最优化模型与算法复习过程
最优化问题的建模与解法
最优化问题的建模与解法最优化问题(optimization problem)是指在一组可能的解中寻找最优解的问题。
最优化问题在实际生活中有广泛的应用,例如在工程、经济学、物流等领域中,我们经常需要通过数学模型来描述问题,并利用优化算法来求解最优解。
本文将介绍最优化问题的建模和解法,并通过几个实例来说明具体的应用。
一、最优化问题的数学建模最优化问题的数学建模包括目标函数的定义、约束条件的确定以及变量范围的设定。
1. 目标函数的定义目标函数是一个表达式,用来衡量问题的解的优劣。
例如,对于一个最大化问题,我们可以定义目标函数为:max f(x)其中,f(x)是一个关于变量x的函数,表示问题的解与x的关系。
类似地,对于最小化问题,我们可以定义目标函数为:min f(x)2. 约束条件的确定约束条件是对变量x的一组限制条件,用来定义问题的可行解集合。
约束条件可以是等式或不等式,通常表示为:g(x) ≤ 0h(x) = 0其中,g(x)和h(x)分别表示不等式约束和等式约束。
最优化问题的解必须满足所有的约束条件,即:g(x) ≤ 0, h(x) = 03. 变量范围的设定对于某些变量,可能需要限定其取值的范围。
例如,对于一个实数变量x,可能需要设定其上下界限。
变量范围的设定可以通过添加额外的不等式约束来实现。
二、最优化问题的解法最优化问题的解法包括数学方法和计算方法两种,常见的数学方法有最优性条件、拉格朗日乘子法等,而计算方法主要是通过计算机来求解。
1. 数学方法数学方法是通过数学分析来求解最优化问题。
其中,常见的数学方法包括:(1)最优性条件:例如,对于一些特殊的最优化问题,可以通过最优性条件来判断最优解的存在性和性质。
最优性条件包括可导条件、凸性条件等。
(2)拉格朗日乘子法:对于带有约束条件的最优化问题,可以通过拉格朗日乘子法将原问题转化为无约束最优化问题,从而求解最优解。
2. 计算方法计算方法是通过计算机来求解最优化问题。
最优解模型解法
最优解模型解法最优解模型解法是一种常见的优化问题解决方法,主要用于在给定的限制下,找出使目标函数取得最优值的变量取值。
下面我们将从理论与实践两个方面,介绍最优解模型解法的基本概念、应用场景、求解方法等。
一、理论基础1.1 最优化问题的形式化定义最优化问题的一般形式是:max f(x),s.t. g(x)≤0, h(x)=0其中,f(x)为目标函数,x为自变量,g(x)和h(x)分别为不等式约束和等式约束。
目标是在限制条件下,求出最大(最小)化的目标值。
这个过程就是优化过程。
1.2最优解的定义最优解是指满足约束条件的最优值,分为全局最优解和局部最优解。
全局最优解是在所有可行解中的最佳解,而局部最优解则由某些条件限制下的最佳解。
1.3 模型分类最优解模型可以分为线性规划、整数规划、非线性规划、动态规划等。
其中,线性规划最为常见,主要是因为它具有优秀的求解工具和求解算法。
二、应用场景2.1 生产计划与调度通过最优解模型,可以优化生产计划与调度,最大化效益,最小化成本。
例如,工厂生产问题中,可以通过最优化问题求解最佳的生产计划,以达到最高的效率和最低的成本。
2.2 物流调度物流调度中的最优化问题,可以使用最优解模型来解决。
例如,通过线性规划模型,可有效规划运输路径,提高效率和降低成本。
2.3 金融领域在金融领域中,最优解模型可以应用于投资组合优化、金融风险控制等领域。
例如,投资组合优化中,可以使用最优解模型优化投资组合,并达到最优效果。
三、求解方法3.1 线性规划模型线性规划模型是最常见的最优解模型。
其目标函数和约束函数都是线性规划函数,可以使用单纯性算法或内点算法求解。
3.2 整数规划模型整数规划模型是在线性规划模型的基础上,增加了整数约束条件。
整数约束条件使问题更为复杂,但是较小的整数问题可以使用穷举法求解。
3.3 非线性规划模型非线性规划模型的约束和/或目标函数是非线性的。
求解方法包括黄金分割法、拟牛顿法等。
最优化方法(建模、原理、算法)
26
29
32
里程(km) 501~600 601~700 701~800 801~900 901~1000
运价(万元) 37
44
50
55
60
• 1000km以上每增加1至100km运价增加5 • 公路运输费用为1单位钢管每公里0.1万元(不足
整公里部分按整公里计算)。
SST
• 钢管可由铁路、公路运往铺设地点(不只是运到 点,而是管道全线)。
• (1)请制定一个主管道钢管的订购和运输计划, 使总费用最小(给出总费用)。
• (2)请就(1)的模型分析:哪个钢厂钢管的销 价的变化对购运计划和总费用影响最大,哪个钢 厂钢管的产量的上限的变化对购运计划和总费用 的影响最大,并给出相应的数字结果。
• (3)如果要铺设的管道不是一条线,而是一个树 形图,铁路、公路和管道构成网络,请就这种更 一般的情形给出一种解决办法,并对图二按(1) 的要求给出模型和结果。
SST
i 1234567 si 800 800 1000 2000 2000 2000 3000 pi 160 155 155 160 155 150 160 • 1单位钢管的铁路运价如下表:
里程(km) 运价(万元)
≤300 20
301~350 351~400 401~450 451~500
23
平均值 c [c1, c2,, cn ]T,协方差矩阵 V 。
希望利润期望值最大且方差最小,建立多目标优化模型:
v - min [ - c T x, xTVx ]
s. t. Ax b
x0
SST
• 问题扩展 b. 风险投资问题(参考98全国建模赛题)
将前面的产品换成投资项目,考虑投资 Aj 风险损失qj 。
《最优化方法》课程复习考试
《最优化方法》复习提要 第一章 最优化问题与数学预备知识§1. 1 模型无约束最优化问题 12min (),(,,,)T n n f x x x x x R =∈.约束最优化问题(},,2,1,0)(;,,2,1,0)(,|{l j x h m i x g R x x S j i n ===≥∈=∧)min ();...f x s t x S ⎧⎨∈⎩ 即 m i n ();..()0,1,2,,,()0,1,2,,.i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩其中()f x 称为目标函数,12,,,n x x x 称为决策变量,S 称为可行域,()0(1,2,,),()0(1,2,,)i j g x i m h x j l ≥===称为约束条件.§1. 2 多元函数的梯度、Hesse 矩阵及Taylor 公式定义 设:,n n f R R x R →∈.如果n ∃维向量p ,n x R ∀∆∈,有()()()T f x x f x p x o x +∆-=∆+∆.则称()f x 在点x 处可微,并称()T df x p x =∆为()f x 在点x 处的微分.如果()f x 在点x 处对于12(,,,)T n x x x x =的各分量的偏导数(),1,2,,if x i n x ∂=∂都存在,则称()f x 在点x 处一阶可导,并称向量12()()()()(,,,)Tnf x f x f x f x x x x ∂∂∂∇=∂∂∂ 为()f x 在点x 处一阶导数或梯度.定理1 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处梯度()f x ∇ 存在,并且有()()T df x f x x =∇∆.定义 设:,n n f R R x R →∈.d 是给定的n 维非零向量,de d=.如果 0()()lim()f x e f x R λλλλ→+-∈存在,则称此极限为()f x 在点x 沿方向d 的方向导数,记作()f x d∂∂. 定理2 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处沿任何非零方向d 的方向导数存在,且()()T f x f x e d ∂=∇∂,其中de d=. 定义 设()f x 是n R 上的连续函数,n x R ∈.d 是n 维非零向量.如果0δ∃>,使得(0,)λδ∀∈,有()f x d λ+<(>)()f x .则称d 为()f x 在点x 处的下降(上升)方向.定理3 设:,n n f R R x R →∈,且()f x 在点x 处可微,如果∃非零向量n d R ∈,使得()T f x d ∇<(>)0,则d 是()f x 在点x 处的下降(上升)方向. 定义 设:,n n f R R x R →∈.如果()f x 在点x 处对于自变量12(,,,)T n x x x x =的各分量的二阶偏导数2()(,1,2,,)i j f x i j n x x ∂=∂∂都存在,则称函数()f x 在点x 处二阶可导,并称矩阵22221121222222122222212()()()()()()()()()()n n n n n f x f x f x x x x x x f x f x f x f x x x x x x f x f x f x x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂ ⎪∇=∂∂∂∂∂ ⎪ ⎪⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭为()f x 在点x 处的二阶导数矩阵或Hesse 矩阵. 定义 设:,n m n h R R x R →∈,记12()((),(),,())T m h x h x h x h x =,如果 ()(1,2,,)i h x i m =在点x 处对于自变量12(,,,)T n x x x x =的各分量的偏导数()(1,2,,;1,2,,)i jh x i m j n x ∂==∂都存在,则称向量函数()h x 在点x 处是一阶可导的,并且称矩阵111122221212()()()()()()()()()()n n m n m m m n h x h x h x xx x h x h x h x x x x h x h x h x h x xx x ⨯∂∂∂⎛⎫ ⎪∂∂∂⎪⎪∂∂∂⎪∂∂∂∇= ⎪ ⎪⎪∂∂∂ ⎪ ⎪∂∂∂⎝⎭为()h x 在点x 处的一阶导数矩阵或Jacobi 矩阵,简记为()h x ∇.例2 设,,n n a R x R b R ∈∈∈,求()T f x a x b =+在任意点x 处的梯度和Hesse 矩阵.解 设1212(,,,),(,,,)TTn n a a a a x x x x ==,则1()nk k k f x a x b ==+∑,因()(1,2,,)k kf x a k n x ∂==∂,故得()f x a ∇=.又因2()0(,1,2,,)i jf x i j n x x ∂==∂∂,则2()f x O ∇=.例3 设n n Q R ⨯∈是对称矩阵,,n b R c R ∈∈,称1()2TT f x x Qx b x c =++为二次函数,求()f x 在任意点x 处的梯度和Hesse 矩阵.解 设1212(),(,,,),(,,,)T T ij n n n n Q q x x x x b b b b ⨯===,则121111(,,,)2n nnn ij i j k k i j k f x x x q x x b x c ====++∑∑∑,从而111111111()()()nn j j j j j j n n n nj j n nj j j j n f x q x b q x x bf x Qx b f x b q x b q x x ====⎛⎫⎛⎫∂⎛⎫+ ⎪ ⎪ ⎪∂⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪∇===+=+ ⎪ ⎪ ⎪ ⎪ ⎪∂⎝⎭ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭∑∑∑∑.再对1()(1,2,,)nij j i j i f x q x b i n x =∂=+=∂∑求偏导得到2()(,1,2,,)ij i jf x q i j n x x ∂==∂∂,于是1112121222212()n n n n nn q q q q q q f x Q q q q ⎛⎫⎪ ⎪∇== ⎪⎪⎝⎭. 例 4 设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求(),()t t ϕϕ'''.解 由多元复合函数微分法知 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+. 定理4 设:,n n f R R x R →∈,且()f x 在点x 的某邻域内具有二阶连续偏导数,则()f x 在点x 处有Taylor 展式21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.证明 设()(),[0,1]t f x t x t ϕ=+∆∈,则(0)(),(1)()f x f x x ϕϕ==+∆.按一元函数Taylor 公式()t ϕ在0t =处展开,有21()(0)(0)(),(0)2t t t t ϕϕϕϕθθ'''=++<<.从例4得知2(0)(),()()()T T f x x x f x x x ϕϕθθ'''=∇∆=∆∇+∆∆.令1t =,有21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.根据定理1和定理4,我们有如下两个公式()()()()()T f x f x f x x x o x x =+∇-+-,221()()()()()()()()2T T f x f x f x x x x x f x x x o x x =+∇-+-∇-+-.§1. 3 最优化的基本术语定义 设:n f R R →为目标函数,n S R ⊆为可行域,x S ∈.(1) 若x S ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的全局(或整体)极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的全局(或整体)最优解,并称()f x为其最优值.(2) 若,x S x x ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格全局(或整体)极小点.(3) 若x ∃的δ邻域(){}(0)n N x x R x x δδδ=∈-<>使得()x N x S δ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的局部极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的局部最优解.(4) 若x ∃的δ邻域()(0)N x δδ>使得(),x N x S x x δ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格局部极小点.第二章 最优性条件§2.1 无约束最优化问题的最优性条件定理 1 设:n f R R →在点x 处可微,若x 是问题min ()f x 的局部极小点,则()0f x ∇=.定义 设:()n f S R R ⊆→在int x S ∈处可微,若()0f x ∇=,则称x 为()f x 的平稳点.定理2 设:n f R R →在点x 处具有二阶连续偏导数,若x 是问题min ()f x 的局部极小点,则()0f x ∇=,且2()f x ∇半正定.定理3 设:n f R R →在点x 处具有二阶连续偏导数,若()0f x ∇=,且2()f x ∇正定,则x 是问题min ()f x 的严格局部极小点. 注:定理2不是充分条件,定理3不是必要条件.例1 对于无约束最优化问题2312min ()f x x x =-,其中212(,)T x x x R =∈,显然 2212()(2,3),T f x x x x R ∇=-∀∈,令()0f x ∇=,得()f x 的平稳点(0,0)T x =,而且2222020(),()0600f x f x x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.易见2()f x ∇为半正定矩阵.但是,在x 的任意δ邻域x x δ-<,总可以取到(0,)2T x δ=,使()()f x f x <,即x 不是局部极小点.例2 对于无约束最优化问题42241122min ()2f x x x x x =++,其中212(,)T x x x R =∈, 易知3223112122()(44,44)Tf x x x x x x x ∇=++,从而得平稳点(0,0)T x =,并且 22221212221212001248(),()008412x x x x f x f x x x x x ⎛⎫+⎛⎫∇=∇=⎪ ⎪+⎝⎭⎝⎭. 显然2()f x ∇不是正定矩阵.但是,22212()()f x x x =+在x 处取最小值,即x 为严格局部极小点.例3 求解下面无约束最优化问题332122111min ()33f x x x x x =+--,其中212(,)T x x x R =∈, 解 因为21212222201(),()0222x x f x f x x x x ⎛⎫-⎛⎫∇=∇= ⎪ ⎪--⎝⎭⎝⎭,所以令()0f x ∇=,有2122210,20.x x x ⎧-=⎪⎨-=⎪⎩解此方程组得到()f x 的平稳点(1)(2)(3)(4)1111,,,0202x x x x --⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.从而2(1)2(2)2020(),()0202f x f x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭,2(3)2(4)2020(),()0202f x f x --⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.由于2(1)()f x ∇和2(4)()f x ∇是不定的,因此(1)x 和(4)x 不是极值点.2(3)()f x ∇是负定的,故(3)x 不是极值点,实际上它是极大点.2(2)()f x ∇是正定的,从而(2)x 是严格局部极小点.定理4 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微,若()0f x ∇=,则x 为min ()f x 的全局极小点.推论5 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微.则x 为min ()f x 的全局极小点的充分必要条件是()0f x ∇=. 例 4 试证正定二次函数1()2TT f x x Qx b x c =++有唯一的严格全局极小点1x Q b -=-,其中Q 为n 阶正定矩阵.证明 因为Q 为正定矩阵,且(),n f x Qx b x R ∇=+∀∈,所以得()f x 的唯一平稳点1x Q b -=-.又由于()f x 是严格凸函数,因此由定理4知,x 是()f x 的严格全局极小点.§2.2 等式约束最优化问题的最优性条件定理1 设:n f R R →在点x 处可微,:(1,2,,)n j h R R j l →=在点x 处具有一阶连续偏导数,向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题min ();..()0,1,2,,j f x s t h x j l ⎧⎨==⎩的局部极小点,则,1,2,,j v R j l ∃∈=,使得1()()0lj j j f x v h x =∇-∇=∑.称(,)()()T L x v f x v h x =-为Lagrange 函数,其中12()((),(),,())T l h x h x h x h x =.称12(,,,)T l v v v v =为Lagrange 乘子向量.易见(,)x v L L x v L ∇⎛⎫∇= ⎪∇⎝⎭,这里1(,)()(),(,)()lx j j v j L x v f x v h x L x v h x =∇=∇-∇∇=-∑.定理 2 设:n f R R →和:(1,2,,)n j h R R j l →=在点n x R ∈处具有二阶连续偏导数,若l v R ∃∈,使得(,)0x L x v ∇=,并且,,0n z R z ∀∈≠,只要()0,1,2,,T j z h x j l ∇==,便有2(,)0T xx z L x v z ∇>,则x 是问题min ();..()0,1,2,,j f x s t h x j l ⎧⎨==⎩的严格局部极小点.例1 试用最优性条件求解 221212min ();..()80.f x x x s t h x x x ⎧=+⎨=-=⎩解 Lagrange 函数为221212(,)(8)L x v x x v x x =+--,则1221122(,)2(8)x vx L x v x vx x x -⎛⎫⎪∇=- ⎪ ⎪--⎝⎭, 从而得(,)L x v 的平稳点(8,8,2)T 和(8,8,2)T --,对应有(8,8),2T x v ==和(8,8),2T x v =--=.由于221222(,),()222xx x v L x v h x x v--⎛⎫⎛⎫⎛⎫∇==∇= ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 因此1212(){(,)|(,)()0}T M x z z z z h x =∇=121221{(,)|0}T z z z x z x =+= 1212{(,)|}T z z z z ==-.并且(),0z M x z ∀∈≠,有222211221(,)24280T xx z L x v z z z z z z ∇=-+=>.利用定理2,所得的两个可行点(8,8)T x =和(8,8)T x =--都是问题的严格局部极小点.§2.3 不等式约束最优化问题的最优性条件定义 设,,,0n n S R x clS d R d ⊆∈∈≠,若0δ∃>,使得,,(0,)x d S λλδ+∈∀∈, 则称d 为集合S 在点x 处的可行方向. 这里{|,(),0}n clS x x R SN x δδ=∈≠∅∀>.令 {|0,0,,(0,)}D d d x d S δλλδ=≠∃>+∈∀∈使,0{|()0}T F d f x d =∇<.定理 1 设n S R ⊆是非空集合,:,,()f S R x S f x →∈在点x 处可微.若x 是问题min ()x Sf x ∈的局部极小点,则 0F D =∅.对于min ();..()0,1,2,,,i f x s t g x i m ⎧⎨≥=⎩ (1)其中:,:(1,2,,)n n i f R R g R R i m →→=.令(){|()0,1,2,,}i I x i g x i m ===,其中x 是上述问题(1)的可行点.定理 2 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,如果x 是问题(1)的局部极小点,则 00F G =∅,其中0{|()0,()}T i G d g x d i I x =∇>∈.定理 3 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,若x 是问题(1)的局部极小点,则存在不全为0的非负数0,(())i u u i I x ∈,使0()()()0iii I x u f x u g x ∈∇-∇=∑. (x 称为Fritz John 点)如果()(())i g x i I x ∉在点x 处也可微,则存在不全为0的非负数01,,,m u u u ,使01()()0,()0,1,2,,.mi i i i iu f x u g x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为Fritz John 点) 例1 设1311222min ();..()(1)0,()0.f x x s t g x x x g x x =-⎧⎪=--≥⎨⎪=≥⎩试判断(1,0)T x =是否为Fritz John 点. 解 因为12100(),(),()011f x g x g x -⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,所以为使Fritz John 条件01210000110u u u -⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.取0120,0u u u α===>即可,因此x 是Fritz John 点.定理 4 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,并且()(())i g x i I x ∇∈线性无关.若x 是问题(1)的局部极小点,则存在0(())i u i I x ≥∈,使得()()()0iii I x f x u g x ∈∇-∇=∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在0(1,2,,)i u i m ≥=,使得1()()0,()0,1,2,,.mi i i i if x ug x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为K-T 点) 例2 求最优化问题21211222min ()(1);..()20,()0f x x x s t g x x x g x x ⎧=-+⎪=--+≥⎨⎪=≥⎩的K-T 点. 解 因为1122(1)10(),(),()111x f x g x g x --⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,所以K-T 条件为111211222122(1)0,10,(2)0,0,0,0.x u u u u x x u x u u -+=⎧⎪+-=⎪⎪--+=⎨⎪=⎪⎪≥≥⎩ 若20u =,则11u =-,这与10u ≥矛盾.故20u >,从而20x =;若120x -+=,则12u =-,这与10u ≥矛盾.故10u =,从而211,1u x ==; 由于120,0u u ≥≥,且(1,0)T x =为问题的可行点,因此x 是K-T 点. 定理5 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.§2.4 一般约束最优化问题的最优性条件考虑等式和不等式约束最优化问题min ();..()0,1,2,,,()0,1,2,,,i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩(1) 其中:,:(1,2,,),:(1,2,,)n n n i j f R R g R R i m h R R j l →→=→=.并把问题(1)的可行域记为S .,(){|()0,1,2,,}i x S I x i g x i m ∀∈==.定理 1 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,并且向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题(1)的局部极小点,则 00F G H =∅,这里0{|()0}T F d f x d =∇<,0{|()0,()}T i G d g x d i I x =∇>∈,0{|()0,1,2,,}T j H d h x d j l =∇==.定理 2 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续.若x 为问题(1)的局部极小点,则存在不全为0的数0,(())i u u i I x ∈和(1,2,,)j v j l =,且0,0(())i u u i I x ≥∈,使0()1()()()0liijji I x j u f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为Fritz John 点)若()(())i g x i I x ∉在点x 处也可微,则存在不全为0的数0,(1,2,,)i u u i m =和(1,2,,)j v j l =,且0,0(1,2,,)i u u i m ≥=,使011()()()0,()0,1,2,,.m li i j j i j i iu f x u g x v h x u g x i m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为Fritz John 点)例1 设2212311222212min ();..()0,()0,()(1)0.f x x x s t g x x x g x x h x x x ⎧=+⎪=-≥⎪⎨=≥⎪⎪=--+=⎩试判断(1,0)T x =是否为Fritz John 点.解 (){2}I x =,且2200(),(),()011f x g x h x ⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,因此为使Fritz John 条件022*******u u v ⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.所以取020,1,1u u v ===-,即知x 是Fritz John 点.定理 3 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,且向量组()(()),()(1,2,,)i j g x i I x h x j l ∇∈∇=线性无关.若x 是问题(1)的局部极小点,则存在数0(())i u i I x ≥∈和(1,2,,)j v j l =,使()1()()()0liijji I x j f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在数0(1,2,,)i u i m ≥=和(1,2,,)j v j l =,使11()()()0,()0,1,2,,.m li i j j i j i if x ug x vh x u g xi m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为K-T 点) 令 1212()((),(),,()),()((),(),,())T T m l g x g x g x g x h x h x h x h x ==,1212(,,,),(,,,)T T m l u u u u v v v v ==,称u 与v 为广义Lagrange 乘子向量或K-T 乘子向量.()()()0,()0,0.T T Tf xg x uh x v u g x u ⎧∇-∇-∇=⎪=⎨⎪≥⎩令(,,)()()()T T L x u v f x u g x v h x =--为广义Lagrange 函数.称(,,)L x u v 为广义Lagrange 函数.则K-T 条件为(,,)0,()0,0.x TL x u v u g x u ∇=⎧⎪=⎨⎪≥⎩定理 4 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,()(1,2,,)j h x j l =是线性函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.例2 求解最优化问题221221212min ()(3)(1);..()0,()230.f x x x s t g x x x h x x x ⎧=-+-⎪=-+≥⎨⎪=+-≥⎩ 解 广义Lagrange 函数为222121212(,,)()()()(3)(1)()(23)L x u v f x ug x vh x x x u x x v x x =--=-+---+-+-.因为111(,,)2(3)22L x u v x ux v x ∂=-+-∂,22(,,)2(1)L x u v x u v x ∂=---∂.所以K-T 条件及约束条件为112212212122(3)220,2(1)0,()0,0,230,0.x ux v x u v u x x x x x x u -+-=⎧⎪---=⎪⎪-+=⎪⎨-+≥⎪⎪+-=⎪≥⎪⎩ 下面分两种情况讨论. (1) 设0u =,则有12122(3)20,2(1)0,230.x v x v x x --=⎧⎪--=⎨⎪+-=⎩ 由此可解得12718,,555x x v ===-,但71(,)55T x =不是可行点,因而不是K-T 点.(2) 设0u >,则有112212122(3)220,2(1)0,0,230.x ux v x u v x x x x -+-=⎧⎪---=⎪⎨-+=⎪⎪+-=⎩ 由此可得211230x x --+=,解得11x =或13x =-。
典型优化问题的模型与算法
典型优化问题的模型与算法一、引言优化问题在各种领域中都有着广泛的应用,如生产管理、物流配送、资源分配、财务预算等。
为了解决这些实际问题,我们需要建立合适的数学模型,并设计有效的算法来求解。
本文将介绍一些典型的优化问题的模型与算法。
二、线性规划问题线性规划问题是一种常见的优化问题,用于求解一组线性目标函数和线性约束条件的最优解。
常用的算法包括单纯形法、分支定界法等。
模型:设有n个变量,其中n≥1,要求找到一组变量x的值,使得目标函数的值最大(或最小),同时满足一系列线性不等式约束条件。
算法:根据目标函数和约束条件,构建线性规划问题的数学模型;采用合适的算法(如单纯形法)求解该模型,得到最优解。
三、整数规划问题整数规划问题是一种特殊的优化问题,要求变量必须是整数。
常用的算法包括分支定界法、割平面法等。
模型:设有n个变量,其中n≥1,要求找到一组变量的整数值,使得目标函数的值最大(或最小),同时满足一系列不等式约束条件,且某些变量必须取整数值。
算法:根据目标函数和约束条件,构建整数规划问题的数学模型;采用分支定界法等算法,将整数规划问题分解为一系列子问题,并逐步求解,最终得到最优解。
四、非线性优化问题非线性优化问题是最常见的优化问题之一,要求目标函数和约束条件均为非线性形式。
常用的算法包括梯度下降法、牛顿法、共轭梯度法等。
模型:设有n个变量,其中n≥1,要求找到一组变量的值,使得目标函数的值最小(或最大),同时满足一系列非线性不等式约束条件。
算法:根据目标函数和约束条件,构建非线性优化问题的数学模型;采用梯度下降法、牛顿法等算法,逐步迭代优化目标函数,直到满足终止条件(如迭代次数或误差阈值)为止。
五、动态规划问题动态规划问题是一种特殊的优化问题,用于求解一系列决策过程中的最优解。
常用的算法包括记忆化搜索、最优子结构等。
模型:在给定的决策过程中,要求根据当前状态和可选动作选择最优动作,以最大化(或最小化)某一指标的值。
最优化问题数学模型
• 进入该区域的飞机在到达区域边缘时,与区域内 飞机的距离应在60km以上;
根据当年竞赛题目给出的数据,可以验证 新进入的飞机与区域内的飞机的距离超过 60公里。
• 最多需考虑六架飞机;
cij xij 表示该队员的成 目标函数:当队员i入选泳姿j时, 绩,否则 cij xij 0 。于是接力队的成绩可表示为
f cij xij .
j 1 i 1
4
5
约束条件:根据接力队要求, xij 满足约束条件
a. 每人最多只能入选4种泳姿之一,即
x
j 1
4
ij
1.
b. 每种泳姿必须有1人而且只能有一人入选,即
分析,对实际问题进行合理的假设、简化,首先考虑用
线性规划模型,若线性近似误差较大时,则考虑用非线 性规划.
例题讲解
例1 1995年全国数学建模A题:飞行管理问题 在约1万米的高空的某边长为160km的正方 形区域内,经常有若干架飞机作水平飞行,区 域内每架飞机的位置和速度向量均由计算机记 录其数据,以便进行飞行管理。当一架欲进入 该区域的飞机到达区域边缘时,计算机记录其 数据后,要立即计算并判断是否会发生碰撞。 若会发生碰撞,则应计算如何调整各架飞机 (包括新进入的飞机)飞行的方向角,以避免 碰撞,且使飞机的调整的幅度尽量小,
目标:求函数极值或最值,求取得极值时变量的取值。
x
1.线性规划
问题:某工厂在计划期内要安排生产I、II两种产品,已 知生产单位产品所需的设备台时及A、B两种原材料的消 耗,如下表所示
I 设备 1 II 2 8台时
数学建模最优化模型
或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
41m外点法sutm内点法障碍罚函数法1罚函数法2近似规划法罚函数法罚函数法基本思想是通过构造罚函数把约束问题转化为一系列无约束最优化问题进而用无约束最优化方法去求解这类方法称为序列无约束最小化方法简称为sumt法其一为sumt外点法其二为sumt内点法其中txm称为罚函数m称为罚因子带m的项称为罚项这里的罚函数只对不满足约束条件的点实行惩罚
曲线不一定通过那m个测量点,而要产生“偏差”.
将测量点沿垂线方向到曲线的距离的
y
平方和作为这种“偏差”的度量.即
2
x
S
m i 1
yi
a1
1 a3
a2 ln 1 exp
xi a4 a5
显然偏差S越小,曲线就拟合得越好,说明参数值就选择得越好,从而 我们的问题就转化为5维无约束最优化问题。即:
一下是否达到了最优。 (比如基金人投资)
• 在各种科学问题、工程问题、生产管理、社会 经济问题中,人们总是希望在有限的资源条件 下,用尽可能小的代价,获得最大的收获。
(比如保险)
数学家对最优化问题的研究已经有很多年的 历史。
以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。
最优化建模算法与理论
最优化建模算法与理论最优化建模算法与理论最优化建模是以一种有效的方式来求解优化问题的过程。
它是一种用于处理优化问题的综合算法,其中包括搜索算法、随机算法、组合算法等。
最优化建模的主要目标是通过有效的算法和理论,寻找最优解来解决优化问题。
本文将从以下几个方面讨论最优化建模中的算法和理论:一、基本最优化模型基本最优化模型是一种描述变量之间关系的模型,它一般用于求解优化问题。
基本最优化模型一般由目标函数、约束条件、决策变量等组成。
目标函数是描述求解问题的目标,约束条件是指处理问题的要求,决策变量是用于描述最优化问题的变量。
基本最优化模型一般可以用数学模型来表示,如线性模型、非线性模型等。
二、最优化搜索算法最优化搜索算法是用于最优化问题的一类算法,它可以在有限的时间内搜索出最优解,因此被用来求解最优化问题。
最优化搜索算法主要包括贪心算法、模拟退火算法、遗传算法等。
贪心算法是一种局部最优搜索算法,它通过从一个状态进行评估,不断的求解局部最优解,最终求得全局最优解。
模拟退火算法是一种基于概率的搜索算法,它通过增加概率来接受新的状态,从而最终接受最优解。
遗传算法是一种进化算法,它通过迭代的过程,不断的进化出更优的解。
三、最优化理论最优化理论是指用于求解最优化问题的一系列理论,它可以帮助我们更好地理解和分析最优化问题。
最优化理论主要包括多目标优化理论、随机优化理论、优化系统理论等。
多目标优化理论是指在求解多目标优化问题时,按照一定的准则,构造出最优解的理论。
随机优化理论是指在求解随机优化问题时,按照一定的准则,构造出最优解的理论。
优化系统理论是指在求解优化系统问题时,按照一定的准则,构造出最优解的理论。
四、应用最优化建模算法和理论已被广泛应用于各个领域。
在工程中,最优化建模算法和理论可用于解决结构优化、供应链管理等问题。
在管理学中,最优化建模算法和理论可用于解决生产调度、经营决策等问题。
在经济学中,最优化建模算法和理论可用于解决价格机制、资源分配等问题。
最优化计算方法与实现 复习题
最优化计算方法与实现 复习题 (工程硕士用) 一、 填空题(1)MATLAB 在数值运算具备了比其他软件更全面、更强大的_____________功能(2)语句(5,4)b ones =的功能是_________________________________。
(3)A 为矩阵,语句A(r,:)表示_____________________(4)在MATLAB 中,实现循环结构,用__________________或___________语句。
(5)建立优化问题数学模型的三要素包括:____________________________________(6) 用MATLAB 求解最优化问题数学模型时,问题的类型一般都是___________________。
(7)函数optimset 的主要功能是_______________________。
(创建或优化选项参数结构) (8)优化工具箱要求非线性不等式约束为____________________________。
(9)在函数调用格式:[x,fval] = linprog(f,A,b,Aeq,beq,lb,ub)中,A 表示____________________,Aeq 表示_______________________,lb 表示___________________,ub 表示_______________。
(10)在Matlab 中,求解无约束优化问题的多变量函数有_________________________________________ (11)将代数式0.8cos(/8)| 1.5|e π-++写成MATLAB 语言的表达式______________________(12)整数规划包含四种类型,分别是_____________________________________________. (13)线性规划的主流解法是__________________________________。
运筹学优化模型与算法
运筹学优化模型与算法运筹学是一门研究如何做出最优决策的学科,它利用数学模型和算法来解决各种优化问题。
在现实生活中,我们经常面临各种决策问题,比如如何合理安排生产计划、如何规划物流配送路线、如何优化投资组合等等。
这些问题都可以通过运筹学的优化模型和算法来解决。
运筹学的优化模型是建立在一定的假设和约束条件下的数学描述,它可以帮助我们理清问题的结构和关系,并将问题转化为数学形式。
通过对模型进行求解,我们可以得到最优解或者近似最优解,从而指导我们做出决策。
在运筹学的优化模型中,目标函数是至关重要的。
目标函数是衡量优化问题的指标,我们希望通过优化算法来使目标函数取得最大值或最小值。
在实际应用中,目标函数可以是利润最大化、成本最小化、效率最大化等等,具体取决于问题的特点和需求。
除了目标函数,约束条件也是运筹学优化模型中不可或缺的一部分。
约束条件是对问题的限制和要求,它们限制了决策变量的取值范围和关系。
通过合理设置约束条件,我们可以确保最优解在可行解空间内,从而使得优化结果具有实际意义。
在运筹学的优化模型中,常见的建模方法包括线性规划、整数规划、非线性规划、动态规划等等。
这些方法各有特点,适用于不同类型的优化问题。
线性规划适用于目标函数和约束条件均为线性的问题;整数规划适用于决策变量为整数的问题;非线性规划适用于目标函数或约束条件为非线性的问题;动态规划适用于具有重叠子问题性质的问题等等。
根据问题的特点,我们可以选择合适的建模方法来求解。
除了优化模型,运筹学还涉及到优化算法的设计和求解。
优化算法是用来求解优化模型的具体方法和步骤。
常见的优化算法包括单纯形法、分支定界法、梯度下降法、遗传算法等等。
这些算法各有优缺点,适用于不同类型的优化问题。
通过合理选择和设计优化算法,我们可以高效地求解复杂的优化问题。
运筹学的优化模型和算法在各个领域都有广泛的应用。
在生产管理中,通过合理安排生产计划和调度,可以提高生产效率和降低成本;在物流配送中,通过优化路线和运输方式,可以提高物流效率和降低物流成本;在金融投资中,通过优化投资组合和风险控制,可以获得更高的投资收益和降低投资风险等等。
深度学习模型调优与优化
深度学习模型调优与优化深度学习模型调优与优化深度学习模型调优与优化是训练深度神经网络以提高模型性能和效果的过程。
在深度学习的研究和应用中,优化模型是提高模型性能的关键一环。
本文将探讨深度学习模型调优与优化的方法和技巧。
一、数据预处理数据预处理是深度学习模型调优的第一步,旨在将原始数据转化为模型可以处理的格式,并剔除噪声和异常值。
常见的数据预处理方法包括数据归一化、特征缩放、特征选择、数据采样等。
通过精心处理数据,可以提高模型的收敛速度和泛化能力。
二、选择合适的激活函数激活函数在深度学习模型中起到了非常重要的作用,它们决定了神经网络的非线性拟合能力。
常见的激活函数有Sigmoid函数、ReLU函数、Tanh函数等。
在选择激活函数时,需要根据具体的问题和模型结构进行调整,以提高模型的性能。
三、优化算法的选择优化算法是深度学习模型训练的核心。
常见的优化算法包括随机梯度下降(SGD)、批量梯度下降(BGD)、动量法(Momentum)、Adam算法等。
选择合适的优化算法可以加快模型的收敛速度并提高模型性能。
四、超参数调优超参数是在模型训练前需要手动设定的参数,例如学习率、批大小、正则化系数等。
调整超参数的选择可以提高模型的性能和泛化能力。
常见的超参数调优方法包括网格搜索、贝叶斯优化等。
五、模型结构调优模型结构调优是根据问题的特点和需求对模型结构进行调整和优化。
常见的模型结构调优方法包括添加或删除隐层、调整隐层的神经元数目、增加模型层数等。
通过优化模型的结构可以提高整体的性能和效果。
六、正则化方法正则化方法是用来防止模型过拟合的技巧。
常见的正则化方法包括L1正则化、L2正则化、Dropout等。
通过引入正则化项可以降低模型的复杂度并提高模型的泛化能力。
七、数据增强数据增强是在训练过程中对原始数据进行随机变换以生成更多的训练样本。
常见的数据增强方法包括平移、旋转、缩放、翻转等。
通过数据增强可以提高模型的鲁棒性和泛化能力。
湖南大学最优化复习总结
一、数学概念1、范数2、梯度 Hesse矩阵3、4:下降方向、可行方向二:电力系统规划调度概念1、负荷同时率在一段规定的时间内,一个电力系统综合最高负荷与所属各个子地区(或各用户、各变电站)各自最高负荷之和的比值。
一般是小于1的数值。
其倒数称为“负荷分散系数( load diversity factor)”。
一个工厂变压器容量500千瓦,配用5000千瓦总容量的机器设备,那么这个工厂的负荷同时率就是百分之10.以此类推。
2、负载率变压器实际功率与额定功率的比值叫负载率,一般是80%左右。
3、煤耗等微增率燃料消耗微增率表示锅炉负荷每增加1t/h,燃料消耗的增加值。
即每增加单位功率时煤耗量的变化率,微增煤耗率是电力系统经济调度和电厂机组间经济调度的最基本的指标。
微增煤耗率为计算公式为:dB/dP ,其中B为锅炉燃料消耗量(kg/h),P为机组电功率(MW)。
在正常负荷范围内,微增率是随着负荷的增加而变大的。
数学推理证明,当每台锅炉的燃料消耗量微增率相同时,全厂的燃料消耗量为最小。
按等微增煤耗率调度负荷的基本原则是:(1)、电厂增加负荷时,应尽量让微增煤耗率小的机组带满负荷。
(2)、电厂减少负荷时,应先让微增煤耗率大的机组减少负荷。
4、容载比容载比就是变电容量与最高负荷之比,它表明该地区、该站或该变压器的安装容量与最高实际运行容量的关系,反映容量备用情况,在规划设计时经常要用到这个概念。
(1)什么是容载比:指城网变电容量(kVA)在满足供电可靠性基础上与对应的负荷(kW)之比,它是反映电网供电能力的重要技术经济指标之一,是宏观控制变电总容量和规划安排变电容量的依据。
容载比可按式(3-5)估算:式中RS ——容载比(kVA/kW);K1 ——负荷分散系数;K2 ——平均功率因数;K3 ——变压器运行率;K4 ——储备系数(2)容载比的特点由容载比的定义可知,当容载比取值增加时,在相同负荷水平下,变压器总容量将增加,使电网建设投资增加,也会使电网运行成本增加,从而使电费增加,或使电网企业经济效益降低。
组合优化问题的模型与算法分析
组合优化问题的模型与算法分析一、前言组合优化问题是一类重要的优化问题,普遍存在于工业、经济、军事等许多领域中。
它主要研究如何在给定约束条件下,寻找最优解来优化某些目标函数。
本文将从组合优化问题的定义入手,详细介绍组合优化问题的模型和算法分析。
二、组合优化问题的定义组合优化问题是指在一组离散元素中,选择一定数量的元素,并对其进行某种约束条件的限制,从而达到最优化某些目标函数的目的。
组合优化问题常见的例子包括背包问题、旅行商问题、集合覆盖问题等等。
三、组合优化问题的建模建模是解决组合优化问题的关键步骤之一,良好的模型设计能够有效提高算法的求解效率。
在组合优化问题中,模型设计可以从以下几方面入手:(1)目标函数:组合优化问题通常需要在一定的约束条件下,使得目标函数最优化。
在模型设计中,需要充分考虑目标函数的限制条件,选择合适的目标函数来进行描述。
(2)约束条件:组合优化问题的约束条件通常包括线性和非线性约束条件等等。
在模型设计中,需要综合考虑不同的约束条件来进行统一描述。
(3)变量设置:组合优化问题中变量设置的合理性对算法求解效率也有很大影响。
在模型设计中,需要尽可能减少变量数目,降低问题维度,从而有效提高算法求解效率。
四、组合优化问题的算法分析组合优化问题的构造是很难直接求解,需要设计专门的算法进行求解。
下面将介绍几种常见的组合优化问题算法:(1)贪心算法:贪心算法是一种自底向上的算法,通过每次选择当前最优解来逐步构建最终解。
这种算法的优点是简单易行,但缺点是不能保证全局最优解。
(2)回溯算法:回溯算法是一种自顶向下的算法,通过多次递归遍历整个搜索空间,寻找所有可能的解。
这种算法的优点是能够找到所有解,但缺点是复杂度非常高,需要考虑合适的剪枝策略来优化效率。
(3)分支限界算法:分枝限界算法是一种基于回溯算法的改进算法,它通过限制搜索空间,减少搜索的分支数,提高算法效率。
这种算法的优点是能够保证找到全局最优解,但缺点是需要考虑合适的限界策略来保证算法效率。
最优化模型与算法
最优化模型与算法
最优化模型和算法是求解优化问题的基本工具,随着人工智能和机器
学习的发展,最优化模型和算法从物理、工程和管理等多个领域被广泛应用。
最优化模型通常是一种特殊的抽象模型,它可以用来把实际问题以数
学模型的形式表示出来,并依据一定的目标函数对这个模型的参数进行优化。
而最优化算法是根据最优化模型寻找最优解的一种算法。
从计算上来讲,最优化模型可分为精确求解和近似求解。
精确求解是
指找到原问题的最优解,它通常采用解析法,比如利用简单x法、线法等
简单算法求解;而近似求解是指通过迭代的过程找到最优解的近似值,它
通常需要采用启发式算法,比如梯度下降法、牛顿法等更复杂的算法求解。
优化过程中,选择合适的算法非常重要。
线性规划若是精确求解,可
以采用简单x法,比如简单的罗伯特-普林斯顿极值法;若是近似求解,
常用的有梯度优化算法、模拟退火算法等。
优化强化学习模型的方法与技巧实践
优化强化学习模型的方法与技巧实践强化学习是一种通过试错来训练智能体以最大化累积奖励的机器学习算法。
它通常应用于需要做出连续决策的问题,如自动驾驶、机器人控制和游戏玩家。
然而,由于强化学习中存在着许多挑战和困难,优化强化学习模型成为了一个重要而具有挑战性的任务。
本文将介绍一些常见且有效的方法与技巧,帮助优化强化学习模型。
这些方法可以提高模型的性能、稳定性和收敛速度,从而使得强化学习在解决实际问题时更加可靠高效。
一、经验回放(Experience Replay)经验回放是一种重要的技术,在训练过程中存储并重复使用过去观察到的经验。
它通过将智能体在环境中连续观察到的状态动作对(State-Action pair)存储在经验缓存中,并从中随机抽样来构建批量更新数据集。
这样做的好处是可以减少样本间的相关性,并且利用先前不同时间步的经验进行训练,从而使得模型收敛更加稳定。
二、目标网络(Target Network)目标网络是为了解决强化学习中由于实时更新带来的不稳定性问题而提出的。
在智能体的训练过程中,我们将两个神经网络并用:一个用于生成每一步的行为策略(行动网络),另一个用于计算每一步的目标价值(目标网络)。
目标网络采用固定参数,并时常地从行动网络中复制最新参数。
通过使用目标网络,可以减少因为实时更新导致价值函数偏差过大,进而提高训练的效果和稳定性。
三、深度Q-网络(Deep Q-Network)深度Q-网络是一种基于卷积神经网络(CNN)结构应用于强化学习中的方法。
它是Google DeepMind利用深度学习提出的强化学习算法,在Atari游戏任务中展现出了惊人的效果。
深度Q-网络能够根据当前状态选择最佳动作,并且通过反向传播调整模型参数以最大化累积奖励。
其核心思想是将状态作为输入,输出每个可能动作所对应的Q值,并选择具有最大Q值的动作执行。
四、熵正则化(Entropy Regularization)在强化学习中,除了追求最大化累积奖励外,还可以通过熵正则化来鼓励智能体探索更多的未知状态。
如何进行机器学习模型训练和优化
如何进行机器学习模型训练和优化机器学习模型训练和优化是机器学习领域的核心任务之一,其目的是让模型能够更准确地对数据进行预测和分类。
机器学习模型的训练和优化是一个复杂的过程,需要综合考虑数据准备、特征工程、模型选择、超参数调优等多个环节。
本文将从机器学习模型训练和优化的步骤、方法和工具等方面进行详细介绍,希望能够帮助读者更好地理解和应用机器学习模型训练和优化的技术。
一、机器学习模型训练和优化的步骤机器学习模型训练和优化的步骤通常可以分为数据准备、特征工程、模型选择、模型训练和模型评估等环节。
1.数据准备数据准备是机器学习模型训练和优化的第一步,其目的是获取和整理适合模型训练的数据。
数据准备包括数据采集、数据清洗、数据标注等过程。
数据采集是从原始数据源中获取数据的过程,可以包括数据抓取、数据下载、数据挖掘等方式。
数据清洗是对原始数据进行处理,包括去除噪声、填补缺失值、处理异常值等操作。
数据标注是对数据进行标记或分类,以便模型能够通过监督学习或无监督学习的方式进行训练。
2.特征工程特征工程是指将原始数据转化为适合模型训练的特征的过程,其目的是提取和构建对模型有用的特征。
特征工程包括特征选择、特征变换、特征抽取等操作。
特征选择是指选择对模型预测能力有帮助的特征,可以通过相关性分析、方差分析、深度学习等方法进行特征选择。
特征变换是指对原始特征进行变换,以适应模型需要的数据分布和特征关系。
特征抽取是指从原始数据中提取新的特征,可以通过主成分分析、独立成分分析等方法进行特征抽取。
3.模型选择模型选择是选择合适的模型结构和算法进行训练的过程,其目的是找到最适合数据特征和预测目标的模型。
常见的模型包括线性回归、逻辑回归、决策树、随机森林、支持向量机、神经网络等。
模型选择可以通过交叉验证、网格搜索、模型比较等方法进行。
4.模型训练模型训练是使用训练数据对模型进行参数估计和优化的过程,其目的是让模型更准确地对新数据进行预测和分类。
数学中的最优化问题求解方法
数学中的最优化问题求解方法随着科技的迅速发展,人们对于各种事物的需求也越来越高。
而大多数时候,我们是希望达到“最优化”的状态,即在一定条件下,尽可能地取得最大收益或最小成本。
因此,在现实生活中,最优化问题思维逐渐成为人们解决问题的重要方法之一。
而在数学领域,最优化问题同样具有重要作用。
本文将从最优化问题基本概念、最优化建模和求解方法三方面,介绍最优化问题的相关知识。
一、最优化问题基本概念最优化问题,即指在满足一定约束条件下,求出某些目标(如最大值或最小值)最优的解。
最优化问题的基本形式为:$\max_{x\in S} f(x)\qquad$或$\qquad\min_{x\in S} f(x)$其中,$f(x)$为目标函数,$x$为变量,$S$为变量的约束条件。
在最优化问题中,“最大值”和“最小值”藏在目标函数里。
目标函数中哪个变量每增加1,函数数值改变的最大值或最小值就被称为局部最优解或全局最优解。
因此,最优化问题的关键在于如何确定最优解,这便需要我们对其建模和求解。
二、最优化建模最优化问题的关键在于合理建立问题模型。
根据问题特性,我们可以将其分为线性规划、非线性规划、整数规划、混合整数规划、多目标规划等不同类型。
2.1 线性规划线性规划问题是指目标函数和约束条件均为线性函数的最优化问题。
线性规划模型最为简单,但覆盖了许多实际应用的情况。
其基本形式为:$\max_{x\in\Re^n}c^Tx\qquad s.t.\qquad Ax\leq b,x\geq0$其中,向量$c$, $b$和矩阵$A$均为已知的常数,$x$为待求的向量。
在式子中,第一行为目标函数,第二行代表约束条件。
由于目标函数和约束条件均为线性函数,因此这是典型的线性规划问题。
2.2 非线性规划非线性规划问题是指其中一个或多个约束条件或目标函数为非线性函数的最优化问题。
非线性规划比线性规划更为广泛,因此变量取值空间、目标函数和约束条件也更灵活多样。
最优化问题的数学建模步骤
最优化问题的数学建模步骤
最优化问题的数学建模步骤可以分为以下几个步骤:
1. 指定目标函数:首先需要明确最优化问题的目标函数,即要优化的量。
这个函数通常是与实际问题相关的一些指标,例如成本、收益、效率等等。
2. 确定决策变量:在确定目标函数后,需要确定决策变量,即可以控制或调整的参数或变量。
这些变量的取值可以影响目标函数的值,因此需要选择最优的取值。
3. 建立约束条件:除了目标函数和决策变量外,还需要考虑一些约束条件。
这些约束条件通常是实际问题的限制条件,例如资源限制、技术限制、法规限制等等。
4. 建立数学模型:将目标函数、决策变量和约束条件用数学语言表达出来,建立数学模型。
这个模型通常是一个优化问题的数学表示形式,可以使用线性规划、非线性规划、整数规划等方法进行求解。
5. 求解最优解:根据建立的数学模型,使用相应的优化方法求解最优解。
这个最优解是指在满足约束条件的前提下,使目标函数取得最大值或最小值的决策变量取值。
6. 验证和分析:最后需要对求解结果进行验证和分析,看看是否符合实际需求,是否满足实际约束条件等等。
如果结果不满足要求,需要重新调整模型或重新选择优化方法进行求解。
以上是最优化问题的数学建模步骤,通过这些步骤可以将实际问题转化为数学问题,并使用数学方法进行求解,得到最优的决策方案。
土地资源利用的最优化分配模型与算法
土地资源利用的最优化分配模型与算法1. 土地资源利用的背景和意义随着人口的增长和城市化进程的加快,土地资源的利用变得越来越重要。
土地资源是人类赖以生存和发展的基础,它不仅是农业、工业和城市建设的重要物质基础,也是环境保护和生态改善的重要条件。
因此,如何合理利用土地资源,提高土地利用效率,成为当前社会关注的热点问题之一。
2. 土地资源利用的最优化分配模型土地资源利用的最优化分配模型是指通过建立数学模型,找到一种最优的土地资源利用方案。
其目标是使得土地资源利用尽可能满足不同行业、不同部门和不同区域的需求,同时保证可持续发展和生态环境的保护。
最优化分配模型主要包括以下几个方面:2.1 线性规划模型线性规划模型是最常见的土地资源利用的优化模型,其基本思想是在一定条件下,最大化或最小化某一目标函数的值。
在土地资源利用中,目标函数可以是农业、工业和城市建设的产出总值,也可以是生态环境的保护程度。
2.2 非线性规划模型非线性规划模型主要是在线性规划模型的基础上引入非线性约束条件,考虑土地资源的特殊性和复杂性。
这种模型可以更好地反映实际情况,提高土地资源的利用效率和可持续性。
2.3 随机规划模型随机规划模型主要考虑不确定性因素对土地资源的影响,建立了以概率和期望为基础的土地资源利用模型。
这种模型能够更好地预测未来的土地资源利用情况,为决策者提供科学依据。
3. 土地资源利用的最优化分配算法土地资源利用的最优化分配算法主要是依据不同的数学模型,采用不同的算法工具,如线性规划、整数规划、动态规划等。
以下是几个常见的算法:3.1 单纯形法单纯形法是一种基于矩阵计算的线性规划算法,它通过迭代计算来求解线性规划问题中的最优解,适用于求解大型线性规划问题。
3.2 遗传算法遗传算法是一种模拟生物演化中遗传和进化的过程,用来解决复杂的优化问题。
在土地资源利用中,遗传算法可以根据不同因素的权重,自动调整土地利用的比例和分配方案,提高利用效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数说明:
fun为目标函数,它可用前面的方法定义; nonlcon的作用是通过接受的向量x来计算非线性不等 约束和非线性等式约束分别在x处的估计C和Ceq,通 过指定函数名或函数名句柄来使用,如:
>>x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon), 先建立非线性约束函数,并保存为mycon.m:
fminsearch。 求解约束非线性规划问题的函数是 fmincon 。 多目标优化问题的MATLAB函数有fgoalattain和fminimax。
优化求解一般步骤
针对具体工程问题建立 优化设计的数学模型
建立目标函数文件 建立约束函数文件
min s.t.
gf ((xx)1,≤x20,
…,
xn)
解:>>X=fminsearch('2*x(1)^3+4*x(1)*x(2)^3-
10*x(1)*x(2)+x(2)^2', [0,0])
结果为:
X=
1.0016 0.8335
或在MATLAB编辑器中建立函数文件.
function f=myfun(x)
f=2*x(1)^3+4*x(1)*x(2)^3-10*x(1)*x(2)+x(2)^2;
2
优化模型分类
1.根据是否存在约束条件 有约束模型,无约束模型 注:有约束问题通常采用转换方法将有约束模型转换为无约束模型再 求解。
2.根据目标函数和约束条件表达式的性质 线性规划,非线性规划,二次规划,多目标规划等 注:最常见的优化模型为非线性规划模型。
3.根据决策变量的连续性 连续性优化模型,离散性优化模型(典型的组合优化问题,最短路) 注:两类模型在求解方法上有较大不同,本次讲解针对前一种。
3
优化算法及其分类
什么是优化算法? 专门用于求解优化模型的方法叫做优化算法,优化算法与优化模型有本
质区别。 优化算法可分为两大类
1 梯度类算法 牛顿法、二分法、共轭梯度法、梯度下降法、单纯形法等,该类算法也称为局
部优化算法,明显缺陷是局部优化。Matlab优化工具箱多用该类算法。 2 非梯度类算法 (1)遍历搜索法,在组合优化中称为穷举法,计算量大,适用于小规模计算
不等式约束条件M文件或命令文件
运行优化工具函数的M文 件或命令文件求解
无约束非线性规划问题的MATLAB函数
fminbnd fminsearch
fminunc
只求解单变量问题 要求目标函数为连续函数
适用于简单优化问题 可求解单变量和多变量问题
可求解复杂优化问题
函数 fmincon 格式 x = fmincon(fun,x0,A,b) x = fmincon(fun,x0,A,b,Aeq,beq) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) [x,fval] = fmincon(…) [x,fval,exitflag] = fmincon(…) [x,fval,exitflag,output] = fmincon(…) [x,fval,exitflag,output,lambda] = fmincon(…) [x,fval,exitflag,output,lambda,grad] = fmincon(…) [x,fval,exitflag,output,lambda,grad,hessian] = fmincon(…)
求解。 (2)随机搜索法,包括遗传算法、模拟退火算法、群类算法、禁忌搜索法等, 又称为现代优化算法,是一类全局最优算法,求解的准确性与时间长度、迭 代次数直接相关。
4
MATLAB优化工具箱
常用的优化功能函数 求解线性规划问题的主要函数是linprog。 求解二次规划问题的主要函数是quadprog。 求解无约束非线性规划问题的主要函数是fminbnd、fminunc和
无约束多元函数最小值函数fminsearch 调用格式
[xopt,fopt,exitflag]=fminsearch(fun,x0,options)
返回算法的终止 指示变量值
设置优化选项参数 初始点
目标函数 返回最优设计变量
返回目标函数值
例 求y=2x13 +4x1x23-10x1x2+x22 的最小值点.
最优化模型与算法
优化模型简介——概念、基本形式
什么是优化?就是从各种方案中选取一个最好的。从数学角度看,优化 理论就是研究如何在状态空间中寻找到全局最优点。
一般的优化具有下面形式: min f (x1, x2, …, xn) s.t. g(x) 0,xD
其即中mixn1f,(xX2,),…其, x中nXΩ(Ω即(问矢题量的形可式行)域。,f(x代)是表决问策题问参题数的的数选学择模范型围,)也,是 决策问题的目标函数,g(x) 0是决策问题的约束条件, X是决策问题的 决策变量,D是决策问题的定义域(可行域)。问题归结为求极值。极 值点非常多,需要找到全局最小点。 注:求问题的最大和最小是同一个问题,算法完全一样。 分布模型的参数估计问题是典型的优化问题,最大似然估计模型是典型 的优化模型。
保存为myfun.m,在命令窗口键入
>> X=fminsearch ('myfun', [0,0]) 或 >> X=fminsearch(@myfun,
[0,0])
结果为:
X=
1.0016 0.8335
有约束的多元函数最小值
数学模型形式:
min f (X) s.t. AX≤b (线性不等式约束)
AeqX=beq (线性等式约束) C(X)≤0 (非线性不等式约束条件) Ceq(X)=0(非线性等式约束) Lb ≤X ≤Ub (边界约束条件) 其中:x、b、beq、lb、ub是向量,A、Aeq为矩阵,C(x)、 Ceq(x)是返回向量的函数,f(x)为目标函数,f(x)、C(x)、 Ceq(x)可以是非线性函数.