时间序列分析

合集下载

时间序列分析ppt课件

时间序列分析ppt课件
时间序列分析ppt课 件
目录
• 时间序列分析简介 • 时间序列的基本概念 • 时间序列分析方法 • 时间序列分析案例 • 时间序列分析的未来发展
01 时间序列分析简介
时间序列的定义与特点
定义
时间序列是指按照时间顺序排列的一 系列观测值。
特点
时间序列具有动态性、趋势性和周期 性等特点,这些特点对时间序列分析 具有重要的影响。
时间序列的季节性
总结词
时间序列的季节性是指时间序列在固定周期内重复出现的模式,这种模式可能是由于季节性因素、周 期性事件或数据采集的频率所引起的。
详细描述
季节性是时间序列中的一个重要特征,许多时间序列都表现出季节性。例如,一个表示月度销售的序 列可能会在每个月份都出现类似的销售模式。在进行时间序列分析时,需要考虑季节性对模型的影响 ,以便更准确地预测未来的趋势和模式。
时间序列分析在金融领域的应用广泛,如股票价格预测 、风险评估等。未来将进一步探索时间序列分析时间序列分析可用于医学影像分析、疾病 预测等方面。未来将进一步拓展其在健康领域的应用范 围,为医疗保健提供有力支持。
谢谢聆听
时间序列分析的意义
01
预测未来趋势
通过对时间序列进行分析,可以了解数据的变化趋势, 从而预测未来的走势,为决策提供依据。
02
揭示内在规律
时间序列分析可以帮助我们揭示数据背后的内在规律和 机制,进一步理解事物的本质。
03
优化资源配置
通过对时间序列的预测和分析,可以更好地优化资源配 置,提高资源利用效率。
03 时间序列分析方法
图表分析法
总结词
通过图表直观展示时间序列数据,便 于观察数据变化趋势和异常点。
详细描述

时间序列分析

时间序列分析

特征提取方法
特征提取是时间序列分析中的重要步骤, 研究者们不断尝试新的特征提取方法,如 基于小波变换、傅里叶变换和经验模式分 解等技术,以更好地提取时间序列中的特 征信息。
数据质量与隐私保护问题
数据质量
时间序列数据常常存在缺失值、异常值和噪声等问题,如何有效处理这些问题, 提高数据质量,是时间序列分析面临的重要挑战。
气候变化是全球性问题,需要对未来的气 候变化趋势进行预测。时间序列分析可以 用于气候变化预测,通过对历史气候数据 进行分析,建立时间序列模型,从而预测 未来的气候变化趋势。这种应用场景可以 为政府制定应对气候变化的政策提供科学 依据。
销售预测
总结词
通过分析历史销售数据,利用时间序列分析方法可以预测未来的销售趋势, 从而为生产计划和库存管理提供参考。
模型优化方法
特征选择
选择与目标变量相关性高的特征, 提高模型的预测能力。
参数调优
调整模型参数,如回归模型的系数 、支持向量机模型的核函数和参数 等,以提高模型性能。
集成学习
将多个模型的预测结果进行融合, 以获得更好的预测结果。
模型融合
将多个不同的模型进行融合,以获 得更好的预测结果。
模型预测误差分析
岭回归模型
用于解决多重共线性的问题,能够 更准确地估计回归系数。
LASSO回归模型
用于解决岭回归模型的过拟合问题 ,能够更有效地进行特征选择。
ARIMA模型
ARIMA模型概述
ARIMA是AutoRegressive Integrated Moving Average 的缩写,是一种用于时间序列数 据分析的统计模型。
详细描述
时间序列分析是一种广泛应用于各种领域的数据分析方法。除了上述应用场景外,时间序列分析还广泛应用于 能源需求预测、交通流量预测、经济指标预测等领域。这些应用场景可以帮助政府和企业做出更加明智的决策 ,提高效率并减少成本。

时间序列分析

时间序列分析

时间序列分析xx年xx月xx日CATALOGUE目录•时间序列分析简介•时间序列数据的预处理•时间序列模型的构建•时间序列模型的评估与优化•时间序列分析的应用场景与实例•时间序列分析的未来发展与挑战01时间序列分析简介时间序列分析是一种统计学方法,用于研究具有时间顺序的数据,以揭示其内在的规律性和预测未来的趋势。

时间序列数据通常表现为历史数据序列,可以用于预测未来,从而帮助决策者做出更好的决策。

定义与概念1时间序列分析的用途与重要性23通过分析时间序列数据,可以预测未来的趋势和变化,从而提前做好准备和规划。

预测未来趋势时间序列分析可以识别出异常情况或突发事件,从而及时采取措施应对。

识别异常情况通过预测未来需求,时间序列分析可以帮助决策者优化资源配置,提高效率和降低成本。

优化资源配置数据收集和处理收集和处理时间序列数据,包括数据清洗、缺失值填充等预处理工作。

通过图表等方式将数据呈现出来,以便更好地观察和分析数据。

根据数据的特点和需求选择合适的模型,并建立模型以拟合数据。

对模型进行评估和优化,以提高模型的预测能力和准确性。

利用训练好的模型对未来进行预测,并给出预测结果和建议。

时间序列分析的基本步骤数据可视化模型评估与优化预测未来趋势模型选择与建立02时间序列数据的预处理03数据格式转换根据分析需求,将数据转换为合适的格式,如将日期转换为时间戳或将多个变量合并为一个数据集。

数据清洗与整理01缺失值处理对于缺失的数据,需要选择合适的处理方法,如插值、删除或忽略。

02异常值处理异常值可能会对分析结果产生不良影响,应进行识别和处理,如平滑处理或直接删除。

季节性调整通过去除时间序列数据中的季节性因素,以揭示趋势和循环成分。

趋势分析对时间序列数据的长期变化进行分析,以识别增长或下降的趋势。

季节性调整与趋势分析数据转换为改善数据的质量和稳定性,可对数据进行转换,如对数转换或平方根转换。

平滑处理为减少数据中的随机波动和噪声,可采用平滑技术,如移动平均法或低通滤波器。

第10章-时间序列分析

第10章-时间序列分析

67885
•1991~1996年平均国内生产总值:
•时期数列
•2023/5/3
•【例】
年份
•19941998年中 国能源生产 总量
1994 1995 1996 1997 1998
能源生产总量(万吨标 准煤) 118729 129034 132616 132410 124000
•2023/5/3
❖2.绝对指标时点数列的序时平均数
如:1991—1996年间,我国逐年的GDP,构
成一个时间序列。
记:a1 , a2 , … , an ( n项 ) 或:a0 , a1 , a2 , … , an ( n+1项 )
•2023/5/3

时间数列的构成要素:
1. 现象所属的时间;
2. 不同时间的具体指标数值。
•2023/5/3
例如
年底人数
(万 人)
8350 9949 11828 14071 16851 18375
间隔年数 3 2 3 2 2
•间断时点数列(间隔不等)
•2023/5/3
•我国第三产业平均从业人数:
•2023/5/3
•【例】 •某地区1999年社会劳动者人数资料如下

•单位:万人
时间 1月1日 5月31日 8月31日 12月31日
•2023/5/3
•定基和环比发展速度相互关系
•2023/5/3
【例】
❖ 某产品外贸进出口量各年环比发展速度资料如下: ❖ 1996年为103.9%,1997年为100.9%, ❖ 1998年为95.5%,1999年为101.6%,2000年为
108%,试计算2000年以1995年为基期的定基发 展速度。 ❖ (109.57%)

什么是时间序列分析?有哪些应用场景?

 什么是时间序列分析?有哪些应用场景?

时间序列分析是一种统计方法,专门用于研究有序时间点上观测到的数值数据。

这些数据点按照时间顺序排列,形成了一条时间序列。

时间序列分析旨在揭示这些数据随时间变化的模式、趋势和周期性,并预测未来的走势。

这一方法广泛应用于各个领域,包括但不限于金融、经济、气象、生物学、医学、社会科学和工程等。

**一、时间序列分析的基本概念**1. **时间序列的定义**:时间序列是一组按时间顺序排列的数据点,通常用于反映某个或多个变量随时间的变化情况。

这些数据点可以是连续的(如每秒的气温),也可以是离散的(如每天的股票价格)。

2. **时间序列的构成**:时间序列通常由四个部分组成:趋势(Trend)、季节性(Seasonality)、周期性(Cyclicality)和随机性(Randomness)。

* **趋势**:长期变化的方向,可以是上升、下降或平稳的。

* **季节性**:由外部因素(如季节变化)引起的周期性变化。

* **周期性**:由内部因素(如经济周期)引起的周期性变化。

* **随机性**:无法预测的随机波动。

3. **时间序列的类型**:根据数据的性质和分析目标,时间序列可以分为平稳时间序列和非平稳时间序列。

平稳时间序列的统计特性(如均值和方差)不随时间变化,而非平稳时间序列则可能存在长期趋势或其他非恒定特性。

**二、时间序列分析方法**1. **描述性统计**:通过计算时间序列的均值、方差、标准差等指标,初步了解数据的分布情况。

2. **时间序列图**:通过绘制时间序列图,可以直观地观察数据的趋势、季节性和周期性。

3. **时间序列模型**:常用的时间序列模型包括自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)等。

这些模型通过拟合历史数据来预测未来的趋势。

**三、时间序列分析的应用场景**1. **金融市场分析**:时间序列分析在金融市场分析中具有重要意义。

股票价格、汇率、债券收益率等金融数据都是典型的时间序列数据。

时间序列 8种方法

时间序列 8种方法

时间序列分析是一种用于处理和分析时间序列数据的方法,它可以帮助我们理解数据的变化趋势、周期性、随机性等特征。

以下是在时间序列分析中常用的8种方法:
1. 描述性统计:这是最基本的数据分析方法,包括平均值、中位数、标准差、极值等。

2. 趋势图:将数据以图表的形式展示出来,可以直观地看到数据的变化趋势。

3. 季节性分析:如果数据具有季节性特征,可以使用季节性指数、移动平均法等方法来分析。

4. 回归分析:通过建立回归模型,对时间序列数据进行拟合,以预测未来的数据。

5. 滑动平均模型(SMA):这是一种常用的时间序列分析方法,可以平滑短期波动,反映价格或指数的长期变化趋势。

6. 指数平滑:这是一种基于时间序列数据的平滑方法,可以处理时间序列数据的非平稳性问题。

它有多种形式,如一次指数平滑、二次指数平滑等。

7. ARIMA模型:这是一种常用于时间序列分析的模型,可以自动处理时间序列数据的平稳性和季节性变化。

8. 时间序列预测的神经网络方法:这种方法利用神经网络对时间序列数据进行训练,以预测未来的数据。

这些方法各有优缺点,具体使用哪种方法取决于数据的特征和需求。

在应用这些方法时,需要注意数据的清洗和预处理,以及对结果的解读和分析。

另外,随着数据科学技术的不断发展,可能还会出现新的方法和工具来应对时间序列分析中的问题。

此外,要注意这些方法只是帮助我们理解和预测时间序列数据的一种手段,它们不能替代我们对于数据背后问题的深入思考和探讨。

在应用这些方法时,我们需要结合实际问题和背景知识,进行合理的分析和解释。

同时,也需要不断地学习和探索,以应对不断变化的数据和分析需求。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种重要的统计学方法,用于研究随时间变化的数据。

它可以帮助我们了解数据的趋势、周期性和季节性,预测未来的变化趋势,并做出相应的决策。

本文将介绍时间序列分析的基本概念、常见的方法和应用领域。

一、时间序列的基本概念时间序列是按时间先后顺序排列的一组观察数据。

它可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售量。

时间序列的分析要求数据点之间存在一定的相关性和规律性。

二、时间序列的组成部分时间序列通常由三个主要组成部分构成:趋势、季节性和随机性。

趋势是时间序列在长期内呈现的整体变化趋势;季节性是时间序列在较短的时间内出现的重复周期性变化;随机性是时间序列中无法解释的随机波动。

三、时间序列分析的方法1. 描述性分析描述性分析是对时间序列数据进行可视化和概括的方法。

常用的方法包括绘制折线图、直方图和自相关图等,以帮助我们了解数据的分布和相关性。

2. 平稳性检验平稳性是时间序列分析的基本假设。

平稳序列的统计特性在时间上是不随时间变化的,包括均值、方差和自相关性等。

常见的平稳性检验方法有单位根检验和ADF检验。

3. 建立模型建立时间序列模型是对数据进行预测和分析的关键步骤。

常用的时间序列模型有ARIMA模型、AR模型和MA模型等。

通过对历史数据的拟合,我们可以得到模型的参数,从而进行未来值的预测。

4. 模型诊断与改进在建立模型之后,需要对其进行诊断和改进。

常见的诊断方法包括残差检验、模型稳定性检验和模型比较等。

根据诊断结果,我们可以对模型进行改进,提高预测的准确性。

四、时间序列分析的应用领域时间序列分析在许多领域都有广泛的应用,例如经济学、金融学、气象学和市场营销等。

在经济学中,时间序列分析可以用于预测经济增长趋势和通货膨胀率。

在金融学中,它可以帮助我们预测股票价格和利率走势。

在气象学中,时间序列分析可以用于预测天气变化和自然灾害。

在市场营销中,它可以帮助我们预测销售量和用户行为。

什么是时间序列分析

什么是时间序列分析

什么是时间序列分析关键信息项:1、时间序列分析的定义2、时间序列分析的目的3、时间序列分析的常用方法4、时间序列数据的特点5、时间序列分析的应用领域6、时间序列分析的步骤7、时间序列分析的局限性11 时间序列分析的定义时间序列分析是一种用于研究数据随时间变化规律的统计方法。

它通过对一系列按时间顺序排列的数据点进行分析,以揭示数据中的趋势、季节性、周期性和随机性等特征。

时间序列分析在经济学、金融学、气象学、工程学等多个领域都有广泛的应用。

111 时间序列数据的特点时间序列数据具有以下几个主要特点:1111 顺序性:数据是按照时间顺序依次记录的,时间顺序对于分析结果具有重要影响。

1112 相关性:相邻时间点的数据之间往往存在一定的相关性。

1113 趋势性:数据可能呈现出长期的上升、下降或稳定的趋势。

1114 季节性:某些数据在一年内的特定时间段内会表现出相似的模式,如销售数据在节假日期间的增加。

1115 随机性:数据中还包含了一些无法预测的随机波动。

12 时间序列分析的目的时间序列分析的主要目的包括:121 预测未来值:通过对历史数据的分析,预测未来一段时间内数据的可能取值,为决策提供依据。

122 理解数据的动态特征:揭示数据的趋势、季节性和周期性等模式,帮助人们更好地理解数据产生的机制。

123 监测和控制:用于监测系统的运行状态,及时发现异常情况并采取相应的控制措施。

124 评估政策和干预的效果:在政策实施或干预措施执行后,通过时间序列分析评估其对相关数据的影响。

13 时间序列分析的常用方法常用的时间序列分析方法包括:131 移动平均法:通过计算一定时期内数据的平均值来平滑数据,消除随机波动。

132 指数平滑法:对历史数据进行加权平均,给予近期数据更高的权重,以更好地反映数据的最新变化。

133 自回归模型(AR):利用数据自身的滞后值来预测当前值。

134 移动平均自回归模型(ARMA):结合自回归和移动平均的特点进行建模。

时间序列分析与方法

时间序列分析与方法

时间序列分析与方法时间序列分析是一种用来研究时间序列数据的方法和技术。

它涉及收集、整理、分析和解释时间相关的数据以推断未来发展趋势的能力。

这种分析方法广泛应用于各个领域,包括经济学、金融学、气象学、工程学等等。

本文将介绍时间序列分析的基本概念、方法和应用。

一、时间序列分析的概念时间序列是根据时间顺序排列的一组数据点组成的数据序列。

在时间序列中,时间是自变量,而观测值是因变量。

时间序列数据可以是连续的,如每小时的股票价格,也可以是离散的,如每月的销售额。

时间序列分析的目的是识别数据中的模式和趋势,并基于这些模式和趋势进行预测。

时间序列分析方法包括描述性分析、平稳性检验、时间序列模型、预测方法等。

描述性分析旨在了解数据的总体特征,如数据的分布、均值、标准差等。

平稳性检验可以帮助确定数据是否具有平稳性,即数据的均值、方差和协方差是否与时间无关。

时间序列模型可以根据数据的特征选择合适的模型,如自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)等。

预测方法用于识别数据中的模式,并基于这些模式进行未来值的预测。

二、时间序列分析的应用1. 经济学时间序列分析在经济学中扮演着重要的角色。

例如,通过分析过去几年的GDP数据,经济学家可以预测未来的经济增长趋势。

此外,时间序列分析还可以用于研究通货膨胀、利率、就业等宏观经济指标的变化趋势。

2. 金融学金融市场中的股票价格、汇率等数据是时间序列数据的典型例子。

通过时间序列分析,投资者可以识别出价格的波动模式,并作出相应的交易决策。

此外,时间序列分析还可以用于风险管理、期权定价等方面。

3. 气象学气象学家使用时间序列分析来预测天气和气候变化。

他们收集和分析历史气象数据,并建立模型以预测未来的天气趋势。

这对于农业、能源和交通等行业的规划和决策非常重要。

4. 工程学在工程学中,时间序列分析被广泛应用于监测和预测物理系统的变化。

例如,通过对地震波形的时间序列分析,地质学家可以预测地震的发生概率和强度,从而提前采取措施来减少地震造成的损失。

时间序列分析法概述

时间序列分析法概述

时间序列分析法概述时间序列分析是指对时间序列数据进行统计建模和预测的一种方法。

时间序列数据是指按照一定时间顺序排列的数据,通常是在相等时间间隔下连续观测到的数据。

时间序列分析的目的是从数据中发现特定模式或趋势,并利用这些模式和趋势进行预测。

它通常用于经济学、金融学、气象学等领域,例如股票价格预测、销售量预测、天气预测等等。

时间序列分析方法主要包括以下几个步骤:1. 数据处理:首先需要对时间序列数据进行预处理,包括去除趋势、季节性和不稳定性等因素,以使数据满足稳定性和平稳性的假设。

这通常可以通过差分、平滑和变换等方式来实现。

2. 模型选择:根据时间序列数据的特性,选择合适的模型来进行建模和预测。

常用的模型包括自回归移动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。

模型的选择通常需要借助统计指标和图形分析的方法来确定。

3. 参数估计:在选择好模型之后,需要对模型的参数进行估计。

参数估计可以通过最大似然估计、最小二乘估计或贝叶斯估计等方法来实现。

估计得到的参数可以用于模型的建立和预测。

4. 模型诊断:对模型进行诊断,检查模型是否符合数据的统计特性和假设。

常用的诊断方法包括自相关函数(ACF)和偏自相关函数(PACF)的分析,以及白噪声检验等。

如果模型存在问题,则需要对模型进行修正或调整。

5. 模型预测:根据已经估计好的模型和参数,对未来的数据进行预测。

预测可以基于滚动窗口逐步预测,也可以直接进行多步预测。

常用的预测方法包括常规预测、指数平滑预测和季节性预测等。

总的来说,时间序列分析是一种基于时间序列数据的统计建模和预测方法。

通过对时间序列数据进行处理、模型选择、参数估计、模型诊断和模型预测等步骤,可以得到对未来数据的预测结果,并用于决策和规划。

然而,需要注意的是,时间序列分析方法需要满足一定的数据假设和模型假设,以及对模型的合理性和可靠性进行评估。

时间序列分析法

时间序列分析法

时间序列分析法时间序列分析是一种广泛应用于统计学和经济学领域的方法,它专门用于处理具有时间依赖性的数据。

时间序列数据是按时间顺序排列的一组观测值,例如股票价格、气温变化、经济指标等。

时间序列分析的目标是从历史数据中提取模式、趋势和周期以及预测未来的数据走势。

时间序列分析包括了多种方法和技术,下面将介绍其中几种常用的方法:1. 均值模型均值模型是最简单的时间序列模型之一,它假设时间序列的未来值将等于过去几期的平均值。

均值模型最常用的是移动平均模型(MA)和指数平滑模型(ES)。

移动平均模型根据过去几期的观测值对未来值进行预测,而指数平滑模型则给予较大权重给近期的观测值。

2. 趋势分析趋势分析用于识别时间序列中的长期趋势。

常用的趋势分析方法包括线性趋势分析、多项式回归分析以及指数平滑趋势分析。

这些方法主要是通过拟合一个数学模型来描述时间序列的趋势,然后根据模型对未来走势进行预测。

3. 季节性分析季节性分析用于识别和预测时间序列中的季节性模式。

常用的季节性分析方法包括季节性平均法、回归分析以及季节性指数平滑法。

这些方法可以通过拟合一个季节性模型来描述时间序列的季节性变动,并进行未来的预测。

4. 自回归移动平均模型(ARMA)ARMA模型是一种将自回归模型(AR)和移动平均模型(MA)结合起来的时间序列模型。

AR模型通过过去的观测值对未来值进行预测,而MA模型则根据过去的误差对未来值进行预测。

ARMA模型可以通过估计AR和MA参数来对时间序列进行预测。

5. 自回归积分移动平均模型(ARIMA)ARIMA模型是一种将自回归模型(AR)和移动平均模型(MA)与差分运算结合起来的时间序列模型。

ARIMA模型可以通过求解差分参数来对非平稳时间序列进行预测。

差分运算可以减少时间序列的趋势和季节性,使其更具平稳性。

以上是常用的时间序列分析方法,每种方法都有其适用性和局限性。

在实际应用中,根据具体情况选择合适的方法进行分析和预测。

时间序列分析

时间序列分析

时间序列分析时间序列数据的特点是观测值之间存在时间上的依赖关系,即一个观测值的取值可能与之前的多个观测值存在相关性。

时间序列分析主要考虑以下几个方面:1. 趋势分析:时间序列数据中存在的长期增长或下降趋势可以通过趋势分析来判断。

趋势分析可以采用移动平均法、指数平滑法等方法来拟合趋势线,从而预测未来的趋势。

2. 季节性分析:时间序列数据中的季节性波动是一种按照固定的季节循环出现的规律变动。

季节性分析可以通过季节性指数、分解法等方法来对季节性波动进行分析和预测。

3. 周期性分析:周期性是指时间序列数据中存在的较长周期的波动。

周期性分析可以通过傅里叶分析、自相关函数等方法来分析和预测周期性波动。

4. 随机性分析:时间序列数据中的随机变动是指除趋势、季节性、周期性之外的不可预测的波动。

随机性分析可以通过残差项的分析来判断数据中是否存在随机波动。

时间序列分析的方法包括统计方法和经典时间序列分析方法。

统计方法主要包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。

经典时间序列分析方法主要包括指数平滑法、趋势法、季节性指数法等。

时间序列分析的应用领域广泛。

在经济学中,时间序列分析可以用来预测经济指标的变动趋势,为政府决策提供依据。

在金融学中,时间序列分析可以用来预测股市的走势,帮助投资者制定投资策略。

在气象学中,时间序列分析可以用来预测天气变化,为农民和旅行者提供参考。

在医学中,时间序列分析可以用来预测疾病的传播趋势,为疾病防控提供支持。

然而,时间序列分析也存在一些挑战和限制。

首先,时间序列数据的质量和可靠性对分析结果的影响很大,因此数据的采集、清洗和处理是很重要的。

其次,时间序列数据的非线性和非平稳性使得分析方法的选择和应用更为复杂。

此外,时间序列数据同时受到多种因素的影响,如外部环境、政策变化等,这些因素需要合理地加以考虑。

总的来说,时间序列分析是一种重要的统计分析方法,可以用来揭示时间序列数据内部的潜在规律和特征,并通过对过去数据的观察和分析来预测未来的趋势。

时间序列分析法

时间序列分析法

3. 生长曲线法
① 逻辑曲线 曲线在其单调区间内的y=k/2处有唯一的拐点。 记拐点处的y值为yr,则
对应于拐点的时间点tr
因此,logistic曲线对于点(yr,tr)是对称的。
3. 生长曲线法
② 龚珀兹曲线
•Gompertz曲线是双层指数函数。对于模 型参数的不同取值,Gompertz曲线有四 种不同的类型。其中满足条件K>0,0<a<1 ,0<b<1的Gompertz曲线适用于某些技术 、经济、社会现象发展过程的模拟。
用递推公式可以大大减少计算量。同时,
当获得新数据时,无需像回归分析那样重
新估算方程,而可以根据先期计算出来的
移动平均值,很容易求出新的移动平均值

1. 移动平均法
① 一次移动平均
合理地选择周期数n是用好移动平均法的关键 。在n取较大值时,移动平均值对于随机影响的 敏感性弱些,平滑作用强,但适应新数据水平的 时间要长些,容易落后于可能的发展趋势;而当 n 取较小值时,移动平均值对于随机影响的敏感 性较强,平滑作用差,适应数据新水平的时间短 ,因而容易对随机干扰反映过度灵敏而造成错觉 。一般可以根据实际时间序列数据的特征和经验 选择参数n。
在时间序列数据散点图的倾向线大致 是一次指数曲线时可用一次指数曲线去 拟合它。
2. 指数平滑法
一般形式:
y a •bt
2. 指数平滑法
两边取对数:
lg y lg a lg b • t
记Y lgy,A lga, B lgb,则有 Y AB•t
可将指数曲线转化为直线, 再求a和b的。其预测模型为:3. 生长曲线法
生长曲线是增长曲线的一大类,是 描绘各种社会、自然现象的数量指标依 时间变化而变化的某种规律性的曲线。 由于生长曲线形状大致呈“S”型,故又 称“S”曲线。在信息分析与预测中利用 生长曲线模型来描述事物发生、发展和 成熟的全过程的方法就是生长曲线法。

时间序列分析(统计分析学概念)

时间序列分析(统计分析学概念)
时间序列分析(统计分析学概 念)
统计分析学概念
01 基础知识
03 分类 05 主要用途
目录
02 性质特点 04 具体方法
时间序列分析(Time-Series Analysis)是指将原来的销售分解为四部分来看——趋势、周期、时期和不 稳定因素,然后综合这些因素,提出销售预测。强调的是通过对一个区域进行一定时间段内的连续遥感观测,提 取图像有关特征,并分析其变化过程与发展规模。当然,首先需要根据检测对象的时相变化特点来确定遥感监测 的周期,从而选择合适的遥感数据。
主要用途
时间序列分析常用在国民经济宏观控制、区域综合发展规划、企业经营管理、市场潜量预测、气象预报、水 文预报、地震前兆预报、农作物病虫灾害预报、环境污染控制、生态平衡、天文学和海洋学等方面。主要包括从 以下几个方面入手进行研究分析。
系统描述 根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。 系统分析 当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解 给定时间序列产生的机理。 预测未来 一般用ARMA模型拟合时间序列,预测该时间序列未来值。 决策和控制 根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必 要
特点:简单易行,便于掌握,但准确性差,一般只适用于短期预测。
分类
时间序列依据其特征,有以下几种表现形式,并产生与之相适应的分析方法: 1.长期趋势变化:受某种基本因素的影响,数据依时间变化时表现为一种确定倾向,它按某种规则稳步地增 长或下降。使用的分析方法有:移动平均法、指数平滑法、模型拟和法等。 2.季节性周期变化:受季节更替等因素影响,序列依一固定周期规则性的变化,又称商业循环。采用的方法: 季节指数。 3.循环变化:周期不固定的波动变化。 4.随机性变化:由许多不确定因素引起的序列变化。 时间序列分析主要有确定性变化分析和随机性变化分析。其中,确定性变化分析包括趋势变化分析、周期变 化分析、循环变化分析。随机性变化分析:有AR、MA、ARMA模型等。

时间序列分析基础知识

时间序列分析基础知识

时间序列分析基础知识时间序列分析是统计学和数据科学中一项重要的内容,广泛应用于经济、金融、气候、医学等各个领域。

通过时间序列数据,可以发现数据随时间变化的趋势和规律,并用于模型预测。

以下是关于时间序列分析的一些基本知识。

一、时间序列的定义时间序列是按照时间顺序排列的数据。

这些数据可以是一个变量在不同时间点的观测值,也可以是多个变量在同一时间点的观测值。

时间序列通常由时间索引(如年、月、日、小时等)和数值组成。

例如,某个公司的月销售额、每日气温变化等都属于时间序列数据。

二、时间序列的特征趋势(Trend)趋势是描述整个时间序列中长期变化的一种成分。

它表明了数据随着时间推移所表现出的整体运动方向。

例如,一个科技公司在其成立后的几年内可能表现出清晰的销售增长趋势。

季节性(Seasonality)季节性指的是在一定周期内(如每年、每季度等)重复出现的波动现象。

例如,冰淇淋的销售在夏季通常会显著上升,而在冬季则会下降,这种规律性的波动体现为季节性。

周期性(Cyclicality)周期性与季节性相似,但不同之处在于周期性并非固定时间间隔。

周期性的变化通常跟经济周期或其他长期因素有关,如经济衰退与繁荣交替。

不规则成分(Irregular component)不规则成分是指一种随机的波动,通常是由突发事件引起的,比如自然灾害、政策变动等。

这些成分较难预测和建模。

三、时间序列分析的方法时间序列分析有多种方法,以下是几种常用的方法:移动平均法移动平均法通过计算某些滑动时间窗口内的数据均值来平滑数据,从而识别长期趋势。

常用的有简单移动平均和加权移动平均。

指数平滑法指数平滑法给予最近的数据更多权重,可以快速响应数据变化。

最常用的是单一指数平滑和霍尔特-温特模型。

自回归模型(AR)自回归模型假设当前值与之前若干个时刻的数据值有关。

通过这些过去的数据,我们可以预测未来的数值。

移动平均模型(MA)移动平均模型假设当前值由过去随机误差项影响。

时间序列分析

时间序列分析
一次指数平滑所得的计算结果可以在数据集范围之外进行扩展,因此也就可以用来进行预测。预测也非常简单:
其中,是最后一个已经算出来的值。也就是说,一次指数平滑法得出的预测在任何时候都是一条直线。
刚刚描述的一次指数平滑法适用于没有总体趋势的时间序列。如果用来处理有总体趋势的序列,平滑值将往往滞后于原始数据,除非的值接近1,但这样一来就会造成不够平滑。
最后一个问题是如何选择拌合参数/。我的建议是反复试验。先试试0.2和0.4之间的几个值(非常粗略地),然后看看会得到什么结果。或者也可以为(实际数据和平滑算法的结果之间的)误差定义一个标准,再使用一个数值优化过程来将误差最小化。就我的经验而言,一般没有必要弄得这么麻烦,原因至少有两个:数值优化是一个不能保证收敛的迭代过程,最终你可能还需要花非常多时间将算法设计成收敛的。此外,任何这样的数值优化都受限于你选对误差进行最小化的表达式。问题是使误差最小化的参数值可能并不能满足在解决方案中你想要看到的其他特性(也就是近似值的精确性和结果曲线的平滑程度之间的平衡),那么,到最后你才会发现,手动的计算方法往往更好。不过,如果你要预测很多序列,花些精力构建一个能自动决定最优参数值的系统也是值得的,但要实现这个系统恐怕也并不容易。
设n个测量值的误差为ε1.ε2……εn,则这组测量值的标准误差σ等于:
数理统计中均方误差是指参数估计值与参数真值之差平方的期望值,记为MSE。MSE是衡量“平均误差”的一种较方便的方法, MSE可以评价数据的变化程度, MSE的值越小,说明预测模型描述实验数据具有更好的精确度。与此相对应的,还有均方根误差RMSE、平均绝对百分误差等等。
趋势描述的是时间序列的整体走势,比如总体上升或者总体下降。下图所示的时间序列是总体上升的:
季节性描述的是数据的周期性波动,比如以年或者周为周期,如下图:

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种统计学方法,用于分析时间序列数据的模式、趋势和周期性。

它可以帮助我们了解随着时间推移,数据如何变化,并预测未来的发展趋势。

本文将介绍时间序列分析的基本概念、常用方法和实际应用。

一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列数据点。

它可以是连续的,例如每天的股票价格,也可以是离散的,例如每个月的销售量。

时间序列分析旨在通过观察数据中的模式和趋势,揭示数据背后的规律和关系。

二、时间序列分析的常用方法1. 描述统计法描述统计法用于计算数据的统计指标,如平均值、标准差和相关系数。

这些指标可以帮助我们了解数据的分布情况和相关性。

2. 组件分析法组件分析法将时间序列分解为趋势、季节和随机成分。

趋势表示长期的变化趋势,季节表示重复出现的周期性变化,随机成分表示无法通过趋势和季节解释的随机波动。

通过对组成部分的分析,可以更好地理解时间序列的内在规律。

3. 平稳性检验法平稳性是时间序列分析的基本假设之一。

平稳时间序列的统计特性不随时间变化而改变。

平稳性检验可以通过观察时间序列的趋势、自相关图和单位根检验等方法进行。

4. 预测方法时间序列分析的一个重要应用是预测未来的数值。

常用的预测方法包括移动平均法、指数平滑法和ARIMA模型等。

这些方法基于过去的数据,通过建立模型来预测未来的趋势和周期性。

三、时间序列分析的实际应用时间序列分析在各个领域都有广泛的应用。

在金融领域,它可以用于股票价格的预测和风险管理;在经济学领域,它可以用于 GDP 的预测和经济政策制定;在气象学领域,它可以用于天气预报和气候变化研究。

除了上述领域外,时间序列分析还用于交通流量预测、销售预测、生态学研究等。

通过对历史数据的分析,我们可以更好地理解和预测未来的发展趋势,为决策提供依据。

结论时间序列分析是一种强大的工具,可以帮助我们理解时间序列数据中的模式和趋势。

通过对数据的描述统计、组件分析和预测,我们可以揭示数据背后的规律,并用于实际问题的解决。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种经过时间排序的统计数据分析方法,它是指对同一时间观测到的数据的分析,包括自然界和社会现象等范畴。

时间序列分析可用于预测未来趋势、分析周期性变化、发现非线性关系、判断相关性等,广泛应用于经济、金融、气象、地震预测、健康等领域。

时间序列分析中常见的数据主要包括三种类型:趋势、季节性和周期性。

趋势是一种长期观测到的数据变化趋势,它可以是线性的、非线性的、上升的或下降的。

例如,一家公司的销售额随着时间的推移而逐渐上升是一种典型的趋势。

季节性是指短期内重复出现的周期性变化,通常是因为季节变化、传统节日等原因引起的。

例如,零售行业的销售额在圣诞节和冬季假期期间通常会增加,而在夏季会下降。

周期性是一种存在于相对较长时间内的、定期重复的变化。

例如,经济周期性波动,股票价格的周期性变动等都是周期性变化的例子。

对于时间序列分析,常见的方法有时域方法和频域方法两种。

时域方法是指直接对观测数据进行建模和预测,常见的模型有移动平均模型(MA)、自回归模型(AR)、自回归移动平均模型(ARMA)和自回归积分移动平均模型(ARIMA)等。

频域方法则是将时间序列转换为频率域,进行分析和模型设计,常用的方法有傅里叶变换、功率谱分析等。

在实际应用中,时间序列分析常常需要处理的问题包括序列平稳性、季节型、异常值等。

序列平稳是指序列的统计性质在时间上的不变性,如果序列不平稳,则需要进行差分处理以达到平稳的要求。

在季节性分析中,需要使用季节性分解的方法来区分季节性和趋势成分。

异常值指的是在序列中出现的短期内极端高或者极端低的值,这些异常值对分析的结果产生影响,因此需要进行处理。

总之,时间序列分析是一种广泛应用的统计分析方法,对于理解和预测时间序列的趋势、季节型和周期性变化具有重要意义。

数据分析中的时间序列和趋势分析

数据分析中的时间序列和趋势分析

数据分析中的时间序列和趋势分析时间序列和趋势分析是数据分析中常用的方法,用于研究随时间变化的数据趋势和周期性。

本文将介绍时间序列和趋势分析的概念、应用场景以及常见的分析方法。

一、时间序列分析的概念及应用场景时间序列是按时间顺序排列的一组数据,是由某一现象在不同时间点上的观测结果所组成的数据序列。

时间序列分析可以用来研究数据的变动趋势、周期性以及其他随时间变化的特征。

时间序列分析在各个领域都有广泛的应用,例如经济学领域可以用来研究宏观经济指标的趋势和周期性;医学领域可以用来分析疾病的流行趋势和季节性变化;金融领域可以用来预测股票价格的变动趋势等等。

二、时间序列分析的基本方法1. 平均法平均法是最简单的时间序列分析方法,即对一定时间段内的数据进行平均计算。

平均法可以消除季节性和周期性的影响,提取出数据的整体趋势。

2. 移动平均法移动平均法是一种消除数据波动的方法,它通过对数据序列中的一组连续数据进行平均计算,得到一组平滑后的数据序列。

移动平均法可以减少随机波动,更好地揭示数据的长期趋势。

3. 指数平滑法指数平滑法是一种用于预测数据未来趋势的方法,它通过对过去一段时间内的数据赋予不同的权重,计算出加权平均数。

指数平滑法可以适应不同程度的数据波动,并能够较好地预测未来的趋势。

三、趋势分析的概念及应用场景趋势分析是研究数据随时间变化的趋势性变化的方法,通过分析数据的趋势性可以推测未来的发展趋势和变化方向。

趋势分析在市场调研、商业分析和市场预测等方面有广泛的应用。

例如,通过对销售额、用户增长率等指标的趋势分析,可以帮助企业制定市场策略和预测未来的市场发展趋势。

四、趋势分析的方法1. 线性回归法线性回归法是一种常用的趋势分析方法,它通过拟合一条直线来描述数据的趋势性变化。

线性回归法可以用于分析数据的增长率、变化趋势和预测未来的发展趋势。

2. 指数增长法指数增长法是一种用于确定数据增长趋势的方法,它通过对数据进行指数平滑处理,得到一个增长指数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3时间序列分析3.3.1时间序列概述1.基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。

它是系统中某一变量受其它各种因素影响的总结果。

(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。

它不研究事物之间相互依存的因果关系。

(3)假设基础:惯性原则。

即在一定条件下,被预测事物的过去变化趋势会延续到未来。

暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。

近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。

(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。

时间序列的预测和评估技术相对完善,其预测情景相对明确。

尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。

2.变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。

(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。

(3)随机性:个别为随机变动,整体呈统计规律。

(4)综合性:实际变化情况一般是几种变动的叠加或组合。

预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。

3.特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。

(1)随机性:均匀分布、无规则分布,可能符合某统计分布。

(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。

)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。

样本序列的自相关函数只是时间间隔的函数,与时间起点无关。

其具有对称性,能反映平稳序列的周期性变化。

特征识别利用自相关函数ACF:ρk =γk/γ其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。

平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋近于0,前者测度当前序列与先前序列之间简单和常规的相关程度,后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。

实际上,预测模型大都难以满足这些条件,现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。

4.预测类型(1)点预测:确定唯一的最好预测数值,其给出了时间序列未来发展趋势的一个简单、直接的结果。

但常产生一个非零的预测误差,其不确定程度为点预测值的置信区间。

(2)区间预测:未来预测值的一个区间,即期望序列的实际值以某一概率落入该区间范围内。

区间的长度传递了预测不确定性的程度,区间的中点为点预测值。

(3)密度预测:序列未来预测值的一个完整的概率分布。

根据密度预测,可建立任意置信水平的区间预测,但需要额外的假设和涉及复杂的计算方法。

5.基本步骤(1)分析数据序列的变化特征。

(2)选择模型形式和参数检验。

(3)利用模型进行趋势预测。

(4)评估预测结果并修正模型。

3.3.2随机时间序列系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。

(自变量不直接含有时间变量,但隐含时间因素)1.自回归AR(p)模型(R:模型的名称 P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不(1)模型形式(εt受其他因素影响)yt =φ1yt-1+φ2yt-2+……+φpyt-p+εt式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;εt 不同时刻互不相关,εt与yt历史序列不相关。

式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定;y t 当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系;y t-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值;φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达y t依赖于过去的程度,且这种依赖关系恒定不变;εt随机干扰误差项,是0均值、常方差σ2、独立的白噪声序列,通过估计指定的模型获得。

(2)识别条件当k>p时,有φk =0或φk服从渐近正态分布N(0,1/n)且(|φk|>2/n1/2)的个数≤4.5%,即平稳时间序列的偏相关系数φk为p步截尾,自相关系数r k逐步衰减而不截尾,则序列是AR(p)模型。

实际中,一般AR过程的ACF函数呈单边递减或阻尼振荡,所以用PACF函数判别(从p阶开始的所有偏自相关系数均为0)。

(3)平稳条件一阶:|φ1|<1。

二阶:φ1+φ2<1、φ1-φ2<1、|φ2|<1。

φ越大,自回归过程的波动影响越持久。

(4)模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量相互独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性等造成的困难。

2.移动平均MA(q)模型(1)模型形式yt =εt-θ1εt-1-θ2εt-2-……-θpεt-p(2)模型含义用过去各个时期的随机干扰或预测误差的线性组合来表达当前预测值。

AR(p)的假设条件不满足时可以考虑用此形式。

总满足平稳条件,因其中参数θ取值对时间序列的影响没有AR模型中参数p的影响强烈,即这里较大的随机变化不会改变时间序列的方向。

(3)识别条件当k>q时,有自相关系数rk =0或自相关系数rk服从N(0,1/n(1+2∑r2i)1/2)且(|r k|>2/n1/2(1+2∑r2i)1/2)的个数≤4.5%,即平稳时间序列的自相关系数r k为q步截尾,偏相关系数φk逐步衰减而不截尾,则序列是MA(q)模型。

实际中,一般MA过程的PACF函数呈单边递减或阻尼振荡,所以用ACF函数判别(从q阶开始的所有自相关系数均为0)。

(4)可逆条件一阶:|θ1|<1。

二阶:|θ2|<1、θ1+θ2<1。

当满足可逆条件时,MA(q)模型可以转换为AR(p)模型3.自回归移动平均ARMA(p,q)模型(1) 模型形式yt =φ1yt-1+φ2yt-2+……+φpyt-p+εt-θ1εt-1-θ2εt-2-……-θpεt-p式中符号: p和q是模型的自回归阶数和移动平均阶数;φ和θ是不为零的待定系数;εt独立的误差项;yt是平稳、正态、零均值的时间序列。

(2) 模型含义使用两个多项式的比率近似一个较长的AR多项式,即其中p+q 个数比AR(p)模型中阶数p小。

前二种模型分别是该种模型的特例。

一个ARMA过程可能是AR与MA过程、几个AR过程、AR与ARMA 过程的迭加,也可能是测度误差较大的AR过程。

(3) 识别条件平稳时间序列的偏相关系数φk和自相关系数r k均不截尾,但较快收敛到0,则该时间序列可能是ARMA(p,q)模型。

实际问题中,多数要用此模型。

因此建模解模的主要工作是求解p、q和φ、θ的值,检验εt和y t的值。

(4) 模型阶数AIC准则:最小信息准则,同时给出ARMA模型阶数和参数的最佳估计,适用于样本数据较少的问题。

目的是判断预测目标的发展过程与哪一随机过程最为接近。

因为只有当样本量足够大时,样本的自相关函数才非常接近母体的自相关函数。

具体运用时,在规定范围内使模型阶数从低到高,分别计算AIC值,最后确定使其值最小的阶数是模型的合适阶数。

模型参数最大似然估计时AIC=(n-d)logσ2+2(p+q+2)模型参数最小二乘估计时AIC=nlogσ2+(p+q+1)logn式中:n为样本数,σ2为拟合残差平方和,d、p、q为参数。

其中:p、q范围上线是n较小时取n的比例,n较大时取logn的倍数。

实际应用中p、q一般不超过2。

4.自回归综合移动平均ARIMA(p,d,q)模型(1)模型识别平稳时间序列的偏相关系数φk 和自相关系数rk均不截尾,且缓慢衰减收敛,则该时间序列可能是ARIMA(p,d,q)模型。

(2)模型含义模型形式类似ARMA(p,q)模型,但数据必须经过特殊处理。

特别当线性时间序列非平稳时,不能直接利用ARMA(p,q)模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中d一般不超过2。

若时间序列存在周期性波动,则可按时间周期进行差分,目的是将随机误差有长久影响的时间序列变成仅有暂时影响的时间序列。

即差分处理后新序列符合ARMA(p,q)模型,原序列符合ARIMA(p,d,q)模型。

3.3.3建模解模过程 1. 数据检验检验时间序列样本的平稳性、正态性、周期性、零均值,进行必要的数据处理变换。

(1)作直方图:检验正态性、零均值。

按图形Graphs —直方图Histogram 的顺序打开如图3.15所示的对话框。

图3.15将样本数据送入变量Variable 框,选中显示正态曲线Display normal curve 项,点击OK 运行,输出带正态曲线的直方图,如图3.16所示。

样本数据2.502.001.501.00.500.00-.50-1.00-1.50-2.00-2.50-3.00121086420Std. Dev = 1.30 Mean = -.03N = 48.00图3.16从图中看出:标准差不为1、均值近似为0,可能需要进行数据变换。

(2)作相关图:检验平稳性、周期性。

按图形Graphs—时间序列Time Series—自相关Autocorrelations的顺序打开如图3.17所示的对话框。

图3.17将样本数据送入变量Variable框,选中自相关Autocorrelations和偏自相关Partial Autocorrelations项,暂不选数据转换Transform项,点击设置项Options,出现如图3.18所示对话框。

图3.18因为一般要求时间序列样本数据n>50,滞后周期k<n/4,所以此处控制最大滞后数值Maximum Number of Lags设定为12。

点击继续Continue返回自相关主对话框后,点击OK运行系统,输出自相关图如图3.19所示。

图3.19从图中看出;样本序列数据的自相关系数在某一固定水平线附近摆动,且按周期性逐渐衰减,所以该时间序列基本是平稳的。

(3)数据变换:若时间序列的正态性或平稳性不够好,则需进行数据变换。

常用有差分变换(利用transform—Create Time Series)和对数变换(利用Transform—Compute)进行。

相关文档
最新文档