七年级数学上册几何图形初步专题练习(解析版)
七年级数学上册第四单元《几何图形初步》-解答题专项经典练习(答案解析)
一、解答题1.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.2.如图所示,长度为12cm的线段AB的中点为点M,点C将线段MB分成:1:2MC CB =,求线段AC 的长度.解析:8cm【解析】【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长.【详解】设MC =xcm ,则CB =2xcm ,∴MB =3x .∵M 点是线段AB 的中点,AB =12cm ,∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC ,∴AC =3x +x =4x =4×2=8(cm ).故线段AC 的长度为8㎝.【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.3.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°, ∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.4.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.解析:见解析【解析】试题分析:根据旋转的特点和各几何图形的特性判断即可.试题如图所示:5.如图,直角三角形ABC 的两条直角边AB 和BC 分别长4厘米和3厘米,现在以斜边AC 为轴旋转一周.求所形成的立体图形的体积.解析:6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B作BD⊥AC,∵直角边AB和BC分别长4厘米和3厘米,∴AC=2234=5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:132.42 5 =9.6π(立方厘米).6.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
(人教版)七年级上册数学期末复习:第4章《几何图形初步》解答题专练(含答案)
第4章《几何图形初步》解答题专题训练1.(2019秋•越秀区期末)如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且AM=2MC,BN=2NC.(1)若AC=9,BC=6,求线段MN的长;(2)若MN=5,求线段AB的长.2.(2019秋•龙岗区校级期末)如图所示,已知OB,OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.(1)若∠BOC=25°,∠MOB=15°,∠NOD=10°,求∠AOD的大小;(2)若∠AOD=75°,∠MON=55°,求∠BOC的大小;(3)若∠AOD=α,∠MON=β,求∠BOC的大小(用含α,β的式子表示).3.(2019秋•东莞市期末)直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.(1)在图1中,若∠BCE=40°,∠ACF=;(2)在图1中,若∠BCE=α,∠ACF=(用含α的式子表示);(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,若∠BCE=150°,试求∠ACF与∠ACE的度数.4.(2019秋•肇庆期末)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图∠,若∠AOC=30°,求∠DOE的度数.(2)在图∠中,若∠AOC=a,求∠DOE的度数(用含a的代数式表示).(3)将图∠中的∠DOC绕顶点O顺时针旋转至图∠的位置,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.5.(2019秋•封开县期末)如图,∠AOB=90°,OE、OF分别平分∠BOC、∠AOB,如果∠EOF=60°.(1)求∠BOE的度数;(2)求∠AOC的度数.6.(2019秋•黄埔区期末)如图,OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD,∠MON=80°.(1)若∠BOC=40°,求∠AOD的度数;(2)若∠AOD=x°,求∠BOC的度数(用含x的代数式表示).7.(2019秋•斗门区期末)如图,O为直线AB上的一点,∠AOC=48°24′,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)OE是∠BOC的平分线吗?为什么?8.(2019秋•白云区期末)如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD =∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.9.(2019秋•光明区期末)填空,完成下列说理过程.如图,点A、O、B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,∠AOC所以∠COD=12因为OE是∠BOC的平分线,所以∠COE=12所以∠DOE=∠COD+=12(∠AOC+∠BOC)=12∠AOB=°(2)由(1)可知∠DOE=90°因为∠COD=65°所以=∠COD=65°则:∠AOE=∠AOD+=°10.(2019秋•潮阳区期末)如图所示是长方体的平面展开图,设AB=x,若AD=4x,AN=3x.(1)求长方形DEFG的周长与长方形ABMN的周长(用字母x进行表示);(2)若长方形DEFG的周长比长方形ABMN的周长少8,求原长方体的体积.11.(2019秋•海珠区期末)如图,有一个长方形纸条ABCD,点P,Q是线段CD上的两个动点,且点P始终在点Q左侧,在AB上有一点O,连结PO、QO,以PO,QO为折痕翻折纸条,使点A、点B、点C、点D分别落在点A′、点B′、点C′、点D′上.(1)当∠POA=20°时,∠A'OA=°.(2)当A′O与B′O重合时,∠POQ=°.(3)当∠B′OA′=30°时,求∠POQ的度数.12.(2019秋•番禺区期末)如图,点D是线段AB上的任意一点(不与点A和B重合),C是线段AD的中点,AB=4cm.(1)若D是线段AB的中点,求线段CD的长度.(2)在图中作线段DB的中点E,当点D在线段AB上从左向右移动时,试探究线段CE长度的变化情况.13.(2019秋•潮阳区期末)已知:如图,OB、OC分别为定角(大小不会发生改变)∠AOD内部的两条动射线,(1)当OB、OC运动到如图1的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=40°,求∠AOD的度数.(2)在(1)的条件下(图2),射线OM、ON分别为∠AOB、∠COD的平分线,求∠MON的度数.(3)在(1)的条件下(图3),OE、OF是∠AOD外部的两条射线,∠EOB=∠COF=90°,OP平分∠EOD,OQ 平分∠AOF,求∠POQ的度数.14.(2019秋•云浮期末)如图,以点O为端点按顺时针方向依次作射线OA、OB、OC、OD.(1)若∠AOC、∠BOD都是直角,∠BOC=60°,求∠AOB和∠DOC的度数.(2)若∠BOD=100°,∠AOC=110°,且∠AOD=∠BOC+70°,求∠COD的度数.(3)若∠AOC=∠BOD=α,当α为多少度时,∠AOD和∠BOC互余?并说明理由.15.(2019秋•顺德区期末)已知线段m、n.(1)尺规作图:作线段AB,满足AB=m+n(保留作图痕迹,不用写作法);(2)在(1)的条件下,点O是AB的中点,点C在线段AB上,且满足AC=m,当m=5,n=3时,求线段OC的长.16.(2019秋•顺德区期末)如图,Rt∠ABC中,∠C=90°,AC=15,面积为150.(1)尺规作图:作∠C的平分线交AB于点D;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点D到两条直角边的距离.17.(2019秋•惠城区期末)如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°.(1)填空:与∠COD互余的角有;(2)若∠COE=30°,求∠AOE的度数;(3)求证:OD是∠AOC的平分线.18.(2019秋•东莞市期末)如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)若∠AOC=50°,求∠COE和∠BOE的度数;(2)猜想:OE是否平分∠BOC?请直接写出你猜想的结论;(3)与∠COD互余的角有:.19.(2019秋•南海区期末)两个圆柱体容器如图所示,容器1的半径是4cm,高是20cm;容器2的半径是6cm,高是8cm,我们先在容器2中倒满水,然后将里面的水全部倒入容器1中,问:倒完以后,容器1中的水面离容器口有多少厘米?20.(2019秋•揭西县期末)如图,OC是∠AOB的平分线,∠COD=3∠BOD,∠BOD=20°,求∠COD、∠BOC、∠AOD 的度数.21.(2019秋•南海区期末)已知:∠AOB=90°,∠COD=20°,OM平分∠AOC,ON平分∠BOD (1)如图1,∠COD在∠AOB内部,且∠AOC=30°.则∠MON的大小为.(2)如图1,∠COD在∠AOB内部,若∠AOC的度数未知,是否能求出∠MON的大小,若能,写出你的解答过程;若不能,说明理由.(3)如图2,∠COD在∠AOB外部(OM在OD上方,∠BOC<180°),试求出∠MON的大小.22.(2019秋•罗湖区期末)如图,一渔船在海上点E开始绕点O航行,开始时E点在O点的北偏东43°40′,然后∠COB.绕O点航行到C,测得∠COE=2∠AOE继续绕行,最后到达D点且OD=3海里,∠COD=12(1)求∠BOC的度数;(2)说明渔船最后到达的D点在什么位置.23.(2019秋•怀集县期末)如图,已知AOB是一条直线,∠1=∠2,∠3=∠4,∠AOF=∠BOF=90°.则(1)∠AOC的补角是;(2)∠AOC的余角是;(3)∠COF的补角是;(4)∠EOF的余角是.24.(2019秋•香洲区期末)如图是一个长方体纸盒的表面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=;(2)先化简,再求值:(2a2﹣5b)﹣3(a2﹣b).25.(2019秋•中山市期末)直线AB,CD交于点O,将一个三角板的直角顶点放置于点O处,使其两条直角边OE,OF,分别位于OC的两侧.若OC平分∠BOF,OE平分∠COB.(1)求∠BOE的度数;(2)写出图中∠BOE的补角,并说明理由.26.(2019秋•香洲区期末)已知点O为直线AB上一点,将一个直角三角板COD的直角顶点放在点O处,并使OC边始终在直线AB的上方,OE平分∠BOC.(1)如图1,若∠DOE=70°,则∠AOC=°;(2)如图1,若∠DOE=α,求∠AOC的度数;(用含α的式子表示)(3)如图2,在(2)的条件下,若在∠AOC的内部有一条射线OF,(∠AOF﹣∠DOE),试确定∠AOF与∠DOE之间的数量关系,并说明理由.满足∠BOE=1227.(2019秋•福田区期末)如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=30°,那么∠BOD是多少度?(2)若∠AOE=160°,∠AOB=50°,那么∠COD是多少度?28.(2019秋•惠城区校级期末)如图,将一副直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=35°,∠ACB=;若∠ACB=140°,则∠DCE=;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)若保持三角尺BCE不动,三角尺ACD的CD边与CB边重合,然后将三角尺ACD绕点C按逆时针方向任意转动一个角度∠BCD.设∠BCD=α(0°<α<90°)∠∠ACB能否是∠DCE的4倍?若能求出α的值;若不能说明理由.∠三角尺ACD转动中,∠BCD每秒转动3°,当∠DCE=21°时,转动了多少秒?29.(2019秋•南山区期末)如图所示,已知线段AB,点P是线段AB外一点.(1)按要求画图,保留作图痕迹;∠作射线P A,作直线PB;∠延长线段AB至点C,使得AC=2AB,再反向延长AC至点D,使得AD=AC.(2)若(1)中的线段AB=2cm,求出线段BD的长度.30.(2019秋•盘龙区期末)如图,线段AB=8,点C是线段AB的中点,点D是线段BC的中点.(1)求线段AD的长;BC,求AE的长.(2)若在线段AB上有一点E,CE=1431.(2019秋•普宁市期末)如图1直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE平分∠AOD.(1)若∠COE=40°,则∠BOD=.(2)若∠COE=α,求∠BOD(请用含α的代数式表示);(3)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.32.(2019秋•福田区校级期末)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=54°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠CBE的度数.参考答案与试题解析一.解答题(共32小题)1.【解答】解:(1)如图,AC =9,BC =6,则AB =AC =BC =9+6=15, ∠AM =2MC ,BN =2NC .∠MC =13AC =3,NC =13BC =2, ∠MN =MC +NC =3+2=5,答:MN 的长为5;(2)由(1)得,MN ═MC +NC =13AC +13BC =13AB , 若MN =5时,AB =3MN =15,答:AB 的长为15.2.【解答】解:(1)∠OM 平分∠AOB ,ON 平分∠COD∠∠AOB =2∠MOB =30°,∠COD =2∠NOD =20°∠∠AOD =∠AOB +∠BOC +∠COD =30°+25°+20°=75°(2)∠∠AOD =75°,∠MON =55°,∠∠AOM +∠DON =∠AOD ﹣∠MON =20°,∠∠BOM +∠CON =∠AOM +∠DON =20°,∠∠BOC =∠MON ﹣(∠BOM +∠CON )=55°﹣20°=35°,(3)∠OM 平分∠AOB ,ON 平分∠COD ,∠∠AOM =∠BOM =12∠AOB ,∠CON =∠DON =12∠COD , ∠∠BOC =∠MON ﹣∠BOM ﹣∠CON=∠MON −12∠AOB −12∠COD =∠MON −12(∠AOB +∠COD ) =∠MON −12(∠AOD ﹣∠BOC )=β−12(α﹣∠BOC ) =β−12α+12∠BOC , ∠∠BOC =2β﹣α.3.【解答】解:(1)如图1,∠∠ACB =90°,∠BCE =40°, ∠∠ACD =180°﹣90°﹣40°=50°,∠BCD =180°﹣40°=140°, 又CF 平分∠BCD ,∠∠DCF =∠BCF =12∠BCD =70°,∠∠ACF =∠DCF ﹣∠ACD =70°﹣50°=20°;故答案为:20°;(2)如图1,∠∠ACB =90°,∠BCE =α°,∠∠ACD =180°﹣90°﹣α°=90°﹣α,∠BCD =180°﹣α,又CF 平分∠BCD ,∠∠DCF =∠BCF =12∠BCD =90°−12α,∠∠ACF =90°−12α﹣90°+α=12α; 故答案为:12α;(3)如图2,∠∠BCE =150°,∠∠BCD =30°,∠CF 平分∠BCD ,∠∠BCF =12∠BCD =15°, ∠∠ACF =90°﹣∠BCF =75°,∠ACD =90°﹣∠BCD =60°,∠∠ACE =180°﹣∠ACD =120°.4.【解答】解:(1)由已知得∠BOC =180°﹣∠AOC =150°,又∠∠COD 是直角,OE 平分∠BOC ,∠∠DOE =∠COD −12∠BOC =90°−12×150°=15°; (2)由(1)知∠DOE =∠COD −12∠BOC , ∠∠DOE =90°−12(180°﹣∠AOC )=12∠AOC =12α;(3)设∠AOC =α,则∠BOC =180°﹣α,∠OE 平分∠BOC ,∠∠COE =12×(180°﹣α)=90°−12α, ∠BOD =90°﹣(180°﹣α)=α﹣90°,∠∠COE =2∠DOB ,∠90°−1α=2(α﹣90°),2解得α=108°.综上所述,当∠AOC的度数是108°时,∠COE=2∠DOB.5.【解答】解:(1)∠∠AOB=90°,OF平分∠AOB,∠AOB=45°∠∠BOF=12又∠∠EOF=60°,∠∠BOE=60°﹣45°=15°;(2)∠OE平分∠BOC,∠∠BOC=2∠BOE=30°.∠∠AOC=∠AOB+∠BOC=120°.6.【解答】解:(1)∠∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∠∠BOM+∠CON=80°﹣40°=40°,∠OM平分∠AOB,ON平分∠COD,∠∠AOM=∠BOM,∠DON=∠CON,∠∠AOM+∠DON=40°,∠∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°;(2)∠∠AOD=x°,∠MON=80°,∠∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∠∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∠∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°.7.【解答】解:(1)∠∠AOC=48°24′,OD平分AOC,∠AOC=24°12′,∠∠1=∠2=12∠∠BOD=180°﹣∠1=180°﹣24°12′=155°48′;(2)OE是∠BOC的平分线.理由如下:∠∠DOE=∠2+∠3=90°,∠2=24°12′,∠∠3=90°﹣24°12′=65°48′,∠∠BOD=∠DOE+∠4=155°48′,∠∠4=155°48′﹣90°=65°48′,∠∠3=∠4=65°48′,∠OE是∠BOC的平分线.8.【解答】解:(1)∠∠COD=∠AOB.即∠AOC+∠BOC=∠BOC+∠BOD,∠∠AOC=∠BOD,∠∠AOD=120°,∠AOB=75°,∠∠AOC=∠BOD=120°﹣75°=45°,∠∠BOC=∠AOB﹣∠AOC=75°﹣45°=30°,故答案为:30,(2)设∠BOD=x°,由(1)得∠AOC=∠BOD=x°,则∠BOC=75°﹣x°由∠AOD=5∠BOC得,75+x=5(75﹣x),解得,x=50,即:∠BOD=50°,故答案为:50;(3)不变;∠∠COD=∠AOB=75°,∠AOC=∠BOD,∠∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=75°×2=150°,答:当∠COD绕着点O旋转时,∠AOD+∠BOC=150°,其值不变.9.【解答】解:故答案为:∠BOC,∠COE,90,∠AOD,∠DOE,155.10.【解答】解:(1)∠AB=x,若AD=4x,AN=3x,∠长方形DEFG的周长为2(x+2x)=6x,长方形ABMN的周长为2(x+3x)=8x;(2)依题意得8x﹣6x=8,解得:x=4,原长方体的容积为x•2x•3x=6x3,将x=4代入,可得体积6x3=384.故原长方体的体积是384.11.【解答】解:(1)根据折叠可知:OP平分∠A′OA∠∠A′OA=2∠POA=40°;故答案为40°;(2)当A′O与B′O重合时,∠AOA′+∠BOB′=180°∠OP、OQ分别平分∠AOA′、∠BOB′∠∠POQ=∠POA′+∠QOB′=1(∠AOA′+∠BOB′)2=90°,故答案为90°;(3)当∠B′OA′=30°时,∠AOA′+∠BOB′=180°﹣∠B′OA′=150°∠OP、OQ分别平分∠AOA′、∠BOB′∠∠POQ=∠POA′+∠QOB′+∠B′OA′=1(∠AOA′+∠BOB′)+∠B′OA′2=75°+30°=105°.当B'在A'左侧时,∠AOP+∠A′OP+∠BOQ+∠B′OQ﹣∠B′OA′=180°,即2∠A ′OP +2∠B ′OQ ﹣30°=180°,解得∠A ′OP +∠B ′OQ =105°,∠∠POQ =∠POA ′+∠QOB ′﹣∠B ′OA ′=105°﹣30°=75°.答:∠POQ 的度数为105°或75°.12.【解答】解:(1)∠AB =4,点D 在线段AB 上,点D 是线段AB 的中点, ∠AD =12AB =12×4=2, ∠点C 是线段AD 的中点, ∠CD =12AD =12×2=1;(2)因为点D 在线段AB 上,点C 是线段AD 的中点,点E 是线段BD 的中点, ∠CD =12AD ,DE =12BD ,∠CE =CD +DE =12AD +12BD =12(AD +BD )=12AB ,∠AB =4,∠CE =2,∠线段CE 长度不变.13.【解答】解:(1)当OB 、OC 运动到如图1的位置时,∠∠AOC +∠BOD =100°,∠∠AOC +∠COD +∠BOC =100°∠AOD +∠BOC =100°∠∠∠AOB +∠COD =40°,∠∠AOD ﹣∠BOC =40°∠∠+∠得2∠AOD =140°∠∠AOD =70°.∠∠BOC =30°答:∠AOD 的度数为70°.(2)在(1)的条件下(图2),∠射线OM 、ON 分别为∠AOB 、∠COD 的平分线,∠∠CON =12∠COD ,∠BOM =12∠AOB ∠∠MON =∠CON +∠BOM +∠BOC=12(∠AOB +∠COD )+∠BOC=12×40°+30°=50°.答:∠MON 的度数为50°.(3)在(1)的条件下(图3),OE 、OF 是∠AOD 外部的两条射线,∠EOB=∠COF=90°,∠OP平分∠EOD,OQ平分∠AOF,∠EOD∠∠POD=12∠AOF∠AOQ=12∠∠POQ=∠AOD+∠POD+∠AOQ(∠EOD+∠AOF)=70°+12=70°+1(∠EOB﹣∠BOD+∠COF﹣∠AOC)2[(90°+90°﹣(∠BOD+∠AOC)]=70°+12×100°=70°+90°−12=110°.答:∠POQ的度数为110°.14.【解答】解:(1)∠∠AOC=90°,∠BOD=90°,∠BOC=60°,∠∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∠DOC=∠BOD﹣∠BOC=90°﹣60°=30°;(2)设∠COD=x°,则∠BOC=100°﹣x°,∠∠AOC=110°,∠∠AOB=110°﹣(100°﹣x°)=x°+10°,∠∠AOD=∠BOC+70°,∠100°+10°+x°=100°﹣x°+70°,解得:x=30即,∠COD=30°;(3)当α=45°时,∠AOD与∠BOC互余;理由是:要使∠AOD与∠BOC互余,即∠AOD+∠BOC=90°,∠∠AOB+∠BOC+∠COD+∠BOC=90°,即∠AOC+∠BOD=90°,∠∠AOC=∠BOD=α,∠∠AOC=∠BOD=45°,即α=45°,∠当α=45°时,∠AOD与∠BOC互余.15.【解答】解:(1)如图所示,线段AB即为所求;(2)如图,∠点O 是AB 的中点,∠AO =12AB =12(m +n ), 又∠AC =m ,∠OC =AC ﹣AO =m −12(m +n )=12m −12n , ∠当m =5,n =3时,OC =52−32=1.16.【解答】解:如图所示,(1)CD 即为所求作的∠C 的平分线交AB 于点D ;(2)在(1)的条件下,作DE ∠BC ,DF ∠AC 于点E 和F ,∠DE =DF ,∠∠C =90°,AC =15,面积为150,∠BC =20,∠S ∠ADC +S ∠BDC =S ∠ABC12AC •DF +12BC •DE =150 15DF +20DE =300DE =DF∠DE =607点D 到两条直角边的距离为607.17.【解答】解:(1)∠OE 平分∠BOC ,∠∠COE =∠BOE ,∠∠COD +∠COE =∠DOE =90°,∠∠COD +∠BOE =90°,与∠COD 互余的角有∠BOE 、∠COE ;故答案为:∠BOE 、∠COE ;(2)∠OE 平分∠BOC ,∠∠COE=∠BOE=30°,∠∠AOE=180°﹣30°=150°;(3)证明:∠OE是∠BOC的平分线,∠∠COE=∠BOE,∠∠DOE=90°,∠∠COD+∠COE=90°,且∠DOA+∠BOE=180°﹣∠DOE=90°,∠∠DOC+∠COE=∠DOA+∠BOE,所以∠DOC=∠DOA,所以OD是∠AOC的平分线.18.【解答】解:(1)∠OD平分∠AOC,∠AOC=50°,∠∠COD=∠AOD=12∠AOC=12×50°=25°,∠∠DOE=90°.∠∠COE=∠DOE﹣∠COD=90°﹣25°=65°,∠BOE=180°﹣∠AOD﹣∠DOE=180°﹣25°﹣90°=65°;(2)结论:OE平分∠BOC.理由:设∠AOC=2α,∠OD平分∠AOC,∠AOC=2α,∠∠AOD=∠COD=12∠AOC=α,又∠∠DOE=90°,∠∠COE=∠DOE﹣∠COD=90°﹣α,又∠∠BOE=180°﹣∠DOE﹣∠AOD=180°﹣90°﹣α=90°﹣α,∠∠COE=∠BOE,即OE平分∠BOC;(3)与∠COD互余的角有:∠COE、∠BOE.故答案为:∠COE、∠BOE.19.【解答】解:设倒完以后,第一个容器中的水面离容器口有xcm,则:π×42×(20﹣x)=π×62×8,解得:x=2,答:第一个容器中的水面离容器口有2 cm.20.【解答】解:∠∠BOD=20°,∠COD=3∠BOD,∠∠COD=60°,∠BOC=23∠COD,∠∠BOC=60°×23=40°,又∠OC是∠AOB的平分线,∠∠AOB=2∠BOC=2×40°=80°,∠∠AOD=∠AOB+∠BOD=80°+20°=100°.21.【解答】解:(1)如图1,∠∠AOB =90°,∠COD =20°,OM 平分∠AOC ,ON 平分∠BOD ∠∠DON +∠COM =12(∠BOD +∠AOC )=12(90°﹣20°)=35°, ∠∠MON =∠DON +∠COM +∠COD =35°+20°=55°,故答案为:55°.(2)能,如图1,∠OM 平分∠AOC ,ON 平分∠BOD ,∠∠MOC =12∠AOC ,∠NOD =12∠BOD ,∠∠MON =∠NOD +∠DOC +∠MOC ,=12∠BOD +12∠AOC +20°,=12(∠BOD +∠AOC )+20°, =12(90°﹣20°)+20°,=55°.故答案为:55°,(3)∠OM 平分∠AOC ,ON 平分∠BOD ,∠∠MOC =12∠AOC ,∠NOD =12∠BOD , ∠∠MON =∠NOD +∠DOC ﹣∠MOC ,=12∠BOD +20°−12∠AOC , =12(90°+∠AOD )+20°−12(∠AOD +20°), =45°+12∠AOD +20°−12∠AOD ﹣10° =55°.22.【解答】解:(1)E点在O点的北偏东43°40′,即∠BOE=43°40′,∠AOE=90°﹣43°40′=46°20′∠∠COE=2∠AOE=2×46°20′=92°40′,∠∠BOC=∠COE﹣∠BOE=92°40′﹣43°40′=49°,∠COB.(2)∠∠COD=12×49°=24°30′,∠∠COD=12∠∠BOD=∠BOC+∠COD=49°+24°30′=73°30′,∠OD=3海里,即:D点在O点的北偏西73°30′且距离O点3海里的位置.23.【解答】解:根据题意和图示可知:(1)∠AOC+∠BOC=180°,故答案为:∠COB;(2)∠3=∠4,∠AOC+∠3=90°,故答案为:∠3、∠4;(3)∠∠3=∠4,∠∠COF的补角是∠AOE,故答案为:∠AOE;(4)∠∠EOF+∠4=90°,∠∠4是∠EOF的余角,∠∠3=∠4,∠∠3也是∠EOF的余角,∠∠EOF的余角是∠3、∠4,故答案为:∠3、∠4.24.【解答】解:(1))∠纸盒中相对两个面上的数互为相反数,∠观察图形可知,a=﹣1,b=3.故答案为:a=﹣1,b=3;(2)原式=2a2﹣5b﹣3a2+3b=﹣a2﹣2b当a=﹣1,b=3时原式=﹣(﹣1)2﹣2×3=﹣7.25.【解答】解:(1)∠OC平分∠BOF,OE平分∠COB.∠∠BOE=∠EOC=1∠BOC,∠BOC=∠COF,2∠∠COF=2∠BOE,∠∠EOF=3∠BOE=90°,∠∠BOE=30°,(2)∠∠BOE+∠AOE=180°∠∠BOE的补角为∠AOE;∠∠EOC+∠DOE=180°,∠BOE=∠EOC,∠∠BOE+∠DOE=180°,因此∠∠BOE的补角为∠DOE;答:∠BOE的补角有∠AOE和∠DOE;26.【解答】解:(1)∠∠DOE=70°,∠COD=90°∠∠COE=90°﹣70°=20°,∠OE平分∠BOC.∠∠COE=∠BOE=20°∠∠AOC=180°﹣2∠COE=140°,故答案为:140.(2)解:∠DOE=α,∠COD=90°∠∠COE=90°﹣α,∠OE平分∠BOC∠∠BOC=2∠COE=180°﹣2α,∠∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(3)∠AOF+∠DOE=180°,∠∠BOE=1(∠AOF﹣∠DOE),2∠2∠BOE=∠AOF﹣∠DOE,∠∠BOC=∠AOF﹣∠DOE,∠180°﹣∠AOC=∠AOF﹣∠DOE,∠∠DOE=α,∠AOC=2α,∠∠AOC=2∠DOE,∠180°﹣2∠DOE=∠AOF﹣∠DOE,∠∠AOF+∠DOE=180°,即∠AOF与∠DOE互补.27.【解答】解:(1)OB是∠AOC的平分线,∠∠BOC=∠AOB=50°;∠OD是∠COE的平分线,∠∠COD=∠DOE=30°,∠∠BOD=∠BOC+∠COD=50°+30°=80°;(2)OB是∠AOC的平分线,∠∠AOC=2∠AOB=100°,∠∠COE=∠AOE﹣∠AOC=160°﹣100°=60°,∠OD是∠COE的平分线,∠COE=30°.∠∠COD=1228.【解答】解:(1)∠∠ACD=∠ECB=90°,∠DCE=35°,∠∠ACB=180°﹣35°=145°.∠∠ACD=∠ECB=90°,∠ACB=140°,∠∠DCE=180°﹣140°=40°.故答案为:145°,40°;(2)∠ACB+∠DCE=180°或互补,理由:∠∠ACE+∠ECD+∠DCB+∠ECD=180.∠∠ACE+∠ECD+∠DCB=∠ACB,∠∠ACB+∠DCE=180°,即∠ACB与∠DCE互补.(3)∠当∠ACB是∠DCE的4倍,∠设∠ACB=4x,∠DCE=x,∠∠ACB+∠DCE=180°,∠4x+x=180°解得:x=36°,∠α=90°﹣36°=54°;∠设当∠DCE=21°时,转动了t秒,∠∠BCD+∠DCE=90°,∠3t+21=90,t=23°,答:当∠DCE=21°时,转动了23秒.29.【解答】解:(1)射线P A,直线PB、线段AC、AD为所作;(2)∠AC=2AB=2×2=4cm,∠AD=AC=4cm,∠BD=AD+AB=4+2=6(cm).30.【解答】解:(1)∠AB=8,C是AB的中点,∠AC=BC=4,∠D是BC的中点,∠CD=12BC=2,∠AD=AC+CD=6;(2)∠BC=4,CE=14BC,∠CE=14×4=1,当E在C的左边时,AE=AC﹣CE=4﹣1=3;当E在C的右边时,AE=AC+CE=4+1=5.∠AE的长为3或5.31.【解答】解:(1)若∠COE=40°,∠∠COD=90°,∠∠EOD=90°﹣40°=50°,∠OE平分∠AOD,∠∠AOD=2∠EOD=100°,∠∠BOD=180°﹣100°=80°;(2)∠∠COE=α,∠∠EOD=90﹣α,∠OE平分∠AOD,∠∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∠∠BOD=180°﹣(180﹣2α)=2α;(3)如图2,∠BOD+2∠COE=360°,理由是:设∠BOD=β,则∠AOD=180°﹣β,∠OE平分∠AOD,∠∠EOD=12∠AOD=180°−β2=90°−12β,∠∠COD=90°,∠∠COE =90°+(90°−12β)=180°−12β, 即∠BOD +2∠COE =360°.故答案为:80°.32.【解答】解:(1)∠∠ABC =54°, ∠∠A ′BC =∠ABC =54°,∠∠A ′BD =180°﹣∠ABC ﹣∠A ′BC =180°﹣54°﹣54°=72°;(2)由(1)的结论可得∠DBD ′=72°, ∠∠2=12∠DBD ′=12×72°=36°,∠ABD ′=108°, ∠∠1=12∠ABD ′=12×108°=54°, ∠∠CBE =∠1+∠2=90°.。
(必考题)初中七年级数学上册第四单元《几何图形初步》经典习题(含答案解析)
一、选择题1.如图,∠AOB =12∠BOD ,OC 平分∠AOD ,下列四个等式中正确的是( )①∠BOC =13∠AOB ;②∠DOC =2∠BOC ;③∠COB =12∠BOA ;④∠COD =3∠COB . A .①② B .②③ C .③④ D .①④ 2.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60° 3.已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( )A .点B 在线段CD 上(C 、D 之间)B .点B 与点D 重合C .点B 在线段CD 的延长线上D .点B 在线段DC 的延长线上 4.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .15.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°6.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③ 7.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( )A .30°B .60°C .120°D .150° 8.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 9.如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 10.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + 11.对于线段的中点,有以下几种说法:①若AM=MB ,则M 是AB 的中点;②若AM=MB=12AB ,则M 是AB 的中点;③若AM=12AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点.其中正确的是( )A .①④B .②④C .①②④D .①②③④ 12.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 13.若射线OA 与射线OB 是同一条射线,下列画图正确的是( ) A . B . C . D . 14.如下图,直线的表示方法正确的是( )①②③④A.都正确B.只有②正确C.只有③正确D.都不正确15.下列图形中,是圆锥的表面展开图的是()A.B.C.D.二、填空题16.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C,区有10人,三个区在一直线上,位置如图所示,公司的接送车打算在此间只设一个停靠点,为要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在_____区.17.若A,B,C三点在同一直线上,线段AB=21cm,BC=10cm,则A,C两点之间的距离是________.18.已知线段AB的长度为16厘米,C是线段AB上任意一点,E,F分别是AC,CB的中点,则E,F两点间的距离为_______.19.如图,小颖从家到超市共有4条路可走,小颖应选择第________条路才能使路程最短,用数学知识解释为________________.20.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.若CP=,则线段PN的长为________.3AC=,121.将下列几何体分类,柱体有:______(填序号).22.如图所示,若∠AOC=90°,∠BOC=30°,则∠AOB=________;若∠AOD=20°,∠COD=50°,∠BOC=30°,则∠BOD=______,∠AOC=________,∠AOB=________.23.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是__和___.24.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度.25.已知线段MN=16cm ,点P 为任意一点,那么线段MP 与NP 和的最小值是_____cm . 26.如图,点A ,O ,B 在同一直线上,12∠=∠,则与1∠互补的角是________.若1283235'''∠=︒,则1∠的补角为________.三、解答题27.已知:如图,18cm AB =,点M 是线段AB 的中点,点C 把线段MB 分成:2:1MC CB =的两部分,求线段AC 的长.请补充下列解答过程:解:因为M 是线段AB 的中点,且18cm AB =,所以AM MB ==________AB =________cm .因为:2:1MC CB =,所以MC =________MB =________cm .所以AC AM =+________=________+________=________(cm).28.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)29.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B 、面C 相对的面分别是 和 ;(2)若A =a 3+15a 2b +3,B =﹣12a 2b +a 3,C =a 3﹣1,D =﹣15(a 2b +15),且相对两个面所表示的代数式的和都相等,求E 、F 代表的代数式.30.已知直线l 上有三点A 、B 、C ,AB=3,AC=2,点M 是AC 的中点.(1)根据条件,画出图形;(2)求线段BM 的长.。
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3B解析:B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【详解】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点睛】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°A 解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B 解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.5.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.6.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A.8B.7C.6D.4C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB ,直线a .故选C .【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C 在AB 上且AC=BC ∴AC=AB=3cm ∴BC=9cm 又M 为BC 的中点∴CM=BC=45cm ∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC , ∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点, ∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm . 故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC AB+BC=4cm,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.16.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图,上午6:30时,时针和分针所夹锐角的度数是_____.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动 解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度. 180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.20.如图,::2:3:4AB BC CD=,AB的中点M与CD的中点N的距离是3cm,则BC=______.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.25.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.26.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 27.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.28.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。
【常考压轴题】2023学年七年级数学上册(人教版)几何图形初步考点训练(解析版)
几何图形初步考点训练1.如图 C 、D 是线段AB 上两点 M 、N 分别是线段AD 、BC 的中点 下列结论:①若AD=BM 则AB=3BD ;②若AC=BD 则AM=BN ;③AC -BD=2(MC -DN );④2MN=AB -CD .其中正确的结论是( )A .①②③B .③④C .①②④D .①②③④【答案】D【详解】解:∵M N 分别是线段AD BC 的中点 ∴AM=MD CN=NB. ①∵AD=BM ∴AM+MD=MD+BD ∴AM=BD. ∵AM=MD AB=AM+MD+DB ∴AB=3BD. ②∵AC=BD ∴AM+MC=BN+DN.∵AM=MD CN=NB ∴MD+MC=CN+DN ∴MC+CD+MC=CD+DN+DN ∴MC=DN ∴AM=BN.③AC -BD=AM+MC -BN -DN=(MC -DN)+(AM -BN)=(MC -DN)+(MD -CN)=2(MC -DN); ④AB -CD=AC+BD=AM+MC+DN+NB=MD+MC+DN+CN=MD+DN+MC+CN=2MN. 综上可知 ①②③④均正确 故答案为:D2.已知 点C 在直线 AB 上 AC =a BC =b 且 a ≠b 点 M 是线段 AB 的中点 则线段 MC 的长为( ) A .2a b+ B .2a b- C .2a b +或2a b- D .+2a b 或||2a b -∵AC =a BC =b ∴AB =AC +BC =a +b .∵AC =a BC =b ∴AB =AC +BC =a +b .∵AC =a BC =b ∴AB =BC -AC =b -a . BOD ∠ 下列结论:①180DOG BOE ∠+∠=︒; ②45AOE DOF ∠-∠=︒; ③180EOD COG ∠+∠=︒; ④90AOE DOF ∠+∠=︒ 其中正确的个数有( )A .1个B .2个C .3个D .4个.如图直线AB 与CD 相交于点60 一直角三角尺的直角顶点与点重合 OE 平分AOC ∠ 现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转 同时直线CD 也以每秒9的速度绕点O 顺时针旋转 设运动时间为t 秒(040t ≤≤) 当CD 平分EOF ∠时 t 的值为( )A .2.5B .30C .2.5或30D .2.5或32.5【答案】D【详解】解:分两种情况:①如图OC 平分EOF ∠时 45AOE ∠=︒即930345t t +︒-=︒ 解得 2.5t =;②如图OD 平分EOF ∠时 45DOE ∠=︒即918030345t t -︒+︒-=︒ 解得32.5t =.综上所述 当CD 平分EOF ∠时 t 的值为2.5或32.5. 故选:D .5.在锐角AOB ∠内部由O 点引出3种射线 第1种是将AOB ∠分成10等份;第2种是将AOB ∠分成12等份;第3种是将AOB ∠分成15等份 所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595 B .406C .35D .666∠的大小为()射线OD将∠BOE分成了角度数之比为2:1的两个角则COFA.45︒B.60︒C.72︒或45︒D.40︒或60︒故选:C.7.如图点O是钟面的中心射线OC正好落在3:00时针的位置.当时钟从2:00走到3:00 则经过___________分钟时针分针与OC所在的三条射线中其中一条射线是另外两条射线所夹角的角平分线.240EOF=100° OE平分∠AOP现将三角形EOF以每秒6°的速度绕点O逆时针旋转至三角形E′OF′ 同时直线PQ也以每秒9°的速度绕点O顺时针旋转至P′Q′ 设运动时间为m秒(0≤m≤20)当直线P′Q′平分∠E′OF′时则∠COP′=___.【详解】AOP∠=1 2AOP=∠AB OC⊥90AOC∴∠=︒EOF△以每秒6︒的速度绕点①如图1中当OP(69)Q OE m EOQ ''∠=︒+︒⨯-∠ 14m914COP '=︒⨯(AOC -∠-(9040-︒-50︒-︒76=︒故答案为:32︒或我们知道在9点整时 经过__________分钟后 时钟的时针与分针的夹角为105°.30此时∠AOC=0.5x∠BOD=6x此时∠AOC=0.5x∠BOD=360°-6x【答案】38°【详解】如下图设∠MCD=x° ∠MAD=y°∵AM 、CM 平分∠BAD 和∠BCD ∴∠BAF=y° ∠MCF=x° ∵∠B=34° ∠D=42°∴在△ABF 中 ∠BFA=180°-34°-y°=146°-y° 在△CED 中 ∠CED=180°-42°-x°=138°-x°∴∠CFM=∠AFB=146°-y° ∠AEM=∠CED=138°-x° ∴在△AME 中 y°+∠M+138°-x°=180° 在△FMC 中 x°+146°-y°+∠M=180° 约掉x 、y 得 ∠M=38° 故答案为:38°11.如图所示:已知5cm AB = 10cm BC = 现有P 点和Q 点分别从A B 两点出发相向运动 P 点速度为2cm/s Q 点速度为3cm/s 当Q 到达A 点后掉头向C 点运动 Q 点在向C 的运动过程中经过B 点时 速度变为4cm/s P Q 两点中有一点到达C 点时 全部停止运动 那么经过____s 后PQ 的距离为0.5cm .4753由题意得:5-2t -3t=0.5 解得:t=0.9s5⎛⎫5⎛⎫1010⎛⎫点D 从点B 出发 以每秒4cm 的速度在线段OB 上运动.在运动过程中满足4OD AC = 若点M 为直线OA 上一点 且AM BM OM -= 则ABOM的值为_______.由AM-BM=OM得m-a-(m-b)=m 即:m=b-a;由AM-BM=OM得m-a-(b-m)=m 即:m=a+b;4+-a b a a由AM-BM=OM得a-m-(b-m)=-m 即:m=b-a=-5a;13.已知:如图1 30AOB ∠=︒ 34BOC AOC ∠=∠.(1)求AOC ∠的度数;(2)如图2 若射线OP 从OA 开始绕点O 以每秒旋转10︒的速度逆时针旋转 同时射线OQ 从OB 开始绕点O 以每秒旋转6︒的速度逆时针旋转;其中射线OP 到达OC 后立即改变运动方向 以相同速度绕O 点顺时针旋转 当射线OQ 到达OC 时 射线OP OQ 同时停止运动.设旋转的时间为t 秒 当10POQ ∠=︒时 试求t 的值;(3)如图3 若射线OP 从OA 开始绕O 点逆时针旋转一周 作OM 平分AOP ∠ ON 平分COP ∠ 试求在运动过程中 MON ∠的度数是多少?(请直接写出结果)由OP OQ 的运动可知 ∠AOP =10°t ∠BOQ =6°tOP OQ相遇前如图(3)∠BOC=∠COP+∠BOQ+∠POQ即90°=10°t-120°+6°t+10°③∠CON=180°前如图3(3)∵OM 平分∠AOP ON 平分∠COP(1)如图1 当∠C OD 在∠AOB 的内部时 若∠AOD =95° 求∠BOC 的度数;(2)如图2 当射线OC 在∠AOB 的内部 OD 在∠AOB 的外部时 试探索∠AOD 与∠BOC 的数量关系 并说明理由;(3)如图3 当∠COD 在∠AOB 的外部时 分别在∠AOC 内部和∠BOD 内部画射线OE OF 使∠AOE =23∠AOC ∠DOF =13∠BOD 求∠EOF 的度数.【答案】(1)85°(2)AOD ∠与BOC ∠互补 理由见解析(3)当060BOC <∠<︒或120180BOC <∠<时 80EOF ∠=︒;当60120BOC ︒<∠<︒时40EOF ∠=︒;当60BOC ∠=︒或120BOC ∠=︒时 40EOF ∠=︒或80EOF ∠=︒【解析】(1)解:∵120AOB ∠=︒ 95AOD ∠=︒ ∴25BOD AOB AOD ∠=∠-∠=︒ ∵60COD ∠=︒ ∴85BOC BOD COD ∠=∠+∠=︒; (2)AOD ∠与BOC ∠互补;理由如下:∵120AOD AOB BOD BOD ∠=∠+∠=︒+∠ 60BOC COD BOD BOD ∠=∠-∠=︒-∠ ∴12060AOD BOC BOD BOD ∠+∠=︒+∠+︒-∠180=︒ ∴AOD ∠与BOC ∠互补.120AOC n ∠=︒+︒ 60BOD n ∠=︒+︒则180AOC ∠=︒ 120AOD AOB ∠=∠=︒ 120BOD ∠=︒240AOC n ∠=︒-︒ 60BOD n ∠=︒+︒则180BOD ∠=︒ 120AOC AOD DOC ∠=∠+∠=︒111尺的直角顶点放在点O处直角边OM在射线OB上另一边ON在直线AB的下方.【操作一】:将图1中的三角尺绕着点O以每秒15︒的速度按顺时针方向旋转.当它完成旋转一周时停止设旋转的时间为t秒.∠的度数是___________ 图1中与它互补的角是___________.(1)BOC(2)三角尺旋转的度数可表示为___________(用含t的代数式表示):当t=___________⊥.时MO OC【操作二】:如图2将一把直尺的一端点也放在点O处另一端点E在射线OC上.如图3 在三角尺绕着点O以每秒15︒的速度按顺时针方向旋转的同时直尺也绕着点O以每秒5︒的速度按顺时针方向旋转当一方完成旋转一周时停止另一方也停止旋转设旋转的时间为t秒.(3)当t为何值时OM OE⊥并说明理由?(4)试探索:在三角尺与直尺旋转的过程中当623t≤≤是否存在某个时刻使得COM∠与COE∠中其中一个角是另一个角的两倍?若存在请求出所有满足题意的t的值;若不存在请说明理由.∵OM OE⊥∵OM OE⊥265252。
人教版七年级上册数学 第四章 几何图形的初步 专题训练(含答案)
人教版七年级上册数学第四章几何图形的初步专题训练一、单选题1.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是七边形;③可能是直角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①② B.①④C.①②④ D.①②③④2.如图,梯形绕虚线旋转一周所形成的图形是()A. B. C. D.3.下列几何体中,是棱锥的为()A. B. C. D.4.下列几何体的侧面展开图形状不是矩形的是()A.圆柱B.圆锥C.棱柱D.正方体5.下图中射线OA与OB表示同一条射线的是( )A. B.C.D.6.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A.两条直线相交,只有一个交点 B.两点确定一条直线 C.两点之间线段最短 D.直线比线段长7.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补 D .∠AOE 和∠BOC 互补8.如图,直线AB 与CD 相交于点,60O AOC ∠=,一直角三角尺EOF 的直角顶点与点O 重合,OE 平分AOC ∠,现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转,同时直线CD 也以每秒9的速度绕点O 顺时针旋转,设运动时间为t 秒(040t ≤≤),当CD 平分EOF ∠时,t 的值为( ) A .2.5 B .2.5或30 C .30 D .2.5或32.59.如图所示,海岛B 在海岛A 的方向是( ).A .北偏西20°B .南偏东20°C .北偏西70°D .南偏东70°10.定义:△ABC 中,一个内角的度数为α,另一个内角的度数为β,若满足290αβ+=︒,则称这个三角形为“准直角三角形”.如图,在Rt △ABC 中,∠C=90°, AC=8,BC=6,D 是BC 上的一个动点,连接AD ,若△ABD 是“准直角三角形”,则CD 的长是( )A .127B .2413C .83D .135二、填空题11.如图,在线段AB 上有两点C 、D ,AB =28 cm ,AC =4 cm ,点D 是BC 的中点,则线段 AD =________cm .12.笔尖在纸上快速滑动写出一个又一个字,用数学知识可以理解为___________.13.桌面上有一个正六面体骰子,若将骰子沿如图所示的方向顺时针滚动,每滚动90°为1次,则滚动2020次后,骰子朝下一面的点数是___.14.将一副三角板如图摆放,若∠BAE=135°17′,则∠CAD 的度数是__________.三、解答题15.如图,长度为12cm 的线段AB 的中点为M ,C 点在线段MB 上,且2BC MC =,求线段AC 的长;16.已知如图是一个长方体无盖盒子的展开图,16,3,24AB cm CD cm IH cm ===.求:(1)求盒子的底面积.(2)求盒子的容积.17.如图,已知数轴上点A 表示的数为6,B 是数轴上一点,且AB =10,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,(1)写出数轴上点B 所表示的数 ;(2)求线段AP 的中点所表示的数(用含t 的代数式表示);(3)M 是AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN 的长.18.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数19.如图1,将一副直角三角尺的顶点叠一起放在点O 处,90BOA ∠=,60COD ∠=,OC 与OB 重合,在OD 外AOB ∠,射线OM 、ON 分别是AOC ∠、BOD ∠的角平分线(1)求MON ∠的度数;(2)如图2,若保持三角尺AOB 不动,三角尺COD 绕点逆时针旋转(060)n n <<时,其他条件不变,求MON ∠的度数(提示:旋转角BOC n ∠=)(3)在旋转的过程中,当120AOC BOD ∠+∠=时,直接写出BOC ∠的值答案一、选择1.B 2.D 3.D 4.B 5.B 6.B 7.D 8.D 9.D 10.C二、填空11.16 12.点动成线 13.4 14.三、解答15.8cm16.(1)2143()cm ;(2)3429()cm17.(1)-4;(2)63t - ;(3)不变,MN 的长度为5.18.∠BOE 的度数为60°19.(1)75;(2)75º;(3)15︒。
人教版初中数学-学年七年级上学期期末专题复习 专题6:几何图形初步 解析版
人教版初中数学2019-2020学年七年级上学期期末专题复习专题6:几何图形初步一、单选题1.如图,小明将装有一半水的密闭圆柱形玻璃杯水平放置,此时水面的形状为()A. 圆B. 长方形C. 平行四边形D. 椭圆2.笔尖在纸上快速滑动写出一个又一个字,可以说明()A. 点动成线B. 线动成面C. 面动成体D. 不能说明什么问题3.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3.1,若点B与点C之间的距离是2,则点A与点C之间的距离是()A. 5B. 2C. 3或5D. 2或64.下列图形中表示北偏东的射线是().A. B. C. D.二、填空题5.A,B,C三点共线,线段AB=8,BC=5,则AC=________.6.若∠B的余角为57.12°,则∠B=________°________’________”7.如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,则∠ABC的度数为________8.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=________.9.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB=________。
三、综合题10.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c(1)填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等①当b2=16时,求c的值②求b、c之间的数量关系③ P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x +a|的值保持不变,求b的值11.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离是________(2)数轴上表示和-1的两点之间的距离表示为________(3)若表示一个有理数,且,则=________(4)若表示一个有理数,且=8,则有理数的值是________12.如图,O为直线AB上一点,OM是∠AOC的角平分线,ON是∠COB的平分线(1)指出图中所有互为补角的角,(2)求∠MON的度数,(3)指出图中所有互为余角的角.答案解析部分一、单选题1. B解:由水平面与圆柱的底面垂直,得:水面的形状是长方形.故答案为:B.【分析】根据垂直于圆柱底面的截面是长方形,可得答案.2. A解:笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为点动成线.故答案为:A.【分析】利用点动成线,线动成面,面动成体,进而得出答案.3. D解:由题可知:点C在线段AB内或在线段AB外,所以要分两种情况计算.∵点A、B表示的数分别为-3、1,∴AB=4第一种情况:点C在AB外,AC=4+2=6;第二种情况:点C在AB内,AC=4-2=2故答案为:D.【分析】分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.4. C解:A表示北偏西,B表示西偏北,C表示北偏东,D表示东偏北.故答案为:C.【分析】根据方位角的性质,由北向东旋转即可.二、填空题5. 3或13解:①若C在AB的右边,则有AC=AB+BC=8+5=13.②C在AB之间,则有AC=AB-BC=8-5=3.故答案为3或13.【分析】根据题意画出图形,分两种情况:①C在AB的右边;②C在AB之间.6. 32;52;48解:57.12°=根据题意得:∠B=90°-= -==故答案为.【分析】根据互为余角列式,再进行度分秒换算,求出结果.7. 36°解:如图,依题意得∠BAC=44°,∠BCD=80°,∴∠ABC=∠BCD-∠BAC=36°,故答案为:36°.【分析】根据方向角的定义得出∠BAC=44°,∠BCD=80°,进而根据三角形的外角定理,由∠ABC=∠BCD-∠BAC即可算出答案.8. 20解:∵∠C=Rt∠,∠B=90°-∠A=90°-70°=20°,故答案为:20.【分析】因为∠C是直角,现知∠A的度数,根据余角的性质即可求出∠B.9. 85°解:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.故答案为:85°.【分析】根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,然后根据三角形内角和定理即可求解.三、综合题10. (1)<;>;>(2)解:①且, ,且, .∵点B到点A,C的距离相等,∴∴,∴②∵, ∴,③依题意,得∴原式=∵∴原式= 【此处不取-2没关系】∵当P 点在运动过程中,原式的值保持不变,即原式的值与无关∴,∴解:(1)由题中的数轴可知,a<0<b<c,且∴abc<0,a+b>ac,ab-ac>0,故答案为:<,>,>;【分析】(1)根据数轴上的点所表示的数的特点得出a<0<b<c,且,从而根据有理数的乘法法则,加法法则、减法法则及有理数大小的比较方法即可一一判断得出答案;(2)①根据数轴上点的位置及绝对值的意义、有理数的乘方确定a、b的取值,进而根据点B到点A,C 的距离相等,即即可求解;②根据数轴上两个点之间的距离及点B到点A,C的距离相等,即,即可得结论;③根据绝对值的意义把算式化简,再根据当P点在运动过程中,原式的值保持不变,即原式的值与无关列出方程,求解即可.11. (1)2(2)或(3)6(4)-5,3解:(1)由题意得1和3两点之间的距离为;(2)和-1的两点之间的距离表示为,或;(3)∵-4<x<2, 则x-2<0, x+4>0,∴=-(x-2)+(x+4)=-x+2+x+4=6;(4)当x<-4时,则x-2<0,x+4<0,=-(x-2)-(x+4)=2-x-x-4=-2x-2=8,解得x=-5;当4≤x<2, 则x-2<0, x+4≥0,=-(x-2)+(x+4)=-x+2+x+4=6≠8,无解;当x≥2时,则x-2≥0, x+4>0,∴=x-2+x+4=2x+2=8解得x=3.【分析】(1)(2)由题意可知数轴两点间的距离即是两点所表示的数相减所得的数的绝对值,据此计算即可;(3)先根据x的范围确定绝对值里面的代数式的正负,再根据绝对值的非负性去绝对值,然后再化简计算即得结果;(4)分三种情况讨论,即把整个数轴分三部分,即x<-4, -4≤x<2, x≥2,然后分别根据绝对值的非负性去绝对值,化简计算,再根据所得的结果等于8解方程求出x即可.12. (1)解:∵∠AOB=180°∴∠AOM+∠BOM=180°,∠AOC+∠BOC=180°,∠AON+∠BON=180,又∵OM是∠AOC的角平分线,ON是∠COB的平分线,∴∠AOM=∠MOC,∠CON= NOB,∴∠COM+∠MOB=180°,∠CON+∠AON=180°.故图中所有互为补角的角有:∠AOM与∠MOB,∠AOC与∠BOC,∠AON与∠BON,∠COM与∠MOB,∠CON与∠AON.(2)解:∵OM是∠AOC的角平分线,ON是∠COB的平分线,∴∠MOC= ∠AOC,∠CON= ∠COB,∴MON=∠MOC+∠CON= (∠AOC+∠COB)= ∠AOB,又∵∠AOB=180°,∴MON=90°.(3)解:∵OM是∠AOC的角平分线,ON是∠COB的平分线,∴∠AOM=∠MOC,∠CON= NOB,又∵MON=90°,∴∠AOM+∠BON=90°,∠COM+∠BON=90°,∠CON+∠AOM=90°,∠CON+∠COM=90°故图中所有互为余角的角有:∠AOM与∠BON,∠COM与∠BON,∠CON与∠AOM,∠CON与∠COM. 【分析】(1)根据补角的定义:如果两个角的和为180°,则这两个角互为补角,观察图形,根据∠AOB=180°,即可解答.(2)根据OM是∠AOC的角平分线,ON是∠COB的平分线,可得∠AOM=∠MOC,∠CON= NOB,此时结合∠AOB的度数即可得到∠MON的度数.(3)根据余角的定义:如果两个角的和为90°,则这两个角互为余角,结合∠MON的度数,分析图形,即可解答.。
人教版数学七年级上学期单元测试卷-第四章 几何图形初步【A卷】(解析版)
第四章几何图形的初步单元A卷一、单选题(共10题;共30分)1. ( 3分) 下列平面图形经过折叠不能围成正方体的是( )A. B. C. D.【答案】C【考点】几何体的展开图【解析】【解答】解:根据正方体展开的图形可得:A、B、D选项可以折叠成正方体,C选项不能.故答案为:C.【分析】根据正方体的展开图,分别判断得到答案即可。
2. ( 3分) 如图,DE∥BC,CD平分∠ACB,∠AED=50°,则∠EDC的度数是()A. 50°B. 40°C. 30°D. 25°【答案】D【考点】平行线的性质,角平分线的定义【解析】【解答】解:∵DE∥BC,∠AED=50°,∴∠ACB=∠AED=50°,∵CD平分∠ACB,∠ACB=25°,∴∠BCD=12∴∠EDC=∠BCD=25°.故答案为:D.【分析】根据两直线平行,同位角相等,可得∠ACB=∠AED=50°,利用角平分线的定义可求出∠BCD 的度数,根据两直线平行,内错角相等,可求出∠EDC的度数.3. ( 3分) 下列说法中错误的是()A. 经过两点有且只有一条直线B. 垂直于弦的直径平分这条弦C. 角平分线上的点到角两边的距离相等D. 过直线l上的一点有且只有一条直线垂直于l【答案】D【考点】直线的性质:两点确定一条直线,垂线,角平分线的性质,垂径定理【解析】【解答】A、经过两点有且只有一条直线,是真命题;B、垂直于弦的直径平分这条弦,是真命题;C、角平分线上的点到角两边的距离相等,是真命题;D、在同一平面内,过一点有且只有一条直线垂直于l,是假命题,故答案为:D.【分析】(1)由直线公理可得:经过两点有且只有一条直线;(2)由垂径定理可得:垂直于弦的直径平分这条弦;(3)由角平分线的性质可得:角平分线上的点到角两边的距离相等;(4)由垂线的性质可得:在同一平面内,过一点有且只有一条直线垂直于l.4. ( 3分) 如图,一个人从A点出发沿北偏东30°方向走到B点,若这个人再从B点沿南偏东15°方向走到C点则∠ABC等于()A. 15∘B. 30∘C. 45∘D. 165∘【答案】C【考点】钟面角、方位角,角的运算,平行线的性质【解析】【解答】解:由题意可知∠ABC=30°+15°=45°故答案为:C.【分析】根据方位角的概念,画图正确表示出方位角,即可求解.5. ( 3分) 将一张长方形纸条折成如图所示的形状,BC为折痕.若∠DBA=70°,则∠ABC等于( )A. 45°B. 55°C. 70°D. 110°【答案】B【考点】角的运算,翻折变换(折叠问题)【解析】【解答】根据题意,得:2∠ABC+∠DBA=180°,∴∠ABC=(180°−70°)÷2=55°.故答案为:B.【分析】根据折叠的性质及邻补角的定义可直接解答.6. ( 3分) 一个正方体的平面展开图如图,每一个面都有一个汉字,则在该正方体中和“实”字相对的汉字是()A. 我B. 的C. 梦D. 想【答案】B【考点】几何体的展开图【解析】【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“实”与“的”是相对面,“现”与“想”是相对面,“我”与“梦”是相对面.故选B.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.7. ( 3分) 一个直棱柱有12个顶点,那么它的面的个数是()A. 10个B. 9个C. 8个D. 7个【答案】C【考点】立体图形的初步认识【解析】【分析】直棱柱有12个顶点,一定是六棱柱,所以它的面的个数是8个.故选C.【点评】本题要求熟练掌握n棱柱有2n个顶点,有(n+2)个面,有3n条棱.8. ( 3分) 如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的序号是()①圆柱②正方体③三棱柱④四棱锥A. ①②③④B. ②①③④C. ③②①④D. ④②①③【答案】B【考点】几何体的展开图【解析】【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、四棱锥.故答案为:B.【分析】本题主要考查了正方体、圆柱、三棱柱、四棱锥的表面展开图,记住这些立体图形的表面展开图是解题的关键.根据正方体、圆柱、三棱柱、四棱锥表面展开图的特点进行解题.9. ( 3分) 如图,三条直线相交于一点O,其中,AB⊥CO,则∠1与∠2()A. 互为补角B. 互为余角C. 相等D. 对顶角【答案】B【考点】余角、补角及其性质,垂线【解析】【分析】根据平角为180度,减去一个直角,则剩下的两角和为90度,即∠1与∠2互余.【解答】观察图形,得∠1+∠AOC+∠2=180°,∵AB⊥CO,∴∠AOC=90°,∴∠1+∠2=90°.故选B.【点评】本题主要考查了平角和余角的定义.10. ( 3分) 在矩形ABCD中,AB=1,AD=√3,AF平分∠DAB,过C点作CE BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②B0=BF;③CA=CH;④BE=3ED;正确的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【考点】等边三角形的判定与性质,含30°角的直角三角形,勾股定理,矩形的性质,角平分线的定义【解析】【分析】根据矩形的性质可得OA=OB=OC=OD,由AD=√3,AB=1根据特殊角的锐角三角函数值可求出∠ADB=30°,即得∠ABO=60°,从而可证得△ABO是等边三角形,即得AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,再依次分析各小题即可作出判断.根据已知条件不能推出AF=FH,故①错误;【解答】∵四边形ABCD是矩形,∴∠BAD=90°,∵AD=√3,AB=1,∴tan∠ADB=√3=√33,∴∠ADB=30°,∴∠ABO=60°,∵四边形ABCD 是矩形,∴AD ∥BC ,AC=BD ,AC=2AO ,BD=2BO , ∴AO=BO ,∴△ABO 是等边三角形,∴AB=BO ,∠AOB=∠BAO=60°=∠COE , ∵AF 平分∠BAD , ∴∠BAF=∠DAF=45°, ∵AD ∥BC , ∴∠DAF=∠AFB , ∴∠BAF=∠AFB , ∴AB=BF , ∵AB=BO ,∴BF=BO ,故②正确; ∵∠BAO=60°,∠BAF=45°, ∴∠CAH=15°, ∵CE ⊥BD , ∴∠CEO=90°, ∵∠EOC=60°, ∴∠ECO=30°,∴∠H=∠ECO-∠CAH=30°-15°=15°=∠CAH , ∴AC=CH ,故③正确; ∵△AOB 是等边三角形, ∴AO=OB=AB , ∵四边形ABCD 是矩形, ∴OA=OC ,OB=OD ,AB=CD , ∴DC=OC=OD , ∵CE ⊥BD ,∴DE=EO=12DO=14BD , ∴BE=3ED ,故④正确;∴正确的有3个,故选C.【点评】本题知识点较多,综合性强,是中考常见题,一般是中考压轴题,难度较大,需特别注意.二、填空题(共6题;共33分)11. ( 3分) 已知点C是线段AB的中点,线段BC=5,则线段AB的长为________.【答案】10【考点】线段的中点【解析】【解答】解:∵C是线段AB的中点,线段BC=5,∴AB=2BC=10.故答案为:10.【分析】根据线段中点的定义知AB=2BC从而得出答案。
部编数学七年级上册专题12几何图形初步章末重难点题型(13个题型)(解析版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题12 几何图形初步章末重难点题型(13个题型)一、经典基础题题型1 直线、射线、线段、角的基本概念题型2 角的表示、换算及比较大小题型3 直线、射线、线段的实际生活中的应用题型4 线段、角度中的计数问题题型5 作图问题题型6 与线段有关的计算题型7 实际背景下线段的计算问题题型8 钟面上的角度问题题型9 方位角问题题型10 一副直角三角形板中的角度问题题型11 与角平分线(角的和差)有关的计算题型12 余角、补角、对顶角的相关计算题型13 七巧板相关问题二、优选提升题题型1 直线、射线、线段、角的基本概念解题技巧:熟练掌握直线、射线、线段基本性质和概念。
七年级数学上册人教版几何图形初步复习(解析版)(课堂学案及配套作业)
几何图形初步复习(解析版)【知识点一】立体图形与平面图形区别:立体图形各部分不都在同一平面内;平面图形各部分都在同一平面内.联系:立体图形可以展开成平面图形,平面图形可以旋转成立体图形.考点:(1)从不同方向看立体图形.(2)立体图形的平面展开图.例1(2022秋•即墨区校级月考)如图所示的几何体是由4个相同的小正方体组成.从左面看到的几何体的形状图为()A.B.C.D.思路引领:根据解答组合体三视图的画法画出该组合体从左面看到的图形即可.解:从左面看这个几何体,所得到的图形为:故选:D.解题秘籍:本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体三视图的画法是正确解答的前提.针对练习1.(2020秋•江门期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是.思路引领:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“会”是相对面.故答案为:会.解题秘籍:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.(2021•东明县二模)如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.思路引领:将A、B、C、D分别展开,能和原图相对应的即为正确答案.解:A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选:B.解题秘籍:本题考查了展开图折叠成几何体,熟悉其侧面展开图是解题的关键.3.(2020秋•秦淮区期末)如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.思路引领:由平面图形的折叠及立体图形的表面展开图的特点解题.解:因圆柱的侧面展开面为长方形,AC展开应该是两线段,且有公共点C.故选:A.解题秘籍:此题主要考查圆柱的侧面展开图,以及学生的立体思维能力.4.(2021秋•天台县期末)如图1,一只蚂蚁要从正方体的一个顶点A沿表面爬行到顶点B,怎样爬行路线最短?如果要爬行到顶点C呢?请完成下列问题:(1)图2是将立方体表面展开的一部分,请将图形补充完整;(画一种即可)(2)在图2中画出点A到点B的最短爬行路线;(3)在图2中标出点C,并画出A、C两点的最短爬行路线(画一种即可).思路引领:(1)根据题意画出正方体的展开图即可;(2)根据线段的性质画出图形即可;(3)根据线段的性质画出图形即可.解:(1)如图所示,(2)如图所示,连接AB,线段AB的即为点A到点B的最短爬行路线;(3)如图所示,线段AC即为A、C两点的最短爬行路线.解题秘籍:此题主要考查了平面展开﹣最短路径问题,几何体的展开图,线段的性质:两点之间线段最短,正确的画出图形是解题的关键.【知识点二】直线、射线、线段1.直线、射线、线段的区别和联系:区别:(1)端点个数不同:直线没有端点,射线一个端点,线段两个端点.(2)延伸方向不同,直线向两方延伸,射线向一个方向延伸,线段无延伸.联系:(1)都可以用两个点的大写字母表示,直线是用任意两点字母,没有先后顺序;射线是用一个端点字母和任一点字母,端点字母在前;线段只能用两端点字母,没有先后顺序.(2)线段可以度量,直线和射线不可度量.2.两个性质、一个中点:(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.(3)线段的中点:把一条线段平均分成两条相等线段的点.例2(2020秋•永嘉县校级期末)如图,直线l上有A、B两点,AB=24cm,点O是线段AB 上的一点,OA=2OB.(1)OA=cm,OB=cm.(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP﹣OQ=8.②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为48cm.思路引领:(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16﹣x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,当点P在点O 右边时,2(2t﹣16)﹣(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2﹣1)=16由此即可解决.解:(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设CO=x,则AC=16﹣x,BC=8+x,∵AC=CO+CB,∴16﹣x=x+8+x,∴x=8 3,∴CO=8 3.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t=16 5,当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,∴t=165或16s时,2OP﹣OQ=8.②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.解题秘籍:本题考查一元一次方程的应用,两点之间距离的概念,找等量关系列出方程是解决问题的关键,属于中考常考题型.针对练习1.(南充模拟)已知线段AB=8cm,在直线AB上画线段BC,使BC=3cm,则线段AC=.思路引领:由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.解:由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm,故答案为:11cm或5cm.解题秘籍:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.2.(2019秋•鄞州区期末)已知点C是线段AB的中点,点D是线段BC上一点,下列条件不能确定点D是线段BC的中点的是()A.CD=DB B.BD=13AD C.2AD=3BC D.3AD=4BC思路引领:解:如图,∵CD=DB,∴点D是线段BC的中点,A不合题意;∵点C是线段AB的中点,∴AC=BC,又∵BD=13AD,∴点D是线段BC的中点,B不合题意;∵点C是线段AB的中点,∴AC=BC,2AD=3BC,∴2(BC+CD)=3BC,∴BC=2CD,∴点D是线段BC的中点,C不合题意;3AD=4BC,不能确定点D是线段BC的中点,D符合题意.故选:D.解题秘籍:本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.3.(2021秋•德江县期末)如图,C是线段AB上的一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是()A.2cm B.3cm C.4cm D.6cm思路引领:由图形可知AC=AB﹣BC,依此求出AC的长,再根据中点的定义可得MC 的长.解:由图形可知AC=AB﹣BC=8﹣2=6cm,∵M是线段AC的中点,∴MC=12AC=3cm.故MC的长为3cm.故选:B.解题秘籍:考查了两点间的距离的计算;求出与所求线段相关的线段AC的长是解决本题的突破点.4.(2021秋•长乐区期末)如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是()A.两点确定一条直线B.两点之间线段最短C.两点之间直线最短D.垂线段最短思路引领:根据线段的性质:两点之间线段最短进行解答.解:把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是两点之间线段最短,故选:B.解题秘籍:此题主要考查了线段的性质,关键是掌握两点之间线段最短,是需要记忆内容.5.如图,在四边形ABCD内找一点O,使它到四边形四个顶点的距离和OA+OB+OC+OD最小,并说出你的理由,由本题你得到什么数学结论?举例说明它在实际中的应用.思路引领:连接AC、BD相交于点O,则点O就是所要找的点;取不同于点O的任意一点P,连接P A、PB、PC、PD,根据两点之间,线段最短,即可得到P A+PB+PC+PD>OA+OB+OC+OD,从而可得点O就是所要找的四边形ABCD内符合要求的点.解:要使OA+OB+OC+OD最小,则点O是线段AC、BD的交点.理由如下:如果存在不同于点O的交点P,连接P A、PB、PC、PD,因为点P有可能在AC上,所以P A+PC也有可能等于AC,即P A+PC≥AC,同理,PB+PD≥BD,但因为点P不同于点O,所以点P不可能同时在AC、BD上,所以“P A+PC=AC“与“PB+PD=BD“不可能同时出现,所以P A+PB+PC+PD>OA+OB+OC+OD,由本题得到:两点之间,线段最短.实际应用:把弯曲的公路改直,就能缩短路程.解题秘籍:本题考查了两点之间,线段最短,作出图形更助于问题的解决,把问题转化为求两条线段的和是解决问题的关键.6.点O是线段AB=28cm的中点,而点P将线段AB分为两部分,AP:PB=23:415,求线段OP的长.思路引领:根据线段的比例的性质,可得AP:PB=10:4,根据按比例分配,可得AP 的长,根据线段中点的性质,可得AO的长,根据线段的和差,可得答案.解:由比例的性质,得AP:PB=10:4.按比例分配,得AP :28×1010+4=20(cm ). 由线段中点的性质,得 AO =12AB =14(cm ). OP =AP ﹣AO =20﹣14=6(cm ).解题秘籍:本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.7.(2017春•太谷县校级期末)如图,已知C ,D 两点在线段AB 上,AB =10cm ,CD =6cm ,M ,N 分别是线段AC ,BD 的中点,则MN = cm .思路引领:结合图形,得MN =MC +CD +ND ,根据线段的中点,得MC =12AC ,ND =12DB ,然后代入,结合已知的数据进行求解. 解:∵M 、N 分别是AC 、BD 的中点,∴MN =MC +CD +ND =12AC +CD +12DB =12(AC +DB )+CD =12(AB ﹣CD )+CD =12×(10﹣6)+6=8. 故答案为:8.解题秘籍:此题考查的知识点是两点间的距离,关键是利用线段的中点结合图形,把要求的线段用已知的线段表示.8.(2019秋•北仑区期末)如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P 、Q两点分别从A 、B 两点同时出发,分别以2个单位/秒和1个单位/秒的速度在射线AB 上沿AB 方向运动,当点P 运动到点B 时,两点同时停止运动,运动时间为t (s ),M 为BP 的中点,N 为MQ 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当BP =12BQ 时,t =12;④M ,N 两点之间的距离是定值.其中正确的结论 (填写序号)思路引领:根据线段中点的定义和线段的和差关系即可得到结论. 解:∵AB =30,AC 比BC 的14多5,∴BC =20,AC =10, ∴BC =2AC ;故①正确;∵P ,Q 两点分别从A ,B 两点同时出发,分别以2个单位/秒和1个单位/秒的速度, ∴BP =30﹣2t ,BQ =t ,∵M 为BP 的中点,N 为MQ 的中点,∴PM=12BP=15﹣t,MQ=MB+BQ=15,NQ=12MQ=7.5,∴AB=4NQ;故②正确;∵BP=30−2t,BQ=t,BP=12 BQ,∴30−2t=t2,解得:t=12,故③正确,∵BP=30﹣2t,BQ=t,∴BM=12PB=15﹣t,∴MQ=BM+BQ=15﹣t+t=15,∴MN=12MQ=152,∴MN的值与t无关是定值,故答案为:①②③④.解题秘籍:本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P 与Q重合时的时间,涉及分类讨论的思想.9.(2021秋•易县期末)如图,在数轴上有A,B两点,且AB=8,点A表示的数为6;动点P从点O出发,以每秒2个单位长度的速度沿数轴正方向运动,点Q从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)写出数轴上点B表示的数是;(2)当t=2时,线段PQ的长是;(3)当0<t<3时,则线段AP=;(用含t的式子表示)(4)当PQ=14AB时,求t的值.思路引领:(1)根据两点间的距离公式即可求出数轴上点B表示的数;(2)先求出当t=2时,P点对应的有理数为2×2=4,Q点对应的有理数为6+1×2=8,再根据两点间的距离公式即可求出PQ的长;(3)先求出当0<t<3时,P点对应的有理数为2t<6,再根据两点间的距离公式即可求出AP的长;(4)由于t秒时,P点对应的有理数为2t,Q点对应的有理数为6+t,根据两点间的距离公式得出PQ=|2t﹣(6+t)|=|t﹣6|,根据PQ=14AB列出方程,解方程即可求解.解:(1)6+8=14.故数轴上点B表示的数是14;(2)当t=2时,P点对应的有理数为2×2=4,Q点对应的有理数为6+1×2=8,8﹣4=4.故线段PQ的长是4;(3)当0<t<3时,P点对应的有理数为2t<6,故AP=6﹣2t;(4)根据题意可得:|t﹣6|=14×8,解得:t=4或t=8.故t的值是4或8.故答案为:14;4;6﹣2t.解题秘籍:此题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,(4)中解方程时要注意分两种情况进行讨论.【知识点三】角的比较与运算1.比较角大小的方法:度量法、叠合法.2.互余、互补反映两角的特殊数量关系.3.方位角中经常涉及两角的互余.4.计算两角的和、差时要分清两角的位置关系.例3(2020秋•和平区期末)如图:∠AOB:∠BOC:∠COD=2:3:4,射线OM、ON,分别平分∠AOB与∠COD,又∠MON=84°,则∠AOB为()A.28°B.30°C.32°D.38°思路引领:首先设出未知数,然后利用角的和差关系和角平分线的定义列出方程,即可求出∠AOB的度数.解:设∠AOB=2x°,则∠BOC=3x°,∠COD=4x°,∵射线OM、ON分别平分∠AOB与∠COD,∴∠BOM=12∠AOB=x°,∠CON=12∠COD=2x°,又∵∠MON=84°,∴x+3x+2x=84,x=14,∴∠AOB=14°×2=28°.故选:A.解题秘籍:本题主要考查了角平分线的定义和角的计算,解题时要能根据图形找出等量关系列出方程,求出角的度数.例4(2021秋•北辰区期末)如图所示,∠AOC=90°,点B,O,D在同一直线上,若∠1=26°,则∠2的度数为.思路引领:由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB 互补,即可求出∠2的度数.解:∵∠1=26°,∠AOC=90°,∴∠BOC=64°,∵∠2+∠BOC=180°,∴∠2=116°.故答案为:116°.解题秘籍:此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90°,互补的两角之和为180°.针对练习1.(2019•隆化县二模)如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°思路引领:根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选:C.解题秘籍:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.2.(通辽中考)4点10分,时针与分针所夹的小于平角的角为()A.55°B.65°C.70°D.以上结论都不对思路引领:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出4点10分时针和分针分别转动角度即可求出.解:∵4点10分时,分针在指在2时位置处,时针指在4时过10分钟处,由于一大格是30°,10分钟转过的角度为1060×30°=5°,因此4点10分时,分针与时针的夹角是2×30°+5°=65°.故选:B.解题秘籍:本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.3.(渝北区期末)如图,直角三角板的直角顶点在直线上,则∠1+∠2=()A.60°B.90°C.110°D.180°思路引领:由三角板的直角顶点在直线l上,根据平角的定义可知∠1与∠2互余,从而求解.解:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°﹣90°=90°.故选:B.解题秘籍:本题考查了余角及平角的定义,正确观察图形,得出∠1与∠2互余是解题的关键.4.(2021春•未央区月考)如图,要测量两堵围墙形成的∠AOB的度数,但人不能进入围墙,可先延长BO得到∠AOC,然后测量∠AOC的度数,再计算出∠AOB的度数.其中依据的原理是()A.对顶角相等B.同角的余角相等C.等角的余角相等D.同角的补角相等思路引领:根据邻补角的定义以及同角的补角相等得出答案.解:如图,由题意得,∠AOC+∠AOB=180°,即∠AOC与∠AOB互补,因此量出∠AOC的度数,即可求出∠AOC的补角,根据同角的补角相等得出∠AOB的度数,故选:D.解题秘籍:本题考查邻补角的定义、同角的补角相等,理解同角的补角相等是正确判断的前提.5.(2015秋•庆云县期末)计算:①33°52′+21°54′=;②36°27′×3=.思路引领:①利用度加度,分加分,再进位即可;②利用度和分分别乘以3,再进位.解:①33°52′+21°54′=54°106′=55°46′;②36°27′×3=108°81′=109°21′;故答案为:55°46′;109°21′.解题秘籍:此题主要考查了度分秒的计算,关键是掌握在进行度、分、秒的运算时也应注意借位和进位的方法.6.如图,将一副三角尺按不同位置摆放,在哪种摆放方式中∠α与∠β互余?在哪种摆放方式中∠α与∠β互补?在哪种摆放方式中∠α与∠β相等?思路引领:根据每个图中的三角尺的摆放位置,容易得出∠α与∠β的关系.解:(1)根据平角的定义得:∠α+90°+∠β=180°,∴∠α+∠β=90°,即∠α与∠β互余;(2)根据两个直角的位置得:∠α=∠β;(3)根据三角尺的特点和摆放位置得:∠α+45°=180°,∠β+45°=180°,∴∠α=∠β;(4)根据图形可知∠α与∠β是邻补角,∴∠α+∠β=180°;综上所述:(1)中∠α与∠β互余;(4)中∠α与∠β互补;(2)(3)中,∠α=∠β.解题秘籍:本题考查了余角和补角的定义;仔细观察图形,弄清两个角的关系是解题的关键.7.(2012秋•襄城区期末)如图,A地和B地都是海上观测站,从A地发现它的北偏东60°方向有一艘船,同时,从B地发现这艘船在它北偏东30°的方向上,试在图中确定这艘船的位置.思路引领:根据方向角的概念分别画出过点A与点B的射线,两条射线的交点即为这艘船的位置.解:如图所示:作∠1=60°,∠2=30°,两射线相交于P点,则点P即为所求.解题秘籍:本题考查的是方位角的画法,解答此题的关键是熟知方向角的描述方法,即用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西,偏多少度.8.(2019秋•东莞市期末)直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.(1)在图1中,若∠BCE=40°,∠ACF=;(2)在图1中,若∠BCE=α,∠ACF=(用含α的式子表示);(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,若∠BCE=150°,试求∠ACF 与∠ACE的度数.思路引领:(1)、(2)结合平角的定义和角平分线的定义解答; (3)根据角平分线的定义、平角的定义以及角的和差关系解答即可. 解:(1)如图1,∵∠ACB =90°,∠BCE =40°,∴∠ACD =180°﹣90°﹣40°=50°,∠BCD =180°﹣40°=140°, 又CF 平分∠BCD ,∴∠DCF =∠BCF =12∠BCD =70°,∴∠ACF =∠DCF ﹣∠ACD =70°﹣50°=20°; 故答案为:20°;(2)如图1,∵∠ACB =90°,∠BCE =α°,∴∠ACD =180°﹣90°﹣α°=90°﹣α,∠BCD =180°﹣α, 又CF 平分∠BCD ,∴∠DCF =∠BCF =12∠BCD =90°−12α, ∴∠ACF =90°−12α﹣90°+α=12α; 故答案为:12α;(3)如图2,∵∠BCE =150°, ∴∠BCD =30°, ∵CF 平分∠BCD , ∴∠BCF =12∠BCD =15°, ∴∠ACF =90°﹣∠BCF =75°, ∠ACD =90°﹣∠BCD =60°, ∴∠ACE =180°﹣∠ACD =120°.解题秘籍:考查了角的计算和角平分线的定义,主要考查学生的计算能力,求解过程类似.9.(2019秋•梁园区期末)如图,已知∠AOB=60°,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO、射线OB运动,速度为2cm/s;动点Q从点O 出发,沿射线OB运动,速度为1cm/s;P、Q同时出发,同时射线OC绕着点O从OA 上以每秒5°的速度顺时针旋转,设运动时间是t(s).(1)当点P在MO上运动时,PO =cm(用含t的代数式表示);(2)当点P在线段MO上运动时,t为何值时,OP=OQ?此时射线OC是∠AOB的角平分线吗?如果是请说明理由.(3)在射线OB上是否存在P、Q相距2cm?若存在,请求出t的值并求出此时∠BOC 的度数;若不存在,请说明理由.思路引领:(1)先确定出PM=2t,即可得出结论;(2)先根据OP=OQ建立方程求出t=6,进而求出∠AOC=30°,即可得出结论;(3)分P、Q相遇前相距2cm和相遇后2cm两种情况,建立方程求解,接口得出结论.解:(1)当点P在MO PM=2t,∵OM=18cm,∴PO=OM﹣PM=(18﹣2t)cm,故答案为:(18﹣2t);(2)由(1)知,OP=18﹣2t,当OP=OQ时,则有18﹣2t=t,∴t=6即t=6时,能使OP=OQ,∵射线OC绕着点O从OA上以每秒5°的速度顺时针旋转,∴∠AOC=5°×6=30°,∵∠AOB=60°,∴∠BOC=∠AOB﹣∠AOC=30°=∠AOC,∴射线OC是∠AOB的角平分线,(3)分为两种情形.当P、Q相遇前相距2cm时,OQ﹣OP=2∴t﹣(2t﹣18)=2解这个方程,得t=16,∴∠AOC=5°×16=80°∴∠BOC=80°﹣60°=20°,当P、Q相遇后相距2cm时,OP﹣OQ=2∴(2t﹣18)﹣t=2解这个方程,得t=20,∴∠AOC=5°×20=100°∴∠BOC=100°﹣60°=40°,综合上述t=16,∠BOC=20°或t=20,∠BOC=40°.解题秘籍:此题是几何变换综合题,主要考查了角平分线的定义,旋转的性质,用方程的思想解决问题是解本题的关键.配套作业1.(2021•芜湖模拟)如图,甲、乙都是由大小相同的小正方体搭成的几何体,关于它们的视图,判断正确的是()A.仅主视图相同B.左视图与俯视图相同C.主视图与左视图相同D.主视图与俯视图相同思路引领:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,依据三视图进行判断即可.解:如图所示:由图可得,主视图与俯视图相同.故选:D.解题秘籍:本题考查简单组合体的三视图,掌握三视图的定义是解答本题的关键.2.(2020秋•大丰区月考)如图,三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂绿色的对面是色.思路引领:根据与“白”相邻的是黄、黑、红、绿判断出“白”的对面是“蓝”,与“黄”相邻的是白、黑、蓝、红判断出“绿”的对面是“黄”.解:由图可知,与“白”相邻的是黄、黑、红、绿,所以,“白”的对面是“蓝”,与“黄”相邻的是白、黑、蓝、红,所以,“绿”的对面是“黄”.故答案为:黄.解题秘籍:此题考查了正方体相对两个面上的文字,注意正方体的空间图形,此题关键是抓住图中出现了2次的颜色红和黄的邻面颜色的特点,推理得出它们的对面颜色分别是黑和绿.3.(2010秋•洛江区期末)如图,把左边的图形折叠起来,它会变为()A.B.C.D.思路引领:本题以小立方体的侧面展开图为背景,考查学生对立体图形展开图的认识.在本题的解决过程中,学生可以动手进行具体折纸、翻转活动,也可以.解:通过实际动手操作可知正确的为B.故选:B.解题秘籍:本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.另外,本题通过考查正方体的侧面展开图,展示了这样一个教学导向,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.4.(2021秋•成都期中)下列图形是正方体的表面展开图的是()A.B.C.D.思路引领:正方体共有11种表面展开图,利用正方体及其表面展开图的特点判断即可.解:A选项能围成正方体;B和C折叠后缺少一个面,故不能折成正方体;D出现了“田”字格,故不折成正方体能.故选:A.解题秘籍:本题考查了几何体的展开图,同时考查了学生的立体思维能力.解题时注意,只要有“田”字格的展开图都不是正方体的表面展开图.5.(2017秋•江岸区校级期末)如图,线段AB上有E、D、C、F四点,点E是线段AC的中点,点F是线段DB的中点,有下列结论:①EF=12AB;②EF=12(AB﹣CD);③DE=12(DA﹣DC);④AF=12(DA+AB),其中正确的结论是.思路引领:根据中点定义可得:AE=EC=12AC,DF=FB=12DB;对于①②,结合图形,依据线段的和差关系即可判断正误;同理再判断③和④的正误.解:如图,∵点E是线段AC的中点,点F是线段DB的中点,∴AE=EC=12AC,DF=FB=12DB,∴EF=AB﹣AE﹣FB=AB−12(AC+DB)=AB−12(AB+CD)=12(AB﹣CD),故结论①错误,结论②正确;DE=EC﹣DC=12AC﹣DC=12(AD +DC )﹣DC =12(AD ﹣DC ), 故结论③正确; AF =AB ﹣BF =AB −12BD=AB −12(AB ﹣DA ) =12(AB +DA ), 故结论④正确. 故答案为:②③④.解题秘籍:本题主要考查了线段中点定义及线段和差的计算,解题时要结合图形认真观察分析,数形结合,理清相关线段之间的关系是解题关键.6.(2020秋•奉化区校级期末)如图,已知线段AB =8,点C 是线段AB 是一动点,点D 是线段AC 的中点,点E 是线段BD 的中点,在点C 从点A 向点B 运动的过程中,当点C 刚好为线段DE 的中点时,线段AC 的长为( )A .3.2B .4C .4.2D .167思路引领:由已知条件可得:AD =CD =CE ,CD =CE ,则AB =AD +DC +CE +BE =3AD +BE =3AD +DE =3AD +2CD =5AD 即可求. 解:∵点D 是线段AC 的中点, ∴AD =CD ,∵点E 是线段BD 的中点, ∴BE =DE ,∵点C 为线段DE 的中点, ∴CD =CE , ∴AD =CD =CE ,∵AB =AD +DC +CE +BE =3AD +BE =3AD +DE =3AD +2CD =5AD , ∴AD =1.6, ∴AC =2AD =3.2, 故选:A .解题秘籍:本题考查了线段中点的定义,熟悉线段的和差关系是解题的关键. 7.(2021秋•济南期末)如图,线段AB =16cm ,在AB 上取一点C ,M 是AB 的中点,N 是AC中点,若MN=3cm,则线段AC的长是()A.6B.8C.10D.12思路引领:设CM=a,可得CN=CM+MN=a+3,由M是AB的中点,N是AC中点,可得AM=12AB,AN=CN=a+3,由AM=AN+MN=8,即可算出a的值,根据AC=AM+CM代入计算即可得出答案.解:设CM=a,CN=CM+MN=a+3,∵M是AB的中点,N是AC中点,∴AM=12AB=12×16=8,AN=CN=a+3,∵AM=AN+MN=8,即a+3+3=8,∴a=2,∴AC=AM+CM=8+2=10.故选:C.解题秘籍:本题主要考查了两点间的距离,熟练掌握两点的距离计算的方法进行计算是解决本题的关键.8.(2006•巴中)巴广高速路的设计者准备在西华山再设计修建一个隧道,以缩短两地之间的里程,其主要依据是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.过直线外一点有且只有一条直线平行于已知直线思路引领:此题为数学知识的应用,由题意设计巴广高速路,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选:B.解题秘籍:此题考查知识点两点间线段最短.9.如图,公路上有A1、A2、A3、A4、A5、A6、A7七个村庄,现要在这段公路上设一车站,使这七个村庄到车站的路程总和最小,车站应建在何处?思路引领:根据“当点数为奇数个点时,应设在中点上;当点数为偶数时,应设在中间相邻的两点或其两点之间的任何地方,距离之和为最小”的规律,本题有7个村庄,应设在中点A4上.解:因为有7个村庄,是奇数个点,所以应设在中间点上,即设在A4点上.。
人教版七年级数学上册《第四章几何图形初步》专题训练含答案解析.doc
专题训练巧解时钟问题1.同学们,闹钟都见过吧!它的时针和分针如同兄弟俩在赛跑,对你是否知道时针每分钟走多少度?分针每分钟走多少度?当你弄清楚这个问题后,你能解决很多关于闹钟有趣的问题:(1)三点整时,时针与分针所夹的角是______ 度;(2)7点25分时,时针与分针所夹的角是—度;(3)—昼夜(0点到24点)时针与分针互相垂直的次数有多少次?[解析]⑴看时针和分针之间相隔儿个大格,一个大格表示30° , 3X30° =90°;⑵ 方法同(1),2^X30° =72.5°; (3)时针与分针垂直时,夹角为90°,先得到经过多少分钟就能垂直一次,再看24小时里有几个得到的分钟数即可.解:(1)90(2)72. 5(3)设一次垂直到下一次垂直经过x分钟,则3606x —0. 5x = 2X90, 5. 5x = 180, x=24X60 一晋F4X60X 硕=44(次).答:一昼夜时针与分针互相垂直的次数为44次.2.在下午2点到3点之间,时钟的时针和分针何时重叠?[解析]2点时,分针在时针后60°, —段时间后分针追上了时针(重叠),即在相同的时间内,分针比时针多跑60°(如图4— r-14).这道题可看作追及问题,相等关系为分针转过的角度一时针转过的角度=开始时两者的距离(60° ).图 4—7—14 解: 6x° • 设2点x 分时,时钟的时针和分针重叠,x 分钟内,时针转过0.5x° ,分针转过则 6x —0. 5x=60,3. 在某地大地震后,许许多多志愿者到灾区投入抗震救灾行列中.志愿者小方八点多 准备前去为灾民服务,临出门她看到钟表上的时针与分针正好是重合的,下午两点多她拖着 疲惫的身体回到家中,一进门看见钟表的吋针与分针方向相反,正好成一条直线•问小方是 几点钟去为灾民服务的?几点钟回到家的?共用了多长吋I'可?[解析]在钟表问题屮,常利用时针与分针转动的度数关系:分针每转动1° ,时针转 动(甘。
新人教版初中数学七年级数学上册第四单元《几何图形初步》测试题(含答案解析)
一、选择题1.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .1 2.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )A .140°B .130°C .50°D .40°3.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南 4.计算:135333030306︒︒''''⨯-÷的值为( )A .335355︒'''B .363355︒'''C .63533︒'''D .53533︒''' 5.已知:∠AOC =90°,∠AOB :∠AOC =2:3,则∠BOC 的度数是( )A .30°B .60°C .30°或60°D .30°或150°6.平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( ) A .16B .22C .20D .187.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .48.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( )A .∠A >∠B >∠CB .∠B >∠A >∠CC .∠A >∠C >∠BD .∠C >∠A >∠B9.已知线段AB =6cm ,反向延长线段AB 到C ,使BC =83AB ,D 是BC 的中点,则线段AD的长为____cm A .2 B .3 C .5D .610.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cmB .10cmC .4cm 或10cmD .6cm 或10cm11.由A 站到G 站的某次列车,运行途中停靠的车站依次是A 站——B 站—C 站——D 站——E 站——F 站——G 站,那么要为这次列车制作的火车票有( ) A .6种B .12种C .21种D .42种12.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线二、填空题13.硬币在桌面上快速地转动时,看上去象球,这说明了_________________.14.如图,共有_________条直线,_________条射线,_________条线段.15.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.16.已知一个角的补角是它余角的3倍,则这个角的度数为_____.17.下面的图形是某些几何体的表面展开图,写出这些几何体的名称.18.把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.19.如图是一个正方体盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数,则填入正方形中A,B,C内的三个数依次为__,___,___.20.如图,上午6:30时,时针和分针所夹锐角的度数是_____.三、解答题21.已知:如图,在∠AOB的内部从O点引3条射线OC,OD,OE,图中共有多少个角?若在∠AOB的内部,从O点引出4条,5条,6条,…,n条不同的射线,可以分别得到多少个不同的角?22.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)23.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若1AM =,4BC =,求MN 的长度. (2)若6AB =,求MN 的长度. 24.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE 的度数; (2)如图②,若∠ACE =2∠BCD ,请求出∠ACD 的度数. 25.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线. [知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 26.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由AB =10cm ,BC =4cm .于是得到AC =AB +BC =14cm ,根据线段中点的定义由D 是AC 的中点,得到AD ,根据线段的和差得到MD =AD ﹣AM ,于是得到结论. 【详解】解:∵AB =10cm ,BC =4cm ,∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=1AC=7cm;2∵M是AB的中点,∴AM=1AB=5cm,2∴DM=AD﹣AM=2cm.故选:C.【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.2.C解析:C【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.3.D解析:D【分析】如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.【详解】如图,根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.故选D .4.B解析:B 【分析】先进行度、分、秒的乘法除法计算,再算减法. 【详解】135333030306︒︒''''⨯-÷4139555︒︒''''=- 386415055︒︒''''-''='''363355︒=. 故选:B . 【点睛】本题考查了度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.5.D解析:D 【分析】根据两角的比和两角的和即可求得两个角的度数. 【详解】由∠AOC =90°,∠AOB :∠AOC =2:3,可得 当B 在∠AOC 内侧时,可以知道∠AOB 23=⨯90°=60°,∠BOC =30°; 当B 在∠AOC 外侧时,∠BOC =150°. 故选:D . 【点睛】本题考查了三角形中角的求法,解题的关键是分两种情况讨论.6.B解析:B 【分析】由题意可得7条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m ,n 的值,进而可得答案. 【详解】解:根据题意可得:7条直线相交于一点时交点最少,此时交点为1个,即n =1; 任意两直线相交都产生一个交点时,交点最多,此时交点为:7×(7﹣1)÷2=21,即m =21;则m +n =21+1=22. 故选:B . 【点睛】本题考查了直线的交点问题,注意掌握直线相交于一点时交点最少,任意n条直线两两相交时交点最多为12n(n﹣1)个.7.C解析:C【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.8.C解析:C【分析】根据度分秒之间的换算,先把∠C的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.【详解】解:∵∠C=20.25°=20°15′,∴∠A>∠C>∠B,故选:C.【点睛】此题考查了角的大小比较,先把∠C的度数化成度、分、秒的形式,再进行比较是本题的关键.9.A解析:A【分析】由BC=83AB可求出BC的长,根据中点的定义可求出BD的长,利用线段的和差关系求出AD的长即可.【详解】∵BC=83AB,AB=6cm,∴BC=6×83=16cm,∵D是BC的中点,∴BD=12BC=8cm,∵反向延长线段AB到C,∴AD=BD-AB=8-6=2cm,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.10.D解析:D【分析】由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C在直线AB上,AB=8,BC=2,∴当点C在线段AB上时,AC=AB-BC=8-2=6cm,当点C在线段AB的延长线上时,AC=AB+BC=8+2=10cm,∴AC的长度是6cm或10cm.故选D.【点睛】本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.11.C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.12.D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题13.面动成体【分析】本题是面动成体的原理在现实中的具体表现根据面动成体原理解答即可【详解】硬币在桌面上快速地转动时看上去象球这说明了面动成体故答案为面动成体【点睛】本题考查了点线面体掌握面动成体原理是解解析:面动成体【分析】本题是面动成体的原理在现实中的具体表现,根据面动成体原理解答即可.【详解】硬币在桌面上快速地转动时,看上去象球,这说明了面动成体,故答案为面动成体.【点睛】本题考查了点、线、面、体,掌握面动成体原理是解题的关键.14.63【解析】【分析】根据线段射线和直线的特点:线段有两个端点有限长可以测量;射线有一个端点无限长;直线无端点无限长;进行解答即可【详解】因为线段有两个端点射线只有一个端点所以由图可以看出:图中有1条解析:6 3【解析】【分析】根据线段、射线和直线的特点:线段有两个端点,有限长,可以测量;射线有一个端点,无限长;直线无端点,无限长;进行解答即可.【详解】因为线段有两个端点,射线只有一个端点,所以由图可以看出:图中有1条直线,3条线段,有6条射线.故此题答案为:1,6,3.【点睛】此题主要考查直线、线段和射线的特点,此类型的题,在数时,应做到有顺序,做到不遗漏、不重复.15.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.16.45°【分析】根据互为余角的和等于90°互为补角的和等于180°用这个角表示出它的余角与补角然后列方程求解即可【详解】设这个角为α则它的余角为90°﹣α补角为180°﹣α根据题意得180°-α=3(解析:45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.17.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;解析:正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断.【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体,四棱锥,三棱柱;【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.18.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的解析:14【解析】【分析】先求出两边线段的长度之和,第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和.【详解】根据题意,第一段与第三段长度之和=20-8=12cm,所以第一段中点到第三段中点之间的距离=12÷2+8=6+8=14cm.【点睛】能正确找出“第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和”是解本题的关键.19.02【分析】利用正方体及其表面展开图的特点解题【详解】解:由于只有符号不同的两个数互为相反数由正方体的展开图解题得填入正方形中内的三个数依次为102故答案为102【点睛】本题主要考查互为相反数的概念解析:0 2【分析】利用正方体及其表面展开图的特点解题.【详解】解:由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中A,B,C内的三个数依次为1,0,2.故答案为1,0,2【点睛】本题主要考查互为相反数的概念,只有符号不同的两个数互为相反数.解题时勿忘记正方体展开图的各种情形.20.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°.故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.三、解答题21.角的个数分别为10,15,21,28,…,(2)(1)2n n++.【分析】1、在锐角∠AOB的内部以O为顶点作3条射线,由此你能得到以O为顶点的射线共有多少条吗?2、根据以一条射线为边,以其余n+1条射线为另一边可作n+1个角,相信你能求得5条射线共多少个锐角;3、由于任意两射线所得的角都多计一次,所以当在∠AOB 的内部从O 点引3条射线共有1452⨯⨯个角; 4、结合作3条射线得到的角的个数,可以推出以O 为顶点共有n 条射线时,得到的角的个数为(1)(2)2n n ++,继而将n=5、6、7代入即可. 【详解】 解:顺时针数,与射线OA 构成的角有4个,与射线OC 构成的角有3个,与射线OD 构成的角有2个,与射线OE 构成的角有1个,故共有角4+3+2+1=10(个). 类似地,引4条射线有角5+4+3+2+1=15(个),引5条射线有角6+5+4+3+2+1=21(个),引6条射线有角7+6+5+4+3+2+1=28(个),…,以此类推,引n 条射线有角(n +1)+n +(n -1)+…+2+1=(1)(2)2n n ++ (个) . 【点睛】本题中,根据以点O 为顶点的射线有n+2条,再求这n+2条射线可形成的角的个数.要求同学们能够准确利用题目中的已知信息,灵活运用所学知识进行解答.本题还可以采用顺序枚举法进行解答,按一定顺序,把所有元素一一列举出来,要做到不重不漏,适合元素(射线)个数较少情况,如果图中有n 条射线这时无法逐一列举,可用规律归纳法.22.(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm , 21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.23.(1)3;(2)3.【分析】(1)由中点可得CN 和MC 的长,再由 MN=MC+CN 可求得MN 的长;(2)由已知可得AB 的长是NM 的2倍,已知AB 的长,可求得MN 的长度.【详解】解:(1)∵N 是BC 的中点,M 是AC 的中点,1AM =,4BC =,∴2CN =,1AM CM ==,∴3MN MC CN =+=.(2)∵M 是AC 的中点,N 是BC 的中点,6AB =, ∴132NM MC CN AB =+==. 【点睛】本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.24.(1)∠CAE =18°;(2)∠ACD =120°.【分析】(1)由题意根据∠BAC =90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE =∠2,从而得解;(2)根据∠ACB 和∠DCE 的度数列出等式求出∠ACE ﹣∠BCD =30°,再结合已知条件求出∠BCD ,然后由∠ACD =∠ACB+∠BCD 并代入数据计算即可得解.【详解】解:(1)∵∠BAC =90°,∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE =90°,∴∠1+∠CAE =∠2+∠1=90°,∴∠CAE =∠2=18°;(2)∵∠ACE+∠BCE =90°,∠BCD+∠BCE =60°,∴∠ACE ﹣∠BCD =30°,又∠ACE =2∠BCD ,∴2∠BCD ﹣∠BCD =30°,∠BCD =30°,∴∠ACD =∠ACB+∠BCD =90°+30°=120°.【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.25.(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α; (2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能: 若在相遇之前,则1805320t t --=,∴20t =;若在相遇之后,则5318020t t +-=,∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°;②相遇之前:(i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠, 即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时, 则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后: (iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()153********t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠, 即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【点睛】本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.26.40°【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠,40120=︒+︒,160=︒,又∵OD 平分AOC ∠, ∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠,8040=︒-︒, 40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用.。
人教版七年级上册数学第四章 几何图形初步含答案(含解析)
人教版七年级上册数学第四章几何图形初步含答案一、单选题(共15题,共计45分)1、青岛是中国帆船运动的发源地,被誉为中国"帆船之都",能准确表示青岛地理位置的是()A.在胶东半岛东部B.在北京市的东南方向C.离济南约370公里 D.东经120°,北纬36°2、把弯曲的河道改直,这样能缩短航程,这样做的道理是()A.两点确定一条直线B.两点之间线段最短C.线段有两个端点 D.线段可以比较大小3、如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC ,若AD=6,则CD 是()A.1B.2C.3D.44、用一平面去截下列几何体,其截面可能是长方形的有()A.1个B.2个C.3个D.4个5、下列四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是()A. B. C.D.6、中国讲究五谷丰登,六畜兴旺,如图2是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是( )A.羊B.马C.鸡D.狗7、如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是()A.文B.明C.诚D.信8、如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1, OA3平分∠AOA2, OA4平分∠AOA3,则∠AOA4的大小为()A.8°B.4°C.2°D.1°9、如图是每个面上都标有一个汉字的正方体的表面展开图,则与标汉字“我”相对的面上的汉字是()A.祖B.国C.山D.河10、如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“魅”相对的面上的汉字是()A.我B.爱C.辽D.宁11、下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC12、如下左图,用水平的平面截几何体,所得几何体的截面图形标号是()A. B. C. D.13、如图,△ABC中,∠C=90°,AE平分∠BAC,BD⊥AE交AE的延长线于D.若∠1=24°,则∠EAB等于()A.66°B.33°C.24°D.12°14、下列图形是正方体展开图的是()A. B. C. D.15、在下列立体图形中,侧面展开图是矩形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,将一张长方形纸片分别沿着EP、FP对折,使点A落在点A′,点B 落在点B′,若点P,A′,B′在同一直线上,则两条折痕的夹角∠EPF的度数为________.17、下列几何体中:正方体、圆锥、球、三棱柱、五棱锥,不能截出三角形截面的是________18、如图,∠AOB中,OD是∠BOC的平分线,OE是∠AOC的平分线,若∠AOB=135°,则∠EOD=________°.19、若,则的余角是________.20、已知长方形长为5,宽为2,将其绕它的一条边所在的直线旋转一周,得到一个几何体,该几何体的体积为________.(结果保留)21、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是________cm2.22、如图,将一副三角尺的直角顶点重合,且使AB∥CD,则∠DEB的度数是________°.23、如图,数轴上每相邻两刻度之间的距离为1个单位长度,如果点B表示的数的绝对值是点A表示的数的绝对值的3倍,那么点A表示的数是________.24、若,则的余角的大小是________.25、比较:32.75°________31°75′(填“<”“>”或“=”)三、解答题(共6题,共计25分)26、如图,点C、D在线段AB上,D是线段AB的中点,AC=AD,CD=4,求线段AB的长.27、比较65°25′与65.25°的大小;28、一个直角三角尺的两条直角边长是6和8,它的斜边长是10,将这个三角尺绕着它的一边所在的直线旋转一周.(温馨提示:①结果用π表示;②你可能用到其中的一个公式,V圆柱=πr2h,V球体=πR3, V圆锥=πr2h).(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是什么?.(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?29、如图,O为直线BE上的一点,∠AOE=36°,OC平分∠AOB,OD平分∠BOC,求∠AOD的度数.30、如图,已知平分,求的度数.参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、C5、C6、C7、A8、B9、B10、D11、A12、A13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、28、29、30、。
解析卷人教版七年级数学上册第四章几何图形初步专项测试试题(含详解)
人教版七年级数学上册第四章几何图形初步专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,河道l 的同侧有,M N 两个村庄,计划铺设一条管道将河水引至,M N 两地,下面的四个方案中,管道长度最短的是( )A .B .C .D .2、下面图形中,以直线l 为轴旋转一周,可以得到圆柱体的是( )A .B .C .D .3、如图,如果把原来的弯曲河道改直,关于两地间河道长度的说法正确的是( )A.变长了B.变短了C.无变化D.是原来的2倍4、下列判断正确的有()(1)正方体是棱柱,长方体不是棱柱;(2)正方体是棱柱,长方体也是棱柱;(3)正方体是柱体,圆柱也是柱体;(4)正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个5、一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表6、①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A.①③B.②③C.③④D.①④7、如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4 B.3 C.2 D.18、下列展开图中,是正方体展开图的是()A.B.C.D.9、下列图形经过折叠不能围成棱柱的是()A.B.C.D.10、将如图所示的图形绕着给定的直线L旋转一周后形成的几何体是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,90AOC BOD∠=∠=︒,那么12∠=∠,理由是_____________.2、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图,若图中的“锦”表示正方体的右面,则“_______”表示正方体的左面.3、已知点M是线段AB上一点,且:2:3AM MB,MB比AM长2cm,则AB长为_______.=4、在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明_____________.︒,则这个角的补角是________.5、一个角的余角是2325'三、解答题(5小题,每小题10分,共计50分)1、(1)如图所示的长方体,长、宽、高分别为4,3,6.若将它的表面沿某些棱剪开,展成一个平面图形,则下列图形中,可能是该长方体表面展开图的有________(填序号).(2)图A,B分别是题(1)中长方体的两种表面展开图,求得图A的外围周长为52,请你求出图B 的外围周长.(3)第(1)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.2、已知一个角的余角比它的补角的14还多15 ,求这个角.3、如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.4、如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:=a ______,b =_________;(2)先化简,再求值:()()2223252ab a b ab a ab ⎡⎤------⎣⎦.5、已知∠AOB 和∠COD 均为锐角,∠AOB >∠COD ,OP 平分∠AOC ,OQ 平分∠BOD ,将∠COD 绕着点O 逆时针旋转,使∠BOC =α(0≤α<180°)(1)若∠AOB =60°,∠COD =40°,①当α=0°时,如图1,则∠POQ = ;②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ 的度数;(2)若∠AOB =m °,∠COD =n °,m >n ,则∠POQ = ,(请用含m 、n 的代数式表示).-参考答案-一、单选题1、A【解析】根据两点之间线段最短可判断方案A比方案C、D中的管道长度最短,根据垂线段最短可判断方案A 比方案B中的管道长度最短.【详解】解:四个方案中,管道长度最短的是A.故选:A.【考点】本题考查了垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.2、C【解析】【分析】直接根据旋转变换的性质即可解答.【详解】解:因为圆柱从正面看到的是一个长方形,所以以直线为轴旋转一周,可以形成圆柱的是长方形,故选:C.【考点】此题主要考查图形的旋转变换,发挥空间想象是解题关键.3、B【解析】【分析】根据两点之间线段最短解答.【详解】解:如果把原来的弯曲河道改直,根据两点之间线段最短可得到两地间河道长度变短了,【考点】此题考查线段的性质:两点之间线段最短.4、B【解析】【分析】根据棱柱的定义:有两个面平行,其余面都是四边形,并且相邻的两个四边形的公共边都互相平行;柱体的定义:一个多面体有两个面互相平行且相同,余下的每个相邻两个面的交线互相平行,进行判断即可.【详解】解:(1)正方体是棱柱,长方体是棱柱,故此说法错误;(2)正方体是棱柱,长方体也是棱柱,故此说法正确;(3)正方体是柱体,圆柱也是柱体,故此说法正确;(4)正方体是柱体,圆柱是柱体,故此说法错误.故选B.【考点】本题主要考查了棱柱和柱体的定义,解题的关键在于能够熟练掌握相关定义.5、A【解析】【分析】根据正方体展开图的对面,逐项判断即可.【详解】解:由正方体展开图可知,A的对面点数是1;B的对面点数是2;C的对面点数是4;∵骰子相对两面的点数之和为7,∴A代表,故选:A.【考点】本题考查了正方体展开图,解题关键是明确正方体展开图中相对面间隔一个正方形,判断哪两个面相对.6、D【解析】【分析】观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意【详解】解:观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意故选D【考点】本题考查了立体图形,应用空间想象能力是解题的关键.7、C【解析】【分析】由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.【详解】解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,AC=7cm;∴AD=12∵M是AB的中点,AB=5cm,∴AM=12∴DM=AD﹣AM=2cm.故选:C.【考点】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.8、C【解析】【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【考点】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.9、D【分析】根据题意由平面图形的折叠及棱柱的展开图逐项进行判断即可.【详解】解:A可以围成四棱柱,B可以围成三棱柱,C可以围成五棱柱,D选项侧面上多出一个长方形,故不能围成一个三棱柱.故选:D.【考点】本题考查立体图形的展开图,熟记常见立体图形的表面展开图的特征是解决此类问题的关键.10、B【解析】【分析】根据面动成体的原理以及空间想象力可直接选出答案.【详解】解:将如图所示的图形绕着给定的直线L旋转一周后形成的几何体是圆台,故选:B.【考点】此题主要考查了点、线、面、体,关键是同学们要注意观察,培养自己的空间想象能力.二、填空题1、同角的余角相等【分析】由∠AOC+∠BOC=∠BOD+∠BOC=90°可以判断同角的余角相等.【详解】∵∠AOB+∠BOC=∠COD+∠BOC=90°,∠AOB和∠COD都与∠BOC互余,故同角的余角相等,故答案为:同角的余角相等.【点睛】本题主要考查补角与余角的基本知识,比较简单.2、程.【解析】【分析】根据展开图得到“锦”的对面是“程”.【详解】由展开图得到“锦”的对面是“程”,故填:程.【点睛】此题考查正方体展开的平面图,需熟知正方体展开的形式,由此即可正确解答.3、10cm【解析】【分析】由:2:3=AM MB,可得MB比AM多1份,MB比AM长2cm,从而可得每一份为2cm,于是可得答案.【详解】解:2(32)10cm32AB=⨯+=-.故答案为:10.cm【点睛】本题考查的是部分与总体的关系,线段的和差关系,理解题意弄清楚部分与整体的比值是解题的关键.4、点动成线.【解析】【分析】根据点动成线可得答案.【详解】解:“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明点动成线.故答案为:点动成线.【点睛】本题主要考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体.5、11325'︒【解析】【分析】先根据题意求出这个角的度数,再根据补角的定义求解即可.【详解】∵一个角的余角的度数是23°25′,∴这个角为90°-23°25′=66°35′,∴这个角的补角的度数是180°-66°35′=113°25′.故答案为:113°25′.【点睛】本题考查了余角和补角的定义,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.三、解答题1、(1)①②③;(2)28;(3)能,70【解析】【分析】(1)根据长方体展开图的特征可得解;(2)给图B标上尺寸,然后根据周长意义可得解;(3)为了使外围周长最大,可以沿着长方体长度为6的4条棱和长度为4的2条棱剪开即可得到解答.【详解】解:(1)根据长方体展开图的特征可得答案为:①②③;(2)由已知可以给图B标上尺寸如下:∴图B的外围周长为6×3+4×4+4×6=58.(3)能.如图所示.外围周长为6×8+4×4+3×2=48+16+6=70.【考点】本题考查长方体的应用,熟练掌握长方体的各种展开图是解题关键.2、这个角是40°.【解析】【分析】设这个角为x,则它的余角为(90°-x),补角为(180°-x),再根据题中给出的等量关系列方程即可求解.【详解】设这个角的度数为x,则它的余角为(90°-x),补角为(180°-x),依题意,得:1(90)(180)154x x︒--︒-=︒,解得x=40︒.答:这个角是40°.【考点】本题主要考查了余角、补角的定义以及一元一次方程的应用.解题的关键是能准确地从题中找出各个量之间的数量关系,列出方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角的和为180°.3、(1)见解析;(2)见解析【解析】【分析】(1)根据直线、射线、线段定义画出即可;(2)根据要求画出线段标出交点即可.【详解】解:(1)如图所示,直线AB,射线BD,线段BC即为所求(2)连接AC,点E即为所求【考点】本题考查了对直线、射线、线段定义的应用,主要考查学生的理解能力和画图能力.4、(1)1-,13-;(2)22242a ab b+-,289【解析】【分析】(1)先根据正方体的平面展开图确定a、b、c所对的面的数字,再根据相对的两个面上的数互为倒数,确定a、b、c的值;(2)先去括号,再合并同类项化简代数式后代入求值即可.【详解】解:(1)由长方体纸盒的平面展开图知,a与-1、b与-3、c与2是相对的两个面上的数字或字母,因为相对的两个面上的数互为倒数,所以111,,32a b c=-=-=.故答案为:1-,13-. (2)()()2223252ab a b ab a ab ⎡⎤------⎣⎦22233252ab a b ab a ab =-+-+-+22242a ab b =+- 将11,,3a b =-=-代入, 原式()()22112141233⎛⎫⎛⎫=⨯-+⨯-⨯--⨯- ⎪ ⎪⎝⎭⎝⎭ 42239=+- 289=. 【考点】本题考查了正方体的平面展开图、倒数及整式的加减化简求值,解决本题的关键是根据平面展开图确定a 、b 、c 的值.5、(1)①50°;②50°;③130°;(2)12m °+12n °或180°-12m °-12n °【解析】【分析】(1)根据角的和差和角平分线的定义即可得到结论;(2)根据角的和差和角平分线的定义即可得到结论.【详解】解:(1)①∵∠AOB =60°,∠COD =40°,OP 平分∠AOC ,OQ 平分∠BOD ,∴∠BOP =12∠AOB =30°,∠BOQ =12∠COD =20°,∴∠POQ=50°,故答案为:50°;②解:∵∠AOB=60°,∠BOC=α=80°,∴∠AOC=140°,∵OP平分∠AOC,∴∠POC=1∠AOC=70°,2∵∠COD=40°,∠BOC=α=80°,且OQ平分∠BOD,同理可求∠DOQ=60°,∴∠COQ=∠DOQ-∠DOC=20°,∴∠POQ=∠POC-∠COQ=70°-20°=50°;③解:补全图形如图3所示,∵∠AOB=60°,∠BOC=α=130°,∴∠AOC=360°-60°-130°=170°,∵OP平分∠AOC,∴∠POC=1∠AOC=85°,2∵∠COD=40°,∠BOC=α=130°,且OQ平分∠BOD,同理可求∠DOQ=85°,∴∠COQ=∠DOQ-∠DOC=85°-40°=45°,∴∠POQ=∠POC+∠COQ=85°+45°=130°;(2)当∠AOB=m°,∠COD=n°时,如图2,∴∠AOC= m°+ α°,∵OP平分∠AOC,∴∠POC=12(m°+ α°),同理可求∠DOQ=12(n°+ α°),∴∠COQ=∠DOQ-∠DOC=12(n°+ α°)- n°=12(-n°+ α°),∴∠POQ=∠POC-∠COQ=12(m°+ α°)-12(-n°+ α°)=1 2m°+12n°,当∠AOB=m°,∠COD=n°时,如图3,∵∠AOB=m°,∠BOC=α,∴∠AOC=360°-m°-α°,∵OP平分∠AOC,∴∠POC=12∠AOC=180°12-(m°+ α°),∵∠COD=n°,∠BOC=α,且OQ平分∠BOD,同理可求∠DOQ=12(n°+ α°),∴∠COQ=∠DOQ-∠DOC=12(n°+ α°)-n°=12(-n°+ α°),∴∠POQ=∠POC+∠COQ=180°12-(m°+ α°)+12(-n°+ α°)=180°-12m°-12n°,综上所述,若∠AOB=m°,∠COD=n°,则∠POQ=12m°+12n°或180°-12m°-12n°.故答案为:12m°+12n°或180°-12m°-12n°.【考点】本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.。
2022-2023学年人教版七年级数学上册第四章几何图形初步专题练习试题(解析卷)
人教版七年级数学上册第四章几何图形初步专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)2、将如图所示的直棱柱展开,下列各示意图中不可能...是它的表面展开图的是()A.B.C.D .3、将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是( ).A .B .C .D .4、下列说法中,正确的是()①已知40A ∠=︒,则A ∠的余角是50°②若1290∠+∠=︒,则1∠和2∠互为余角.③若123180∠+∠+∠=︒,则1∠、2∠和3∠互为补角.④一个角的补角必为钝角.A .①,②B .①,②,③C .③,④,②D .③,④5、A ,B ,C ,D 四个村庄之间的道路如图,从A 去D 有以下四条路线可走,其中路程最短的是( )A.A→C→B→D B.A→C→D C.A→E→D D.A→B→D6、点P是O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm7、下列几何体中,是圆柱的为()A.B.C.D.8、如图,点A,B是正方体上的两个顶点,将正方体按图中所示方式展开,则在展开图中B 点的位置为()A.1B B.2B C.3B D.4B9、给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为()A .①②B .②③C .②④D .③④10、下列各组图形中都是平面图形的是( )A .三角形、圆、球、圆锥B .点、线段、棱锥、棱柱C .角、三角形、正方形、圆D .点、角、线段、长方体第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB 、CD 相交于点O ,OE 平分∠BOD,若∠AOD -∠DOB=60°,则∠EOB=___.2、如图,AOB ∠的内部有射线OC 、OD ,且AOC BOC ∠=∠,12COD AOC ∠=∠,则OC 是_______的平分线,OC 是_______的一条三等分线,OC 也是_______的一条四等分线,OD 是_______的平分线,OD 也是_______的一条四等分线.3、一个角的余角为3527'︒,则这个角的补角为_______________.4、已知100A ∠=︒,则A ∠的补角等于________︒.5、已知点C 是线段AB 的中点,点D 是线段AC 的中点,那么线段:AD DB 的比值是_______.三、解答题(5小题,每小题10分,共计50分)1、如图,一把长度为5个单位的直尺AB 放置在如图所示的数轴上(点A 在点B 左侧),点A 、B 、C 表示的数分别是a 、b 、c ,若b 、c 同时满足:①c﹣b =3;②(b ﹣6)|5|b x -+3=0是关于x 的一元一次方程.(1)a = ,b = ,c = .(2)设直尺以2个单位/秒的速度沿数轴匀速向右移动,同时点P 从点A 出发,以m 个单位/秒的速度也沿数轴匀速向右移动,设运动时间为t 秒.①若B 、P 、C 三点恰好在同一时刻重合,求m 的值;②当t =1时,B 、P 、C 三个点中恰好有一个点到另外两个点的距离相等,请直接写出所有满足条件的m 的值.2、如图1,A 、O 、B 三点在同一直线上,∠BOD 与∠BOC 互补.(1)请判断∠AOC 与∠BOD 大小关系,并验证你的结论;(2)如图2,若OM 平分∠AOC ,ON 平分∠AOD ,∠BOD =30°,请求出∠MON 的度数.3、【新知理解】如图①,点M 在线段AB 上,图中共有三条线段AB 、AM 和BM ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点M 是线段AB 的“奇点”.(1)线段的中点______这条线段的“奇点”(填“是”或“不是”)【初步应用】(2)如图②,若18CD cm =,点N 是线段CD 的奇点,则______CN cm =;【解决问题】(3)如图③,已知15AB cm =动点P 从点A 出发,以1/cm s 速度沿AB 向点B 匀速移动:点Q 从点B 出m s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,发,以2/设移动的时间为t,请直接写出t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的奇点?4、如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=1∠EOC,∠DOE=72°,求∠EOC的度数.25、观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a 、b 、c 之间有什么关系吗?请写出关系式.-参考答案-一、单选题1、D【解析】【分析】逐项计算即可判定.【详解】解: 4839+6731=11570=11610''''︒︒︒︒,故A 选项错误; 907039=1921''︒-︒︒,故B 选项错误;211751058510625'''︒⨯=︒=︒,故C 选项错误; 18072543'︒÷=︒,故D 选项正确.故选:D .【考点】本题主要考查度分秒的换算,掌握1=60,1=60''''︒是解题的关键.2、D【解析】【分析】由直棱柱展开图的特征判断即可.【详解】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故选D.【考点】本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可.3、B【解析】【分析】根据面动成体,平面图形旋转的特点逐项判断即可得.【详解】A、将平面图形绕轴旋转一周,得到的是上面大下面小中间凹,侧面是曲面的几何体,则此项不符题意;B、将平面图形绕轴旋转一周,得到的是上面小下面大中间凹,侧面是曲面的几何体,则此项符合题意;C、将平面图形绕轴旋转一周,得到的是上下底面等大,且中间凹的几何体,则此项不符题意;D、将平面图形绕轴旋转一周,得到的是一个圆台,则此项不符题意;故选:B.【考点】本题考查了平面图形旋转后的几何体,熟练掌握平面图形旋转的特点是解题关键.4、A【解析】【分析】根据余角及补角的定义进行判断即可.∵和为180度的两个角互为补角,和为90度的两个角互为余角,∴①已知∠A=40°,则∠A的余角=50°,正确,②若∠1+∠2=90°,则∠1和∠2互为余角,正确,③∠1、∠2和∠3三个角不能互为补角,故错误,④若一个角为120°,则这个角的补角为60°,不是钝角,故错误,∴正确的是:①②.故选:A.【考点】本题考查了余角及补角,掌握余角和补角的定义是解题的关键.5、C【解析】【分析】利用两点之间线段最短可直接得出结论.【详解】解析:利用两点之间线段最短的性质得出,路程最短的是:A→E→D,故选:C.【考点】本题考查了两点之间的距离,熟知两点之间线段最短是解题的关键.6、B【解析】根据直径是圆中最长的弦,知该圆的直径是10cm;最短弦即是过点P且垂直于过点P的直径的弦;根据垂径定理即可求得CP的长,再进一步根据勾股定理,可以求得OP的长.【详解】解:如图所示,CD⊥AB于点P.根据题意,得AB=10cm,CD=6cm.∴OC=5,CP=3∵CD⊥AB,CD=3cm.∴CP=12根据勾股定理,得OP.故选B.【考点】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦.7、A【解析】【分析】根据几何体的特征进行判断即可.A选项为圆柱,B选项为圆锥,C选项为四棱柱,D选项为四棱锥.故选:A.【考点】本题考查立体图形的认识,掌握立体图形的特征是解题的关键.8、B【解析】【分析】在验证立方体的展开图时,要细心观察每一个标志的位置是否一致,将展开图恢复成正方体,根据B 点所在的位置,可得结果.【详解】解:将展开图恢复成正方体,①面成为了正方体的右面,可知B2点即B点所处位置.【考点】本题考查正方体的表面展开图及空间想象能力.易错易混点是学生对相关图的位置想象不准确,从而错答,解决这类问题时,不妨动手实际操作一下,即可解决问题.9、C【分析】根据圆柱、圆锥、正方体、球,可得答案.【详解】解:①圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故①错误;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故②正确;③球仅由1个面围成,这个面是曲面,故③错误;④正方体由6个面围成,这6个面都是平面,故④正确;故选:C.【考点】本题考查了认识立体图形,熟记各种图形的特征是解题关键.10、C【解析】【详解】分析:根据平面图形的定义逐一判断即可.详解:A.圆锥和球不是平面图形,故错误;B. 棱锥、棱柱不是平面图形,故错误;C.角,三角形,正方形,圆都是平面图形,故正确;D.长方体不是平面图形,故错误.故选C.点睛:本题考查了平面图形的定义,一个图形的各部分都在同一个平面内的图形叫做平面图形据此可解.二、填空题【解析】 【详解】∵∠AOD-∠BOD=60°, ∴∠AOD=∠BOD+60°,∵AB 为直线,∴∠AOD+∠BOD=∠AOB=180°, ∴∠BOD+60°+∠BOD=180°, ∴∠BOD=60°, ∵OE 平分∠BOD, ∴∠EOB=30° 故答案为: 30°.2、 AOB ∠ BOD ∠ AOB ∠ AOC ∠ AOB ∠ 【解析】 【分析】根据角平分线及三等分线和四等分线的定义逐个判断即可. 【详解】解:∵AOC BOC ∠=∠, ∴OC 是AOB ∠的平分线,∵12COD AOC ∠=∠,AOC BOC ∠=∠,∴12∠=∠COD BOC ,∴13COD BOD ∠=∠,∴OC 是BOD ∠的一条三等分线, ∵12COD AOC ∠=∠,AOC BOC ∠=∠,∴14AOD COD AOB ∠=∠=∠,∴OC 、OD 是AOB ∠的两条四等分线, ∵12COD AOC ∠=∠, ∴OD 是AOC ∠的平分线,故答案为:AOB ∠;BOD ∠;AOB ∠;AOC ∠;AOB ∠. 【点睛】本题考查了角的角平分线及三等分线和四等分线的定义,熟练掌握角平分线的定义是解决本题的关键. 3、12527'︒ 【解析】 【分析】直接根据余角和补角的概念即可求解. 【详解】解:解:由题意得,这个角是90︒-3527'︒=5433︒',则这个角的补角是180°5433-︒'=12527'︒. 故答案为:12527'︒. 【点睛】此题主要考查余角和补角的概念,正确理解概念是解题关键. 4、80 【解析】根据补角的概念计算即可. 【详解】 ∵∠A =100°,∴∠A 的补角=180°-100°=80°, 故答案为:80 【点睛】本题考查补角的概念,关键在于牢记基础知识. 5、13【解析】 【分析】 根据题意易得14AD AB =,34DB AB =,然后直接进行比值即可. 【详解】 解:由题意得14AD AB =,34DB AB =, ∴131::443AD DB AB AB ==. 【点睛】本题主要考查比值及化简比,熟练掌握求比值和化简比的方法是解题的关键. 三、解答题1、(1)-1,4,7;(2)①163;②6或7或7.5或8或9【分析】(1)根据已知条件和一元一次方程的定义可求b、c,进一步得到a;(2)①根据B、C两点恰好在同一时刻重合,可得关于x的方程,解方程求出x,再根据B、P、C三点恰好在同一时刻重合,可得关于m的方程,解方程求出m的值;②分五种情况进行讨论可求所有满足条件的m的值.【详解】解:(1)依题意有35160c bbb-=⎧⎪-=±⎨⎪-≠⎩,解得b=4,c=7,则a=4﹣5=﹣1.故答案为:﹣1,4,7;(2)①BC=3,AC=8,当B、C重合时,依题意有2t=3,解得t=32,依题意有32m=8,解得m=163.②7﹣4﹣2=1,当B是P、C中点时,依题意有5+2﹣m=1,解得m=6;当B与P重合时,依题意有m﹣2=5,解得m=7;当P是B、C中点时,依题意有m﹣1=5+2,2解得m=7.5;当P与C重合时,m=7﹣(﹣1)=8;当C是P、B中点时,依题意有m﹣1=7﹣(﹣1),解得m=9.综上所述,m=6或7或7.5或8或9.【考点】本题考查了一元一次方程的定义、数轴、绝对值、一元一次方程的应用,准确理解题意,灵活进行分类是解题的关键.2、(1)∠AOC=∠BOD,证明见解析;(2)60°【解析】【分析】(1)根据补角的性质即可求解;(2)根据角平分线的定义以及等量关系列出方程求解即可.【详解】解:(1)∠AOC =∠BOD ,理由如下: ∵A ,O ,B 三点共线, ∴∠AOC +∠BOC =180°, ∴∠AOC 与∠BOC 互补, ∵∠BOD 与∠BOC 互补, ∴∠AOC =∠BOD ; (2)∵∠BOD =30°, ∴∠AOC =∠BOD =30°, ∵OM 平分∠AOC ,∴1152AOM AOC =∠=∠,∵∠AOD +∠BOD =180°, ∴∠AOD =180°﹣30°=150°, ∵ON 平分∠AOD ,∴1752AON AOD =∠=∠,∴∠MON =∠AON ﹣∠AOM =60°. 【考点】本题考查的是角的有关计算和角平分线的定义,正确理解并灵活运用角平分线的定义是解题的关键. 3、(1)是;(2)6或9或12;(3)3t =或307或154或458或457或6 【解析】 【分析】(1)根据“奇点”的定义即可求解;(2)分①当N 为中点时, ②当N 为CD 的三等分点,且N 靠近C 点时,③当N 为CD 的三等分点,且N 靠近D 点时,进行讨论求解即可;(3)分①由题意可知A 不可能为P 、Q 两点的巧点,此情况排除;②当P 为A 、Q 的巧点时;③当Q 为A 、P 的巧点时;进行讨论求解即可. 【详解】(1)一条线段的长度是另外一条线段长度的2倍,则称这个点为该线段的“奇点”,∴线段的中点是这条线段的“奇点”,(2)18CD =,点N 是线段CD 的奇点,∴可分三种情况,①当N 为中点时,11892CN =⨯=,②当N 为CD 的三等分点,且N 靠近C 点时,11863CN =⨯=,③当N 为CD 的三等分点,且N 靠近D 点时,218123CN =⨯=(3)15AB =,t ∴秒后,(),15207.5AP t AQ t t ==-≤≤,①由题意可知A 不可能为P 、Q 两点的巧点,此情况排除;②当P 为A 、Q 的巧点时,有三种情况;1)点P 为AQ 中点时,则12AP AQ =,即()11522t t =-,解得:154t s = 2)点P 为AQ 三等分点,且点P 靠近点A 时,则13AP AQ =,即()11523t t =-,解得:3t s =3)点P 为AQ 三等分点,且点P 靠近点Q 时,则23AP AQ =,即()21523t t =-,解得:307t s =③当Q为A、P的巧点时,有三种情况;1)点Q为AP中点时,则12AQ AP=,即1522tt-=,解得:6t s=2)点Q为AP三等分点,且点Q靠近点A时,则13AQ AP=,即1523tt-=,解得:457t s=3)点Q为AP三等分点,且点Q靠近点P时,则23AQ AP=,即21523tt-=,解得:458t s=【考点】考查了两点间的距离,一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4、(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x )=72°,解得x=36°,故∠EOC=2x=72°.【考点】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.5、8,15,18,6,7;2a c b +-=【解析】【详解】分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与n 棱柱的关系,可知n 棱柱一定有(n+2)个面,2n 个顶点和3n 条棱,进而得出答案,利用前面的规律得出a ,b ,c 之间的关系.详解:填表如下:根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c-b=2.点睛:此题通过研究几个棱柱中顶点数、棱数、面数的关系探索出n棱柱中顶点数、棱数、面数之间的关系(即欧拉公式),掌握常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱是解题关键.。
人教版初中七年级数学上册第四单元《几何图形初步》经典练习卷(含答案解析)
一、选择题1.将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D 2.如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较 3.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠COD D .∠DOE 的度数不能确定4.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A . B . C . D . 5.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒6.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论:①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③ 7.下列说法正确的是( )A .射线PA 和射线AP 是同一条射线B .射线OA 的长度是3cmC .直线,AB CD 相交于点 PD .两点确定一条直线 8.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( ) A .∠A >∠B >∠CB .∠B >∠A >∠C C .∠A >∠C >∠BD .∠C >∠A >∠B 9.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + 10.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cmB .10cmC .4cm 或10cmD .6cm 或10cm 11.22°20′×8等于( ). A .178°20′ B .178°40′ C .176°16′ D .178°30′ 12.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是( )A .两点确定一条直线B .两点之间,线段最短C .两条直线相交,只有一个交点D .直线是向两个方向无限延伸的 13.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 14.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A .B .C .D .15.下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题16.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________. 17.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________.18.已知一个角的补角是它余角的3倍,则这个角的度数为_____.19.如图所示,∠BOD =45°,那么不大于90°的角有___个,它们的度数之和是____.20.在直线AB 上,点A 与点B 的距离是8cm ,点C 与点A 的距离是2cm ,点D 是线段AB 的中点,则线段CD 的长为________.21.如图所示,观察下列图形,在横线上写出几何体的名称及截面形状.(1)①的名称是________,截面形状________;(2)②的名称是________,截面形状是________;(3)③的名称是________,截面形状是________;(4)④的名称是________,截面形状是________;22.把棱长为1cm 的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm .23.36.275︒=_____度______分______秒.24.已知点B 在直线AC 上,AB=6cm ,AC=10cm ,P 、Q 分别是AB 、AC 的中点,则PQ=_____25.如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.26.如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.三、解答题27.已知线段AB =10cm ,直线AB 上有一点C ,BC =6cm ,M 为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.28.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.29.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)30.说出下列图形的名称.。
人教版七年级上册第4章《几何图形初步》解答题专项训练(含答案)
第4章《几何图形初步》解答题专练1.(2019秋•西城区期末)对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON 内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON内含对称,设∠COM =x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE 的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.2.(2020春•东城区校级期末)已知:如图,O是直线AB上的一点,∠COD=90°,OC平分∠AOE,∠BOD =30°,求∠DOE的度数.3.(2019秋•密云区期末)如图,点O在直线AB上,OC是∠AOD的平分线.(1)若∠BOD=50°,则∠AOC的度数为.(2)设∠BOD的大小为α,求∠AOC(用含α的代数式表示).(3)作OE⊥OC,直接写出∠EOD与∠EOB之间的数量关系.4.(2019秋•北京期末)如图,请度量出需要的数据,并计算阴影部分的面积.5.(2019秋•通州区期末)如图,以直线AB上一点O为端点作射线OC,使∠AOC=70°,在同一个平面内将一个直角三角板的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,如果直角三角板DOE的一边OD放在射线OA上,那么∠COE的度数为;(2)如图2,将直角三角板DOE绕点O按顺时针方向转动到某个位置,如果OC恰好平分∠AOE,求∠COD的度数;(3)如图3,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,请直接用等式表示∠AOD和∠COE之间的数量关系.6.(2019秋•海淀区期末)阅读下面材料:小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD,如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明:已知:如图3,点O在直线AD上,射线OC平分∠BOD.求证:∠AOC与∠BOC互补.(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余.(保留画图痕迹)(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),直接写出锐角∠MPN的度数是.7.(2019秋•门头沟区期末)阅读材料,并回答问题:材料:数学课上,老师给出了如下问题.已知,点A、B、C均在直线l上,AB=8,BC=2,M是AC的中点,求AM的长.小明的解答过程如下:解:如图2,∵AB=8,BC=2,∴AC=AB﹣BC=8﹣2=6.∵M是AC的中点,∴AM=12AC=12×6=3(①).小芳说:“小明的解答不完整”.问题:(1)小明解答过程中的“①”为;(2)你同意小芳的说法吗?如果同意,请将小明的解答过程补充完整;如果不同意,请说明理由.8.(2019秋•平谷区期末)已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD.求∠COD的度数.∵∠AOB=30°,∠COB=20°(已知),∴∠AOC=∠+∠=°.∵OC平分∠AOD,∴∠AOC=∠(角平分线定义).∴∠COD=°.9.(2019秋•怀柔区期末)(1)已知∠ABC=90°,∠CBD=30°,BP平分∠ABD,请补全图形,并求∠ABP 的度数.(2)在(1)的条件下,若∠ABC=a,∠CBD=β,直接写出∠ABP的度数.10.(2019秋•延庆区期末)补全解题过程.已知:如图,O是直线AB上的一点,∠COD=90°,OE平分∠BOC.若∠AOC=60°,求∠DOE数;解:∵O是直线AB上的一点,(已知)∴∠BOC=180°﹣∠AOC.()∵∠AOC=60°,(已知)∴∠BOC=120°.()∵OE平分∠BOC,(已知)∴∠COE=12∠BOC.()∴∠COE=°.∵∠DOE=∠COD﹣∠COE,且∠COD=90°,∴∠DOE=°.11.(2019秋•大兴区期末)已知,如图,点C是线段AB的中点,点D是线段AC的中点,BC=6cm,求线段BD的长.请将以下求解过程补充完整:因为点C是线段AB的中点,所以,因为BC=6cm,所以AC=cm,因为点D是线段AC的中点,所以DC=.所以DC=cm.所以BD==cm.12.(2019秋•石景山区期末)已知:射线OC在∠AOB的内部,∠AOC:∠BOC=8:1,∠COD=2∠COB,OE平分∠AOD.(1)如图,若点A,O,B在同一条直线上,OD是∠AOC内部的一条射线,请根据题意补全图形,并求∠COE的度数;(2)若∠BOC=α(0°<α<18),直接写出∠COE的度数(用含α的代数式表示).13.(2019秋•东城区期末)根据题意,补全解题过程:如图,∠AOB=90°,OE平分∠AOC,OF平分∠BOC.求∠EOF的度数.解:因为OE平分∠AOC,OF平分∠BOC所以∠EOC=12∠AOC,∠FOC=12.所以∠EOF=∠EOC﹣=12(∠AOC﹣)=12=°.14.(2019秋•昌平区期末)已知线段AB,点C在直线AB上,D为线段BC的中点.(1)若AB=8,AC=2,求线段CD的长.(2)若点E是线段AC的中点,直接写出线段DE和AB的数量关系是.15.(2019秋•西城区期末)24、已知:如图,O是直线AB上一点,OD是∠AOC的平分线,∠COD与∠COE 互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整:证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=°∵OD是∠AOC的平分线∴∠AOD=∠(理由:)∴∠BOE=∠COE(理由:)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补16.(2019秋•丰台区期末)如图,货轮O在航行过程中,发现灯塔A在它北偏东60°的方向上,同时,在它南偏西20°、西北(即北偏西45°)方向上又分别发现了客轮B和海岛C,仿照表示灯塔方位的方法,画出表示客轮B和海岛C方向的射线.17.(2019秋•丰城市期末)已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.18.(2019秋•丰润区期末)如图①,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=30°时,则∠DOE的度数为;(2)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,其它条件不变,探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;(3)将图①中的∠COD绕顶点O顺时针旋转至图③的位置,其他条件不变.直接写出∠AOC和∠DOE 的度数之间的关系:.19.(2019秋•门头沟区期末)已知:如图,OC是∠AOB的平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,过点O作OE⊥OC,请在图中补全图形,并求∠AOE的度数;(3)当∠AOB=α时,过点O作OE⊥OC,直接写出∠AOE的度数.(用含α的代数式表示)20.(2018秋•延庆区期末)如图,点O是直线AB上一点,∠BOC=120°,OD平分∠AOC.(1)求∠COD的度数.请你补全下列解题过程.∵点O为直线AB上一点,∴∠AOB=°.∵∠BOC=120°,∴∠AOC=°.∵OD平分∠AOC,∴∠COD=12∠AOC.∴∠COD=°.(2)若E是直线AB外一点,满足∠COE:∠BOE=4:1,直接写出∠BOE的度数.21.(2018秋•密云区期末)已知:如图,AC=2BC,D为AB中点,BC=3,求CD的长.请你补全下面的解题过程:解:∵AC=2BC,BC=3∴AC=.∴AB=AC+BC=.∵.∴BD=12=.∴CD=BD﹣BC=.22.(2018秋•石景山区期末)已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8,CB=6,求线段MN的长;(2)若AC=a,MN=b,则线段BC的长用含a,b的代数式可以表示为_____.解:(1)∵AC=8,CB=6,∴AB=AC+CB=14.∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,(填推理依据)∴MN==.(2)线段BC的长用含a,b的代数式可以表示为.23.(2018秋•丰台区期末)如图,∠CAB+∠ABC=90°,AD平分∠CAB,与BC边交于点D,BE平分∠ABC 与AC边交于点E.(1)依题意补全图形,并猜想∠DAB+∠EBA的度数等于;(2)证明以上结论.证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=12∠CAB,∠EBA=.(理由:)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠+∠)=.24.(2018秋•昌平区期末)补全解题过程.已知:如图,∠AOB=40°,∠BOC=60°,OD平分∠AOC.求∠BOD的度数.解:∵∠AOC=∠AOB+∠,又∵∠AOB=40°,∠BOC=60°,∴∠AOC=°.∵OD平分∠AOC,∴∠AOD=∠AOC().∴∠AOD=50°.∴∠BOD=∠AOD﹣∠.∴∠BOD=°.25.(2018秋•平谷区期末)已知直线AB上一点O,以O为端点画射线OC,作∠AOC的角平分线OD,作∠BOC的角平分线OE;(1)按要求完成画图;(2)通过观察、测量你发现∠DOE=°;(3)补全以下证明过程:证明:∵OD平分∠AOC(已知)∴∠DOC=∠AOC.∵OE平分∠BOC(已知)∴∠EOC=∠BOC.∵∠AOC+∠BOC=°.∴∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=°.26.(2018秋•房山区期末)填空,完成下列说理过程:O是直线AB上一点,∠COD=90°,OE平分∠BOC.(1)如图1,若∠AOC=50°,求∠DOE的度数;解:∵O是直线AB上一点,∴∠AOC+∠BOC=180.∵∠AOC=50°,∴∠BOC=130°.∵OE平分∠BOC(已知),∴∠COE=12∠BOC()∴∠COE=°.∵∠COD=90°,∠DOE=∠﹣∠.∴∠DOE=°.(2)将图1中∠COD按顺时针方向转至图2所示的位置,OE仍然平分∠BOC,试猜想∠AOC与∠DOE 的度数之间的关系为:.27.(2018秋•北京期末)分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:若|x|=3,|y|=2求x+y的值.情况若x=3,y=2时,x+y=5情况若x=3,y=﹣2时,x+y=1情况③若x=﹣3,y=2时,x+y=﹣1情况④若x=﹣3,y=﹣2时,x+y=﹣5所以,x+y的值为1,﹣1,5,﹣5.几何的学习过程中也有类似的情况:如图,点O是直线AB上的一点,将一直角三角板如图摆放,过点O作射线OE平分∠BOC.当直角三角板绕点O继续顺时针旋转一周回到图1的位置时,在旋转过程中你发现∠AOC与∠DOE (0°≤∠AOC≤180°,0°≤∠DOE≤180°)之间有怎样的数量关系?情况(1)如图1,当0°≤∠AOD≤90°时,若∠AOC=40°,则∠DOE度数是;情况(2)如图2,当∠AOC是钝角时,使得直角边OC在直线AB的上方,若∠AOC=160°,其他条件不变,则∠DOE的度数是;情况(3)若∠AOC=α,在旋转过程中你发现∠AOC与∠DOE之间有怎样的数量关系?请你直接用含α的代数式表示∠DOE的度数;28.(2018秋•通州区期末)如图是一个正方体的展开图,标注了字母A,C的面分别是正方体的正面和底面,其他面分别用字母B,D,E,F表示.已知A=kx+1,B=3x﹣2,C=1,D=x﹣1,E=2x﹣1,F=x.(1)如果正方体的左面与右面所标注字母代表的代数式的值相等,求出x的值;(2)如果正面字母A代表的代数式与对面字母代表的代数式的值相等,且x为整数,求整数k的值.29.(2018秋•北京期末)如图,点A,B,C是平面上三个点.(1)按下列要求画图:①画线段AB;②画射线CB;③反向延长线段AB;④连接AC(2)请你测量点B到直线AC的距离,大约是cm.(精确到0.1cm)30.(2018秋•顺义区期末)阅读材料并回答问题:阅读材料:数学课上,老师给出了如下问题:如图1,∠AOB=120°,OC平分∠AOB.若∠COD=20°,请你补全图形,并求∠BOD的度数.以下是小明的解答过程:解:如图2,∵∠AOB=120°,OC平分∠AOB.∴∠BOC=∠AOB=.∵∠COD=20°,∴∠BOD=.小敏说:“我觉得这个题有两种情况,小明考虑的是OD在∠BOC内部的情况,事实上OD还可能在∠AOC 的内部”.完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小敏的想法,请你在图1中画出另一种情况对应的图形,此时∠BOD的度数为.31.(2018秋•海淀区期末)已知点C在线段AB上,点M为AB的中点,AC=8,CB=2.(1)如图1,求CM的长;(2)如图2,点D在线段AB上,若AC=BD,判断点M是否为线段CD的中点,并说明理由.32.(2018秋•朝阳区期末)填空,完成下列说理过程如图,∠AOB=90°,∠COD=90°,OA平分∠DOE,若∠BOC=20°,求∠COE的度数解:因为∠AOB=90°.所以∠BOC+∠AOC=90°因为∠COD=90°所以∠AOD+∠AOC=90°.所以∠BOC=∠AOD.()因为∠BOC=20°.所以∠AOD=20°.因为OA平分∠DOE所以∠=2∠AOD=°.()所以∠COE=∠COD﹣∠DOE=°33.(2018秋•西城区期末)已知:如图,点A,点B,点D在射线OM上,点C在射线ON上,∠O+∠OCA =90°,∠O+∠OBC=90°,CA平分∠OCD.求证:∠ACD=∠OBC.请将下面的证明过程补充完整:证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∴∠OCA=∠.(理由:)∵CA平分∠OCD∴∠ACD=.(理由:)∴∠ACD=∠OBC.(理由:).34.(2018秋•门头沟区期末)填空,完成下列说理过程如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°求证:OD是∠AOC的平分线;证明:如图,因为OE是∠BOC的平分线,所以∠BOE=∠COE.()因为∠DOE=90°所以∠DOC+∠=90°且∠DOA+∠BOE=180°﹣∠DOE=°.所以∠DOC+∠=∠DOA+∠BOE.所以∠=∠.所以OD是∠AOC的平分线.参考答案与试题解析一.解答题(共34小题)1.【解答】解:(1)∵∠AOB1在∠MON的外部,∴射线OA、OB1组成的∠AOB1的平分线在∠MON的外部,∴OB1不是与射线OA关于∠MON内含对称的射线,∵∠B2OM=15°,∠AOM=10°,∴∠AOB2=25°,∴射线OA、OB2组成的∠AOB2的平分线在∠MON的内部,∴OB2是与射线OA关于∠MON内含对称的射线,故答案为:OB2;(2)由(1)可知,当OC在直线OA的下方时,才有可能存在射线OA与射线OC关于∠MON内含对称,∵∠COM=x°,∠AOM=10°,∠MON=20°,∴∠AOC=(x+10)°,∠AON=30°,∵射线OA与射线OC关于∠MON内含对称,∴10°≤12(x+10)°≤30°,∴10≤x≤50;(3)∵∠AOE=∠EOH=2∠FOH=20°,∴∠HOM=50°,∠HON=70°,∠EOM=30°,∠FOM=40°,若射线OE与射线OH关于∠MON内含对称,∴50﹣t≤3t−30+50−t2≤70﹣t,∴20≤t≤30;若射线OF与射线OH关于∠MON内含对称,∴50﹣t≤50−t+3t−402≤70﹣t,∴22.5≤t≤32.5,综上所述:20≤t≤32.5.2.【解答】解:∵∠BOD=30°,∠COD=90°,∴∠AOC=90°﹣∠BOD=60°.∵OC平分∠AOE,∴∠COE=∠AOE=60°.∴∠DOE=∠COD﹣∠COE=30°.3.【解答】解:(1)∵点O在直线AB上,∴∠AOD+∠BOD=180°,∵∠BOD=50°,∴∠AOD=180°﹣∠BOD=180°﹣50°=130°,∵OC是∠AOD的平分线,∴∠AOC=12∠AOD=12×130°=65°,故答案为:65°;(2)∵点O在直线AB上,∴∠AOD+∠BOD=180°,∵∠BOD=α,∴∠AOD=180°﹣∠BOD=180°﹣α,∵OC是∠AOD的平分线,∴∠AOC=12∠AOD=12×(180°﹣α)=90°−12α;(3)①OE在AB的上面,如图,∵OC是∠AOD的平分线,∴∠DOC=∠AOC=12∠AOD,∵OC⊥OE,∴∠EOD=90°﹣∠COD=90°−12∠AOD,∵∠EOB=90°﹣∠AOC=90°−12∠AOD,∴∠EOD=∠EOB;OE在AB的下面,如图,同OE在AB上面的方法得,∠EOD=∠EOB.4.【解答】解:测量可得半圆半径为2cm,扇形半径为4cm.S半圆=3.14×22÷2=6.28(cm2),S扇形=3.14×42÷4=12.56(cm2),S阴影=12.56﹣6.28=6.28 (cm2).5.【解答】解:(1)∠COE=∠DOE﹣∠AOC=90°﹣70°=20°,故答案为:20°.(2)∵OC平分∠AOE,∠AOC=70°,∴∠COE=∠AOC=70°,∵∠DOE=90°,∴∠COD=∠DOE﹣∠COE=90°﹣70°=20°.(3)∠COE﹣∠AOD=20°或∠COE=20°+∠AOD.理由如下:当OD始终在∠AOC的内部时,有∠AOD+∠COD=70°,∠COE+∠COD=90°,∴∠COE﹣∠AOD=90°﹣70°=20°,∴∠COE﹣∠AOD=20°或∠COE=20°+∠AOD.6.【解答】解:(1)证明:∵点O在直线AD上,∴∠AOB+∠BOD=180°.即∠AOB+∠BOC+∠COD=180°.∴∠AOC+∠COD=180°.∵OC平分∠BOD,∴∠BOC=∠COD.∴∠AOC+∠BOC=180°∴∠AOC与∠BOC互补.(2)如图所示即为所求作的图形.(3)如图,∵∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.∴锐角∠MPN的度数是45°∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β,PQ平分∠FPF′.则锐角∠MPN的度数是|β﹣45°|.故答案为:45°或|β﹣45°|.7.【解答】解:(1)小明解答过程中的“①”为线段中点的定义;故答案为:线段中点的定义;(2)我同意小芳的说法,将小明的解答补充如下:如图:∵AB=8,BC=2,∴AC=AB+BC=8+2=10.∵M是AC的中点,∴AM=12AC=12×10=5.8.【解答】证明:∵∠AOB=30°,∠COB=20°(已知),∴∠AOC=∠AOB+∠COB=50°∵OC平分∠AOD(已知),∴∠AOC=∠COD=50°(角平分线定义)故答案为:AOB;COB;50;COD;50.9.【解答】(1)解:符合题意的图形有两个,①如图,∵∠ABC =90°,∠CBD =30°,∴∠ABD =∠ABC ﹣∠CBD =60°.∵BP 平分∠ABD ,∴∠ABP =12∠ABD =30°.②如图,∵∠ABC =90°,∠CBD =30°,∴∠ABD =∠ABC +∠CBD =120°∵BP 平分∠ABD ,∴∠ABP =12∠ABD =60°.综上,∠ABP 的度数为30°或60°.(2)由(1)可知:∠ABC =a ,∠CBD =β,∠ABP =α+β2或α−β2. 10.【解答】解:∵O 是直线AB 上的一点,(已知)∴∠BOC =180°﹣∠AOC .(平角定义)∵∠AOC =60°,(已知)∴∠BOC =120°.(等量代换)∵OE 平分∠BOC ,(已知)∴∠COE =12∠BOC .(角平分线定义)∴∠COE =60°.∵∠DOE =∠COD ﹣∠COE ,且∠COD =90°,∴∠DOE =30°.故答案为:平角定义;等量代换;角平分线定义;60;30.11.【解答】解:因为点C 是线段AB 的中点,所以AC =BC ,因为BC =6cm ,所以AC =6cm ,因为点D 是线段AC 的中点,所以DC =12AC . 所以DC =3cm .所以BD =CD +BD =9cm ,故答案为:AC =BC ,6,12AC ,3,CD +BD ,9.12.【解答】解:(1)补全图形,如图所示:∵点A 、O 、B 在同一条直线上,∴∠AOC +∠BOC =180°(平角的定义).∵∠AOC :∠BOC =8:1,∴∠BOC =20°,∠AOC =160°.∵∠COD =2∠COB ,∴∠COD =40°.∴∠AOD =180°﹣∠COB ﹣∠COD =120°.∵OE 平分∠AOD ,∴∠EOD =12∠AOD =60°(角平分线的定义). ∴∠EOC =∠EOD +∠DOC =60°+40°=100°.(2)当射线OD 在∠AOC 的内部时,∠EOC =5α;当射线OD 在∠AOC 的外部时,∠EOC =3α.答:∠COE 的度数为:5α或3α.13.【解答】解:因为OE 平分∠AOC ,OF 平分∠BOC所以∠EOC =12∠AOC ,∠FOC =12=∠BOC . 所以∠EOF =∠EOC ﹣∠FOC=12(∠AOC ﹣∠BOC )=12∠AOB =45°.故答案为:∠BOC 、∠FOC 、∠BOC 、∠AOB 、45.14.【解答】解:(1)如图1,当C 在点A 右侧时,∵AB =8,AC =2,∴BC =AB ﹣AC =6,∵D 是线段BC 的中点,∴CD =12BC =3;如图2,当C 在点A 左侧时,∵AB =8,AC =2,∴BC =AB +AC =10,∵D 是线段BC 的中点,∴CD =12BC =5;综上所述,CD=3或5;(2)AB=2DE,理由是:如图3,当C在点A右侧时,∵E是AC的中点,D是BC的中点,∴AC=2EC,BC=2CD,∴AB=AC+BC=2EC+2CD=2ED;如图4,当C在点A左侧时,同理可得:AB=BC﹣AC=2CD﹣2CE=2(CD﹣CE)=2DE.15.【解答】证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=90°∵OD是∠AOC的平分线∴∠AOD=∠COD(理由:角平分线的定义)∴∠BOE=∠COE(理由:等式性质)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等式性质.16.【解答】解:如图所示,17.【解答】解:根据题意∵E面和F面的数互为相反数,∴3a+4+2﹣a=0,∴a=﹣3,把a=﹣3代入C=﹣a2﹣2a+1,解得:C=﹣2,∵A面与C面表示的数互为相反数,∴A面表示的数值是2.18.【解答】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∠COD是直角,OE平分∠BOC,∴∠DOE=∠COD−12∠BOC=90°−12×150°=15°;(2)∠AOC=2∠DOE;理由:∵∠COD是直角,OE平分∠BOC,∴∠COE=∠BOE=90°﹣∠DOE,则得∠AOC=180°﹣∠BOC=180°﹣2∠COE=180°﹣2(90°﹣∠DOE),所以得:∠AOC =2∠DOE ;(3)∠AOC =360°﹣2∠DOE ;理由:∵OE 平分∠BOC ,∴∠BOE =2∠COE ,则得∠AOC =180°﹣∠BOE =180°﹣2∠COE =180°﹣2(∠DOE ﹣90°), 所以得:∠AOC =360°﹣2∠DOE ;故答案为:(1)15°;(3)∠AOC =360°﹣2∠DOE .19.【解答】解:(1)∵OC 是∠AOB 的平分线(已知),∴∠AOC =12∠AOB ,∵∠AOB =60°,∴∠AOC =30°.(2)∵OE ⊥OC ,∴∠EOC =90°,如图1,∠AOE =∠COE +∠COA =90°+30°=120°.如图2,∠AOE =∠COE ﹣∠COA =90°﹣30°=60°.(3)∠AOE =90°+12α或∠AOE =90°−12α.20.【解答】解:(1)∵点O 为直线AB 上一点,∴∠AOB =180°.∵∠BOC =120°,∴∠AOC =60°.∵OD 平分∠AOC ,∴∠COD =12∠AOC .∴∠COD =30°.故答案为:180°;60°;30°;(2)分情况讨论:①当OE 在∠BOC 的内部时,∠COE +∠BOE =120°,∵∠COE :∠BOE =4:1,∴5∠BOE =120°,即∠BOE =24°;②OE 在∠BOC 的外部时,∠COE +∠BOE =360°﹣120°=240°, ∵∠COE :∠BOE =4:1,∴∠BOE =240°÷5=48°,∠COE =192°(不合题意,舍去);③OE 在∠BOC 外部时,∠BOE =120°÷3=40°.故∠BOE 的度数为24°或40°.21.【解答】解:∵AC =2BC ,BC =3∴AC =6,∴AB =AC +BC =9,又∵D 为AB 中点∴BD =12AB =4.5,∴CD =BD ﹣BC =1.5.故答案为6,9,D 为AB 中点,AB ,4.5,1.5.22.【解答】解:(1)∵AC =8,CB =6,∴AB =AC +CB =14.∵点M 、N 分别是AC 、BC 的中点,∴MC =12AC ,NC =12BC (线段中点的定义), ∴MN =12(AC +BC )=7; (2)理由如下:∵点M 、N 分别是AC 、BC 的中点,∴MC =12AC ,NC =12BC ,∴MN =MC +NC =12AC +12BC =b , ∵AC =a ,∴BC =2b ﹣a ,∴线段BC 的长用含a ,b 的代数式可以表示为2b ﹣a .故答案为:12,12,线段中点的定义,12(AC +BC ),7,2b ﹣a . 23.【解答】解:(1)补全图形,并猜想∠DAB +∠EBA 的度数等于45°;(2)证明:∵AD 平分∠CAB ,BE 平分∠ABC ,∴∠DAB =12∠CAB ,∠EBA =12∠CBA .(理由:角平分线的定义)∵∠CAB +∠ABC =90°,∴∠DAB +∠EBA =12×(∠CAB +∠ABC )=45°.故答案为:45°,12∠CAB ,角平分线的定义,12,∠CAB ,∠ABC ,45°. 24.【解答】解:∵∠AOC =∠AOB +∠BOC ,又∵∠AOB=40°,∠BOC=60°,∴∠AOC=100°.∵OD平分∠AOC,∴∠AOD=12∠AOC(角平分线定义).∴∠AOD=50°.∴∠BOD=∠AOD﹣∠AOB.∴∠BOD=10°.故答案为:BOC,100,角平分线定义,AOB,10.25.【解答】解:(1)如图所示,(2)通过观察、测量你发现∠DOE=90°;(3)∵OD平分∠AOC(已知),∴∠DOC=12∠AOC(角平分线定义),∵OE平分∠BOC(已知),∴∠EOC=12∠BOC(角平分线定义),∵∠AOC+∠BOC=180°,∴∠DOE=∠DOC+∠EOC=12(∠AOC+∠BOC)=90°.故答案为:90,角平分线定义,角平分线定义,180,90.26.【解答】解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°.∵∠AOC=50°,∴∠BOC=130°.∵OE平分∠BOC(已知),∴∠COE=12∠BOC(角平分线定义)∴∠COE=65°.∵∠COD=90°,∠DOE=∠COD﹣∠COE.∴∠DOE=25°,故答案为:角平分线定义,65,COD,COE,25;(2)∠DOE=12∠AOC,理由:∵O是直线AB上一点,∴∠AOC+∠BOC=180°.∴∠BOC=180°﹣∠AOC,∵OE平分∠BOC(已知),∴∠COE=12∠BOC(角平分线定义),∵∠COD=90°,∠DOE=∠COD﹣∠COE.∴∠DOE=90°−12(180°﹣∠AOC)=12∠AOC.故答案为:∠DOE=12∠AOC.27.【解答】解:(1)∵∠AOC+∠BOC=180°,∠AOC=40°,∴∠BOC=140°,∵OE平分∠BOC,∴∠COE=12∠BOC 70°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=20°;故答案为:20°;(2)∵∠AOC+∠BOC=180°,∠AOC=160°,∴∠BOC=180°﹣160°=20°;∵OE平分∠BOC,∴∠COE=12∠BOC=10°,∵∠COD=90°,∴∠DOE=90°﹣10°=80°;故答案为:80°;(3)∠DOE=12∠AOC=α2(0°≤∠AOC≤180°),∠DOE=180°−12∠AOC=180°−α2(0°≤∠DOE≤180°).28.【解答】解:(1)∵正方体的左面B与右面D代表的代数式的值相等,∴x﹣1=3x﹣2,解得x=1 2;(2)∵正面字母A代表的代数式与对面F代表的代数式的值相等,∴kx+1=x,∴(k﹣1)x=﹣1,∵x为整数,∴x,k﹣1为﹣1的因数,∴k﹣1=±1,∴k=0或k=2,综上所述,整数k的值为0或2.29.【解答】解:(1)如图所示:(2)根据测量可得,点B到直线AC的距离,大约是1.5cm,故答案为:1.5.30.【解答】解:(1)如图2,∵∠AOB=120°,OC平分∠AOB.∴∠BOC =12∠AOB =60°.∵∠COD =20°,∴∠BOD =60°﹣20°=40°.故答案为:12;60°;40°;(2)如图1,∵∠AOB =120°,OC 平分∠AOB .∴∠BOC =12∠AOB =60°.∵∠COD =20°,∴∠BOD =60°+20°=80°.故答案为:80°.31.【解答】解:(1)方法一:∵AC =8,CB =2,∴AB =AC +CB =10,∵点M 为线段AB 的中点,∴αα=12αα=5,∴CM =BM ﹣CB =5﹣2=3.或方法二:∴CM =AC ﹣AM =8﹣5=3.(2)点M 是线段CD 的中点,理由如下:方法一:∵BD =AC =8,∴由(1)可知,DM =DB ﹣MB =8﹣5=3.∴DM =MC =3,∴由图可知,点M 是线段CD 的中点.方法二:∵AC =BD ,∴AC ﹣DC =BD ﹣DC ,∴AD =CB .∵点M 为线段AB 的中点,∴AM =MB ,∴AM ﹣AD =MB ﹣CB ,∴DM =MC∴由图可知,点M 是线段CD 的中点.32.【解答】解:因为∠AOB =90°.所以∠BOC +∠AOC =90°因为∠COD =90°所以∠AOD +∠AOC =90°.所以∠BOC =∠AOD . (同角的余角相等)因为∠BOC =20°.所以∠AOD =20°.因为OA 平分∠DOE所以∠DOE =2∠AOD =40°. (角平分线的定义)所以∠COE=∠COD﹣∠DOE=50°故答案为:同角的余角相等,DOE,40,角平分线的定义,50.33.【解答】证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∠∠OCA=∠OBC.(理由:同角的余角相等)∠CA平分∠OCD∠∠ACD=∠OCA.(理由:角平分线的定义)∠∠ACD=∠OBC.(理由:等量代换).故答案为:OBC,同角的余角相等,∠OCA,角平分线的定义,等量代换.34.【解答】证明:如图,因为OE是∠BOC的平分线,所以∠BOE=∠COE(角平分线定义)因为∠DOE=90°,所以∠DOC+∠COE=90°,且∠DOA+∠BOE=180°﹣∠DOE=90°.所以∠DOC+∠COE=∠DOA+∠BOE.所以∠DOC=∠DOA.所以OD是∠AOC的平分线.故答案为:角平分线定义;COE;90;COE;DOC;DOA.。
《好题》初中七年级数学上册第四章《几何图形初步》经典练习(含答案)
《好题》初中七年级数学上册第四章《几何图形初步》经典练习(含答案)一、选择题1.下面四个图形中,能判断∠1>∠2的是( )A .B .C .D . D解析:D【分析】根据图象,利用排除法求解.【详解】A .∠1与∠2是对顶角,相等,故本选项错误;B .根据图象,∠1<∠2,故本选项错误;C .∠1是锐角,∠2是直角,∠1<∠2,故本选项错误;D .∠1是三角形的一个外角,所以∠1>∠2,故本选项正确.故选D .【点睛】本题考查了学生识图能力和三角形的外角性质.2.点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( )A .3B .2C .3 或 5D .2 或 6D 解析:D【解析】试题此题画图时会出现两种情况,即点C 在线段AB 内,点C 在线段AB 外,所以要分两种情况计算.∵点A 、B 表示的数分别为﹣3、1,∴AB=4.第一种情况:在AB 外,如答图1,AC=4+2=6;第二种情况:在AB 内,如答图2,AC=4﹣2=2.故选D .3.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.4.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有().A.4个B.3个C.2个D.1个B解析:B【分析】根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;乙∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,故乙正确;丙∠AOB=∠COD,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B.【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.5.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是() A.B.C.D. C解析:C【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,根据看到的图形进行比较即可解答.【详解】解:A 、主视图看到的是2行,3列,最下1行是3个,上面一行是1个,第2列是2个;左视图是2行,上下各1个;B .主视图看到的是3行,最下1行是2个,上面2行在下面1行的中间,各1个,左视图是3行,每行各一个;C .主视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个;左视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个,故主视图和左视图相同;D .主视图是2行2列,下面1行2个,上面1行1个,右面1列2个,左视图也是2行2列,下面1行2个,上面1行1个,左面1列2个.故选:C .【点睛】此题考查了从不同方向观察物体,重点是看清有几行几列,每行每列各有几个. 6.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=°C解析:C【分析】 先根据同角的余角相等得出∠1=∠BCE ,再根据∠BCE+∠2=180°,得出∠1+∠2=180°即可.【详解】∵EH ⊥BC ,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE .∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C .【点睛】本题考查了余角和补角.解题的关键是掌握余角和补角的定义,同角的余角相等的性质. 7.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等D解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.8.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有( )A .7种B .6种C .5种D .4种B解析:B【分析】根据棒上标的数字,找出这根木棒被2、7两点分成的线段的条数即可.【详解】如图,∵线段AD 被B 、C 两点分成AB 、AC 、AD 、BC 、BD 、CD 六条的线段∴能量的长度有:2、3、5、7、8、10,共6个,故选B .【点睛】本题考查的实质是找出已知图形上线段的条数.9.两个锐角的和是( )A .锐角B .直角C .钝角D .锐角或直角或钝角D解析:D【分析】在0度到90度之间的叫锐角,可以用赋值法讨论.解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.【点睛】利用赋值法解题,可以使一些难以直接证明的问题简单易解.10.把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,C点折叠后的C'点∠的度数是()落在MB'的延长线上,则EMFA.85°B.90°C.95°D.100°B解析:B【解析】【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°,故选B.【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.二、填空题11.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.12.若∠A=4817︒',则它的余角是__________;它的补角是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学几何模型部分解答题压轴题精选(难)1.如图(1),将两块直角三角板的直角顶点C叠放在一起.(1)试判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想∠ACB与∠DCE的数量关系,并说明理由;(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)【答案】(1)解:∠ACE=∠BCD,理由如下:∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,∴∠ACE=∠BCD(2)解:若∠DCE=30°,∠ACD=90°,∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,∵∠BCE=90°且∠ACB=∠ACE+∠BCE,∠ACB=90°+60°=150°(3)解:猜想∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°(4)解:成立【解析】【分析】(1)根据同角的余角相等即可求证;(2)根据余角的定义可先求得∠ACE=∠ACD-∠DCE,再由图可得∠ACB=∠ACE+∠BCE,把∠ACE和∠BCE 的度数代入计算即可求解;(3)由图知,∠ACB=∠ACD+∠BCE-∠ECD,则∠ACB+∠ECD=∠ACD+∠BCE,把∠ACD和∠BCE的度数代入计算即可求解;(4)根据重叠的部分实质是两个角的重叠可得。
2.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.3.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线 ________(平分或不平分) .(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为________.(直接写出结果)(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【答案】(1)平分(2)或49(3)解:不变,设,,,【解析】【解答】(1)直线平分;(2)或【分析】(1)根据图形得到直线ON平分∠AOC ;(2)由三角板绕点 O 以每秒 5 °的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角∠AOC,求出t的值;(3)根据题意得到∠AON=50°−y,∠AOM−∠NOC=x−y=40°.4.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【答案】(1)解:如图1,∵点B对应数是90,∴OB=90.又∵ OA+50=OB,即 OA+50=90,∴OA=120.∴点A所对应的数是﹣120(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A 所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.5.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….例如:当α=30°时,OA1, OA2, OA3, OA4的位置如图2所示,其中OA3恰好落在ON 上,∠A3OA4=120°;当α=20°时,OA1, OA2, OA3, OA4, OA3的位置如图3所示,其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是________;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3, OA4并求出α的值;(3)若α<36°,且∠A2OA4=20°,则对应的α值是________(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.【答案】(1)45°(2)解:如图所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2(180°﹣6α)+ =4α,解得:(3),,(4)解:对于角α=120°不能停止.理由如下:无论a为多少度,旋转过若干次后,一定会出现OA i是∠A i OA K是的角平分线,所以旋转会停止.但特殊的,当a为120°时,第一次旋转120°,∠MOA1=120°,第二次旋转240°时,与OM 重合,第三次旋转360°,又与OM重合,第四次旋转480°时,又与OA1重合,…依此类推,旋转的终边只会出现“与OM重合”或“与OA1重合”两种情况,不会出第三条射线,所以不会出现OA i是∠A i OA K是的角平分线这种情况,旋转不会停止【解析】【解答】解:(1)解:如图所示.aφ=45°,【分析】(1)根据题意,明确每次旋转的角度,计算即可;(2)根据各角的度数,找出等量关系式,列出方程,求出α的度数即可;(3)类比第(2)小题的算法,分三种情况讨论,求出α的度数即可;(4)无论a为多少度,旋转很多次,总会出一次OA i是∠A i OA K是的角平分线,但当a=120度时,只有两条射线,不会出现OA i是∠A i OA K是的角平分线,所以旋转会中止.6.如图1, .如图2,点分别是上的点,且, .(1)求证: F;(2)若的角平分线与的角平分线交于点,请补全图形并直接写出与之间的关系为________.【答案】(1)证明:如图,延长EH,交CD的延长线与M,(2)∠BFE=2∠P.【解析】【解答】解:(2)结论:∠BFE=2∠P,理由如下:如图,设∠B=∠HEF=y.∠BFE=x=,故答案为:∠BFE=2∠P.【分析】(1)延长EH,交CD的延长线与M,根据平行线的性质及等量代换即可证明;(2)设∠B=∠HEF=y,∠BFE=x,根据平行的性质结合三角形的内角和定理得出∠BFE=2∠P.7.已知:如图1,在平面直角坐标系中,点A,B,E分别是x轴和y轴上的任意点.BD是∠ABE的平分线,BD的反向延长线与∠OAB的平分线交于点C.(1)探究:求∠C的度数.(2)发现:当点A,点B分别在x轴和y轴的正半轴上移动时,∠C的大小是否发生变化?若不变,请直接写出结论;若发生变化,请求出∠C的变化范围.(3)应用:如图2在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC外角的平分线相交于点P,求∠P的度数.【答案】(1)解:∵∠ABE=∠OAB+∠AOB,∠AOB=90°,∴∠ABE=∠OAB+90°,∵BD是∠ABE的平分线,AC平分∠OAB,∴∠ABE=2∠ABD,∠OAB=2∠BAC,∴2∠ABD=2∠BAC+90°,∴∠ABD=∠BAC+45°,又∵∠ABD=∠BAC+∠C,∴∠C=45°(2)解:不变.理由如下:∵∠ABE=∠OAB+∠AOB,∠AOB=90°,∴∠ABE=∠OAB+90°,∵BD是∠ABE的平分线,AC平分∠OAB,∴∠ABE=2∠ABD,∠OAB=2∠BAC,∴2∠ABD=2∠BAC+∠AOB,∴∠ABD=∠BAC+ ∠AOB,又∵∠ABD=∠BAC+∠C,∴∠C=∠AOB=45°(3)解:延长ED,BC相交于点G.在四边形ABGE中,∵∠G=360°﹣(∠A+∠B+∠E)=50°,∴∠P=∠FCD﹣∠CDP=(∠DCB﹣∠CDG)=∠G= ×50°=25°【解析】【分析】(1)(2)根据三角形外角的性质和角平分线的性质进行解答;(3)延长ED,BC相交于点G,根据四边形形内角和为360°求得∠G的度数,再根据三角形外角的性质和角平分线的性质求∠P的度数.8.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O 处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=________;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD= ∠AOE.求∠BOD的度数.【答案】(1)30(2)解:∵OE平分∠AOC,∴∠COE=∠AOE= ∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线(3)解:设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120,∴x=5或7.5,即∠COD=65°或37.5°,∴∠BOD=65°或52.5°【解析】【解答】(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=∠BOE-∠COB=30°,故答案为30;【分析】(1)根据图形得出∠COE=∠BOE-∠COB,代入求出即可;(2)根据角平分线定义求出∠COE=∠AOE= ∠COA,再根据∠AOE+∠DOB=90°,∠COE+∠COD=90°,可得∠COD=∠DOB,从而问题得证;(3)设∠COD=x°,则∠AOE=5x°,根据题意则可得6x=30或5x+90﹣x=120,解方程即可得.9.如图,已知,,,点E在线段AB上,,点F在直线AD上,.(1)若,求的度数;(2)找出图中与相等的角,并说明理由;(3)在的条件下,点不与点B、H重合从点B出发,沿射线BG的方向移动,其他条件不变,请直接写出的度数不必说明理由.【答案】(1)解:,,,,,,(2)解:与相等的角有:,,.理由:,两直线平行,内错角相等,,,,,同角的余角相等,,,两直线平行,同位角相等,(3)解:35°或145°【解析】【解答】解:或当点C在线段BH上时,点F在点A的左侧,如图1:,两直线平行,内错角相等,当点C在射线HG上时,点F在点A的右侧,如图2:,两直线平行,同旁内角互补,,.【分析】根据,,可得,再根据,即可得到;根据同角的余角相等以及平行线的性质,即可得到与相等的角;分两种情况讨论:当点C在线段BH上;点C 在BH延长线上,根据平行线的性质,即可得到的度数为或.10.如图,三角形ABC,直线,CD、BD分别平分和.(1)图中,,,求的度数,说明理由.(2)图中,,直接写出 ________.(3)图中,, ________.【答案】(1)解:,,如图1过D点作,,,,,即又、BD分别平分和.,同理(2)(3)【解析】【解答】如图2过D点作,,,,,即又、BD分别平分和.,同理,,,即,,,,,故答案为.如图3过D点作,,,,,即又、BD分别平分和.,同理,,,即,,,,,故答案为.【分析】(1)过点作,根据平行线的性质,得出,,则,再根据、分别平分和,得出,同理,即可解答;(2)根据(1)的思路即可解答;(3)根据(2)的思路即可解答.11.(1)(问题背景)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D(2)(简单应用)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数(可直接使用问题(1)中的结论)(3)(问题探究)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C =18°,则∠P的度数为________(4)(拓展延伸)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为________(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论________.【答案】(1)解:如图1,∠A+∠B+∠AOB=∠C+∠D+∠COD=180°∵∠AOB=∠COD∴∠A+∠B=∠C+∠D(2)解:∵AP、CP分别平分∠BAD、∠BCD∴∠BAP=∠PAD,∠BCP=∠PCD,由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②①+②,得2∠P+∠PAD+∠BCP=∠BAP+∠ABC +∠PCD+∠ADC∴∠P= (∠ABC+∠ADC)∴∠ABC=28°,∠ADC=20°∴∠P= (28°+20°)∴∠P=24°故答案为:24°(3)24°(4)∠P= x+ y(5)∠P=【解析】【解答】解:(3)∵如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC 的外角∠ADE,∴∠1=∠2,∠3=∠4由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1①,∠A+∠4=∠P+∠2②①+②,得∠C+180°-∠3+∠A+∠4=∠P+180°-∠1+∠P+∠2∴30°+18°=2∠P∴∠P=24°故答案为:24°( 4 )由(1)的结论得:∠CAB+∠C=∠P+ ∠CDB①,∠CAB+∠P=∠B+ ∠CDB②①×3,得∠CAB+3∠C=3∠P+ ∠CDB③②-③,得∠P-3x=y-3∠P∴∠P= x+ y故答案为:∠P= x+ y( 5 )如图5所示,延长AB交DP于点F由(1)的结论得:∠A+2∠1=∠C+180°-2∠3∵∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P∴∠A+360°-2∠A-2∠3-2∠P=∠C+180°-2∠3解得:∠P=故答案为:∠P=【分析】(1)根据三角形内角和为180°,对顶角相等,即可证得∠A+∠B=∠C+∠D(2)由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②,将两个式子相加,已知AP、CP分别平分∠BAD、∠BCD,可得∠BAP=∠PAD,∠BCP=∠PCD,可证得∠P= (∠ABC+∠ADC),即可求出∠P度数.(3)已知直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,可得∠1=∠2,∠3=∠4,由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1,∠A+∠4=∠P+∠2,两式相加即可求出∠P的度数.(4)由(1)的结论得:∠CAB+∠C=∠P+ ∠CDB,∠CAB+∠P=∠B+ ∠CDB,第一个式子乘以3,得到的式子减去第二个式子即可得出用x、y表示∠P(5)延长AB交DP于点F,标注出∠1,∠2,∠3,∠4,由(1)的结论得:∠A+2∠1=∠C+180°-2∠3,其中根据对顶角相等,三角形内角和,以及外角的性质即可得到∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P,代入∠A+2∠1=∠C+180°-2∠3,即可得出∠P与∠A、∠C的关系.12.如图1,,点,分别在,上,射线绕点顺时针旋转至便立即逆时针回转,射线绕点顺时针旋转至便立即逆时针回转.射线转动的速度是每秒度,射线转动的速度是每秒度.(1)直接写出的大小为________;(2)射线、转动后对应的射线分别为、,射线交直线于点,若射线比射线先转动秒,设射线转动的时间为秒,求为多少时,直线直线?(3)如图2,若射线、同时转动秒,转动的两条射线交于点,作,点在上,请探究与的数量关系.【答案】(1)60°(2)解:设灯转动t秒,直线直线,①当时,如图,,,,,,,解得;②当时,如图,,,,,,解得,综上所述,当秒或秒时直线;(3)解:和关系不会变化,理由:设射线AM转动时间为m秒,作,,,,,,,,,而,,,,,即,和关系不变.【解析】【解答】解:(1)∵,∴,∴(两直线平行,内错角相等)故结果为:;【分析】(1)根据得到,再根据直线平行的性质即可得到答案;(2)设灯转动t秒,直线直线,分情况讨论重合前平行、重合后平行即可得到答案;(3)根据补角的性质表示出,再根据三角形内角和即可表示出,即可得到答案;。