数学:第三章《导数及其应用》教案(新人教A版选修1-1)
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.3 导数的几何意义》优质课教案_10
§3.1.3导数的几何意义教学设计
一、教材内容与解析
本节课设计内容是高中数学选修1-1(人教A版P76-P78),导数的几何意义,导数是中学数学的重要内容.本节课是在学习前两节的变化率问题、导数的概念之后,从几何图形的角度来研究导数,理解一般曲线的切线定义,渗透“以直代曲”的数学思想,会简单应用导数的几何意义。
为后续的导数研究函数其他性质(如极值等)奠实基础。
因此本节内容具有承前启后的作用,地位重要.
二、教学目标
根据本课教学内容的特点以及新课标对本节课的教学要求,考虑学生已有的认知结构与心理特征,我制定以下教学目标:
(一)知识与技能 :
通过实验探求和理解导数的几何意义;
体会导数在刻画函数性质中的作用;
(二)核心素养目标
通过具体情境分析概括出切线的定义,培养学生学生数学抽象核心素养,“以直代曲”
的渗透逼近培养直观想象核心素养
三、教学的重点难点
本着新课程标准的教学理念,针对教学内容的特点,同时根据学生学习能力和旧有的知识的特点,我认为学生在定义了曲线的切线后,对于导数的几何意义为什么会与切线相关,如何相关会产生疑惑。
因此我确定以下重点和难点:
教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;
教学难点:导数的几何意义.
突破了重点难点,也就解决了存在的问题
四、教学支持条件分析
本着新课程标准的教学理念,根据本章特点,重视信息技术的使用,采用多媒体辅助教学,用动画的形式演示,将抽象的理论通过直观的图形说明白,学生简单易懂
五、教学过程设计
平均变化率 瞬时变化率(导数)x
y ∆∆x y x ∆∆→∆0lim
六、目标检测设计。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.2 导数的概念》优质课教案_3
《导数的概念》教学设计一、教学内容解析导数是微积分学的核心概念之一,不仅是数学知识,也是一种数学思想,也蕴含着函数思想和极限的思想方法,本节内容的核心是用平均变化率的极限来刻划瞬时变化率,从而引出导数的概念。
从教材的编写看,淡化了极限的形式化定义,直接通过实例来反映导数的思想和本质。
导数属于事实型知识(函数的瞬时变化率是客观存在的),导数是研究函数增减、变化快慢、最大(小)值等问题的最一般、最有效的工具。
因而也是解决诸如运动速度、物种繁殖率、效率最高、用料最省等实际问题的最有力的工具。
在天文、地理等各方面都有广泛的应用,教材中也是有实例引出导数概念,再由实际问题来巩固导数的概念。
让学生掌握从具体到抽象,特殊到一般的思维方法,领悟“无限趋近”思想,进一步体会数学的本质。
二、学生学情分析学生已较好地掌握了函数的平均变化率及高一物理中的平均速度、瞬时速度,并积累了一定量的关于函数变化率的经验;高二年级的学生思维较活跃,并具有一定归纳、概括、类比、抽象思维能力;对导数这一新鲜的概念,具有较强的求知欲和渴望探究的积极情感态度。
由于瞬时变化率就是导数,又是用平均变化率“无限接近”进行研究,而“无限”是非常抽象的,是学生首次接触,要求学生既要具备一定的直观感悟能力,又要具有较高的抽象思维能力。
从平均速度、瞬时速度到平均变化率、瞬时变化率,是将实例抽象为数学模型,是本节认识的一次飞跃,借助几何画板的动态演示学生能初步感悟,但是对“是无限趋近于0,但始终不能为0”,学生不能自主或合作顺利完成,需要教师在此充分发挥作用进行点拨.综上分析确定本节的难点是:对极限思想的感悟及用平均变化率的极限刻划瞬时变化率的科学性。
突破策略为:用几何画板动态直观演示以降低思维难度;多利用实例以降低抽象程度,强化对过程的感悟;给足时间让学生充分合作交流;教师恰当精讲点拨。
三、教学目标1、掌握导数的概念;会依据定义求简单函数在某点处的导数,能初步按定义归纳求函数在某点处导数的基本步骤。
人教A版高中数学选修1-1《三章 导数及其应用 信息技术应用 图形技术与函数性质》优质课教案_1
《函数及其导函数的图象和性质》二轮复习教学设计一、教学内容(一)函数小题主要考查问题及其分层问题:(二)近三年全国卷考查函数及其导函数的图像和性质的试题及其考查问题:(2017年III理第11题)已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则a ()(A)-(B)(C)(D)1分析:函数f(x)非常规,要通过推理得解较为困难,这里可采取特殊化的策略加以解决。
为便于研究f(x)的零点情况,不妨尝试用a的特殊值进行分析。
因为函数f(x)=(x-1)2+a(e x-1+e-x+1)-1,所以可尝试使a(e x-1+e-x+1)-1的最小值为0的正数a或最大值为0的负数a即为所求。
因为e x-1+e-x+1≥2,当a=时,a(e x-1+e-x+1)-1≥0,当且仅当x=1时,a(e x-1+e-x+1)-1=0,即f(x)的最小值为0,f(x)有唯一零点x=1。
于是不必再分析a<0的情况,故选择(C)。
考查要点:本题主要考查利用特殊化策略将复杂的非常规函数转化为简单函数分析,并进一步地将参数特殊化得到具体函数的自变量与函数值的对应情况。
(2016年I理第7题)函数y=2x2-在[-2,2]的图象大致为A B C D分析:函数y=2x2-非常规,要直接画出其图象较为困难,对这类问题一般可采取特殊化和数形结合的策略或方法加以解决。
当x=2时,y≈8-2.72≈0.7<1,由点(2,0.7)的位置可排除(A)和(B);又因为=-≥-,当x=0时,≠0,所以应选择(D)。
考查要点:本题主要考查利用特殊化策略,数形结合地分析非常规的初等函数的图象和概念、性质。
(2015年I理第12题)设函数f(x)=e x(2x-1)-ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是()(A)3[,1)2e-(B)33[,)24e-(C)33[,)24e(D)3[,1)2e分析:函数f(x)非常规,要通过推理得解较为困难,这里可采取特殊化的策略加以解决。
人教A版高中数学选修1-1《三章 导数及其应用 3.2 导数的计算 3.2.1 几个常用函数的导数》优质课教案_5
第三章3.2.1几个常用函数的导数【教学目标】2. 注意培养学生归纳类比的能力;【教学重、难点】能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用。
【教学过程】【情境一】我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数,如何求它的导数呢? 问题1:导数是用什么来定义的?(平均变化率的极限)问题2:平均变化率的极限如何计算?(求增量,求比值,取极限)问题3:以上求导数的过程用起来是否方便?我们有没有必要归结一下公式便于以后的运算?【情境二】1.利用定义求出函数①c y =的导数2.若表示速度关于时间的函数,则可以如何解释?如何描述物体的运动状态?问题1:函数值的增量y ∆是什么?(0)问题2:自变量的增量x ∆是多少(x x x x -∆+=∆)()问题3:x y ∆∆=??lim 0=∆∆→∆xy x 与x ∆的取值有关吗? ()y f x =y c =0y '=一、知识与技能:1.能够用导数的定义求几个常用函数的导数,会利用它们解决简单的问题。
2.掌握五个公式,理解公式的证明过程;二、过程与方法:1. 通过本节的学习,使学生掌握由定义求导数的三个步骤,推导四种常见函数y c =、y x =、2y x =、1y x=、x y =的导数公式; 2.掌握并能运用这五个公式正确求函数的导数.三、情感态度与价值观:1.通过本节的学习,进一步体会导数与物理知识之间的联系,提高数学的应用意识。
问题4:你得到的函数c y =的导数是什么?(0='='c y )与c 的取值有关系吗?【探究一】在同一平面直角坐标系中画出函数 y=2x,y=3x,y=4x 的图象,并根据导数定义,求它们的导数。
(1) 从图象上看它们的导数分别表示什么?(2) 这三个函数中哪个增长的最快?哪个增长的最慢?【探究二】在同一平面直角坐标系中画出函数 y=-2x,y=-3x,y=-4x 的图象,并根据导数定义,求它们的导数。
人教A版高中数学选修1-1《三章 导数及其应用 3.2.2 基本初等函数的导数公式及导数的运算法则》优质课教案_4
基本初等函数的导数公式及导数的运算法则【教学目标】知识与技能:1.掌握基本初等函数的导数公式;2.掌握导数的运算法则;3.掌握复合函数的导数公式。
过程与方法:培养学生灵活应用公式的能,以及分析探索知识的能力;培养学生的化归思想。
情感、态度与价值观:激发学生的学习兴趣,有易入难的探索精神。
【教学重点】基本初等函数的导数公式及导数的运算法则【教学难点】复合函数的导数公式及解题应用【学情分析】在前面同学们已经掌握了导数的概念以及几个简单的基本初等函数的导数公式推导过程,也认识了符合函数。
本节,是在原有基础上的加深延续,同学们只要能够记住公式,掌握运算能力,就可以很好的完成本节的内容。
【教学过程】一、 问题导学:1、 依据我们上节课所学的内容,请同学们求出以下函数的导数: y=c y=x y=x 2 y=1/x x y =2、 总结以下函数的导数公式:f(x)=x α(α∈Q *) f(x)=sinx f(x)=cosxf(x)=a x f(x)=e x f(x)=log a x f(x)=lnx二、 自主学习:1、y=c y ′=0 ; y=x y′=1; y=x 2y′=2x ; y=1/x y′=-1/x 2 ;x y = x y 21='.2、基本初等函数的导数公式:(1)若 f(x)=c (c 为常数),则f′(x) =0 ;(2)若f(x)=x α(α∈Q *) ,则f ′(x)= αx α-1 ;(3)若 f(x)=sinx ,则f′(x)=cosx ;(4)若f(x)=cosx ,则 f′(x)=-sinx ;(5)若f(x)=a x , 则f′(x)= a x lna ;(6)若 f(x)=e x , 则f′(x)= e x ;(7)若f(x)=log a x ,则f′(x)= 1/(xlna) ;(8)若f(x)=lnx , 则f′(x)= 1/x .3、导数运算法则:(1) [f(x)±g(x)]′= f′(x) ± g′(x) ;(2) [f(x)g(x)] ′=f′(x)g(x)+f(x)g′(x) ;(3) [f(x)/g(x)] ′=[f′(x)g(x)-f(x)g′(x)]/[g(x)]2(g(x)≠0)三、互动探究:1、求下列函数的导数:(1)y=cf(x) (2)y=x3-2x+3(3)y=x/(2-x) (4)y=log2x(5)y=3cosx-2sinx (6)y=2e x+lnx-ln4(生)(1)y′=cf′(x) (2)y′=3x2-2(3)y′=2/(2-x)2(4)y′=1/(xln2)(5)y′=-3sinx-2cosx (6)y′=2e x+1/x2、复合函数的导数:(1)如何求函数y=ln(x+2)的导数呢?(生)令y=lnu u=x+2则y′=1/u u′=1 所以y x′=1/(x+2)(2)总结:如何求复合函数y=f(g(x))的导数,并找出与y=f(u),u=g(x)的导数间的关系。
人教A版高中数学选修1-1《三章导数及其应用3.1变化率与导数3.2导数的概念》优质课教案_24
1.1.2导数的概念(一)教材分析本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础•同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.(二)教学目标(1)在上一节学习平均变化率的基础上,了解瞬时速度、瞬时变化率的概念;(2)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;(3)会求函数在某点的导数及简单应用.(三)教学重点与难点重点:通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念. 难点:使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.(四)教学过程1. 复习引入(1)函数y = f(x)从x i到X2的平均变化率公式;(2)函数y = f(x)从x0到X Q L X的平均变化率公式.2. 合作探究在高台跳水运动中,运动员在不同时刻的速度是不同的. 我们把物体在某一时刻(某一位置)的速度称为瞬时速度.探究一:瞬时速度的求解从前面的学习我们知道,平均速度只能粗略地描述某段时间内物体的运动状态,不一定能反映运动员在某一时刻的瞬时速度. 如何求运动员的瞬时速度呢?设计意图:让学生产生进一步学习的需求,即有必要知道任意时刻的速度.以高台跳水运动为例,研究运动员在某一时刻的瞬时速度.在高台跳水运动中,如果运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在关系ht =-4.9t26.5t 10.探究:如何求运动员瞬时速度?比如t =2s的瞬时速度是多少?平均速度与瞬时速度有关系吗?设计意图:问题具体化,即求运动员在t=2s时的瞬时速度.针对具体的问题情境,寻求解决问题的想法.我们求t=2s的瞬时速度是多少,先察t=2s附近平均速度的情况:(2) 我们如何表示运动员在t=2s 时的瞬时速度? (3) 运动员在某一时刻t o 的瞬时速度怎样表示?设计意图:从特殊到一般,即从特殊点t=2上升到任意点t=t °瞬时速度的表示. (4) 函数f(x)在x=x 0处的瞬时变化率怎样表示?设计意图:舍弃具体变化率问题的实际意义,抽象为数学问题,定义导数. 探究二:导数的定义瞬时速度是平均速度—当览趋近于0时的极限.L t导数的定义:函数y =f(x)在x =x o 处的瞬时变化率是啊卡=|m f(xo:-f (xo),我们称它为函数y = f(x)在x=x o 处的导数,记作 f (x o ) 或 y'U 即 f(x o )pm of(x x)—f(x o )注意:(1) 函数应在点X 。
人教版高中数学选修1-1第3章 导数及其应用教案
人教版高中数学选修1-1第3章 导数及其应用教案3.1.1 变化率问题一. 设计思想:(1)用已知探究未知的思考方法(2)用逼近的思想考虑问题的思考方法. 二. 教学目标1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率4. 感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程,体会数学的博大精深以及学习数学的意义。
三. 教学重点1. 通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;2. 掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法; 四. 教学难点:平均变化率的概念. 五. 教学准备1. 认真阅读教材、教参,寻找有关资料;2. 向有经验的同事请教;3. 从成绩好的学生那里了解他们预习的情况和困惑的地方. 六. 教学过程 一.创设情景(1) 让学生阅读章引言,并思考章引言写了几层意思?(2) 学生先阅读,思考,老师再提示;①以简洁的话语指明函数和微积分的关系,微积分的研究对象就是函数,正是对函数的深入研究导致了微积分的产生;②从数学史的角度,概括地介绍与微积分创立密切相关的四类问题以及做出巨大贡献的科学家;③概述本章的主要内容,以及导数工具的作用和价值.让学生对这章书先有一个大概认识,从而使学生学习有了方向,能更好地进行以下学习. 二.新课讲授 (一)问题提出问题1气球膨胀率问题:老师准备了两个气球,请两位同学出来吹,请观看同学谈谈看见的情景;再请吹气球同学谈谈吹气球过程的感受,开始与结束感受是否有区别?我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈−气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈−−⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈− 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈−−可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r −−问题2 高台跳水问题:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在怎样的函数关系?在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t (单位:s )存在函数关系h(t)= -4.9t2+6.5t+10.)如何计算运动员的平均速度?并分别计算0≤t ≤0.5,1≤t ≤2,1.8≤t ≤2,2≤t ≤2.2,时间段里的平均速度.思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =−−=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v −=−−=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =−−=,虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (1)让学生亲自计算和思考,展开讨论;(2)老师慢慢引导学生说出自己的发现,并初步修正到最终的结论上.(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态. ②需要寻找一个量,能更精细地刻画运动员的运动状态;(二)平均变化率概念:引出函数平均变化率的概念.找出求函数平均变化率的步骤.ht o1.上述问题中的变化率可用式子 1212)()(x x x f x f −−表示, 称为函数f(x)从x1到x2的平均变化率2.若设12x x x −=∆, )()(12x f x f f −=∆ (这里x ∆看作是对于x1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f −=∆=∆) 3. 则平均变化率为=∆∆=∆∆x fx y xx f x x f x x x f x f ∆−∆+=−−)()()()(111212 思考:观察函数f (x )的图象 平均变化率=∆∆x f 1212)()(x x x f x f −−表示什么? (1) 师生一起讨论、分析,得出结果;(2) 计算平均变化率的步骤:①求自变量的增量Δx=x2-x1;②求函数的增量Δf=f(x2)-f(x1);③求平均变化率2121()()f x f x fx x x −∆=∆−. 注意:①Δx 是一个整体符号,而不是Δ与x 相乘;②x2= x 1+Δx ;③Δf=Δy=y2-y1;三.典例分析例1.已知函数f (x )=x x +−2的图象上的一点)2,1(−−A 及临近一点)2,1(y x B ∆+−∆+−,则=∆∆xy. 解:)1()1(22x x y ∆+−+∆+−−=∆+−,∴x xx x x y ∆−=∆−∆+−+∆+−−=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.2 导数的概念》优质课教案_11
3.1.2导数的概念教学内容:导数的概念以及求函数在其定义域内某点处的导数的方法步骤教学目标:知识与技能目标:1.了解导数概念的实际背景,了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会用定义求函数在某点的导数过程与方法目标:1.通过实例分析,引导学生用平均速度去求瞬时速度,体验由已知探究未知的数学方法,让学生亲自计算,在计算过程中感受逼近的趋势,并经历观察、分析、归纳、发现规律的过程。
2.引导学生以瞬时速度为基点,从特殊到一般,经历由平均变化率到瞬时变化率的过程,理解导数就是瞬时变化率3.通过问题的探究,培养学生的探究意识和探究方法.情感、态度与价值观目标:通过了解导数产生的历史及它在实际生活、生产和科研中的广泛应用及巨大作用,认识学习导数的必要性,从而激发学生学习导数的兴趣.教学重点:导数概念的形成过程及导数概念的内涵,用定义求函数在某点的导数教学难点:对导数概念的理解.教学准备:准备学案,投影仪,计算器教学方法:引导探究法:设疑——点拨——引导——探究。
教学设计:教学环节教学内容设计思想师生活动创设情景引入新课1.复习提问平均变化率的求解步棸:函数)(xfy=从1x到2x平均变化率为21()()f x f xyx x-∆=∆∆,函数从x到x x+∆的平均变化率如何表示呢?2.在10米高台跳水运动中,运动员相对水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系:h(t)=-4.9t 2+6.5t+10.计算运动员在时间段[]2,2t+∆里的平均速度.教师给出:我们求出了运动员在这段时间的平均速度,但平均速度并不能反映运动员在某一时刻的速度,那么我们如何求运动员在某一时刻的速度呢?这一节课我们就来解决这样一个问题。
板书课题 3.1.2导数的概念1.让学生回忆上一节课的内容,在上一节课的基础上进入本节课的学习。
2.从实际问题出发,使学生意识到平均速度只能粗略地描述物体在某段时间内的运动状态,为了能更精确刻画物体的运动状态,有必要研究某个时刻的速度,这样能激发学生求知的欲望,从而使学生从“要我学”变成了“我要学”。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.3 导数的几何意义》优质课教案_5
3.1.3导数的几何意义【教学目标】1.知识与技能:了解导数的的几何意义,函数)(xfy=在一点处的的导数就是曲线)(xfy=在这点处的切线的斜率,了解导数与切线斜率的关系2.过程与方法:进一步增强对导数的理解,学会求导数.3.情感态度与价值观:让学生体会数形结合及“逼近”思想.和方法.【教学重点】导数的几何意义及导数的求法.【教学难点】导数概念的本质内涵.【教学过程】(一)预习课本P76~79,思考并完成以下问题1.导数的几何意义是什么?2.导函数的概念是什么?怎样求导函数?4.怎么求过一点的曲线的切线方程(二)[新知初探]1.导数的几何意义(1)切线的概念:如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P处的切线.(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=li mΔx→0f(x0+Δx)-f(x0)Δx=f′(x0).2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=li mΔx→0f(x+Δx)-f(x)Δx.[点睛]曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多.与曲线只有一个公共点的直线也不一定是曲线的切线.基础练习1.判断(正确的打“√”,错误的打“×”)(1)导函数f′(x)的定义域与函数f(x)的定义域相同.()(2)直线与曲线相切,则直线与已知曲线只有一个公共点.()(3)函数f(x)=0没有导函数.()答案:(1)×(2)×(3)×2.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线()A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交答案:B3.已知曲线y=f(x)在点(1,f(1))处的切线方程为2x-y+2=0,则f′(1)=()A .4B .-4C .-2D .2答案:D4.抛物线y 2=x 与x 轴、y 轴都只有一个公共点,在x 轴和y 轴这两条直线中,只有________是它的切线,而______不是它的切线.答案:y 轴 x 轴(三)典例分析例1、已知曲线C :y =13x 3+43,求曲线C 上的横坐标为2的点处的切线方程.[解] 将x =2代入曲线C 的方程得y =4,∴切点P (2,4).y ′|x =2=li m Δx →0 Δy Δx =li m Δx →0 13(2+Δx )3+43-13×23-43Δx=li m Δx →0 [4+2·Δx +13(Δx )2]=4. ∴k =y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.1.过曲线上一点求切线方程的三个步骤2.求过曲线y =f (x )外一点P (x 1,y 1)的切线方程的六个步骤(1)设切点(x 0,f (x 0)).(2)利用所设切点求斜率k =f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx . (3)用(x 0,f (x 0)),P (x 1,y 1)表示斜率.(4)根据斜率相等求得x 0,然后求得斜率k .(5)根据点斜式写出切线方程.(6)将切线方程化为一般式.[活学活用]过点(1,-1)且与曲线y =x 3-2x 相切的直线方程为( )A .x -y -2=0或5x +4y -1=0B .x -y -2=0C .x -y -2=0或4x +5y +1=0D .x -y +2=0解析:选A 显然点(1,-1)在曲线y =x 3-2x 上,若切点为(1,-1),则由f ′(1)=li m Δx →0 f (1+Δx )-f (1)Δx=li m Δx →0 (1+Δx )3-2(1+Δx )-(-1)Δx =li m Δx →0[(Δx )2+3Δx +1]=1, ∴切线方程为y -(-1)=1×(x -1),即x -y -2=0.若切点不是(1,-1),设切点为(x 0,y 0),则k =y 0+1x 0-1=x 30-2x 0+1x 0-1=(x 30-x 0)-(x 0-1)x 0-1=x 20+x 0-1,又由导数的几何意义知k =f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx=li m Δx →0 (x 0+Δx )3-2(x 0+Δx )-(x 30-2x 0)Δx=3x 20-2, ∴x 20+x 0-1=3x 20-2,∴2x 20-x 0-1=0,∵x 0≠1,∴x 0=-12. ∴k =x 20+x 0-1=-54, ∴切线方程为y -(-1)=-54(x -1), 即5x +4y -1=0,故选A.例2、 已知抛物线y =2x 2+1分别满足下列条件,请求出切点的坐标.(1)切线的倾斜角为45°.(2)切线平行于直线4x -y -2=0.(3)切线垂直于直线x +8y -3=0.[解] 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x ⎪⎪⎪20-1=4x 0·Δx +2(Δx )2, ∴Δy Δx=4x 0+2Δx , 当Δx →0时,Δy Δx→4x 0,即f ′(x 0)=4x 0. (1)∵抛物线的切线的倾斜角为45°,∴斜率为tan 45°=1.即f ′(x 0)=4x 0=1,得x 0=14, ∴切点的坐标为⎝ ⎛⎭⎪⎫14,98. (2)∵抛物线的切线平行于直线4x -y -2=0,∴k =4,即f ′(x 0)=4x 0=4,得x 0=1,∴切点坐标为(1,3).(3)∵抛物线的切线与直线x +8y -3=0垂直,则k ·⎝ ⎛⎭⎪⎫-18=-1,即k =8, 故f ′(x 0)=4x 0=8,得x 0=2,∴切点坐标为(2,9).求切点坐标可以按以下步骤进行(1)设出切点坐标;(2)利用导数或斜率公式求出斜率;(3)利用斜率关系列方程,求出切点的横坐标;(4)把横坐标代入曲线或切线方程,求出切点纵坐标.[活学活用]直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切,则a 的值为___________,切点坐标为____________.解析:设直线l 与曲线C 的切点为(x 0,y 0),因为y ′=li m Δx →0(x +Δx )3-(x +Δx )2+1-(x 3-x 2+1)Δx=3x 2-2x , 则y ′|x =x 0=3x 20-2x 0=1,解得x 0=1或x 0=-13, 当x 0=1时,y 0=x 30-x 20+1=1,又(x 0,y 0)在直线y =x +a 上,将x 0=1,y 0=1代入得a =0与已知条件矛盾舍去.当x 0=-13时,y 0=⎝ ⎛⎭⎪⎫-133-⎝ ⎛⎭⎪⎫-132+1=2327, 则切点坐标为⎝ ⎛⎭⎪⎫-13, 2327,将⎝ ⎛⎭⎪⎫-13, 2327代入直线y =x +a 中得a =3227. 答案:3227 ⎝ ⎛⎭⎪⎫-13, 2327 (四)、作业布置:课时跟踪检测(十四)。
人教版高中选修1-1第三章导数及其应用课程设计
人教版高中选修1-1第三章导数及其应用课程设计一、课程背景本课程是人教版高中选修1-1第三章导数及其应用课程设计,主要面向高中一年级学生,介绍导数的概念、性质以及其在几何、物理等领域中的一些应用。
在基础知识的掌握上,重点突出了导函数的求法和利用导数解决问题的方法。
二、课程目标1.掌握导数的概念、性质,并能正确运用导数的基本公式求导;2.理解导函数的概念,在实际应用中能正确求解;3.能够应用导数的求法,解决几何、物理等相关问题;4.提高学生对数学的兴趣,增强数学思维能力。
三、教学内容1. 导数的概念与求法(1)导数的定义导数的定义、几何意义和物理意义。
(2)导数的求法应用导数的基本公式,如幂函数、指数函数、对数函数等的求导法则。
(3)导数的性质对导数的加法、减法、乘法、除法运算法则的学习。
2. 导函数的求法与应用(1)导函数的概念导函数的概念及其几何意义。
(2)导函数的求法应用导数的运算法则,求出函数的导函数。
(3)导函数的应用介绍导数在极值、凸性、函数图像研究、边界条件问题等方面的应用。
3. 积分与微积分基本定理(1)积分的概念积分的基本概念及其场景应用。
(2)微积分基本定理微积分基本定理的概述及其在求不定积分和定积分中的应用。
四、教学方法1. 探究式学习法利用问题导向的学习方法,启发学生思考,提高学生自主学习能力。
2. 教师引导法教师根据学生的基础与能力,引导学生进行分析、反思和总结。
3. 交互式教学法教师与学生之间进行交互式的教学模式,营造积极、健康的课堂气氛。
五、教学评估1. 平时评估平时成绩占全年总成绩30%;包括课堂表现、作业完成情况、参与课外活动等。
2. 期中期末考试期中考试占全年总成绩30%;期末考试占全年总成绩40%。
六、教学资源1. 学生教材人教版高中选修1-1教材。
2. 实验器材教师准备导数计算器、积分计算器、激光仪等。
七、教学反思通过教学实践,本教案把“探究式学习法”、“教师引导法”、“交互式教学法”等多种教学方法融合在一起,形成了自我启发、团队学习、交互参与等特点鲜明的“高中选修1-1导数及其应用”互动教学模式,活跃了课堂气氛,激发了学生学习的兴趣,提升了他们的学习成绩和自主学习能力。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.3 导数的几何意义》优质课教案_9
3.1.3 导数的几何意义【学习目标】(1)理解并掌握函数)(x f 在0x x =处的导数()0/x f的几何意义就是函数)(x f 的图像在0x x =处的切线的斜率。
即:()()xx f x x f x f x ∆-∆+=→∆)(lim 0000/=切线的斜率 (2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。
【学习重点与难点】重点:导数的几何意义及“数形结合,以直代曲”的思想方法。
【学习过程】(一) 复习回顾,类比探讨:1、回忆导数的概念:2、求导数)(0/x f 的步骤:这是从“数”的角度来求导数,那么从“形”的角度如何来理解导数呢?3、导数的几何意义:(1)y ∆的几何意义是什么?并在右图中画出。
(2)平均变化率()00f x x f (x )x+∆-∆的几何意义是什么?并在右图中画出。
(3)0→∆x 时,割线有什么变化?请用你的笔描绘出来。
通过类比,你能得出什么结论?例1、已知曲线2y x =上一点(1,1)P ,求:(1)点P 处的切线的斜率;(2)点P 处的切线方程.由此,你能总结一下“求过曲线上一点处的切线斜率(方程)的方法(步骤)吗?高中数学人教版A 版选修1-1第三章导学案 授课人:龚智鹏 2思考:若求过曲线外一点的切线斜率(方程)还能用上述的方法(步骤)吗?若不能,又该怎么办呢?如:求过点(2,1)P 且与曲线2y x =相切的切线方程.(二)深入研究,知识拓展我们现在清楚导数的几何意义就是在该点处切线的斜率。
其中切线很关键,但是它与以前学过的切线定义有什么不同呢?(见P77的问题。
)(三)“以直代曲”思想数学上常用简单的对象刻画复杂的对象。
例如:用有理数3.1416近似代替无理数。
这里,我们用曲线上某点处的切线近似代替这一点附近的曲线,这是微积分中重要的思想方法——以直代曲例2、如右图,它表示跳水运动中高度随时间变化的函数105.69.4)(2++-=t t t h 的图像根据图像,请描述、比较曲线h(t )在012t ,t ,t 附近的变化情况.练习:根据上图,描述函数h(t )在3t 和4t 附近增(减)以及增(减)快慢的情况.根据上面的例题和练习,你能得出什么结论?(四)抽象概括,归纳小结(五)作业布置1、习题P80.A5,6;B12、前面留下的思考题.。
高考数学:第三章《导数及其应用》教案(新人教A版选修1-1)
高考数学导数及其应用复习【知能目标】1.了解导数概念的某些实际背景(如瞬时速度,加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导数的概念。
2、熟记基本导数公式:x m(m为有理数)、sinx、cosx、e x、a x、lnx、log a x的导数;掌握两个函数和、差、积、商的求导法则和复合函数的求导法则,会求某些简单函数的导数。
3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
[教学方法]1.采用“学案导学”方式进行教学。
2.讨论法、启发式、自主学习、合作探究式教学方法的综合运用。
[教学流程]:独立完成基础回顾,合作交流纠错,老师点评;然后通过题目落实双基,根据学生出现的问题有针对性的讲评.[教学重点和难点]教学重点:导数的概念、四则运算、常用函数的导数,导数的应用理解运动和物质的关系、教学难点:导数的定义,导数在求函数的单调区间、极值、最值、证明中的应用【综合脉络】1.知识网络2.考点综述有关导数的内容,在2000年开始的新课程试卷命题时,其考试要求都是很基本的,以后逐渐加深,考查的基本原则是重点考查导数的概念和计算,力求结合应用问题,不过多地涉及理论探讨和严格的逻辑证明。
本部分的要求一般有三个层次:第一层次是主要考查导数的概念,求导的公式和求导法则;第二层次是导数的简单应用,包括求函数的极值、单调区间、证明函数的增减性等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等有机地结合在一起,设计综合题,通过将新课程内容和传统内容相结合,加强了能力考察力度,使试题具有更广泛的实际意义,更体现了导数作为工具分析和解决一些函数性质问题的方法,这类问题用传统教材是无法解决的。
[教学过程]一、目标导航:1.复习巩固导数的概念、四则运算、常用函数的导数2.利用导数求函数的单调区间、极值、最值二、基础回顾第一步:自主复习,学生用6分钟时间利用《学案》将以下基础知识填完1、导数的概念:对于函数y=f(x),如果自变量x在x0处有增量△x,那么函数y相应的有增量= ;比值叫做函数y=f(x)在x0到x0+△x之间的 ,当△x→0时,△y△x有极限,就说y=f(x)在点x0处,并把这个极限叫做f(x) 在点x0的导数(瞬时变化率),记作或,当x变化时,f ' (x)便是x的一个函数,称之为f(x)的导函数(简称导数),记f ' (x)=y '=lim△x→0f(x+△x)-f(x)△x2、用定义求导数的一般步骤:(1)求函数的增量△y= (2)求平均变化率△y△x(3)取极限,得导数f ' (x)=lim△x→0△y△x3、导数的几何意义:f ' (x0)是曲线y=f(x)在点P(x0,f (x0))处的切线的即4、几种常见函数的导数C'=(x n) '=(sinx) '=(cosx) '=(e x) '=(a x) '=(lnx) '=(log a x) '=5、导数的四则运算若y=f(x),y=g(x) 的导数存在,则[f(x)±g(x)] '=[f(x)g(x)] '= [f(x)g(x)]'=6、复合函数y=f(g(x))(其中u= g(x))的导数y x'=7、函数的单调性与其导函数的正负如下关系:在开区间(a,b)内,如果,那么函数在这个区间内,如果,那么函数在这个区间内,反之?求可导函数y=f(x)的单调区间的步骤:(1)求f ' (x) (2)解不等式f ' (x)>0(或f ' (x)<0)(3)确认并写出单调区间8、极值: 设函数f(x)在附近有定义,如果对x0附近所有的x都有,则称f (x0)是f(x)的一个极大值;如果对x0附近所有的x都有,则称f (x0)是f(x)的一个极小值。
人教A版高中数学选修1-1《三章 导数及其应用 牛顿法──用导数方法求方程的近似解》优质课教案_2
高中数学人教A版选修1-1第三章导数及其应用3.2.2 探究与发现牛顿法——用导数方法求方程的近似解一、教学目标:1.知识与技能(1)复习和巩固用二分法求方程的近似解(2)探究并总结牛顿法求方程的近似解2.过程与方法(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)培养学生在数学学习的过程中的迁移,类比。
3.情感与价值观让学生了解更多数学史事及数学应用更能增进学生对数学的兴趣以及科学研究的价值观。
二、教学重点、难点:教学重点:牛顿法的迭代思想和过程。
教学难点:理解牛顿法的逼近和迭代原理。
三、学法与教学用具:1.通过探究和实践,使学生能够完全理解牛顿法的迭代原理,提高了学生解决实际问题的能力;2.教学用具:投灯片、多媒体。
四、教学过程:(一)创设情景、导入课题(展示ppt,中外历史上的方程求解)1.从一个三次方程求解问题引入,给出一个数学故事,激发学生兴趣,同时对学生渗透德育教育,引起学生对我国古代数学的自豪感。
(二)复习巩固,启发引导1.求Leonardo方程的近似解,我们学习过什么方法?请大家把课前完成的复习巩固环节进行交流。
2.(师生活动)提问学生复习回顾二分法求方程近似解的步骤及二分法的逼近思想,方便在课程教学时进行类比分析。
3.思考并总结:用二分法求方程的近似解时,需要注意一些什么问题?4.学生回答问题,总结二分法的优缺点,并以其缺点入手,引出今天的课题,(板书主题:牛顿法——用导数方法求方程的近似解)。
〖设计意图〗学生在课前完成了学案相应复习部分的内容,复习了高一时所学习过的二分法的内容,为本节课的课程研究打下坚实的基础,包括对算法思想,逼近思想的体会都能有所加深,为研究牛顿法进行类比提供了很好的基础。
(三)师生互动、探究新知1.层层设问:(1)在研究方程的根的问题时,我们常可以将其等价转化为什么问题进行研究?(2)在研究函数的性质时,我们新学习了什么工具可以用来很方便地刻画函数的什么性质? (3)我们新学习的工具中,在刻画函数性质方面,体现出了什么样的思想? (4)在研究方程的近似解的时候,二分法体现出了什么样的思想?(5)类比二分法的思想,结合我们新学到的工具,我们能产生什么新的想法求方程的近似解?2. 归纳方法,总结整理(小组讨论,选一个小组先展示,老师再板书)给定函数为()y f x =,迭代初始值为0x ,其切线方程可以写为:()()()000'y f x f x x x -=-,求其零点,令0y =,得()()000'f x x x f x =-。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.3 导数的几何意义》优质课教案_1
1.1.3 导数的几何意义【教学目标】知识与技能目标:通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。
在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。
在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。
过程与方法目标:学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。
学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。
情感、态度、价值观: 通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值; 在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。
在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。
【教学重点与难点】重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。
难点:发现、理解及应用导数的几何意义。
一、创设情境、导入新课前面我们学习了函数在0x x =处的导数0()f x '就是函数在该点处的瞬时变化率.....。
(1)求导数0()f x '的步骤有:第一步:求平均变化率()00()f x x f x y xx+∆-∆=∆∆;第二步:求瞬时变化率()0000()()lim x f x x f x f x x∆→+∆-'=∆.(即0x ∆→,平均变化率趋近..于的确定常数....就是该点导数..) (2) 观察函数()y f x =的图象,平均变化率()00()f x x f x y x x+∆-∆=∆∆ 在图形中表示什么?回答:平均变化率表示的是割线n PP 的斜率.(老师引导学生回忆联系本节课的旧知识,下面探究导数的几何意义也是依据导数概念的形成,寻求解决问题的途径。
高中数学(人教A版)选修1-1教案第三章 导数及其运用 3.1.3 导数的概念
一.教学目标
1、知识与技能:
通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。
2、过程与方法:
①通过动手计算培养学生观察、分析、比较和归纳能力
②通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法
3、情感、态度与价值观:
通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣.
二、重点、难点
重点:导数概念的形成,导数内涵的理解
难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵
通过逼近的方法,引导学生观察来突破难点
四、教学设想(具体如下表)
五、学法与教法
学法与教学用具
学法:
(1)合作学习:引导学生分组讨论,合作交流,共同探讨问题。
(如题2的处理)
(2)自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动。
(如题3的处理)(3)探究学习:引导学生发挥主观能动性,主动探索新知。
(如例题的处理)
教后反思:
教法:整堂课围绕“一切为了学生发展”的教学原则,突出①动——师生互动、共同探索。
②导——教师指导、循序渐进
(1)新课引入——提出问题, 激发学生的求知欲
(2)理解导数的内涵——数形结合,动手计算,组织学生自主探索,获得导数的定义
(3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识
(4)变式练习——深化对导数内涵的理解,巩固新知。
数学:第三章《导数及其应用》教案(新人教A版选修1-1)
导数及其应用复习【知能目标】1.了解导数概念的某些实际背景(如瞬时速度,加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导数的概念。
2、熟记基本导数公式:x m(m为有理数)、sinx、cosx、e x、a x、lnx、log a x的导数;掌握两个函数和、差、积、商的求导法则和复合函数的求导法则,会求某些简单函数的导数。
3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
[教学方法]1.采用“学案导学”方式进行教学。
2.讨论法、启发式、自主学习、合作探究式教学方法的综合运用。
[教学流程]:独立完成基础回顾,合作交流纠错,老师点评;然后通过题目落实双基,根据学生出现的问题有针对性的讲评.[教学重点和难点]教学重点:导数的概念、四则运算、常用函数的导数,导数的应用理解运动和物质的关系、教学难点:导数的定义,导数在求函数的单调区间、极值、最值、证明中的应用【综合脉络】1.知识网络2.考点综述有关导数的内容,在2000年开始的新课程试卷命题时,其考试要求都是很基本的,以后逐渐加深,考查的基本原则是重点考查导数的概念和计算,力求结合应用问题,不过多地涉及理论探讨和严格的逻辑证明。
本部分的要求一般有三个层次:第一层次是主要考查导数的概念,求导的公式和求导法则;第二层次是导数的简单应用,包括求函数的极值、单调区间、证明函数的增减性等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等有机地结合在一起,设计综合题,通过将新课程内容和传统内容相结合,加强了能力考察力度,使试题具有更广泛的实际意义,更体现了导数作为工具分析和解决一些函数性质问题的方法,这类问题用传统教材是无法解决的。
[教学过程]一、目标导航:1.复习巩固导数的概念、四则运算、常用函数的导数2.利用导数求函数的单调区间、极值、最值二、基础回顾第一步:自主复习,学生用6分钟时间利用《学案》将以下基础知识填完1、导数的概念:对于函数y=f(x),如果自变量x在x0处有增量△x,那么函数y相应的有增量= ;比值叫做函数y=f(x)在x0到x0+△x之间的 ,当△x→0时,△y△x有极限,就说y=f(x)在点x0处,并把这个极限叫做f(x) 在点x0的导数(瞬时变化率),记作或,当x变化时,f ' (x)便是x的一个函数,称之为f(x)的导函数(简称导数),记f ' (x)=y '=lim△x→0f(x+△x)-f(x)△x2、用定义求导数的一般步骤:(1)求函数的增量△y= (2)求平均变化率△y△x(3)取极限,得导数f ' (x)=lim△x→0△y△x3、导数的几何意义:f ' (x0)是曲线y=f(x)在点P(x0,f (x0))处的切线的即4、几种常见函数的导数C'=(x n) '=(sinx) '=(cosx) '=(e x) '=(a x) '=(lnx) '=(log a x) '=5、导数的四则运算若y=f(x),y=g(x) 的导数存在,则[f(x)±g(x)] '=[f(x)g(x)] '= [f(x)g(x)]'=6、复合函数y=f(g(x))(其中u= g(x))的导数y x'=7、函数的单调性与其导函数的正负如下关系:在开区间(a,b)内,如果,那么函数在这个区间内,如果,那么函数在这个区间内,反之?求可导函数y=f(x)的单调区间的步骤:(1)求f ' (x) (2)解不等式f ' (x)>0(或f ' (x)<0)(3)确认并写出单调区间8、极值: 设函数f(x)在附近有定义,如果对x0附近所有的x都有,则称f (x0)是f(x)的一个极大值;如果对x0附近所有的x都有,则称f (x0)是f(x)的一个极小值。
高中数学导数及其应用教案 新人教A版选修1-1
导数及其应用一、教材分析导数是本章的主要研究对象,导数与科研、生产以及人类的生活有着密切的关系,导数是变化率的一种特殊的情况,在以前我们已经学习了有关变化率的知识,对变化率有了实步的因而在本章中把导数作为一个整体来研究.我们将从它的定义,几何意义来讨论,导数作为一个新增的知识内容,是教学的重点,涉及的要领是全新的,因此要通过直观的才具演示来探究,使学生理解并明确概念.二、设计理念:为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数.随着对函数的深入研究,产生了微积分.导数概念是微积分的基本概念之一,导数是对事物变化快慢的一种描述,是研究客观事物变化率和优化问题的有力工具.理解和掌握导数的思想和本质显得非常重要.正如《数学课程标准(实验)解读》中所说的,以前是,“先讲极限概念,把导数作为一种特殊极限来讲,于是,形式化的极限概念就成了学生学习的障碍,严重影响了对导数思想和本质的认识和理解;”“….这样造成的结果是:因为存在着夹生饭现象,大学不欢迎;中学感受不到学导数的好处,反而加重了学生的负担,因此也不欢迎.”故为了让学生充分认识导数的思想和本质,先要理解和掌握平均变化率的概念.在设计这节课时,我把重点放在(1)通过大量实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;(2)掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法.学情分析:我们学校是我市的重点学校,我教的班是政治普通班,学生的基础总体上可以,有个别学生在学习数学时有点困难,他们觉得数学就是太抽象了,所以在教学时要照顾中下的学生,为了加深学生对导数概念的印象,增加上课的气氛,我事先买了两个气球,在上课时准备请两学生上来吹,并让他们谈谈随着气球内空气容量的增加,气球半径变化情况.另我校一节课是40分钟.三教学准备1.认真阅读教材、教参,寻找有关资料;2.向有经验的同事请教;3.从成绩好的学生那里了解他们预习的情况和困惑的地方.四、教学设想1、§3.1.1变化率问题.(1)教具的准备.(a)一个气球充气,随着空气容量的增加,气球半径的半径增加得越来越慢.(b)一根粉笔从手中落下,随着时间的变化,粉笔的距地而的高度也在变化、通过这些日常生活中的例子熟悉的例子,来加深学生对变化率的理解。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.3 导数的几何意义》优质课教案_7
导数的几何意义一、教材分析:1、地位和作用:《导数的几何意义》是一节新知概念课,内容选自于选修1-1中第§3.1.3节,是在学生学习了平均变化率,瞬时变化率,及用瞬时变化率定义导数基础上,进一步从几何意义的基础上认识导数的含义与价值,是可以充分应用信息技术进行概念教学与问题探究的内容。
《导数的几何意义》还是下位内容——常见函数导数的计算,导数在研究函数中的应用的基础.因此,导数的几何意义有承前启后的重要作用,是本章的关键内容,也是高考中的一个常见考点。
2、教学目标的拟定:【知识与技能】(1)概括曲线的切线定义,明确导数的几何意义及应用;(2)培养观察、分析、合作、归纳与应用(知识与思想方法)等方面的能力【过程与方法】(1)由问题引发认知冲突,引导学生经历割线“逼近”切线的过程,推广切线的定义;(2)利用几何画板直观展示知识发生的过程,帮助学生寻找导数的几何意义;【情感态度价值观】(1)通过对切线定义的探究,培养学生严谨的科学态度;(2)通过渗透无限“逼近”的思想,引导学生从有限中认识无限,体会量变和质变的辩证关系。
(3)利用“以直代曲”的近似替代的方法,培养学生分析问题解决问题的习惯,初步体会发现问题的乐趣3、教学重点、难点重点:导数的几何意义及应用难点:对导数几何意义的推导过程二、学情分析1、从认知上看,学生已经通过实例经历了由平均变化率到瞬时变化率来刻画现实问题的过程,知道瞬时变化率就是导数,体会了导数的思想和实际背景,但这些都是建立在“代数”的基础上的,学生也渴求寻找导数的另一种体现形式——图形。
学生对曲线的切线有一定的认识,特别是对抛物线的切线的概念在学习圆锥曲线与直线关系时有很深的与认识.2、从能力上看,通过一年多的高中学习,学生积累了一定的探究问题的经验,具有一定的想象能力和研究问题的能力.3、从学习心理上看,学生已经从“公共点个数”方面知道了圆锥曲线切线的含义,当然在思维方面,也形成了定势:“直线与曲线相切,直线与切线只有一个公共点”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数及其应用复习
【知能目标】
1.了解导数概念的某些实际背景(如瞬时速度,加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导数的概念。
2、熟记基本导数公式:x m (m 为有理数)、sinx 、cosx 、e x 、a x 、lnx 、log a x 的导数;掌握两个函数和、差、积、商的求导法则和复合函数的求导法则,会求某些简单函数的导数。
3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
[教学方法] 1.采用“学案导学”方式进行教学。
2.讨论法、启发式、自主学习、合作探究式教学方法的综合运用。
[教学流程]:独立完成基础回顾,合作交流纠错,老师点评;然后通过题目落实双基,根据学生出现的问题有针对性的讲评.
[教学重点和难点]
教学重点:导数的概念、四则运算、常用函数的导数,导数的应用理解运动和物质的关系、教学难点:导数的定义,导数在求函数的单调区间、极值、最值、证明中的应用
【综合脉络】
1.知识网络
2.考点综述
有关导数的内容,在2000年开始的新课程试卷命题时,其考试要求都是很基本的,以后逐渐加深,考查的基本原则是重点考查导数的概念和计算,力求结合应用问题,不过多地涉及理论探讨和严格的逻辑证明。
本部分的要求一般有三个层次:第一层次是主要考查导数的概念,求导的公式和求导法则;第二层次是导数的简单应用,包括求函数的极值、单调区间、
导数定义 导数的几何意义 导函数 四则运算 求导法则 复合函数 求导法则 求简单函数的导数 导数的应用 导数的实际背景
判断函数 的单调性 求函数的 极大(小)值 求函数的 最大(小)值
基本求 导公式
证明函数的增减性等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等有机地结合在一起,设计综合题,通过将新课程内容和传统内容相结合,加强了能力考察力度,使试题具有更广泛的实际意义,更体现了导数作为工具分析和解决一些函数性质问题的方法,这类问题用传统教材是无法解决的。
[教学过程]
一、目标导航:1.复习巩固导数的概念、四则运算、常用函数的导数
2.利用导数求函数的单调区间、极值、最值
二、基础回顾
第一步:自主复习,学生用6分钟时间利用《学案》将以下基础知识填完
1、导数的概念:对于函数y=f(x),如果自变量x在x0处有增量△x,那么函数y相应的有增量= ;比值叫做函数y=f(x)在x0到x0+△x之间的 ,
当△x→0时,△y
△x
有极限,就说y=f(x)在点x0处,并把这个极限叫做f(x) 在点x0
的导数(瞬时变化率),记作或,
当x变化时,f ' (x)便是x的一个函数,称之为f(x)的导函数(简称导数),记
f ' (x)=y '=lim
△x→0
f(x+△x)-f(x)
△x
2、用定义求导数的一般步骤:(1)求函数的增量△y= (2)求平均变化率△y
△x
(3)取极限,得导数f ' (x)=lim
△x→0
△y
△x
3、导数的几何意义:f ' (x0)是曲线y=f(x)在点P(x0,f (x0))处的切线的即
4、几种常见函数的导数C'=(x n) '=(sinx) '=(cosx) '=
(e x) '=(a x) '=(lnx) '=(log a x) '=
5、导数的四则运算若y=f(x),y=g(x) 的导数存在,则
[f(x)±g(x)] '=[f(x)g(x)] '= [f(x)
g(x)]'=
6、复合函数y=f(g(x))(其中u= g(x))的导数y x'=
7、函数的单调性与其导函数的正负如下关系:在开区间(a,b)内,如果,那么函数在这个区间内,如果,那么函数在这个区间内,反之?
求可导函数y=f(x)的单调区间的步骤:(1)求f ' (x) (2)解不等式f ' (x)>0(或f ' (x)<0)
(3)确认并写出单调区间
8、极值: 设函数f(x)在附近有定义,如果对x0附近所有的x都有,则称f (x0)是f(x)的一个极大值;如果对x0附近所有的x都有,则称f (x0)是f(x)的一个极小值。
可导函数点x0处的导数为0是f(x)在x0处取得极值的条件
9、求函数y=f(x)极值的步骤:
(1)确定函数的定义域(2)求方程f ' (x)=0
(3)解不等式f ' (x)>0(或f ' (x)<0)顺次将函数的定义域分成若干小开区间
(4)判断 f ' (x)=0的根的两侧f ' (x)的符号,确定是否为极大值、极小值。
10、在闭区间[a,b]上连续的函数f(x)必有和
求在闭区间[a,b]上的连续函数y=f(x)最值的步骤:(1)
(2)
第二步:合作学习,分组交流,解决知识漏洞及疑难点(老师注意发现学生的问题)
第三步:老师点评:老师根据情况有重点的进行知识讲评(大屏幕显示)
三、巩固练习
1、 函数f(x)可导,则lim △x →0f(1-△x)-f(x) 3△x =
2、 已知f(x)=x 2+2x f ' (0),则f ' (2) =
3、 函数f(x)=x 3-2x 2+x -6的单调区间为
4、 求导① (-1x
4)'= ② (3x ) '= ③ (tanx) '= ④ [sin 3(x+1 x
) ]'= ⑤[cos(1-2x)l nx]'= 5、函数f(x)=ax 3+x -2在(-∞,+∞)上为单调函数,则a ∈
四、探究提高:(两个学生上黑板板书,其他同学做在学案上)
1、当常数k 为何值时,直线y=x 才能与函数y=x 2+k 相切?并求出切点。
1、 已知x>1,求证:x>ln(1+x)
针对学生出现问题老师讲评(大屏幕给出答案)
五、归纳总结,引导学生给出本节知识总结
六、应用拓展(课后完成)
1、已知函数ƒ(x)=2ax ―x 3,x ∈(0,1], a>0
(1) 若f(x)在x ∈(0,1] 上是增函数,求a 的取值范围;
(2) 求f(x)在区间(0,1]上的最大值
2、已知f(x)=x 3+ax 2+bx +c 在x=1与x=-23
时,都取得极值. (1) 求 a,b 的值; (2) 如对x ∈[-1,2],都有f(x)<1c
恒成立,求c 的取值范围 思考:已知a>0,求函数f(x)=x+a x+1
在x ∈[0,+ ∞)上的值域.。