25.24、答案为:①②③⑤.25、【解答】证明:(1)∵∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△CDA和△BEC中,,∴△CDA≌△BEC(AAS);(2)∵△CDA≌△BEC,∴CD=BE,CE=AD,∵DE=CE﹣CD,∴DE=AD﹣BE.26、【解答】证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=90°,∠AEF=90°,∵∠AFE+∠CAD+∠AEF=180°,∠FBD+∠BFD+∠BDA=180°,∠AFE=∠BFD,∴∠FBD=∠CAD,在△BDF和△ADC中,∴△BDF≌△ADC(AAS),∴BF=AC27、解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∠BAE=∠DAC=90°+∠CAE,在△BAE和△DAC中∴△BAE≌△CAD(SAS).(2)由(1)得△BAE≌△CAD.∴∠DCA=∠B=45°.∵∠BCA=45°,∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.28、【解答】解:PE=PF,理由是:过点P作PM⊥OA,PN⊥OB,垂足是M,N,则∠PME=∠PNF=90°,∵OP平分∠AOB,∴PM=PN,∵∠AOB=∠PME=∠PNF=90°,∴∠MPN=90°,∵∠EPF=90°,∴∠MPE=∠FPN,在△PEM和△PFN中∴△PEM≌△PFN,∴PE=PF.29、证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.。
微专题 全等三角形的六种基本模型-2024年中考数学复习
21
全等三角形的六种基本模型
模型应用
8.如图17, △ 是边长为1的等边三角形, = ,
∠ = 120∘ ,点 , 分别在 , 上,且
∠ = 60∘ .求 △ 的周长.
提示:如图16,延长 至点 ,使 = ,连接 .
图6
= ,
在 △ 和 △ 中, ቐ∠ = ∠, ∴ △≌△ SAS .
= ,
∠ = ∠ = 50∘ .
7
全等三角形的六种基本模型
模型三 旋转型
模型剖析
如图7,将三角形绕着公共顶
点旋转一定角度后,两个三角形能
够完全重合,这两个三角形称为旋
图3
在 △ 和△ 中, ∵ ∠ = ∠ , ∠ = ∠ , = ,
∴ △ ≌ △ AAS .
∴ = .
4
全等三角形的六种基本模型
模型二 对称型
模型剖析
如图4、图5,将所给图形沿某一条直线折叠后,直线两旁的部分能
够完全重合,这两个三角形称为对称型全等三角形,其中重合的顶点就
= , ∴ △ ≌ △ SAS . ∴ = ,
图17
图16
22
全等三角形的六种基本模型
∠ = ∠. ∵ ∠ = 120∘ , ∠ = 60∘ , ∴ ∠ +
∠ = 60∘ . ∴ ∠ + ∠ = 60∘ . ∴ ∠ = ∠ =
∴ ∠ = ∠ + ∠ = 110∘ .
∴ ∠ = ∠ .
= ,
图9
在 △ 和 △ 中, ቐ∠ = ∠ , ∴ △ ≌ △ .
= ,
∴ = .
11
全等三角形的六种基本模型
2023年中考数学复习第一部分考点梳理第四章三角形第3节全等三角形
(2)∠1=∠2.
理由:因为∠DAE=∠BAC,
所以∠BAD=∠CAE.
=,
在△ABD和△ACE中,ቐ∠=∠,
=,
基础过关
能力提升
能力提升
-23-
4.3 全等三角形
所以△ABD≌△ACE(SAS),
所以∠ACE=∠ABD.
因为∠BAC+∠ABD+∠ACB=180°,∠ACE+∠ACB+∠DCE=
5.如图,AC平分∠BCD,CB=CD,DA的延长线交BC于点E.若
∠CAE=49°,则∠BAE的度数为 82° .
第5题图
基础过关
基础过关
能力提升
-7-
4.3 全等三角形
6.(2022·湖南益阳)如图,在Rt△ABC中,∠B=90°,
CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED ≌△ABC.
OB,射线OC上的点,点D,E,F与O点都不重合,连接ED,EF.若添
加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添
加的那个条件是( D )
A.OD=OE
B.OE=OF
C.∠ODE=∠OED
D.∠ODE=∠OFE
第2题图
基础过关
基础过关
能力提升
-3-
4.3 全等三角形
3.如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.
4.3
全等三角形
4.3 全等三角形
1.(2022·浙江金华)如图,AC与BD相交于点O,OA=OD,OB=
OC,不添加辅助线,判定△ABO≌△DCO的依据是( B )
A.SSS
B.SAS
C.AAS
2023年九年级中考数学复习讲义 三角形及其全等
2023年中考数学复习讲义三角形及其全等第一部分:知识点精准记忆一、三角形的基础知识1.三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边一半.二、全等三角形1.三角形全等的判定定理:(1)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(2)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(3)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(4)角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”);(5)对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.三、线段垂直平分线与角平分线1.线段的轴对称性:线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.2.定义:垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线.注:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.注:对于含有垂直平分线的题目,首先考虑将垂直平分线上的点与线段两端点连接起来.4.角是轴对称图形,角平分线所在的直线是它的对称轴.5.性质:角的平分线上的点到这个角的两边的距离相等.第二部分:考点典例剖析考点一: 三角形的三边关系【例1-1】(2021·广西柳州市·中考真题)若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是________.(写出一个即可)【例1-2】(2021·江苏淮安·中考真题)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是___.考点二: 三角形的内角和外角【例2-1】(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【例2-2】(2021·江苏宿迁市·中考真题)如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°【例2-3】(2021·浙江绍兴市·中考真题)如图,在中,,点D ,E 分別在边AB ,AC 上,,连结CD ,BE .(1)若,求,的度数.(2)写出与之间的关系,并说明理由.考点三:三角形中的重要线段【例3-1】(2022•大庆)下列说法不正确的是( )A .有两个角是锐角的三角形是直角或钝角三角形B .有两条边上的高相等的三角形是等腰三角形C .有两个角互余的三角形是直角三角形D .底和腰相等的等腰三角形是等边三角形ABC 40A ∠=︒BD BC CE ==80ABC ∠=︒BDC ∠ABE ∠BEC ∠BDC∠【例3-2】(2021·江苏泰州市·中考模拟)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是( )A .点B .点C .点D .点【例3-3】如图,在ABC 中,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ;再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ;连结AP 并延长交BC 于点D .则下列说法正确的是( )A .AD BD AB +<B .AD 一定经过ABC 的重心 C .BAD CAD ∠=∠D .AD 一定经过ABC 的外心考点四: 垂直平分线与角平分线的性质 【例4-1】(2021·青海中考真题)如图,在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .7.5B .8C .15D .无法确定【例4-2】在△ABC 中,∠BAC =115°,DE 、FG 分别为AB 、AC 的垂直平分线,则∠EAG 的度数为 A B C D E F G ABC∆D E FGA .50°B .40°C .30°D .25°【例4-3】如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考点五: 全等三角形的性质与判定【例5-1】2020·湖北省直辖县级行政单位·中考真题)如图,已知和都是等腰三角形,,交于点F ,连接,下列结论:①;②;③平分;④.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【例5-2】(2021·陕西中考真题)如图,,,点在上,且.求证:.【例5-3】(2021·广东广州·中考真题)如图,点E 、F 在线段BC 上,,,ABC ADE 90BAC DAE ∠=∠=︒,BD CE AF BD CE =BF CF ⊥AF CAD ∠45AFE ∠=︒//BD AC BD BC =E BC BE AC =D ABC ∠=∠//AB CD A D ∠=∠,证明:.【例5-4】(2021·江苏淮安·中考真题)(知识再现)学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称HL 定理)”是判定直角三角形全等的特有方法.(简单应用)如图(1),在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别在边AC 、AB 上.若CE =BD ,则线段AE 和线段AD 的数量关系是 .(拓展延伸)在△ABC 中,∠BAC =(90°<<180°),AB =AC =m ,点D 在边AC 上. (1)若点E 在边AB 上,且CE =BD ,如图(2)所示,则线段AE 与线段AD 相等吗?如果相等,请给出证明;如果不相等,请说明理由.(2)若点E 在BA 的延长线上,且CE =BD .试探究线段AE 与线段AD 的数量关系(用含有a 、m 的式子表示),并说明理由.【例5-5】(2020·山东烟台市·中考真题)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD ;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.考点六: 三角形全等综合【例6-1】(2022·北京)在ABC 中,90ACB ∠=,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC = BE CF =AE DF=αα(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥; (2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.【例6-2】(2022·山东泰安·中考真题)正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形;(2)求证:2AG CG DG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.第三部分:中考真题一.选择题1.(2022•鄂尔多斯)如图,15AOE ∠=︒,OE 平分AOB ∠,//DE OB 交OA 于点D ,EC OB ⊥,垂足为C .若2EC =,则OD 的长为( )A .2B .23C .4D .43+2.(2022•荆门)数学兴趣小组为测量学校A 与河对岸的科技馆B 之间的距离,在A 的同岸选取点C ,测得30AC =,45A ∠=︒,90C ∠=︒,如图,据此可求得A ,B 之间的距离为( )A .203B .60C .302D .303.(2022•湘西州)如图,在Rt ABC ∆中,90A ∠=︒,M 为BC 的中点,H 为AB 上一点,过点C 作//CG AB ,交HM 的延长线于点G ,若8AC =,6AB =,则四边形ACGH 周长的最小值是( )A .24B .22C .20D .184.(2022•西宁)若长度是4,6,a 的三条线段能组成一个三角形,则a 的值可以是( )A .2B .5C .10D .117.(2022•西宁)如图,60MON ∠=︒,以点O 为圆心,适当长为半径画弧,交OM 于点A ,交ON 于点B ;分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧在MON ∠的内部相交于点P ,画射线OP ;连接AB ,AP ,BP ,过点P 作PE OM ⊥于点E ,PF ON ⊥于点F .则以下结论错误的是( )A .AOB ∆是等边三角形B .PE PF =C .PAE PBF ∆≅∆D .四边形OAPB 是菱形5.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.5-B.4C.7D.86.(2022•大连)如图,在ABC∆中,90ACB∠=︒.分别以点A和点C为圆心,大于12 AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若3AB=,则CD的长是()A.6B.3C.1.5D.1 7.(2022•青海)如图,在Rt ABC∆中,90ACB∠=︒,D是AB的中点,延长CB至点E,使BE BC=,连接DE,F为DE中点,连接BF.若16AC=,12BC=,则BF的长为( )A.5B.4C.6D.88.(2022•张家界)如图,点O是等边三角形ABC内一点,2OA=,1OB=,3OC=,则AOB∆与BOC∆的面积之和为()A 3B3C33D39.(2022•长沙)如图,在ABC∆中,按以下步骤作图:①分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若22AB=AM的长为()A.4B.2C3D2 10.(2022•海南)如图,直线//m n,ABC∆是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若1140∠=︒,则2∠的度数是()A.80︒B.100︒C.120︒D.140︒11.(2022•黑龙江)如图,ABC∆中,AB AC=,AD平分BAC∠与BC相交于点D,点E 是AB的中点,点F是DC的中点,连接EF交AD于点P.若ABC∆的面积是24, 1.5PD=,则PE的长是()A .90ADC ∠=︒B .DE DF =C .AD BC = D .BD CD =12.(2022•广东)下列图形中有稳定性的是( )A .三角形B .平行四边形C .长方形D .正方形13.(2022•贺州)如图,在Rt ABC ∆中,90C ∠=︒,56B ∠=︒,则A ∠的度数为( )A .34︒B .44︒C .124︒D .134︒14.(2022•永州)如图,在Rt ABC ∆中,90ABC ∠=︒,60C ∠=︒,点D 为边AC 的中点,2BD =,则BC 的长为( )A 3B .23C .2D .415.(2022•荆州)如图,直线12//l l ,AB AC =,40BAC ∠=︒,则12∠+∠的度数是( )A .60︒B .70︒C .80︒D .90︒16.(2022•宜昌)如图,在ABC ∆中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD ∆的周长为( )A .25B .22C .19D .1817.(2022•岳阳)如图,已知//l AB ,CD l ⊥于点D ,若40C ∠=︒,则1∠的度数是( )A .30︒B .40︒C .50︒D .60︒18.(2022•台湾)如图,ABC ∆中,D 点在AB 上,E 点在BC 上,DE 为AB 的中垂线.若B C ∠=∠,且90EAC ∠>︒,则根据图中标示的角,判断下列叙述何者正确?( )A .12∠=∠,13∠<∠B .12∠=∠,13∠>∠C .12∠≠∠,13∠<∠D .12∠≠∠,13∠>∠19.(2022•宜宾)如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,//DE AB 交AC 于点E ,//DF AC 交AB 于点F ,那么四边形AEDF 的周长是( )A .5B .10C .15D .2020.(2022•广元)如图,在ABC ∆中,6BC =,8AC =,90C ∠=︒,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .2.5B .2C .3.5D .321.(2022•宜宾)如图,ABC ∆和ADE ∆都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC ∆内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则23CE =+.其中含所有正确结论的选项是( )A .①②④B .①②③C .①③④D .①②③④22.(2022•杭州)如图,CD AB ⊥于点D ,已知ABC ∠是钝角,则( )A .线段CD 是ABC ∆的AC 边上的高线B .线段CD 是ABC ∆的AB 边上的高线C .线段AD 是ABC ∆的BC 边上的高线D .线段AD 是ABC ∆的AC 边上的高线二.填空题1.(2020·辽宁铁岭市·中考真题)如图,在ABC 中,5,8,9===AB AC BC ,以A 为圆心,以适当的长为半径作弧,交AB 于点M ,交AC 于点N ,分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,点F 在AC 边上,AF AB =,连接DF ,则CDF 的周长为___________.2.(2020·辽宁营口市·中考真题)如图,△ABC 为等边三角形,边长为6,AD ⊥BC ,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE +EF 的最小值为_____.3.(2021·辽宁锦州·中考真题)如图,在△ABC 中,AC =4,∠A =60°,∠B =45°,BC 边的垂直平分线DE 交AB 于点D ,连接CD ,则AB 的长为_________________.4题4.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.5.(2020·湖北中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为_____.6.(2021·湖北十堰市·中考真题)如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且3AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是__________.7.如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4= .三.解答题1.(2022铜仁)如图,点C 在BD 上,,,,⊥⊥⊥=AB BD ED BD AC CE AB CD .求证:ABC CDE △≌△.2.(2022福建)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .3.(2022广东)如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.4.(2022大庆)如图,在四边形ABDF 中,点E ,C 为对角线BF 上的两点,,,AB DF AC DE EB CF ===.连接,AE CD .(1)求证:四边形ABDF 是平行四边形;(2)若AE AC =,求证:AB DB =.5.(2022云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .6.(2022梧州)如图,在ABCD 中,E ,G ,H ,F 分别是,,,AB BC CD DA 上的点,且,BE DH AF CG .求证:EF HG =.7.(2022遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:ADE CDG ≌;(2)若2AE BE ==,求BF 的长8.(2022贵阳)如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O ,点F 在DC 上,且MF AD ∥.(1)求证:ABE FMN ≌△△;(2)若8AB =,6AE =,求ON 的长.9.(2022安徽)已知四边形ABCD 中,BC =CD .连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .(1)如图1,若∥DE BC ,求证:四边形BCDE 是菱形;(2)如图2,连接AC ,设BD ,AC 相交于点F ,DE 垂直平分线段AC .(ⅰ)求∠CED 的大小;(ⅱ)若AF =AE ,求证:BE =CF .10.(2022玉林)问题情境:在数学探究活动中,老师给出了如图的图形及下面三个等式:①AB AC = ②DB DC = ③BAD CAD ∠=∠若以其中两个等式作为已知条件,能否得到余下一个等式成立? 解决方案:探究ABD △与ACD △全等.问题解决:(1)当选择①②作为已知条件时,ABD △与ACD △全等吗?_____________(填“全等”或“不全等”),理由是_____________;(2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求ABD ACD △≌△的概率.11.(2022北部湾)已知MON α∠=,点A ,B 分别在射线,OM ON 上运动,6AB =.(1)如图①,若90α=︒,取AB 中点D ,点A ,B 运动时,点D 也随之运动,点A ,B ,D 的对应点分别为,,A B D ''',连接,OD OD '.判断OD 与OD '有什么数量关系?证明你的结论:(2)如图②,若60α=︒,以AB 为斜边在其右侧作等腰直角三角形ABC ,求点O 与点C 的最大距离:(3)如图③,若45α=︒,当点A ,B 运动到什么位置时,AOB 的面积最大?请说明理由,并求出AOB 面积的最大值.。
数学中考总复习(一轮复习)第17讲全等三角形
第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。
(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。
2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。
微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。
二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。
2•判定:角的内部到角的两边的距离相等的点在 ____________ 。
3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。
2•角的平分线的性质定理和判定定理互为逆定理。
注意分清题设和结论。
高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。
(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。
2024年中考数学复习(全国版)第四讲 全等、相似三角形(原卷版)
→➌题型突破←→➍专题训练←题型一全等三角形1.如图,等腰△ABC 中,点D,E 分别在腰AB,AC 上,添加下列条件,不能判定△ABE≌△ACD 的是()A.AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC2.如图,在△AOB 和△COD 中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD 交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM 平分∠AOD,④MO 平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.13.如图所示,,ABC ECD 均为等边三角形,边长分别为5cm,3cm ,B、C、D 三点在同一条直线上,则下列结论正确的________________.(填序号)①AD BE ②7cm BE ③CFG △为等边三角形④13cm 7CM ⑤CM 平分BMD4.如图,在矩形ABCD 中,AD=4,将∠A 向内翻析,点A 落在BC 上,记为A 1,折痕为DE.若将∠B 沿EA 1向内翻折,点B 恰好落在DE 上,记为B 1,则AB=_____.5.如图,在平面直角坐标系中,点C 的坐标为 1,0 ,点A 的坐标为 3,3 ,将点A 绕点C 顺时针旋转90 得到点B ,则点B 的坐标为_____________.6.已知,如图1,若AD 是ABC 中BAC 的内角平分线,通过证明可得=AB BD AC CD,同理,若AE 是ABC 中BAC 的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在ABC 中,2,3,BD CD AD 是ABC 的内角平分线,则ABC 的BC边上的中线长l 的取值范围是________7.如图,在Rt△ABC 中,∠ACB=90°,且AC=AD.(1)作∠BAC 的平分线,交BC 于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,证明AB DE .8.如图,ABC 中,AB AC ,点,D E 在边BC 上,BD CE .求证ADE AED .9.如图,点D、E 分别是AB、AC 的中点,BE、CD 相交于点O,∠B=∠C,BD=CE.求证:(1)OD=OE;(2)△ABE≌△ACD.10.如图,点E、F 在线段BC 上,//AB CD ,A D ,BE CF ,证明:AE DF .11.如图,矩形ABCD 中为边BC 上一点,将ABE △沿AE 翻折后,点B 恰好落在对角线AC 的中点F 上.(1)证明:AEF CEF ≌;(2)若3AB AE 的长度12.如图,点A,D,B,E 在一条直线上AD BE ,AC DF ,//AC DF .求证:BC EF .13.如图,在矩形ABCD 中,点M 在DC 上,AM AB ,且BN AM ,垂足为N .(1)求证:ABN MAD ≌;(2)若2,4AD AN ,求四边形BCMN 的面积.14.如图,在ABC 中,点D 在AB 边上,CB CD ,将边CA 绕点C 旋转到CE 的位置,使得ECA DCB ,连接DE 与AC 交于点F ,且70B ,10A .(1)求证:AB ED ;(2)求AFE的度数.15.在四边形ABCD中,对角线AC平分∠BAD.(探究发现)(1)如图①,若∠BAD=120 ,∠ABC=∠ADC=90 .求证:AD+AB=AC;(拓展迁移)(2)如图②,若∠BAD=120 ,∠ABC+∠ADC=180 .①猜想AB、AD、AC三条线段的数量关系,并说明理由;②若AC=10,求四边形ABCD的面积.16.已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60 得到CQ,连QB.(1)如图1,直接写出线段AP 与BQ 的数量关系;(2)如图2,当点P、B 在AC 同侧且AP AC 时,求证:直线PB 垂直平分线段CQ ;(3)如图3,若等边三角形ABC 的边长为4,点P、B 分别位于直线AC 异侧,且APQ 的34AP 的长度.17.如图①,E F 、是等腰Rt ABC 的斜边BC 上的两动点,45,EAF CD BC 且CD BE .(1)求证:ABE ACD △≌△;(2)求证:222EF BE CF ;(3)如图②,作AH BC ,垂足为H,设,EAH FAH ,不妨设2AB 利用(2)的结论证明:当45 时,tan tan tan()1tan tan成立.题型二相似三角形18.如图,ABC 与111A B C △位似,位似中心是点O,若1:1:2OA OA ,则ABC 与111A B C △的周长比是()A.1:2B.1:3C.1:4D.219.如图, ABC 中,点D、E 分别在AB、AC 上,且12AD AE DB EC ==,下列结论正确的是()A.DE:BC=1:2B. ADE 与 ABC 的面积比为1:3C. ADE 与 ABC 的周长比为1:2D.DE //BC20.如图,在ACD △中,6AD ,5BC , 2AC AB AB BC ,且DAB DCA ,若3AD AP ,点Q 是线段AB 上的动点,则PQ 的最小值是()A.72B.6252D.8521.如图,△ABC 中,AB=AC,∠B=72°,∠ACB 的平分线CD 交AB 于点D,则点D 是线段AB 的黄金分割点.若AC=2,则BD=______.22.如图,矩形ABCD 中,6AB ,8BC ,对角线BD 的垂直平分线EF 交AD 于点E 、交BC 于点F ,则线段EF 的长为__.23.如图,在菱形ABCD 中,点M,N 分别是边BC ,DC 上的点,34BM BC ,34DN DC .连接AM ,AN ,延长AN 交线段BC 延长线于点E.(1)求证:ABM AND △≌△;(2)若4 AD ,则ME 的长是__________.24.已知AB BD ,AE EF , ABD AEF .(1)找出与DBF 相等的角并证明;(2)求证:BFD AFB ;(3)AF kDF ,180EDF MDF ,求AE MF .25.已知在 ABC 中,O 为BC 边的中点,连接AO,将 AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到 EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC 时,则AE 与CF 满足的数量关系是;(2)如图2,当∠BAC=90°且AB≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE 的长.26.在△ABC 中,AC=AB,∠BAC= ,D 为线段AB 上的动点,连接DC,将DC 绕点D 顺时针旋转 得到DE,连接CE,BE.(1)如图1,当 =60°时,求证:△CAD≌△CBE;(2)如图2,当tanα=34时,①探究AD和BE之间的数量关系,并说明理由;②若AC=5,H是BC上一点,在点D移动过程中,CE+EH是否存在最小值?若存在,请直接写出CE+EH的最小值;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴AC=AD (全等三角形对应边相等)
3.如图,PA=PB,PC是△PAB的
P
角分线,∠A=55°求:∠B的度数
解:∵PC是△ APB的角平分线 A C B ∴∠APC=∠BPC(三角形角平分线意义)
在 △APC和△BPC 中 ∠__P__AA____P=__CP__=B____(∠已____B__知PC)∴∵∠∠AA==∠550B(( 全 应等角已三相知角等形对)) P_C__=_P_C_(_公__共__边)∴∠B=∠A=550(等量代换)
扩散二:已知:如图,AB=AC,DB=DC,F 是AD上的一点,试说明:BF=CF.
扩散三:已知:如图,AB=AC,DB=DC,F 是 DA 延 长 线 上 的 一 点 , 试 说 明:BF=CF.
扩散四:已知:AB=AC,DB=DC,F是直线AD上 一动点(即点F在直线AD上运动),点F在AD上 不停的运动.你发现什么规律?请说出,并进行 证明.
∴△APC ≌△BPC( SAS)
4:如图,点A、F、E、C在同一直线上, AF=CE, BE=DF,BE∥DF,求证:AB∥CD。
证明:∵AF=CE ∴AE=CF 又∵BE∥DF ∴∠1=∠2 又∵BE=DF 在△AEB和△ CFD中 AE=CF, ∠1=∠2, BE=DF ∴△AEB≌△ CFD ∴∠A=∠C ∴AB∥CD
5.已知,如图 ,A 、E、F、C 四点在同 一直线上,AB⊥BE, CD⊥DF, AB=CD, AE=CF,请问:BF是否等于DE?说明理由。
D
A
E
F
C
B
例 : 已 知 , 如 图 ,AB=AC,DB=DC,F 是 AD 的 延 长 线 上 的 一 点 , 试 说 明:BF=CF.
扩散一: 已 知 : 如 图 ,AB=AC,DB=DC,F 是 AD 延 长 线 上 一 点 , 且 B,F,C 在 一 条 直 线 上 , 试 说 明:F是BC的中点.
(直角三角形)HL: 斜边及一条直角边对 应相等的两个直角三角形全等。
知识点 ※三角形全等的证题思路:
找夹角 SAS 已知两边找直角 HL
找另一边 SSS 边为角的对边 找任一角 AAS
已知一边一角边为角的邻边找找找夹夹边角角的的的对另另角一一边角AASASASAS
已知两角找找夹任边一边ASAAAS
例2:已知:如图,CD⊥AB,BE⊥AC, 垂足分别为D、E,BE、CD相交于O点, ∠1=∠2,图中全等的三角形共有( ) A.D1对 B.2对 C.3对 D.4对
例3.如图,AM=AN, BM=BN
说明△AMB≌△ANB的理由 N
M
解:在△AMB和△ANB中
B
AM __A_N____(_已__知___)
AB=AB (公共边)
∠ABD=∠ABC (已知 )
∴△ABD ≌ △ABC(ASA )
∴AC=AD (全等三角形对应边相等)
2.已知,如图,∠1=∠2,∠C=∠D
求证:AC=AD
D
证明:
在△ABD和△ABC中
1
∠1=∠2 (已知) A 2 B
∠C=∠D (已知)
AB=AB(公共边)
C
∴△ABD≌△ABC (AAS)
在△ABC与△FED中
AB=EF(已知) B=C(已知)
BC=ED(已证)
∴△ABC≌△FED(SAS)
1.如图,∠1=∠2,∠3=∠4
D
求证:AC=AD
证明: ∵∠ABD=180-∠3 A
1 2
3
B4
∠ABC=180-∠4
而∠3=∠4(已知)
∴∠ABD=∠ABC
C
在△ABD和△ABC中
∠1=∠2(已知 )
扩散五:已知:如图,AB=AC,DB=DC,F 是AD延长线上一点,试说明点F到 AB,AC的距离相等.
扩散六:已知:如图,AB=AC,DB=DC,F 是AD上的一点,试说明:点F到AB,AC 的距离相等.
直角三角形全等的判定:
SAS、ASA、AAS、SSS、HL
边边边:
三边对应相等的两个
三角形全等.(简记: SSS)
边角边:
有两边和它们夹角对应
相等的两个三角形全等. (简记:SAS)
角边角:
有两角和它们夹边对应
相等的两个三角形全等 (简记:ASA)
角角边: 有两角和其中一个角的 对边对应相等的两个三 角形全等(简记:AAS)
合作中学习 学习中创新
中考总复习之--
全等三角形复习
学习目标:通过概念的复习
和 典型例题评析,使学生掌握
三角形全等的判定、性质及其 应用。
学习重点:典型例型评析。
学习难点:学生综合能力的
提高。
知识点
全等三角形的性质: 对应边、对应角相等。 全等三角形的判定: 一般三角形全等的判定:
SAS、ASA、AAS、SSS
小试锋芒:
已知:如图∠B=∠DEF,BC=EF,补充条件 求证:ΔABC≌ ΔDEF (1)若要以“SAS”为依据,还缺条件 _AB_=D_E__; (2) 若要以“ASA”为依据,还缺条件∠_AC_B=_∠_D;EF
(3) 若要以“AAS”为依据,还缺条件∠_A_=_∠_D_;
(4)若要以“SSS” 为依据,还缺条件A_B=_DE_、_AC_=D;F
探究反映的规律是:
有斜边和一条直角边 对应相等的两个直角三角 形全等(简写成“斜边、 直角边”或“HL”).
三角形全等的识别的方法:
SSS:三条边对应相等的两个三角形全 等。
SAS:有两条边和它们的夹角对应相等 的两个三角形全等。
ASA: 有两个角和它们的夹边对应相等 的两个三角形全等。
AAS: 有两个角和其中一个角的对边对 应相等的两个三角形全等。
__B_M____ BN(已知)
A
__A_B____ ___A_B_____(公共边)
∴ △ABM ≌ △ABN ( SSS )
例4.如图, ∠B=∠E,AB=EF,
BD=EC,那么△ABC与F源自△FED全等吗?为什么? C
B
D
E
解:全等。∵BD=EC(已知)
A
∴BD-CD=EC-CD。即BC=ED
AD
B E CF
(5)若∠B=∠DEF=90°要以“HL” 为依据, 还缺条件_AC_=_DF__
= =
例题选析
例1:如图,D在AB上,E在AC上,且
∠B =∠C,那么补充下列一个条件后,
仍无法判定△ABE≌△ACD的是( B )
A.AD=AE
B. ∠AEB=∠ADC
C.BE=CD
D.AB=AC
例题选析