【精品】PPT课件 离散数学结构
合集下载
离散数学ppt课件
![离散数学ppt课件](https://img.taocdn.com/s3/m/cdf8a2600622192e453610661ed9ad51f11d5467.png)
02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。
离散数学代数结构部分-PPT
![离散数学代数结构部分-PPT](https://img.taocdn.com/s3/m/040a0f93370cba1aa8114431b90d6c85ec3a8893.png)
所以乘法运算就是封闭得。 而对于加法运算A上得 二元运算,如果对于任意得x,y∈A,都 有x*y=y*x,则称该二元运算*就是可 交换得。
例5、2 设Q就是有理数集合,*就是Q上得 二元运算,对任意得a,b∈Q,a*b=a+ba· b,问运算*就是否可交换。
例5、3 设A=Z,“+”就是整数中得加法: 则
“+”在Z中适合结合律。 “。”就是整数中得减法:则特取
而 运算“。”不满足结合律
➢定义5、4 设*就是定义在集合A上得 一个二元运算,如果对于任意得x∈A, 都有x*x=x,则称运算*就是等幂得。
例5、4 设P(S)就是集合S得幂集,在P(S) 上定义得两个二元运算,集合得“并”运 算∪和集合得“交”运算∩,验证∪,∩ 就是等幂得。
➢ 定理6、19 设
例6、16 例6、17 设
➢ 定义6、18 设 例6、18 设
➢ 定义6、19 设 例6、19 4元置换
➢ 定义6、20设
➢ 定理6、20
➢ 定义6、21
例6、20 如图 进行旋转,也可以围绕她得对称轴进行翻转,但 经过旋转或翻转后仍要与原来得方格重合(方格 中得数字可以改变)。如果把每种旋转或翻转看 作就是作用在
➢定理5、2 设*就是S上得二元运算,
如果S中既存在关于运算*得左幺元 el ,
又存在关于运算得右幺元 er
则S中必存在关于运算*得幺元e并且
2、 零元 ➢定义5、8 设*就是S上得二元运算,
在自然数集N上普通乘法得零元就是0, 而加法没有零元。
➢ 定理5、3 设 *就是S上得二元运算,如果S 中存在(关于运算*得)零元,则必就是唯一得。 所以零元就是唯一得。
证明: 略。 推论6、1
例5、2 设Q就是有理数集合,*就是Q上得 二元运算,对任意得a,b∈Q,a*b=a+ba· b,问运算*就是否可交换。
例5、3 设A=Z,“+”就是整数中得加法: 则
“+”在Z中适合结合律。 “。”就是整数中得减法:则特取
而 运算“。”不满足结合律
➢定义5、4 设*就是定义在集合A上得 一个二元运算,如果对于任意得x∈A, 都有x*x=x,则称运算*就是等幂得。
例5、4 设P(S)就是集合S得幂集,在P(S) 上定义得两个二元运算,集合得“并”运 算∪和集合得“交”运算∩,验证∪,∩ 就是等幂得。
➢ 定理6、19 设
例6、16 例6、17 设
➢ 定义6、18 设 例6、18 设
➢ 定义6、19 设 例6、19 4元置换
➢ 定义6、20设
➢ 定理6、20
➢ 定义6、21
例6、20 如图 进行旋转,也可以围绕她得对称轴进行翻转,但 经过旋转或翻转后仍要与原来得方格重合(方格 中得数字可以改变)。如果把每种旋转或翻转看 作就是作用在
➢定理5、2 设*就是S上得二元运算,
如果S中既存在关于运算*得左幺元 el ,
又存在关于运算得右幺元 er
则S中必存在关于运算*得幺元e并且
2、 零元 ➢定义5、8 设*就是S上得二元运算,
在自然数集N上普通乘法得零元就是0, 而加法没有零元。
➢ 定理5、3 设 *就是S上得二元运算,如果S 中存在(关于运算*得)零元,则必就是唯一得。 所以零元就是唯一得。
证明: 略。 推论6、1
离散完整ppt课件5.2-3共23页文档
![离散完整ppt课件5.2-3共23页文档](https://img.taocdn.com/s3/m/352419623169a4517723a3c1.png)
代数系统定义与实例
定义 非空集合 S 和 S 上 k 个一元或二元运算 f1, f2, … , fk 组成的系统称为一个代数系统, 简称代 数,记做 V=<S, f1, f2, … , fk>.
S 称为代数系统的载体, S 和运算叫做代数系 统的成分. 有的代数系统定义指定了S中的特殊 元素,称为代数常数, 例如二元运算的单位元. 有时也将代数常数作为系统的成分.
6
积代数
定义 设 V1=<S1,o>和 V2=<S2,>是代数系统,其中 o 和 是二元运算. V1 与 V2 的 积代数 是V=<S1S2,∙>,
<x1,y1>, <x2,y2>S1S2 , <x1,y1> ∙ <x2,y2>=<x1ox2, y1y2>
例3 V1=<Z,+>, V2=<M2(R), ∙ >, 积代数< ZM2(R),o> <z1,M1>, <z2,M2>ZM2(R) , <z1,M1> o <z2,M2> = <z1+z2, M1∙M2>
单同态、满同态、同构 自同态
同态映射的性质
9
同态映射的定义
定义 设 V1=<S1,∘>和 V2=<S2,>是代数系统,其中 ∘ 和 是二元运算. f: S1S2, 且x,yS1, f (x∘y) = f(x) f( y), 则称 f 为V1到 V2 的同态映射,简称同态.
10
更广泛的同态映射定义
f (x∘y)=f(x)f(y), f (x∙y)=f(x)◊f(y), f (∆ x)=∇f(x) 则称 f 为V1到 V2 的同态映射,简称同态.
定义 非空集合 S 和 S 上 k 个一元或二元运算 f1, f2, … , fk 组成的系统称为一个代数系统, 简称代 数,记做 V=<S, f1, f2, … , fk>.
S 称为代数系统的载体, S 和运算叫做代数系 统的成分. 有的代数系统定义指定了S中的特殊 元素,称为代数常数, 例如二元运算的单位元. 有时也将代数常数作为系统的成分.
6
积代数
定义 设 V1=<S1,o>和 V2=<S2,>是代数系统,其中 o 和 是二元运算. V1 与 V2 的 积代数 是V=<S1S2,∙>,
<x1,y1>, <x2,y2>S1S2 , <x1,y1> ∙ <x2,y2>=<x1ox2, y1y2>
例3 V1=<Z,+>, V2=<M2(R), ∙ >, 积代数< ZM2(R),o> <z1,M1>, <z2,M2>ZM2(R) , <z1,M1> o <z2,M2> = <z1+z2, M1∙M2>
单同态、满同态、同构 自同态
同态映射的性质
9
同态映射的定义
定义 设 V1=<S1,∘>和 V2=<S2,>是代数系统,其中 ∘ 和 是二元运算. f: S1S2, 且x,yS1, f (x∘y) = f(x) f( y), 则称 f 为V1到 V2 的同态映射,简称同态.
10
更广泛的同态映射定义
f (x∘y)=f(x)f(y), f (x∙y)=f(x)◊f(y), f (∆ x)=∇f(x) 则称 f 为V1到 V2 的同态映射,简称同态.
离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)
![离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)](https://img.taocdn.com/s3/m/0c674698fe4733687f21aa55.png)
(3)至于p为0即“我期终考了年级不是前 10”时,无论q为1或为0,即无论"我老妈 奖励1000元"或不奖励,都不能说老妈的 话是假的,故善意的认为pq为1均为1
1.1 命题及联结词
定义1.5双条件:当p与q值相同时,pq为1,不同 为0。 称p当且仅当q
“普通老师赚了100万当且仅当他 中了100万的彩票”, 普通老师赚了100万 普通老师买彩票中了100万大奖
故pq为0
1.1 命题及联结词
定义1.4条件式当p是1 ,q是0时,pq为0,即 10为0,其他情况为1。 p称为前件,q称为后件
(1)当p为1即“我期终考了年级前10”
q为0即“我老妈没有奖励1000元” 这时老妈的话为假,即pq为0 (2)当p为1即“我期终考了年级前10” q为1即“我老妈奖励1000元” 这时妈妈的话就对了,即pq为1
由于所有内容(整数,实数,字符,汉字,图片,声 音,视频,网页,……)进入电脑后,全是01组成的字 符串,从而都可以用布尔运算即逻辑运算实现,命题逻 辑成为计算机的基础。
命题逻辑将数学由连续变到离散,由高数进入离散。
Google采用逻辑运算进行搜索:数字之美 吴军 杨圣洪 000100010001110000 两者对应位置与运算。 离散数学 100100000000100001
陈述句(6)的正确性,到2018年12月时能确定的,若届 时建成了则它是对的、为真命题,否为假命题。
1.1 命题及联结词
对错确定的陈述语句称为命题。如:
(7) x与y之和为100,其中x为整数,y为整数 (8)1加1等于10 (7)的对错不确定。当x为50、y为50时是对的,当x为 51、y为52时是错的。 (8)的对错是不确定的,为二进制时正确,当为八进制、 十进制时是错的,因此这两个陈述句不是命题。 (9)青枫峡的红叶真美呀! (10)动作快点! (11)你是杨老师吗? 这三个语句不是陈述语句,因此不是命题。
1.1 命题及联结词
定义1.5双条件:当p与q值相同时,pq为1,不同 为0。 称p当且仅当q
“普通老师赚了100万当且仅当他 中了100万的彩票”, 普通老师赚了100万 普通老师买彩票中了100万大奖
故pq为0
1.1 命题及联结词
定义1.4条件式当p是1 ,q是0时,pq为0,即 10为0,其他情况为1。 p称为前件,q称为后件
(1)当p为1即“我期终考了年级前10”
q为0即“我老妈没有奖励1000元” 这时老妈的话为假,即pq为0 (2)当p为1即“我期终考了年级前10” q为1即“我老妈奖励1000元” 这时妈妈的话就对了,即pq为1
由于所有内容(整数,实数,字符,汉字,图片,声 音,视频,网页,……)进入电脑后,全是01组成的字 符串,从而都可以用布尔运算即逻辑运算实现,命题逻 辑成为计算机的基础。
命题逻辑将数学由连续变到离散,由高数进入离散。
Google采用逻辑运算进行搜索:数字之美 吴军 杨圣洪 000100010001110000 两者对应位置与运算。 离散数学 100100000000100001
陈述句(6)的正确性,到2018年12月时能确定的,若届 时建成了则它是对的、为真命题,否为假命题。
1.1 命题及联结词
对错确定的陈述语句称为命题。如:
(7) x与y之和为100,其中x为整数,y为整数 (8)1加1等于10 (7)的对错不确定。当x为50、y为50时是对的,当x为 51、y为52时是错的。 (8)的对错是不确定的,为二进制时正确,当为八进制、 十进制时是错的,因此这两个陈述句不是命题。 (9)青枫峡的红叶真美呀! (10)动作快点! (11)你是杨老师吗? 这三个语句不是陈述语句,因此不是命题。
离散完整ppt课件3.1-3共41页
![离散完整ppt课件3.1-3共41页](https://img.taocdn.com/s3/m/4e4a91446c85ec3a87c2c5c1.png)
证明 X=Y
命题演算法 等式代入法 反证法 运算法
以上的 X, Y 代表集合公式
18
命题演算法证 XY
任取 x , xX … xY
例3 证明AB P(A)P(B) 任取x xP(A) xA xB xP(B) 任取x xA {x}A {x}P(A) {x}P(B) {x}B xB
13
例1
F:一年级大学生的集合
S:二年级大学生的集合
R:计算机系学生的集合
M:数学系学生的集合
T:选修离散数学的学生的集合
L:爱好文学学生的集合
P:爱好体育运动学生的集合
所有计算机系二年级学生都选修离散数学
数学系一年级的学生都没有选修离散数学
数学系学生或爱好文学或爱好体育运动 只有一、二年级的学生才爱好体育运动 除去数学和计算机系二年级学生外都不 选修离散数学3.2 集合的基本运算
集合基本运算的定义
文氏图(John Venn) 例题 集合运算的算律 集合包含或恒等式的证明
10
集合基本运算的定义
并 交 相对补 对称差
绝对补
AB = { x | xA xB } AB = { x | xA xB } AB = { x | xA xB } AB = (AB)(BA)
由已知包含式通过运算产生新的包含式 XY XZYZ, XZYZ
= (AB)(AB) A = EA
11
文氏图表示
12
关于运算的说明
运算顺序: 和幂集优先,其他由括号确定 并和交运算可以推广到有穷个集合上,即
A1A2…An= {x | xA1xA2…xAn} A1A2…An= {x | xA1xA2…xAn} 某些重要结果 ABA AB AB=(后面证明) AB= AB=A
【精品】离散数学(集合、关系、函数、集合的基数)PPT课件
![【精品】离散数学(集合、关系、函数、集合的基数)PPT课件](https://img.taocdn.com/s3/m/0a0f1212767f5acfa1c7cd70.png)
第1章 集合
1.3 集合的运算
1.3.2 集合的交运算
定理1.3
设A,B,C是三个集合,则下列分配律成立: A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C)
定理1.4 设A,B为两个集合,则下列关系式成立: A∪(A∩B)=A A∩(A∪B)=A
这个定理称为吸收律,读者可以用文氏图验证。
A=B,C=D
第1章 集合
1.2 集合之间的关系
定理1.1 集合A和集合B相等的充分必要条件是A⊆B且B⊇A。 定义1.3 如果集合A是集合B的子集,但A和B不相等,也就 是说在B中至少有一个元素不属于A,则称A是B的真子集,记作
A⊂B 或 B⊃A 例如:集合A={1,2},B={1,2,3},那么A是B的真子集
A∩B={1,3,5}
第1章 集合
1.3 集合的运算
1.3.2 集合的交运算 集合的交运算的文氏图表示,见图3.2,其中阴影部分就是A∩B。
U
A
B
第1章 集合
1.3 集合的运算
1.3.2 集合的交运算 由集合交运算的定义可知,交运算有以下性质: (1)幂等律:A∩A=A (2)同一律:A∩U=A (3)零律:A∩= (4)结合律:(A∩B)∩C=A∩(B∩C) (5)交换律:A∩的运算
1.3.2 集合的交运算 定义1.7 任意两个集合A、B的交记作A∩B,它也是一个集合, 由所有既属于A又属于B的元素构成,即
A∩B ={x | x属于A且x属于B} 例如,A={a,b,c},B={b,c,d,e},则
A∩B={b,c} 又如,A={1,2,3,4,5},B={1,3,5,7,9},则
定义1.4 若集合U包含我们所讨论的每一个集合,则称U是所讨论 问题的完全集,简称全集。
离散完整ppt课件2.1-2共25页
![离散完整ppt课件2.1-2共25页](https://img.taocdn.com/s3/m/f3865843bb68a98271fefac1.png)
2.1 一阶逻辑基本概念
▪ 个体词 ▪ 谓词 ▪ 量词 ▪ 一阶逻辑中命题符号化
1
基本概念——个体词、谓词、量词
个体词(个体): 所研究对象中可以独立存在的具 体或抽象的客体
个体常项:具体的事物,用a, b, c表示 个体变项:抽象的事物,用x, y, z表示 个体域: 个体变项的取值范围
有限个体域,如{a, b, c}, {1, 2} 无限个体域,如N, Z, R, … 全总个体域: 宇宙间一切事物组成
12
原子公式
定义 设R(x1, x2, …, xn)是任意的n元谓词,t1,t2,…, tn 是任意的n个项,则称R(t1, t2, …, tn)是原子公式. 原子公式是由项组成的n元谓词. 例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式
13
合式公式
定义 合式公式(简称公式)定义如下: (1) 原子公式是合式公式. (2) 若A是合式公式,则 (A)也是合式公式 (3) 若A, B是合式公式,则(AB), (AB), (AB), (AB)也是合式公式 (4) 若A是合式公式,则xA, xA也是合式公式 (5) 只有有限次地应用(1)~(4)形成的符号串是合 式公式.
15
公式的解释与分类
给定公式 A=x(F(x)G(x)) 成真解释: 个体域N, F(x): x>2, G(x): x>1
代入得A=x(x>2x>1) 真命题 成假解释: 个体域N, F(x): x>1, G(x): x>2
(2) x (F(x)G(x))
这是两个基本公式, 注意这两个基本公式的使用.
7
一阶逻辑中命题符号化(续)
例3 在一阶逻辑中将下面命题符号化
▪ 个体词 ▪ 谓词 ▪ 量词 ▪ 一阶逻辑中命题符号化
1
基本概念——个体词、谓词、量词
个体词(个体): 所研究对象中可以独立存在的具 体或抽象的客体
个体常项:具体的事物,用a, b, c表示 个体变项:抽象的事物,用x, y, z表示 个体域: 个体变项的取值范围
有限个体域,如{a, b, c}, {1, 2} 无限个体域,如N, Z, R, … 全总个体域: 宇宙间一切事物组成
12
原子公式
定义 设R(x1, x2, …, xn)是任意的n元谓词,t1,t2,…, tn 是任意的n个项,则称R(t1, t2, …, tn)是原子公式. 原子公式是由项组成的n元谓词. 例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式
13
合式公式
定义 合式公式(简称公式)定义如下: (1) 原子公式是合式公式. (2) 若A是合式公式,则 (A)也是合式公式 (3) 若A, B是合式公式,则(AB), (AB), (AB), (AB)也是合式公式 (4) 若A是合式公式,则xA, xA也是合式公式 (5) 只有有限次地应用(1)~(4)形成的符号串是合 式公式.
15
公式的解释与分类
给定公式 A=x(F(x)G(x)) 成真解释: 个体域N, F(x): x>2, G(x): x>1
代入得A=x(x>2x>1) 真命题 成假解释: 个体域N, F(x): x>1, G(x): x>2
(2) x (F(x)G(x))
这是两个基本公式, 注意这两个基本公式的使用.
7
一阶逻辑中命题符号化(续)
例3 在一阶逻辑中将下面命题符号化
离散数学的ppt课件
![离散数学的ppt课件](https://img.taocdn.com/s3/m/8dae68eb294ac850ad02de80d4d8d15abe2300e2.png)
科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。
边
连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。
《离散数学讲义》课件
![《离散数学讲义》课件](https://img.taocdn.com/s3/m/4782988059f5f61fb7360b4c2e3f5727a5e924fe.png)
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
精品课程《离散数学》PPT课件(全)
![精品课程《离散数学》PPT课件(全)](https://img.taocdn.com/s3/m/f0d9d333a8114431b90dd8fa.png)
言1
为什么学习离散数学?
离散数学是现代数学的一个重要分支,是计算机科学与技术 的理论基础,所以又称为计算机数学,是计算机科学与技术 专业的核心、骨干课程。
它以研究离散量的结构和相互间的关系为主要目标,其研 究对象一般是有限个或可数个元素,因此它充分描述了计算 机科学离散性的特点。
离散数学是什么课?
真值为1
25
1.1 命题符号化及联结词
以下命题中出现的a是给定的一个正整数: (3) 只有 a能被2整除, a才能被4整除。
(4) 只有 a能被4整除, a才能被2整除。
解: 令r: a能被4整除, s: a能被2整除。 真值不确定 (3)符号化为 s r (4)符号化为 r s
真值为1
26
19
1.1 命题符号化及联结词
3.析取词 设p,q为二命题,复合命题“p或q” 称为p与q的析取式,记作p ∨ q,符号∨称 为析取联结词。 运算规则:
p 0 0 1 1 q 0 1 0 1 p∨q 0 1 1 1
20
1.1 命题符号化及联结词
析取运算特点:只有参与运算的二命题全为假时,运算结果才 为假,否则为真。 相容或:二者至少有一个发生,也可二者都发生 排斥或:二者只有一个发生,即非此即彼 例如: (1)小王爱打球或爱跑步。 设p:小王爱打球。 q:小王爱跑步。 则上述命题可符号化为:p ∨ q (2)张晓静是江西人或湖南人。 设p:江西人。 q:湖南人。 则上述命题就不可简单符号化为:p ∨ q 而应描述为(p∧ q) ∨( p∧q)(也可用异或联接词∨)
(1)星期天天气好,带儿子去了动物园; (2)星期天天气好,却没带儿子去动物园; (3)星期天天气不好,却带儿子去了动物园; (4)星期天天气不好,没带儿子去动物园。
数学离散数学PPT课件
![数学离散数学PPT课件](https://img.taocdn.com/s3/m/d76ce8706bec0975f565e211.png)
(b) 对公式 A: F(x, y)∧M→F(u, x)中的 F, 欲代以 B: G(x1)∨H(x2, s)→H(t, x2), 则只需x , y , u不是B内的约 束变元, 而且s , t不是A内的约束变元。 代入结果为 (G(x)∨H(y, s)→H(t, y))∧M→(G(u)∨H(x, s)→H(t, x))
第22页/共41页
表 1.7 -1 含有量词的永真公式概要表
第23页/共41页
谓词演算规则
1、代入规则 2、替换规则 3、对偶原理
第24页/共41页
1. 代入规则
(i)自由个体变元的代入:在一公式中, 任一自由个体变元 可代以另一个体变元, 只需该个体变元出现的各处都同样代入, 且代入的变元不允许在原来公式中以约束变元出现。 例: 在公式xP(x, y)∨Q(w, y)中, 将y代以z, 则得xP(x, z)∨Q(w, z), 将y代以w, 则得xP(x, w)∨Q(w, w)。 所得公式称为原公式的代入实例。
1.后边的r个自由变元 不允许在原公式中以约束变元出现; 2. F(x1,x2, …, xn)中的变元也不允许在代入的公式中以约束变元 出现。
第26页/共41页
例: (a) 对公式(P→Q) (P∨Q)中的P代以xP(x), Q代以S(x), 得
(xP(x)→S(x)) (xP(x)∨S(x))
Q4
xP(x) xQ(x)
E14
第31页/共41页
(b) 证明
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
证: 根据CP规则, 上式等价于
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
而 x(P(x) Q(x)) x(R(x) Q(x))
第22页/共41页
表 1.7 -1 含有量词的永真公式概要表
第23页/共41页
谓词演算规则
1、代入规则 2、替换规则 3、对偶原理
第24页/共41页
1. 代入规则
(i)自由个体变元的代入:在一公式中, 任一自由个体变元 可代以另一个体变元, 只需该个体变元出现的各处都同样代入, 且代入的变元不允许在原来公式中以约束变元出现。 例: 在公式xP(x, y)∨Q(w, y)中, 将y代以z, 则得xP(x, z)∨Q(w, z), 将y代以w, 则得xP(x, w)∨Q(w, w)。 所得公式称为原公式的代入实例。
1.后边的r个自由变元 不允许在原公式中以约束变元出现; 2. F(x1,x2, …, xn)中的变元也不允许在代入的公式中以约束变元 出现。
第26页/共41页
例: (a) 对公式(P→Q) (P∨Q)中的P代以xP(x), Q代以S(x), 得
(xP(x)→S(x)) (xP(x)∨S(x))
Q4
xP(x) xQ(x)
E14
第31页/共41页
(b) 证明
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
证: 根据CP规则, 上式等价于
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
而 x(P(x) Q(x)) x(R(x) Q(x))
离散结构PPT
![离散结构PPT](https://img.taocdn.com/s3/m/212a4754804d2b160b4ec00b.png)
结论: (pq) (pq)
4
基本等值式
双重否定律 幂等律 交换律 结合律
分配律 德摩根律
AA AAA, AAA ABBA, ABBA (AB)CA(BC) (AB)CA(BC) A(BC)(AB)(AC) A(BC) (AB)(AC) (AB)AB (AB)AB
归谬论
(AB)(AB)A
6
等值演算
等值演算: 由已知的等值式推演出新的等值式 的过程
置换规则: 若AB, 则(B)(A) 例如:p(qr) p(qr)
(蕴涵等值式、置换规则)
7
等值演算
等值演算: 由已知的等值式推演出新的等值式的过程
置换规则: 若AB, 则(B)(A)
9
应用举例——证明两个公式等值
例1 证明 p(qr) (pq)r 证 p(qr) p(qr) (蕴涵等值式,置换规则) (pq)r (结合律,置换规则) (pq)r (德摩根律,置换规则) (pq) r (蕴涵等值式,置换规则) 说明:也可以从右边开始演算(请做一遍) 因为每一步都用置换规则,故可不写出 熟练后,基本等值式也可以不写出
1.3 命题逻辑等值演算
等值式 基本等值式 等值演算 置换规则
1
等值式
定义1.10 若等价式AB是重言式, 则称A与B等值, 记作 AB, 并称AB是等值式 用真值表可验证两个公式是否等值 请验证:p(qr) (pq) r p(qr) (pq) r 说明: A与B等值当且仅当A与B在所有可能赋值下的真值都 相同, 即A与B有相同的真值表
3
p(qr)与(pq)r等值, 但与(pq)r不等值
真值表法
例1 判断 (pq) 与 pq 是否等值 解 p q 0 0 0 1 1 0 1 1 p q 1 1 0 0 1 0 1 0 pq (pq) pq (pq)(pq) 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1
离散数学PPT【共34张PPT】
![离散数学PPT【共34张PPT】](https://img.taocdn.com/s3/m/cc3f16c36429647d27284b73f242336c1eb9302f.png)
15
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;