英文翻译:超高层建筑结构横向风荷载效应
建筑结构中英文翻译
Aacceptable quality:合格质量acceptance lot:验收批量aciera:钢材admixture:外加剂against slip coefficient between friction surface of high-strength bolted connection:高强度螺栓摩擦面抗滑移系数aggregate:骨料air content:含气量air-dried timber:气干材allowable ratio of height to sectional thickness of masonry wall or column:砌体墙、柱容许高厚比allowable slenderness ratio of steel member:钢构件容许长细比allowable slenderness ratio of timber compression member:受压木构件容许长细比allowable stress range of fatigue:疲劳容许应力幅allowable ultimate tensile strain of reinforcement:钢筋拉应变限值allowable value of crack width:裂缝宽度容许值allowable value of deflection of structural member:构件挠度容许值allowable value of deflection of timber bending member:受弯木构件挠度容许值allowable value of deformation of steel member:钢构件变形容许值allowable value of deformation of structural member:构件变形容许值 allowable value of drift angle of earthquake resistantstructure:抗震结构层间位移角限值amplified coefficient of eccentricity:偏心距增大系数anchorage:锚具anchorage length of steel bar:钢筋锚固长度approval analysis during construction stage:施工阶段验算arch:拱arch with tie rod:拉捍拱arch—shaped roof truss:拱形屋架area of shear plane:剪面面积area of transformed section:换算截面面积aseismic design:建筑抗震设计assembled monolithic concrete structure:装配整体式混凝土结构automatic welding:自动焊接auxiliary steel bar:架立钢筋Bbackfilling plate:垫板balanced depth of compression zone:界限受压区高度balanced eccentricity:界限偏心距bar splice:钢筋接头bark pocket:夹皮batten plate:缀板beam:次梁bearing plane of notch:齿承压面(67)bearing plate:支承板(52)bearing stiffener:支承加劲肋(52)bent-up steel bar:弯起钢筋(35)block:砌块(43)block masonry:砌块砌体(44)block masonry structure:砌块砌体结构(41)blow hole:气孔(62)board:板材(65)bolt:螺栓(54)bolted connection:(钢结构)螺栓连接(59)bolted joint:(木结构)螺栓连接(69)bolted steel structure:螺栓连接钢结构(50)bonded prestressed concrete structure:有粘结预应力混凝土结构(24)bow:顺弯(71)brake member:制动构件(7)breadth of wall between windows:窗间墙宽度(46)brick masonry:砖砌体(44)brick masonry column:砖砌体柱(42)brick masonry structure:砖砌体结构(41)brick masonry wall:砖砌体墙(42)broad—leaved wood:阔叶树材(65)building structural materials:建筑结构材料(17)building structural unit:建筑结构单元(building structure:建筑结构(2built—up steel column:格构式钢柱(51bundled tube structure:成束筒结构(3burn—through:烧穿(62butt connection:对接(59butt joint:对接(70)butt weld:对接焊缝(60)Ccalculating area of compression member:受压构件计算面积(67)calculating overturning point:计算倾覆点(46)calculation of load-carrying capacity of member:构件承载能力计算(10)camber of structural member:结构构件起拱(22)cantilever beam :挑梁(42)cap of reinforced concrete column:钢筋混凝土柱帽(27)carbonation of concrete:混凝土碳化(30)cast-in—situ concrete slab column structure :现浇板柱结构cast-in—situ concrete structure:现浇混凝土结构(25)cavitation:孔洞(39)cavity wall:空斗墙(42)cement:水泥(27)cement content:水泥含量(38)cement mortar:水泥砂浆(43)characteriseic value of live load on floor or roof:楼面、屋面活荷载标准值(14)characteristi cvalue o fwindload:风荷载标准值(16)characteristic value of concrete compressivestrength:混凝土轴心抗压强度标准值(30)characteristic value of concrete tensile strength:混凝土轴心抗拉标准值(30)characteristic value of cubic concrete compressivestrength:混凝土立方体抗压强度标准值(29)characteristic value of earthquake action:地震作用标准值(16)characteristic value of horizontal crane load:吊车水平荷载标准值(15) characteristic value of masonry strength:砌体强度标准值(44)characteristic value of permanent action·:永久作用标准值(14)characteristic value of snowload:雪荷载标准值(15)characteristic value of strength of steel:钢材强度标准值(55)characteristic value of strength of steel bar:钢筋强度标准值(31)characteristic value of uniformly distributed live load:均布活标载标准值(14)characteristic value of variable action:可变作用标准值(14)characteristic value of vertical crane load:吊车竖向荷载标准值(15) charaeteristic value of material strength:材料强度标准值(18)checking section of log structural member·,:原木构件计算截面(67)chimney:烟囱(3)circular double—layer suspended cable:圆形双层悬索(6)circular single—layer suspended cable:圆形单层悬索(6)circumferential weld:环形焊缝(60)classfication for earthquake—resistance of buildings·:建筑结构抗震设防类别(9)clear height:净高(21)clincher:扒钉(?0)coefficient of equivalent bending moment of eccentrically loadedsteel memher(beam-column) :钢压弯构件等效弯矩系数(58)cold bend inspection of steelbar:冷弯试验(39)cold drawn bar:冷拉钢筋(28)cold drawn wire:冷拉钢丝(29)cold—formed thin—walled sectionsteel:冷弯薄壁型钢(53)cold-formed thin-walled steel structure·‘:冷弯薄壁型钢结构(50)cold—rolled deformed bar:冷轧带肋钢筋(28)column bracing:柱间支撑(7)combination value of live load on floor or roof:楼面、屋面活荷载组合值(15)compaction:密实度(37)compliance control:合格控制(23)composite brick masonry member:组合砖砌体构件(42)composite floor system:组合楼盖(8)composite floor with profiled steel sheet:压型钢板楼板(8)composite mortar:混合砂浆(43)composite roof truss:组合屋架(8)compostle member:组合构件(8)compound stirrup:复合箍筋(36)compression member with large eccentricity·:大偏心受压构件(32)compression member with small eccentricity·:小偏心受压构件(32)compressive strength at an angle with slope of grain:斜纹承压强度(66) compressive strength perpendicular to grain:横纹承压强度(66)concentration of plastic deformation:塑性变形集中(9)conceptual earthquake—resistant design:建筑抗震概念设计(9)concrete:混凝土(17)concrete column:混凝土柱(26)concrete consistence:混凝土稠度(37)concrete floded—plate structure:混凝土折板结构(26)concrete foundation:混凝土基础(27)concrete mix ratio:混凝土配合比(38)concrete wall:混凝土墙(27)concrete-filled steel tubular member:钢管混凝土构件(8)conifer:针叶树材(65)coniferous wood:针叶树材(65)connecting plate:连接板(52)connection:连接(21)connections of steel structure:钢结构连接(59)connections of timber structure:木结构连接(68)consistency of mortar:砂浆稠度(48)constant cross—section column:等截面柱(7)construction and examination concentrated load:施工和检修集中荷载(15) continuous weld:连续焊缝(60)core area of section:截面核芯面积(33)core tube supported structure:核心筒悬挂结构(3)corrosion of steel bar:钢筋锈蚀(39)coupled wall:连肢墙(12)coupler:连接器(37)coupling wall—beam :连梁(12)coupling wall—column...:墙肢(12)coursing degree of mortar:砂浆分层度(48)cover plate:盖板(52)covered electrode:焊条(54)crack:裂缝(?0)crack resistance:抗裂度(31)crack width:裂缝宽度(31)crane girder:吊车梁(?)crane load:吊车荷载(15)creep of concrete:混凝土徐变(30)crook:横弯(71)cross beam:井字梁(6)cup:翘弯curved support:弧形支座(51)cylindrical brick arch:砖筒拱(43)Ddecay:腐朽(71)decay prevention of timber structure:木结构防腐(70)defect in timber:木材缺陷(70)deformation analysis:变形验算(10)degree of gravity vertical for structure or structuralmember·:结构构件垂直度(40)degree of gravity vertical forwall surface:墙面垂直度(49)degree of plainness for structural memer:构件平整度(40)degree of plainness for wall surface:墙面平整度(49)depth of compression zone:受压区高度(32)depth of neutral axis:中和轴高度(32)depth of notch:齿深(67)design of building structures:建筑结构设计(8)design value of earthquake-resistant strength ofmaterials:材料抗震强度设计值(1design value of load—carrying capacity of members·:构件承载能力设计值(1designations 0f steel:钢材牌号(53designvalue of material strength:材料强度设计值(1destructive test:破损试验(40detailing reintorcement:构造配筋(35detailing requirements:构造要求(22diamonding:菱形变形(71)diaphragm:横隔板(52dimensional errors:尺寸偏差(39)distribution factor of snow pressure:屋面积雪分布系数dogspike:扒钉(70)double component concrete column:双肢柱(26)dowelled joint:销连接(69)down-stayed composite beam:下撑式组合粱(8)ductile frame:延性框架(2)dynamic design:动态设计(8)Eearthquake-resistant design:抗震设计(9:earthquake-resistant detailing requirements:抗震构造要求(22)effective area of fillet weld:角焊缝有效面积(57)effective depth of section:截面有效高度(33)effective diameter of bolt or high-strength bolt·:螺栓(或高强度螺栓)有效直径(57)effective height:计算高度(21)effective length:计算长度(21)effective length of fillet weld:角焊缝有效计算长度(48)effective length of nail:钉有效长度(56)effective span:计算跨度(21)effective supporting length at end of beam:梁端有效支承长度(46) effective thickness of fillet weld:角焊缝有效厚度(48)elastic analysis scheme:弹性方案(46)elastic foundation beam:弹性地基梁(11)elastic foundation plate:弹性地基板(12)elastically supported continuous girder·:弹性支座连续梁(u)elasticity modulus of materials:材料弹性模量(18)elongation rate:伸长率(15)embeded parts:预埋件(30)enhanced coefficient of local bearing strength ofmaterials·:局部抗压强度提高系数(14)entrapped air:含气量(38)equilibrium moisture content:平衡含水率(66)equivalent slenderness ratio:换算长细比(57)equivalent uniformly distributed live load·:等效均布活荷载(14)etlectlve cross—section area of high-strength bolt·:高强度螺栓的有效截面积(58)ettectlve cross—section area of bolt:螺栓有效截面面积(57)euler’s critical load:欧拉临界力(56)euler’s critical stress:欧拉临界应力(56)excessive penetration:塌陷(62)Ffiber concrete:纤维混凝仁(28)filler plate:填板门2)fillet weld:角焊缝(61)final setting time:终凝时间()finger joint:指接(69)fired common brick:烧结普通砖(43)fish eye:白点(62)fish—belly beam:角腹式梁(7)fissure:裂缝(?0)flexible connection:柔性连接(22)flexural rigidity of section:截面弯曲刚度(19)flexural stiffness of member:构件抗弯刚度(20)floor plate:楼板(6)floor system:楼盖(6)four sides(edges)supported plate:四边支承板(12)frame structure:框架结构(2)frame tube structure:单框筒结构(3)frame tube structure:框架—简体结构(2)frame with sidesway:有侧移框架(12)frame without sidesway:无侧移框架(12)frange plate:翼缘板(52)friction coefficient of masonry:砌体摩擦系数(44) full degree of mortar at bed joint:砂浆饱满度(48) function of acceptance:验收函数(23)Ggang nail plate joint:钉板连接()glue used for structural timberg:木结构用胶glued joint:胶合接头glued laminated timber:层板胶合木(¨)glued laminated timber structure:层板胶合结构‘61) grider:主梁((㈠grip:夹具grith weld:环形焊缝(6÷))groove:坡口gusset plate:节点板(52)Hhanger:吊环hanging steel bar:吊筋heartwood :心材heat tempering bar:热处理钢筋(28)height variation factor of wind pressure:风压高度变化系数(16) heliral weld:螺旋形僻缝high—strength bolt:高强度螺栓high—strength bolt with large hexagon bea:大六角头高强度螺栓high—strength bolted bearing type join:承压型高强度螺栓连接, high—strength bolted connection:高强度螺栓连接high—strength bolted friction—type joint:摩擦型高强度螺栓连接 high—strength holted steel slsteel structure:高强螺栓连接钢结构 hinge support:铰轴支座(51)hinged connection:铰接(21)hlngeless arch:无铰拱(12)hollow brick:空心砖(43)hollow ratio of masonry unit:块体空心率(46)honeycomb:蜂窝(39)hook:弯钩(37)hoop:箍筋(36)hot—rolled deformed bar:热轧带肋钢筋(28)hot—rolled plain bar:热轧光圆钢筋(28)hot-rolled section steel:热轧型钢(53)hunched beam:加腋梁(?)Iimpact toughness:冲击韧性(18)impermeability:抗渗性(38)inclined section:斜截面(33)inclined stirrup:斜向箍筋(36)incomplete penetration:未焊透(61)incomplete tusion:未溶合(61)incompletely filled groove:未焊满(61)indented wire:刻痕钢丝(29)influence coefficient for load—bearing capacity of compression member:受压构件承载能力影响系数(46)influence coefficient for spacial action :空间性能影响系数(46) initial control:初步控制(22)insect prevention of timber structure:木结构防虫(?o)inspection for properties of glue used in structuralmember:结构用胶性能检验(71)inspection for properties of masnory units:块体性能检验(48)inspection for properties of mortar:砂浆性能检验(48)inspection for properties of steelbar:钢筋性能检验(39)integral prefabricated prestressed concrete slab—columnstructure:整体预应力板柱结构(25)intermediate stiffener:中间加劲肋(53)intermittent weld:断续焊缝(60)Jjoint of reinforcement:钢筋接头(35)Kkey joint:键连接(69)kinetic design:动态设计(8)knot:节子(木节)(70)Llaced of battened compression member:格构式钢柱(51)lacing and batten elements:缀材(缀件)(51)lacing bar:缀条(51)lamellar tearing:层状撕裂(62)lap connectlon:叠接(搭接)(59)lapped length of steel bar:钢筋搭接长度(36)large pannel concrete structure:混凝土大板结构(25)large-form cocrete structure:大模板结构(26)lateral bending:侧向弯曲(40)lateral displacement stiffness of storey:楼层侧移刚度(20)lateral displacement stiffness of structure·:结构侧移刚度(20)lateral force resistant wallstructure:抗侧力墙体结构(12)leg size of fillet weld:角焊缝焊脚尺寸(57)length of shear plane:剪面长度(67)lift—slab structure:升板结构(25)light weight aggregate concrete:轻骨料混凝土(28)limit of acceptance:验收界限(23)limitimg value for local dimension of masonrystructure·:砌体结构局部尺寸限值(47)limiting value for sectional dimension:截面尺寸限值(47)limiting value for supporting length:支承长度限值(47)limiting value for total height of masonry structure·:砌体结构总高度限值(47)linear expansion coeffcient:线膨胀系数(18)lintel:过梁(7)load bearing wall:承重墙(7)load-carrying capacity per bolt:单个普通螺栓承载能力(56)load—carrying capacity per high—strength holt:单个高强螺桂承载能力(56)load—carrying capacity per rivet:单个铆钉承载能力(55)log:原木(65)log timberstructure:原木结构(64)long term rigidity of member:构件长期刚度(32)longitude horizontal bracing:纵向水平支撑(5)longitudinal steel bar:纵向钢筋(35)longitudinal stiffener:纵向加劲肋(53)longitudinal weld:纵向焊缝(60)losses of prestress:‘预应力损失(33)lump material:块体(42)Mmain axis:强轴(56)main beam·:主梁(6)major axis:强轴(56)manual welding:手工焊接(59)manufacture control:生产控制(22)map cracking:龟裂(39)masonry:砌体(17)masonry lintel:砖过梁(43)masonry member:无筋砌体构件(41)masonry units:块体(43)masonry—concrete structure:砖混结构(¨)masonry—timber structure:砖木结构(11)mechanical properties of materials·:材料力学性能(17)melt—thru:烧穿(62)method of sampling:抽样方法(23)minimum strength class of masonry:砌体材料最低强度等级(47)minor axls·:弱轴(56)mix ratio of mortar:砂浆配合比(48)mixing water:拌合水(27)modified coefficient for allowable ratio of height tosectionalthickness of masonry wall :砌体墙容许高厚比修正系数(47) modified coefficient of flexural strength for timber curvedmem—:弧形木构件抗弯强度修正系数(68)modulus of elasticity of concrete:混凝土弹性模量(30)modulus of elasticity parellel to grain:顺纹弹性模量(66)moisture content:含水率(66)moment modified factor:弯矩调幅系数monitor frame:天窗架mortar:砂浆multi—defence system of earthquake—resistant building·:多道设防抗震建筑multi—tube supported suspended structure:多筒悬挂结构Nnailed joint:钉连接,net height:净高lnet water/cementratio:净水灰比non-destructive inspection of weld:焊缝无损检验non-destructive test:非破损检验non-load—bearingwall:非承重墙non—uniform cross—section beam:变截面粱non—uniformly distributed strain coefficient of longitudinal tensile reinforcement:纵向受拉钢筋应变不均匀系数normal concrete:普通混凝土normal section:正截面notch and tooth joint:齿连接number of sampling:抽样数量Oobligue section:斜截面oblique—angle fillet weld:斜角角焊缝one—way reinforced(or prestressed)concrete slab‘‘:单向板open web roof truss:空腹屋架,ordinary concrete:普通混凝土(28)ordinary steel bar:普通钢筋(29)orthogonal fillet weld:直角角焊缝(61)outstanding width of flange:翼缘板外伸宽度(57)outstanding width of stiffener:加劲肋外伸宽度(57)over-all stability reduction coefficient of steel beam·:钢梁整体稳定系数(58)overlap:焊瘤(62)overturning or slip resistance analysis :抗倾覆、滑移验算(10)Ppadding plate:垫板(52)partial penetrated butt weld:不焊透对接焊缝(61)partition:非承重墙(7)penetrated butt weld:透焊对接焊缝(60)percentage of reinforcement:配筋率(34)perforated brick:多孔砖(43)pilastered wall:带壁柱墙(42)pit·:凹坑(62)pith:髓心(?o)plain concrete structure:素混凝土结构(24)plane hypothesis:平截面假定(32)plane structure:平面结构(11)plane trussed lattice grids:平面桁架系网架(5)plastic adaption coefficient of cross—section:截面塑性发展系数(58) plastic design of steel structure:钢结构塑性设计(56)plastic hinge·:塑性铰(13)plastlcity coefficient of reinforced concrete member in tensilezone:受拉区混凝土塑性影响系数(34)plate—like space frame:干板型网架(5)plate—like space truss:平板型网架(5)plug weld:塞焊缝(60)plywood:胶合板(65)plywood structure:胶合板结构(64)pockmark:麻面(39)polygonal top-chord roof truss:多边形屋架(4)post—tensioned prestressed concrete structure:后张法预应力混凝土结构(24)precast reinforced concrete member:预制混凝土构件(26)prefabricated concrete structure:装配式混凝土结构(25)presetting time:初凝时间(38)prestressed concrete structure:预应力混凝土结构(24)prestressed steel structure:预应力钢结构(50)prestressed tendon:预应力筋<29)pre—tensioned prestressed concrete structure·:先张法预应力混凝土结构(24)primary control:初步控制(22)production control:生产控制(22)properties of fresh concrete:可塑混凝土性能(37)properties of hardened concrete:硬化混凝土性能(38)property of building structural materials:建筑结构材料性能(17)purlin“—””—:檩条(4)Qqlue timber structurer:胶合木结构(㈠)quality grade of structural timber:木材质量等级(?0)quality grade of weld:焊缝质量级别(61)quality inspection of bolted connection:螺栓连接质量检验(63)quality inspection of masonry:砌体质量检验(48)quality inspection of riveted connection:铆钉连接质量检验(63)quasi—permanent value of live load on floor orroof,:楼面、屋面活荷载准永久值(15)Rradial check:辐裂(70)ratio of axial compressive force to axial compressive ultimatecapacity of section:轴压比(35)ratio of height to sectional thickness of wall orcolumn:砌体墙柱高、厚比(48)ratio of reinforcement:配筋率(34)ratio of shear span to effective depth of section:剪跨比(35)redistribution of internal force:内力重分布(13)reducing coefficient of compressive strength in sloping grain for bolted connection:螺栓连接斜纹承压强度降低系数(68)reducing coefficient of liveload:活荷载折减系数(14)reducing coefficient of shearing strength for notch and toothconnection:齿连接抗剪强度降低系数(68)regular earthquake—resistant building:规则抗震建筑(9)reinforced concrete deep beam:混凝土深梁(26)reinforced concrete slender beam:混凝土浅梁(26)reinforced concrete structure:钢筋混凝土结构(24)reinforced masonry structure:配筋砌体结构(41)reinforcement ratio:配筋率(34)reinforcement ratio per unit volume:体积配筋率(35)relaxation of prestressed tendon:预应筋松弛(31)representative value of gravity load:重力荷载代表值(17)resistance to abrasion:耐磨性(38)resistance to freezing and thawing:抗冻融性(39)resistance to water penetration·:抗渗性(38)reveal of reinforcement:露筋(39)right—angle filletweld:直角角焊缝(61)rigid analysis scheme:刚性方案(45)rigid connection:刚接(21)rigid transverse wall:刚性横墙(42)rigid zone:刚域(13)rigid-elastic analysis scheme:刚弹性方案(45)rigidity of section:截面刚度(19)rigidly supported continous girder:刚性支座连续梁(11)ring beam:圈梁(42)rivet:铆钉(55)riveted connecction:铆钉连接(60)riveted steel beam:铆接钢梁(52)riveted steel girder:铆接钢梁(52)riveted steel structure:铆接钢结构(50)rolle rsupport:滚轴支座(51)rolled steel beam:轧制型钢梁(51)roof board:屋面板(3)roof bracing system:屋架支撑系统(4)roof girder:屋面梁(4)roof plate:屋面板(3)roof slab:屋面板(3)roof system:屋盖(3)roof truss:屋架(4)rot:腐朽(71)round wire:光圆钢丝(29)Ssafety classes of building structures:建筑结构安全等级(9)safetybolt:保险螺栓(69)sapwood:边材(65)sawn lumber+A610:方木(65)sawn timber structure:方木结构(64)saw-tooth joint failure:齿缝破坏(45)scarf joint:斜搭接(70)seamless steel pipe:无缝钢管(54)seamless steel tube:无缝钢管(54)second moment of area of tranformed section:换算截面惯性矩(34) second order effect due to displacement:挠曲二阶效应(13)secondary axis:弱轴(56)secondary beam:次粱(6)section modulus of transformed section:换算截面模量(34)section steel:型钢(53)semi-automatic welding:半自动焊接(59)separated steel column:分离式钢柱(51)setting time:凝结时间(38)shake:环裂(70)shaped steel:型钢(53)shapefactorofwindload:风荷载体型系数(16)shear plane:剪面(67)shearing rigidity of section:截面剪变刚度(19)shearing stiffness of member:构件抗剪刚度(20)short stiffener:短加劲肋(53)short term rigidity of member:构件短期刚度(31)shrinkage:干缩(71)shrinkage of concrete:混凝干收缩(30)silos:贮仓(3)skylight truss:天窗架(4)slab:楼板(6)slab—column structure:板柱结构(2)slag inclusion:夹渣(61)sloping grain:‘斜纹(70)slump:坍落度(37)snow reference pressure:基本雪压(16)solid—web steel column:实腹式钢柱(space structure:空间结构(11)space suspended cable:悬索(5)spacing of bars:钢筋间距(33)spacing of rigid transverse wall:刚性横墙间距(46)spacing of stirrup legs:箍筋肢距(33)spacing of stirrups:箍筋间距(33)specified concrete:特种混凝上(28)spiral stirrup:螺旋箍筋(36)spiral weld:螺旋形焊缝(60)split ringjoint:裂环连接(69)square pyramid space grids:四角锥体网架(5)stability calculation:稳定计算(10)stability reduction coefficient of axially loadedcompression:轴心受压构件稳定系数<13)stair:楼梯(8)static analysis scheme of building:房屋静力汁算方案(45)static design:房屋静力汁算方案(45)statically determinate structure:静定结构(11)statically indeterminate structure:超静定结构(11)sted:钢材(17)steel bar:钢筋(28)steel column component:钢柱分肢(51)steel columnbase:钢柱脚(51)steel fiber reinforced concrete structure·:钢纤维混凝土结构(26)steel hanger:吊筋(37)steel mesh reinforced brick masonry member:方格网配筋砖砌体构件(41) steel pipe:钢管(54)steel plate:钢板(53)steel plateelement:钢板件(52)steel strip:钢带(53)steel support:钢支座(51)steel tie:拉结钢筋(36)steel tie bar for masonry:砌体拉结钢筋(47)steel tube:钢管(54)steel tubular structure:钢管结构(50)steel wire:钢丝(28)stepped column:阶形柱(7)stiffener:加劲肋(52)stiffness of structural member:构件刚度(19)stiffness of transverse wall:横墙刚度(45)stirrup:箍筋(36)stone:石材(44)stone masonry:石砌体(44)stone masonry structure:石砌体结构(41)storev height:层高(21)straight—line joint failure:通缝破坏(45)straightness of structural member:构件乎直度(71)strand:钢绞线(2,)strength classes of masonry units:块体强度等级(44)strength classes of mortar:砂浆强度等级(44)strength classes of structural steel:钢材强度等级(55)strength classes of structural timber:木材强度等级(66)strength classes(grades) of concrete:混凝土强度等级(29)strength classes(grades) of prestressed tendon:预应力筋强度等级(30) strength classes(grades) of steel bar :普通钢筋强度等级(30)strength of structural timber parallel to grain:木材顺纹强度(66)strongaxis:强轴(56)structural system composed of bar:”杆系结构(11)structural system composed of plate:板系结构(12)structural wall:结构墙(7)superposed reinforced concrete flexural member:叠合式混凝土受弯构件(26)suspended crossed cable net:双向正交索网结构(6)suspended structure:悬挂结构(3)swirl grain:涡纹(?1)Ttensile(compressive) rigidity of section:截面拉伸(压缩)刚度(19)tensile(compressive) stiffness of member:构件抗拉(抗压)刚度(20)tensile(ultimate) strength of steel:钢材(钢筋)抗拉(极限)强度(18)test for properties of concrete structural members:构件性能检验(40): thickness of concrete cover:混凝土保护层厚度(33)thickness of mortarat bed joint:水平灰缝厚度(49)thin shell:薄壳(6)three hinged arch:三铰拱(n)tie bar:拉结钢筋(36)tie beam,‘:系梁(22)tie tod:系杆(5)tied framework:绑扎骨架(35)timber:木材(17)timber roof truss:木屋架(64)tor-shear type high-strength bolt:扭剪型高强度螺栓(54)torsional rigidity of section:截面扭转刚度(19)torsional stiffness of member:构件抗扭刚度(20)total breadth of structure:结构总宽度(21)total height of structure:结构总高度(21)total length of structure:结构总长度(21)transmission length of prestress:预应力传递长度(36)transverse horizontal bracing:横向水平支撑(4)transverse stiffener·:横向加劲肋(53)transverse weld:横向焊缝(60)transversely distributed steelbar:横向分布钢筋(36)trapezoid roof truss:梯形屋架(4)triangular pyramid space grids:三角锥体网架(5)triangular roof truss:三角形屋架(4)trussed arch:椽架(64)trussed rafter:桁架拱(5)tube in tube structure:筒中筒结构(3)tube structure:简体结构(2)twist:扭弯(71)two hinged arch:双铰拱(11)two sides(edges) supported plate:两边支承板(12)two—way reinforced (or prestressed) concrete slab:混凝土双向板(27)Uultimate compressive strain of concrete’”:混凝土极限压应变(31)unbonded prestressed concrete structure:无粘结预应力混凝土结构(25) undercut:咬边(62)uniform cross—section beam:等截面粱(6)unseasoned timber:湿材(65)upper flexible and lower rigid complex multistoreybuilding·:上柔下刚多层房屋(45)upper rigid lower flexible complex multistoreybuilding·:上刚下柔多层房屋(45)Vvalue of decompression prestress :预应力筋消压预应力值(33)value of effective prestress:预应筋有效预应力值(33)verification of serviceability limit states·”:正常使用极限状态验证(10)verification of ultimate limit states :承载能极限状态验证(10)vertical bracing:竖向支撑(5)vierendal roof truss:空腹屋架(4)visual examination of structural member:构件外观检查(39)visual examination of structural steel member:钢构件外观检查(63)visual examination of weld:焊缝外观检查(62)Wwall beam:墙梁(42)wall frame:壁式框架(门)wall—slab structure:墙板结构(2)warping:翘曲(40),(71)warping rigidity of section:截面翘曲刚度(19)water retentivity of mortar:砂浆保水性(48)water tower:水塔(3)water/cement ratio·:水灰比(3g)weak axis·:弱轴(56)weak region of earthquake—resistant building:抗震建筑薄弱部位(9) web plate:腹板(52)weld:焊缝(6[))weld crack:焊接裂纹(62)weld defects:焊接缺陷(61)weld roof:焊根(61)weld toe:焊趾(61)weldability of steel bar:钢筋可焊性(39)welded framework:焊接骨架()welded steel beam:焊接钢梁(welded steel girder:焊接钢梁(52)welded steel pipe:焊接钢管(54)welded steel strueture:焊接钢结构(50)welding connection·:焊缝连接(59)welding flux:焊剂(54)welding rod:焊条(54)welding wire:焊丝(54)wind fluttering factor:风振系数(16)wind reference pressure:基本风压(16)wind—resistant column:抗风柱(?)wood roof decking:屋面木基层(64)Yyield strength (yield point) of steel:钢材(钢筋)屈服强度(屈服点)。
英文翻译:超高层建筑结构横向风荷载效应
Across-wind loads and effects of super-tall buildings and structuresGU Ming & QUAN YongSCIENCE CHINA Technological Sciences,2011,54(10):2531~2541超高层建筑结构横向风荷载效应顾明全勇中国科学技术科学,2011,54(10):2531~2541摘要随着建筑高度的不断增加,横向风荷载效应已经成为影响超高层建筑结构设计越来越重要的因素。
高层建筑结构的横向风荷载效应被认为由空气湍流,摇摆以及空气流体结构相互作用所引起的。
这些都是非常复杂的。
尽管30年来,研究人员一直关注这个问题,但横向风荷载效应的数据库以及等效静力风荷载的计算方法还没有被开发,大多数国家在荷载规范里还没有相关的规定。
对超高层建筑结构的横向风荷载效应的研究成果主要包括横向风荷载的动力以及动力阻尼的测定,数据库的开发和等效静力风荷载的理论方法的等等。
在本文中,我们首先审查目前国内外关于超高层建筑结构风荷载的影响的研究。
然后我们在阐述我们的研究成果。
最后,我们会列举我们研究成果在超高层建筑结构中应用的的案例。
1 引言随着科技的发展,建筑物也越来越长、高、大,越来越对强风敏感。
因此,风工程研究人员面临着更多新的挑战,甚至一些未知的问题。
例如,超高层建筑现在在全世界普遍流行。
高度为443米的芝加哥希尔斯塔保持了是世界上最高建筑物26年的记录,现在还有几十个超过400米的超高层建筑被建造。
828米高的迪拜塔已经建造完成。
在发达国家,甚至有人建议建造数千米的“空中城市”。
随着高度的增加,轻质高强材料的使用,风荷载效应特别是具有低阻尼的超高层建筑横向风动力响应将变得更加显著。
因此,强风荷载将成为设计安全的超高层建筑结构中的一个重要的控制因素。
达文最初引入随机的概念和方法应用发哦顺风向荷载效应的建筑物和其他结构的抗风研究。
超高层建筑结构横风向风荷载研究
计算 方法 , 于其它 截面 高层 结构 , 没有 任 对 则
何规 定 。 横风 向风振 的定义 为 ,当建 筑物 受 到风 力作 用 时 , 不但 顺风 向可 能 发生 风振 , 而且 在 定 条件 下 , 能发 生横风 向的风振 。 也 横风 向 风振 是 由不稳定 的空气 动力 形成 ,其 性质 远 比顺 风 向复杂 。 当结 构物 上有风 作用 时 , 就会 在该 结构 物两侧 背 后产 生交 替 的漩 涡 ,且 将
:
Ci w enoea o c ha e T h li nPd t nN c ogs drus
高 新 技 术
超高层建筑结构横风 向风荷载研 黑龙江 哈 尔滨 10 0 2 哈 尔滨工业大学建筑设计研 究院 , 500 、 黑龙江 哈 尔滨 10 0 ) 5 0 0
22计算 工程 - 为便 于 比较 ,本文 选择 了三个典 型 工程 来 进行 比较 , 别 为 高层 A, 分 高层 B, 层 C 高 , 结 构信 息如表 1 示 。 所 结构 阻尼 比为 00 , . 峰 5 值 因子统 一取 为 3 。 . 三个 高层 结构 的风洞 试 0 验如 图 13 示 。其 中高层 A的模 型 比例 为 —所 10, : 0 高层 B的模 型 比例 为 1 5 , 层 C的 4 : 0高 2
一
有一 侧然后 向另一侧 交 替脱 落 ,形 成所 谓 的 卡 门涡列 。卡 门涡列 的发 生会 使建 筑 物表 面 的压 力呈周 期性 变 化 ,其 结果 是 使结 构物 上
作用 有周 期性变 化 的力 ,作用 方 向与 风 向垂 直 ,称 为横 风 向作用 ,也 可 以称之 为 涡激振 动。 当发生漩 涡脱 落 时 , 若漩 涡脱 落频 率与 结 构 自振频率 相符 , 出现共 振 。 般 大家认 为 将 一 对于 圆形截 面高 层结 构更 容 易出 现这种 涡激 振动 , 因而 横风 向振动 问题较 为 突出 。 而实 际 上随着 结构 高度 的增 加 ,常规 截面 高层 建筑 的横 风 向振 动 同样 比较剧 烈 ,有 时可能 会远 大于顺 风 向风振 , 成为 控制 荷载 。 而我 国规范 则欠缺 该部 分的 内容 。这种 内容上 的欠 缺会 使得设 计人 员认 为对 于常规 截 面高 层建 筑结 构不存 在横 风 向风振 问题 , 即使 存在 , 风 向 横 风 荷 载也远 小于顺 风 向风 荷 载 ,顺 风 向风荷
高层建筑顶部横梁的风效应
高层建筑顶部横梁的风效应刘慕广;谢壮宁;石碧青【摘要】The characteristics of aerodynamic force and wind load of a horizontal beam located at a tall building's top were analyzed with CFD numerical simulation and wind tunnel tests.The results of CFD numerical simulation showed that the wind attack angle of the horizontal beam increases significantly due to the effect of air flow around the building top.Both the results of the beam's aerodynamic force obtained from numerical simulation and those gained from wind tunnel tests showed that the beam has a stable cross section for galloping.The wind-induced response analysis of the beam revealed that its peak lift is greater than its peak drag.Analyzing the power spectral density function of generalized force and the influence of frequency ratio on peak lift was further conducted.It was shown that the horizontal beam has vortex-induced resonances under the strong wind with 50-year return period.%结合 CFD 数值方法和风洞试验分析了高层建筑顶部横梁的气动力和风荷载特性。
高层建筑外文翻译 (2)
捆绑筒体结构——随着对高楼大厦不断的需求,框筒或桁架筒体结构逐渐被用于捆绑的形式,以创造更大的筒体结构,并保持其工作效率。在芝加哥10层的西尔斯总部大楼有九个筒体结构,在建筑的瓷砖基础捆绑三排。部分单独筒体建造到建筑的不同高度,展示了这一最新的建筑结构概念无限的可能性。西尔斯大厦有一千四百五英尺(442米)高,是世界上最高的建筑。
筒中筒结构——另一个在钢筋混凝土办公楼中结合了传统的外部框筒剪力墙施工的体系。该系统包括一个柱距紧密的外框架和内部剪力墙结构,将中央服务区包围起来。这种筒中筒结构,使得波士顿的目前全球最高(714英尺或218米)的轻质混凝土建筑的设计成为可能。
钢筋混凝土结构和钢结构的结合也得到了很好的发展,其中一个例子是Skidmore Owing和Merrill开发的混合结构,它是由外部的钢筋混凝土框架结构包围内部的钢结构所组成,从而结合了钢筋混凝土和钢结构的优点。新奥尔良52层的壳体广场大厦就是应用的这种结构。
Tall Buildings
Fazlur Rahrnan khan
Although there have been many advancements in building construction technology in general, spectacular achievements have been made in the design and construction of ultrahigh-rise buildings.
高层建筑横风向风效应研究综述
第38卷第6期2010年6月同济大学学报(自然科学版)JOURNAL OF TONGJ I UNIVERSI TY (NATURAL SCIENCE )Vol.38No.6 J un.2010文章编号:02532374X (2010)0620810209DOI :10.3969/j.iss n.02532374x.2010.06.006收稿日期:2009-03-23基金项目:国家自然科学基金资助项目(50878159,50621062,90715040);上海市浦江人才计划资助项目(08PJ 14095);“十一五”国家科技支撑计划资助项目(2006BAJ 03B04);教育部高等学校博士学科点专项科研基金资助项目(200802471005)作者简介:全 涌(1971—),男,副教授,工学博士,主要研究方向为结构抗风.E 2mail :quanyong @ 高层建筑横风向风效应研究综述全 涌,曹会兰,顾 明(同济大学土木工程防灾国家重点实验室,上海200092)摘要:高层建筑的横风向荷载及响应问题非常复杂,它与来流紊流、尾流和气动反馈3个方面的激励有关.虽然研究人员关注这一问题已有30多年,但迄今为止还没有形成被广泛采用的成熟的分析理论和方法,许多国家的规范中尚无相关的规定.国内外高层建筑横风向风效应研究成果主要分为3部分:横风向气动力的确定,横风向气动阻尼的识别和横风向等效静力风荷载的计算方法.风洞试验技术、数据拟合技术、参数识别技术是确定高层建筑横风向风效应的主要手段.通过分析国内外研究手段和方法的现状及优缺点,针对高层建筑横风向响应研究中存在的问题和不足,提出了应该关注的重点:高层建筑外形的复杂变化对气动力的影响、高层建筑横风向气动阻尼的识别方法以及形成机理和影响因素、等效静力风荷载计算方法和复杂形体超高层建筑顺、横、扭3种风荷载分量的耦合问题.关键词:高层建筑;横风向风效应;气动力;气动阻尼;等效静力风荷载中图分类号:TU 973.32;TU 119.21 文献标识码:ACr oss 2wi nd Eff ect of High 2rise B uildi ngs :S t a te of A r tQUAN Y ong ,CAO Huila n ,GU Mi ng(State Key Laboratory of Disaster Reduction in Civil Engineering ,Tongji University ,Shanghai 200092,China )Abs t r act :The mechanisms of cross 2wind effects of high 2rise buildings are very complicated ,which are associated with the incident turbulence ,the wake and the aerodynamic feedback.Although considerable research efforts to assess cross 2wind effect have undertaken worldwide for decades ,no widely adopted sop histicated theory and method are made ,f urther 2more ,no relevant guidelines are made in the load standards and codes of most count ries.These worldwide research subjects of cross 2wind effect include three important parts ,the determinationofcross 2windaerodynamicforce ,theidentification of cross 2wind aerodynamic damping and the calculation methods of across 2wind equivalent static wind loads.Wind tunnel technique ,data fitting technique and parameter identification technique are the p rincipal means to determine the cross 2wind effects of high 2rise buildings.Based on the p roblems and deficiency of across 2wind response research ,some research emphases are p roposed :the effect of complexbuildingshapetoaerodynamicforces ,theidentification ,mechanisms and influence factors of cross 2wind aerodynamic damping ,calculation methods of equivalent static wind load and 3-D coupling p roblems of complex high 2rise buildings.Keyw or ds :high 2risebuilding ;cross 2windeffect ;aerodynamic force ;aerodynamic damping ;static equivalent wind loads 目前世界上正在经历着史无前例的高层、超高层建筑建设高峰.芝加哥西尔斯大厦(Sears tower )曾以443m 的高度稳坐世界最高建筑物宝座26年.而现在世界上,拟建、在建和已建的400m 以上的结构有37栋,尤以正在建造且已超过700m 的迪拜大厦(Burj Dubai )为首.发达国家甚至提出了千米高度量级的“空中城市”的概念.随着结构高度的增加和高强材料的使用,低阻尼、高柔结构的风振响应更加显著,使得强风作用下的结构风荷载成为结构安全性和舒适性设计的控制荷载.从Davenport [1-3]最早将随机概念和方法引入建筑结构的抗风研究30多年以来,在建筑结构的顺风向荷载及响应的研究方面,已逐渐形成比较完善的计算理论和方法[4-16],主要成果也反映在多数国家的建筑结构荷载规范中[17-18].在现代超高层建筑设计中,横风向荷载及其响 第6期全 涌,等:高层建筑横风向风效应研究综述 应经常会超越顺风向,成为结构抗风设计的控制性因素.然而,由于机理复杂,影响因素多,虽然研究人员关注这一课题已有30多年,但迄今为止仍未形成被广泛接受的成熟的分析理论和方法,很多国家的规范中也还没有相关的内容和规定.日本建筑协会的建筑荷载建议(A I J)[17]中推荐的高层建筑横风向风荷载及响应的计算方法是目前各国规范中对这一问题最详细的规定,但其公式只适用于高宽比<6的高层建筑在折算风速<10的情形,且它把横风向基阶模态的惯性荷载当成横风向等效静力风荷载,这种方法计算共振分量部分是正确的,但背景分量也用这种方法计算是没有理论依据的.同时,它没有考虑气动阻尼的作用.在我国《建筑结构荷载规范(G B50009—2001)》[19]中仅给出类似于烟囱的细长圆形结构按涡激共振估算的简单方法,这一方法并不能用于一般高层建筑的抗风设计.《高耸结构设计规范(G BJ135—90)》中考虑了圆形截面塔桅结构横向风荷载的作用;在《高层民用建筑钢结构技术规程(J G J99—98)》规定了顺风向与横风向最大风振加速度的计算方法,主要是用来验算钢结构高层建筑的舒适度,而对具体的横风向风荷载则没有做出规定.上海《高层建筑钢结构设计规程》[20]纳入了作者的相关研究成果[21-22],给出了折算横风向气动力谱及气动力系数随建筑高宽比、宽厚比和风场类型变化的经验公式,但这一方法仅适用于高宽比为4~9、宽厚比为0.5~2.0的矩形截面高层建筑的抗风设计.该规范也给出了高层建筑气动阻尼的简约计算公式,但也仅仅是针对方形建筑的情况.开展超高层建筑横风向风致振动和等效静力风荷载研究,具有重要的理论意义,对指导超高层建筑的结构设计具有重大的工程应用价值.本文在总结国内外30多年来的高层建筑横风向风效应的研究进展的基础上,对今后的相关研究方向提出了一些有益的建议.1 国内外研究现状Kwo k[23]认为横风向激励包括:尾流激励、来流湍流和结构横风向位移及其高阶时间导数引发的激励,后者是风与结构相互耦合的气动阻尼作用. Solari[24]将引起横风向风振的原因归纳为:横风向湍流和尾流激励(宽度和厚度接近,不考虑分离再附),其中尾流激励是主要原因.Islam等[25]和Kareem[6]认为,横风向响应由受分离剪切层和尾流脉动影响的侧面非均匀的压力脉动产生.Cheng[26]把横风向振动归因于尾流剪切层的分离与漩涡脱落过程.现有的被广泛接受的横风向激励机制为:高层建筑横风向风荷载主要来源于来流紊流激励、尾流激励和气动弹性激励3个方面[27-29].来流激励和尾流激励反映在外加气动力上,气动弹性激励反映在气动阻尼上.因此横风向风荷载不再符合准定常假定,横风向风荷载谱不能根据来流脉动风速谱直接给出.风洞试验是研究高层建筑横风向特性的主要手段,目前采用的风洞试验方法主要有气动弹性模型试验、高频测力天平试验和刚性模型多点测压试验.研究人员通常采用试验手段得到的横风向外加气动力和横风向气动阻尼数据,利用随机振动理论分析建筑结构的横风向响应,最后再反演出设计人员惯用的等效静力风荷载形式.研究的相关内容主要包括:横风向气动力的确定,横风向气动阻尼的识别和横风向等效静力风荷载的计算方法.1.1 横风向气动力的确定横风向气动力的确定基本上包括以下几种方法:①从气动弹性模型风洞试验得到的结构响应反演横风向气动力谱;②对刚性模型表面风压进行空间积分得到高层建筑的横风向气动力谱;③利用高频天平直接测量模型的基底弯矩来获得广义气动力.1.1.1 气动弹性响应反演法气动弹性模型响应反演法即用单自由度气动弹性模型的横风向位移或其高阶导数的功率谱结合模型的动力特性参数反演出横风向气动力谱.这种方法忽略了气动反馈作用.文献[27,30-34]对一系列圆形、方形、六角形、八角形及带凹角及圆角的方形以及截面沿高收缩的高层或柱状结构进行了气动弹性模型风洞试验.假定建筑结构的基阶模态形状与高度成正比,且忽略高阶模态的影响,用弹性支撑的刚性模型模拟高层建筑的单自由度气动弹性模型,利用应变平衡系统测得模型顶部横风向位移响应谱,结合模型的动力特性参数反演模态广义横风向气动力谱.运用这种方法,研究人员研究了高宽比、紊流度、折算风速、截面形状、涡激共振、非线性及角沿修正对气动力谱的影响.Kareem[35]的研究表明,代表气动反馈的气动阻尼力常常是不能忽略的,用气动弹性模型的风致响应反演出来的气动力中包含了外加气动力和气动阻尼力2种成分,而气动阻尼力是随结构的振动幅度118 同济大学学报(自然科学版)第38卷 及折算风速的变化而变化的,这使得利用这种方法得到的气动力谱只适用于相应风速作用下具有相应刚度的建筑,对其他风速下刚度不同的建筑是不适用的,这大大限制了试验得到的气动力谱的通用性.另外,由气动弹性模型特性引起的误差无法避免,特别是阻尼估计时误差较大.由于精度不够及适用范围的局限性,现在基本不再使用这种方法.1.1.2 刚性模型表面风压积分法为了更准确地计算结构风荷载及风致振动,风工程研究者于上世纪80年代初开始把高层建筑的横风向气动力分成外加气动力和气动阻尼力分别进行研究.气动阻尼力与结构运动有关,受结构外形、结构运动幅度、风速大小、风场特性等多个因素影响.外加气动力只是风作用在静止模型上的力,多数高层建筑是对雷诺数不敏感的钝体结构,折算外加气动力谱只受结构外形和风场环境的影响,与试验风速和结构的响应无关,因此可以直接对刚性模型表面风压进行空间积分得到,并且可以适用于不同动力特性的建筑在不同来流风速的情况.刚性模型表面风压积分法假定测点代表的面积范围内的压力完全相关,为了减少由于这一假定带来的误差,测点数应当尽量多;另一方面,由于测压设备的限制,同时测压的点数又不可能太多.测压设备发展过程中遇到了2个主要问题:(1)测压管道系统的频响特性会使脉动压力测量结果的幅值和相位失真.目前解决这个问题的常用方法有———一种是在测压管中采用扼流措施,以提高管道系统的幅频特性的平直段和相频特性的线性度[36];另一种是采用计算机进行数据处理,直接根据系统的频响特性进行修正[28].(2)测压通道数有限.对这个问题曾经提出3种解决方法———一是加权气压平均法,这种方法可以减少测压的通道数,但对于建筑体型比较复杂、高阶振动、非理想模态等问题,测压点的布置及测试都比较困难.二是用有限测点合成广义力,这些方法都利用风是平稳随机过程的假定,需要重复多次采样,而且数据处理也会增加测试的误差.Reinhold[37]通过模拟的等效数控程序来实现对风压的积分. Kareem[4,38]由模型表面同时测压积分结合风压脉动的局部时空变化确定风荷载.同时这种方法还可以为围护结构设计提供输入数据,给出了模型表面同一高度水平的功率谱密度和互谱变化.利用这种方法,他给出了城市和效区风场下横风向力函数的横风向功率谱密度矩阵.研究表明:来流湍流的增加可以使横风向气动力减小,St rouhal(斯特劳哈尔)频率轻微减小,气动力谱带宽变宽、峰值降低. Kareem[6,39]通过时空平均技术获得时空随机压力场的局部平均数据.Kareem使用具有一致加权离散矩阵的压力接口的测压管道系统测量了多个高度水平的顺风向、横风向和扭转荷载.Reinhold,Tallin和Ellingwood[40-42]测量了结构模型上半部分的气动力,Islam等[25]利用传递函数模拟技术合成了结构模型下部的气动力.三是发展大量测点的多通道测压设备.Steckley等[43]、Suzuki等分别介绍了他们开发的设备,这些设备都利用了新的测试技术.Islam等[25]、Cheng等[44]、Yeh等[45]、Nishimura等[46]、梁枢果[47-48]和张建国[49]等对模拟风场中刚性模型表面风压进行空间积分,给出了高层建筑的横风向气动力谱,分别研究了相关性、紊流度、紊流尺度、旋涡脱落、驻点及分离点、长宽比、高宽比等对横风向气动力的影响.Cheng等[44]研究了27种流场条件,推导了用紊流强度和紊流尺度表示的横风向气动力谱的经验公式,认为紊流强度使横风向气动力谱的带宽变宽,峰值降低,但总能量不变化;紊流尺度使总能量减小,但不影响谱线形状.Yeh 等[45]从理论上推导出并从试验中证实了矩形截面高层建筑的横风向气动力谱中频率大于旋涡脱落频率的部分可以表达为折算频率的指数函数形式,指数为-10/3.Nishimura等[46]研究了亚临界区平滑流中静止2维圆柱脉动气动力的形成机理,给出了顺风向及横风向气动力谱以及圆柱上不同位置的压力谱.得到结论:驻点及分离点的脉动与横风向气动力的脉动同步,脉动横风向气动力在Stro uhal频率及3倍St rouhal频率处有峰值.梁枢果[47-48]研究不同长宽比、高宽比的矩形棱柱体在边界层风洞中典型迎角下的横风力,提出了矩形高层建筑横风向气动力谱的经验公式,建立了完整的横风向动力风荷载解析模型.这一模型包括了横风向动力风荷载沿高度变化信息和空间相关信息.将横风向功率谱分为2部分:1/4≤长宽比<3时,横风向功率谱只有1个峰值,由旋涡脱落引起,功率谱曲线带宽与高宽比有关;3≤长宽比≤4时,横风向功率谱有2个谱峰,分别由初级旋涡和分离流再附引起的次级旋涡脱落产生.两谱峰的能量分配与风场湍流度、结构高宽比和截面厚宽比有关.张建国[49]从7种典型超高层建筑刚性模型的同步测压试验数据中分解出各层横风向荷载的横向紊流作用及旋涡脱落激励作用,进而求得各自对应的横风向1阶广义力谱,分析结果表218 第6期全 涌,等:高层建筑横风向风效应研究综述 明:横向紊流对横风向气动力谱的贡献较小,而旋涡脱落激励对总横风向气动力谱的贡献较大;在不同风场中这些贡献会发生改变.根据同步测压试验分解横风向气动力谱的方法可以清楚地解释超高层建筑横风向气动力谱的构成部分.利用刚性模型表面压力测量风洞试验可以计算出结构基阶以及高阶广义气动力谱.但由于这种方法需要在模型表面布置大量测压孔并用大量管道将测压孔与测量设备连接起来,实验过程比较复杂,特别是在进行系统性研究而需要对大量模型进行测压试验时显得非常麻烦.并且,对于表面变化复杂的结构,很难用这种方法准确地测量出外加气动力.1.1.3 高频动态天平测力法测压扫描阀在风工程界得以广泛应用的同时,高频天平也渐渐被风洞试验广泛采用.当高层建筑的模态振型被简化为高度的线性函数时,其模态广义气动力与气动基底弯距存在简单的线性关系.当高层建筑的模态振型偏离理想的线性函数时,也可以通过一些修正方法将广义气动力修正成气动基底弯矩的线性函数.因此,只要把高频天平安装在高层建筑刚性模型基底就可以轻松测得它的基阶广义气动力.高频动态天平是20世纪70年代逐步发展起来的.最早试图利用这种设备测基底弯矩的是Cermak 等,他们首先指出了天平的固有频率必须很高. Whit bread首先设计出了两分量天平,考虑了系统刚度与灵敏度的折衷[22].Tschanz等[50]研制的五分量天平标志天平设备基本成熟,它的固有频率可达280Hz.Marukawa[51],Kanda[52],Kareem[6],Xu等[53]及全涌等[21-22,29]用五分量天平测量了中高层建筑的横风向气动力,研究了高宽比、宽厚比、风场、风向、扭矩分量、相关性、截面形状及角沿修正对高层建筑横风向气动力谱的影响.Marukawa[51]基于加速度响应与风速成正比的假定,给出了横风向响应的简化公式.同时为了方便估计横风向响应,提出了横风向倾覆弯矩功率谱密度的表达式.其中只考虑了强迫振动作用,不考虑气动正阻尼作用、“锁定”激励、驰振和颤振的影响.Kanda[52]测量了3种大气边界层风场中方形、矩形、三角形及菱形截面高层建筑的脉动风荷载,研究发现:乡村地貌下的顺风向气动力谱的峰值频率高于海岸地貌和市区地貌,但总体上谱形状趋于一致;对于横风向气动力谱,建筑的形状不同,峰值频率也不同;湍流度增加,谱峰降低,谱形状变宽.Kareem[6]测量了各种截面形状的中高层建筑在市区和郊区风场中的横风向气动力谱,研究表明:由于横风向气动力谱较陡、平均风速不确定和谱的离散性较大,造成横风向响应的易变性;但感兴趣的频率范围内高宽比确实会影响谱的幅值和形状,但其试验中高宽比在4~6时其变化对横风向气动力谱的影响不大;通过气动力谱分析,进一步证实顺风向和横风向或扭转向力的相关是可以忽略的,但横风向与扭转向力分量的相关很明显.Xu等[53]测得线性模态形状的广义气动力谱.假定脉动顺风向、横风向和扭转向激励互谱可以用同一表达式近似表示(不考虑与幅值相关的横风向激励,如锁住和驰振激励),考虑相关系数的2种极限情况———风荷载随高度的低相关和高相关,将广义气动力谱修正到适用于任意振型,并给出了一些实用的公式.全涌和顾明[21-22,29]拟合得到了折算横风向气动力谱及气动力系数的经验公式,这些公式已被纳入我国地方性设计规程.虽然高频动态天平试验法可以简单高效地得到广义气动力,但以上研究均是在线性振型假定的基础上得到的结果,即使使用各种方法将其修正到任意振型,但终究都是对基阶振型进行修正,没有考虑任意高阶振型的影响.1.2 横风向气动阻尼的识别Kareem[35]对刚性模型测压风洞试验中测得的表面压力进行空间积分,导出横风向外加气动力谱,发现在折算风速>6时,用此气动力谱计算得到的响应明显低于用同一建筑气动弹性模型试验测得的响应.这使得人们认识到横风向负气动阻尼的存在及其可能造成的危险.气动阻尼的影响因素很多,包括结构外形、风速大小、风场条件及结构振动强度等等,使得结构响应计算时气动阻尼的取值成为一个难题.这使得气动阻尼的识别成为人们一直关注的重要问题之一.经过30多年的探索,人们发现很多识别气动阻尼的方法.这些方法大体上可以分为3类:①用刚性模型与气动弹性模型比较试验计算出气动阻尼;②从模拟风场中做强迫振动的建筑模型所受气动力中分离出气动阻尼力,从而得到气动阻尼;③用系统参数识别的随机方法从模拟风场中气动弹性模型的随机响应输出信息中识别出气动阻尼.1.2.1 刚性模型与气动弹性模型试验比较法Isyumov等[54]总结了2种得到气动阻尼的方法:一种是对比已知结构阻尼的高频天平测力模型318 同济大学学报(自然科学版)第38卷 和气动弹性模型响应的共振分量得到气动阻尼;另一种是测量响应谱,并由半功率谱法或从自相关函数中估计气动阻尼.结果表明:在高湍流环境下,在关心的风速范围内,大部分高层建筑的气动阻尼很小.Cheng等[26]通过对比气弹模型和压力模型预测结果来研究孤立方形高层建筑的横风向响应和气动阻尼,并提出了气动阻尼的经验模型.将气动阻尼与横风向气动力谱结合计算的横风向响应与测量结果吻合很好.研究表明:城市风场条件下的方形建筑横风向响应是气动稳定的;基于质量阻尼系数,开阔地区风场下的横风向响应分为3个区域:气动稳定区、气动非稳定区和气动发散区.这种方法比较直接,容易被人们理解和接受,但它对2个类型风洞试验的要求都比较高,其中任意一试验的误差都会导致气动阻尼计算精度的下降,这使得这一方法很难得到广泛运用.1.2.2 强迫振动试验法Steckley[28,55]开发了一套用于测量运动导致的气动力的强迫振动模型系统.该系统上部为建筑模型,置于风洞中;下部包括转动轴承、马达驱动设备、位移传感器及测力设备等,置于风洞下方.他利用这套系统对模拟风场中以单自由度模态做强迫振动的高层建筑模型的基底弯矩进行了测量,并从中分离出与结构运动相关的气动力,然后再分解成与运动同步的气动刚度力和与运动反相的气动阻尼力,最终由气动阻尼力计算出气动阻尼比.Vickery等[56]用负气动阻尼模型将气动力分为同相位分量和反相位分量,验证了用负气动阻尼模型完全可以获得有足够精度的湍流剪切层中3维结构的涡激振动. Watanabe[57]基于Steckley[28]的试验数据,将高层建筑横风向气动阻尼比表达为折算风速的闭合经验公式,并试图将公式的一些参数表达为结构振动幅度、风场紊流度、结构高宽比和结构截面形状的函数.但由于原始试验工况有限,其结果并不能反映详细的参数变化.Nishimura等[58]改进了上述方法的试验装置,把2个有相同质量和外形的模型安装于一连接杆上下两端,上端模型置于风场中,下端模型置于风洞外.用马达驱动连接杆,强迫2个模型同步做简谐振动,用安装于连接杆两端模型基部的传感器测出2个模型基底弯矩的响应时程序列,两序列相减得出结构振动时的广义气动力序列,并从中分离出气动阻尼.但他仅仅对1个方形截面高层建筑的气动阻尼进行了研究.Cooper等[59]测量了强迫简谐振动刚体模型的表面风压,然后积分得到广义气动力,再采用类似Steckley的数据处理方法得到气动阻尼.但他也仅仅给出了1个截面沿高收缩的切角方形高层建筑的试验结果.这种方法的开发开始是为了与测力天平试验相结合,分别获得气动阻尼和气动力,最终得到结构的响应.强迫振动试验法比气动弹性模型方法的优越之处在于风洞试验与实际结构特性无关.因此它可以直接和具有各种动力特性的结构响应相结合.不过其装置比较复杂.1.2.3系统参数识别法系统参数识别法即用参数识别的随机方法从模拟风场激励下结构气动弹性模型的随机振动响应信息中识别气动阻尼.参数识别的随机方法很多,可以分为功率谱密度法、谱矩法、自相关函数法等频域方法,自回归或移动平均模型法、随机减量法等时域方法以及小波分析法、希尔伯特2黄分析法等时频方法.频域识别法的最大优点是直观,从实测频响函数曲线上就可直接观测到模态的分布以及模态参数的粗略估计值,以作为有些频域识别法需要输入的初值;其次是噪声影响小,由于在处理实测频响函数过程中利用频域平均技术,最大限度地抑制了噪声影响,使模态定阶问题易于解决.时域识别法的主要优点是可以只使用实测的响应信号,无需经过傅里叶变换处理,因而可以避免由于信号截断而引起泄露,出现旁瓣、分辨率降低等因素对参数识别精度所造成的影响.时域方法中以随机减量法被广泛用于高层建筑的气动阻尼识别.J eary[60-62]将随机减量技术引入风工程,用以从自然风作用下高层建筑的随机振动信息中识别结构阻尼.他认为这种技术不仅适用于线性阻尼系统、严重非平稳力作用下(风的幅值或方向发生变化)的阻尼识别、从极低频数据中识别阻尼,还可以用于识别随振幅变化的阻尼.他指出,随机减量信号的清晰程度取决于结构自由振动周期与结构阻尼比的比值,比值越大随机减量信号值将显得越清晰.然而,在集合平均时,为了消除随机量的影响,需要的数据段数可能很多.Tamura[63]对随机减量技术的应用进行了深入讨论,对影响识别结果的参数进行了仔细分析.通过对随机减量技术(random decrement technique, RD T)传统条件的修正,提出了一种受峰值控制的随418。
土木工程专业英语课后翻译
一.1.受压构件是只承受轴向压力的结构构件。
Compression members are those structural elements that are subjected only to axial compressive forces.2.公式1.1要成立,构件必须是弹性的并且其两端能自由转动但不能横向移动。
For Eq.1.1 to be valid,the member must be elastic,and it's ends must be free to rotate but not translate laterally.3.临界荷载有时被称为欧拉荷载或欧拉屈服荷载。
The critical load is sometimes referred to as the Euler load or the Euler buckling load.4.图1.2中的应力-应变曲线不同于延性钢的应力-应变曲线,因为它有明显的非线性区域。
The stress-strain curve in Fig.1.2 is differet from the ones for ductile steel because it has a pronounced region of nonlinearity.5.其他因素,像焊接和冷弯,都能影响残余应力,但冷却过程是残余应力的主要来源。
Other factors,such as welding and cold bending to create curvature in a beam, can contribute to be the residual stress,but the cooling process is the chief source.二1。
作用在结构上的力被称为荷载The forces that act on a structure are called loads.2.恒载就是固定不变的荷载,包括结构自身的重量。
(整理)钢结构英文翻译对照
Steel structure面积:area结构形式:framework坡度:slope跨度:span柱距:bay spacing檐高:eave height屋面板:roof system墙面板:wall system梁底净高: clean height屋面系统: roof cladding招标文件: tender doc建筑结构结构可靠度设计统一标准: unified standard for designing of architecture construction reliablity建筑结构荷载设计规范: load design standard for architecture construction建筑抗震设计规范: anti-seismic design standard for architecture钢结构设计规范: steel structure design standard冷弯薄壁型钢结构技术规范: technical standard for cold bend and thick steel structure门式钢架轻型房屋钢结构技术规范: technical specification for steel structure of light weight building with gabled frames钢结构焊接规程: welding specification for steel structure钢结构工程施工及验收规范: checking standard for constructing and checking of steel structure 压型金属板设计施工规程: design and construction specification for steel panel荷载条件:load condition屋面活荷载:live load on roof屋面悬挂荷载:suspended load in roof风荷载:wind load雪荷载:snow load抗震等级:seismic load变形控制:deflect control柱间支撑X撑:X bracing主结构:primary structure钢架梁柱、端墙柱: frame beam, frame column, and end-wall column钢材牌号为Q345或相当牌号,大型钢厂出品:Q345 or equivalent, from the major steel mill 表面处理:抛丸除锈Sa2.5级,环氧富锌漆,两底两面,总厚度为125UM。
【精品】超高层建筑的结构抗风设计
超高层建筑的结构抗风设计超高层建筑的结构抗风设计超高层建筑的结构抗风设计摘要:高层特别是超高层建筑的风荷载,是结构设计中位移和扭转超限的主要控制因素,也是结构设计的重点和难点之一。
本文结合工程实例和目前国内比较常见的风振控制措施,简要介绍在设计中的一些抗风措施。
关键词:高层建筑;风荷载;抗风措施;阻尼器Abstract: The high-rise building wind loads, the structural design displacement and torsion overrun the main controlling factor also focus on structural design and one of the difficulties. In this paper, integrate the engineering example and the more common wind-induced vibration control measures to a brief introduction in the design of some of the control measures。
Key words: high-rise building;wind load;structural control measures Damper中图分类号:[TU208.3]文献标识码:A文章编号:引言:伴随城市化的快速进展,建筑高度和高宽比的增加及钢结构的大量应用,高层建筑的刚度越来越柔,阻尼比越来越小。
一方面要求建筑尽量轻柔化,可以减少自重减轻地震力等的影响,另一方面又要求建筑有较大的承载力和刚度来解决水平荷载的影响,高层建筑物如果设计的太过轻柔则达不到足够的刚度,在风荷载作用下会导致水平位移过大,因此高层建筑如何做好抗风设计,除了做好合理的结构分析与设计,可以结合控制结构振动的方法来解决以上问题。
最新土木工程常用术语英文翻译与名词解释Ⅱ
土木工程常用术语英文翻译与名词解释Ⅱ土木工程常用术语英文翻译与名词解释Ⅱ第八节结构可靠性和设计方法术语工程结构的可靠性和设计方法术语及其涵义应符合下列规定:1.可靠性reliability结构在规定的时间内,在规定的条件下,完成预定功能的能力,它包括结构的安全性,适用性和耐久性,当以概率来度量时,称可靠度.2.安全性safety结构在正常施工和正常使用条件下,承受可能出现的各种作用的能力,以及在偶然事件发生时和发生后,仍保持必要的整体稳定性的能力.3.适用性serviceability结构在正常使用条件下,满足预定使用要求的能力.4.耐久性durability结构在正常维护条件下,随时间变化而仍能满足预定功能要求的能力.5.基本变量basic variable影响结构可靠度的各主要变量,它们一般是随机变量.6.设计基准期design reference period进行结构可靠性分析时,考虑各项基本变量与时间关系所取用的基准时间.7.可靠概率probability of survival结构或构件能完成预定功能的概率.8.失效概率probability of failure结构或构件不能完成预定功能的概率.9.可靠指标reliability index度量结构可靠性的一种数量指标.它是标准正态分布反函数可在可靠概率处的函数值,并与失效概率在数值上有一一对应的关系.10.校准法calibration通过对现存结构或构件安全系数的反演分析来确定设计时采用的结构或构件可靠指标的方法.11.定值设计法deterministic method基本变量作为非随机变量的设计计算方法,其中,采用以概率理论为基础所确定的失效概率来度量结构的可靠性.12.概率设计法probabilistic method基本变量作为随机变量的设计计算方法.其中,采用以概率理论为基础所确定的失效概率来度量结构的可靠性.13.容许应力设计法permissible(allowable)stresses method以结构构件截面计算应力不大于规范规定的材料容许应力的原则,进行结构构件设计计算方法.14.破坏强度设计法ultimate strength method考虑结构材料破坏阶段的工作状态进行结构构件设计计算的方法,又名极限设计法,苛载系数设计法,破损阶段设计法,极限荷载设计法.15.极限状态设计法limit states method以防止结构或构件达到某种功能要求的极限状态作为依据的结构设计计算方法.16.极限状态limit states结构或构件能够满足设计规定的某一功能要求的临界状态,超过这一状态,结构或构件便不再满足对该功能的要求.17.极限状态方程limit state equation当结构或构件处于极限状态时,各有关基本变量的关系式.18.承载能力极限状态ultimate limit states结构或构件达到最大承载能力,或达到不适于继续承载的变形的极限状态.19.正常使用极限状态serviceability limit states结构或构件达到使用功能上允许的某一限值的极限状态.20.分项系数partial safety factor用极限状态法设计时,为了保证所设计的结构或构件具有规定的可靠,而在计算模式中采用的系数,分为作用分项系数和抗力分项系数两类.21.设计状况design situation以不同的设计要求,区别对待结构在设计基准期中处于不同条件下所受到的影响,作为结构设计选定体系,设计值,可靠性要求等的依据.22.持久状况persistent situation出现的持续时间长,几乎与结构设计基准期相同的设计状况.23.短暂状况transient situation出现的持续时间较短,而出现概率高的设计状况.24.偶然状况accidental situation偶然事件发生时或发生后,其出现的持续时间短,而出现概率低的设计状况.第九节结构上的作用、作用代表值和作用效应术语工程结构上的作用,作用代表值和作用效应术语及其涵义应符合下列规定:1.作用action施加在结构上的一组集中力或分布力,或引起结构外加变形或约束变形的原因.前者称直接作用,后者称间接作用.2.荷载load指施加在结构上的集中力或分布力.3.线分布力force per unit length施加在结构或构件单位长度上的力.4.面分布力force per unit area施加在结构或构件单位面积上的力,亦称压强.5.体分布力force per unit volume施加在结构或构件单位体积上的力.6.力矩moment of force力与力臂的乘积7.永久作用permanent action在设计基准期内量值不随时间变化的作用,或其变化与平均值相比可以忽略不计的作用.其中,直接作用亦称恒荷载.8.可变作用variable action在设计基准期内量值随时间变化且其变化与平均值相比不可以忽略的作用.其中,直接作用亦称活荷载.9.偶然作用accidental action在设计基准期内不一定出现而一旦出现其量值很大且持续时间较短的作用。
外文翻译---高层建筑及结构设计
外文翻译---高层建筑及结构设计High-rise XXX to define。
Generally。
a low-rise building is considered to be een 1 to 2 stories。
while a medium-rise building ranges from 3 or 4 stories up to 10 or 20 stories or more。
While the basic principles of vertical and horizontal subsystem design remain the same for low-。
medium-。
or high-rise buildings。
the vertical subsystems XXX high-XXX requiring larger columns。
walls。
XXX。
XXX.The design of high-rise buildings must take into account the unique XXX by their height and the need to withstand lateral forces such as wind and earthquakes。
One important aspect of high-rise design is the framework shear system。
XXX。
braced frames。
or XXX the appropriate system depends on the specific building characteristics and the seismicity of the n in which it is located.Another key n in high-rise design is the seismic system。
超高层建筑结构设计与施工控制(英文中文双语版优质文档)
超高层建筑结构设计与施工控制(英文中文双语版优质文档)Super high-rise buildings are an important part of today's urbanization process, which is of great significance to the utilization of urban space and the development of building technology. Structural design and construction control of super high-rise buildings are core issues in the construction industry and important skills that architects and construction teams need to master.1. Structural design of super high-rise buildingsThe structural design of super high-rise buildings is one of the core skills that architects need to master. The structural design of a super high-rise building needs to take into account external factors such as the height of the building, earthquakes, wind, etc., and at the same time meet the strength and stability requirements of the building. Architects need to comprehensively consider factors such as the purpose of the building, design requirements and site conditions, and design a structural form suitable for the building.The key to the structural design of super high-rise buildings lies in the control of strength and stability. Architects need to choose different structural forms according to different building heights and external environmental factors, including steel structures, concrete structures, frame structures, etc., while taking into account the rationality and feasibility of the structure to ensure the safety and stability of the structure.2. Super high-rise building construction controlConstruction control of supertall buildings is another important skill that architects and construction teams need to master. During the construction process, various factors such as the height of the building, external environmental factors, the use of manpower and mechanical equipment need to be considered to ensure the quality and safety of the construction.The key to super high-rise building construction control lies in the control of safety and efficiency. The construction team needs to formulate reasonable construction plans and safety measures to ensure safety and quality control during the construction process. At the same time, the improvement of construction efficiency must be considered to ensure the rationality of the construction period and the progress of the project.3. Innovation and application of super high-rise building structure design and construction controlWith the continuous development of construction technology and materials, the structural design and construction control of super high-rise buildings are also constantly innovated and applied. For example, through the application of digital technology and intelligent equipment, the efficiency and precision of building structure design and construction control can be greatly improved; through the application of new materials, the safety and sustainability of buildings can be improved.In addition, the structural design and construction control of super high-rise buildings also need to consider the application of human factors. Architects and construction teams need to consider the users of the building, as well as the impact of the building on the surrounding environment and urban space, and improve the use value of the building and its contribution to the urban environment by designing a humanized building structure and construction plan.In conclusion, the structural design and construction control of super high-rise buildings are the core issues in the construction industry, which requires professional knowledge and skills of architects and construction teams. Through continuous innovation and application of new technologies, new materials and humanized design concepts, the safety, sustainability and use value of super high-rise buildings can be improved, while contributing to the urbanization process and the development of building technology.超高层建筑是当今城市化进程中的重要组成部分,对于城市空间的利用和建筑技术的发展具有重要的意义。
超高层建筑结构横风向风荷载研究
振型为线性的。由于超高建筑的高度
大、频率低,不仅线性振型假定会带来
中国新技术新产品 2010 NO.15
China New Technologies and Products
较大误差,忽略二阶以上振型的贡献也会使 该方法的分析精度满足不了超高建筑抗风设 计的要求。因此本文建议采用计算结果更为 精确的基于风荷载同步测压技术的随机振动 计算方法来代替传统的高频测力天平方法计 算高层结构的风振响应。
中国新技术新产品
- 25 -
振型以 Y 方向振动为主,因此可以说,在 0°
风向角下,结构顶点振动位移中,X 方向以第
一阶振型为主,Y 方向以第二阶振型为主。上
述是结构的顶点位移动力响应分析,那么结
构整体是不是也是如此振动那?图 7 给出了
各阶模态应变能的比例。从图中可以清楚地
看到,脉动风荷载下,结构整体振动中,X 方
向以第一阶振型为主,占 0.91%,但第三振型
筑结构抗侧力体系设计中,风荷载往往是控
制荷载。因而高层建筑抗风研究是结构工程
领域中当前的热点。目前在这些高层建筑的
超高层建筑横风向荷载反演分析
超高层建筑横风向荷载反演分析方明新;杨志勇;郅伦海【摘要】Aneffectiveinversemethodwasdevelopedtoestimateacross-windloadsappliedonastructurebyusing wind-induced responses.The Kalman filter and proper orthogonal decomposition (POD)technique were utilized for the inverse identification based on limited measured responses.The across-wind loads acting on a square shaped super tall building were estimated and compared with those determined by a wind tunnel test.The feasibility and accuracy of the method were examined.The results show that the time history and power spectra of across-wind loads obtained in the present research match well with the results of wind tunnel test.The accuracy of the estimated wind loads at different noise levels is acceptable in engineering practice.The presented results are valuable and referential to the design of super-tall buildings under wind storm or typhoon actions.%提出利用风致响应识别结构横风向风荷载的反分析方法。
中英建筑结构中英文单词对照
建筑结构中英文翻译acceptable quality:合格质量acceptance lot:验收批量aciera:钢材admixture:外加剂against slip coefficient between friction surface of high-strength bolted connection:高强度螺栓摩擦面抗滑移系数aggregate:骨料air content:含气量air-dried timber:气干材allowable ratio of height to sectional thickness of masonry wall or column:砌体墙、柱容许高厚比allowable slenderness ratio of steel member:钢构件容许长细比allowable slenderness ratio of timber compression member:受压木构件容许长细比allowable stress range of fatigue:疲劳容许应力幅allowable ultimate tensile strain of reinforcement:钢筋拉应变限值allowable value of crack width:裂缝宽度容许值allowable value of deflection of structural member:构件挠度容许值allowable value of deflection of timber bending member:受弯木构件挠度容许值allowable value of deformation of steel member:钢构件变形容许值allowable value of deformation of structural member:构件变形容许值allowable value of drift angle of earthquake resistant structure:抗震结构层间位移角限值amplified coefficient of eccentricity:偏心距增大系数anchorage:锚具anchorage length of steel bar:钢筋锚固长度approval analysis during construction stage:施工阶段验算arch:拱arch with tie rod:拉扞拱arch—shaped roof truss:拱形屋架area of shear plane:剪面面积area of transformed section:换算截面面积aseismic design:建筑抗震设计assembled monolithic concrete structure:装配整体式混凝土结构automatic welding:自动焊接auxiliary steel bar:架立钢筋backfilling plate:垫板balanced depth of compression zone:界限受压区高度balanced eccentricity:界限偏心距bar splice:钢筋接头bark pocket:夹皮batten plate:缀板beam:次梁bearing plane of notch:齿承压面(67)bearing plate:支承板(52)bearing stiffener:支承加劲肋(52)bent-up steel bar:弯起钢筋(35)block:砌块(43)block masonry:砌块砌体(44)block masonry structure:砌块砌体结构(41)blow hole:气孔(62)board:板材(65)bolt:螺栓(54)bolted connection:(钢结构)螺栓连接(59)bolted joint:(木结构)螺栓连接(69)bolted steel structure:螺栓连接钢结构(50)bonded prestressed concrete structure:有粘结预应力混凝土结构(24) bow:顺弯(71)brake member:制动构件(7)breadth of wall between windows:窗间墙宽度(46)brick masonry:砖砌体(44)brick masonry column:砖砌体柱(42)brick masonry structure:砖砌体结构(41)brick masonry wall:砖砌体墙(42)broad—leaved wood:阔叶树材(65)building structural materials:建筑结构材料(17)building structural unit:建筑结构单元(building structure:建筑结构(2built—up steel column:格构式钢柱(51bundled tube structure:成束筒结构(3burn—through:烧穿(62butt connection:对接(59butt joint:对接(70)butt weld:对接焊缝(60)calculating area of compression member:受压构件计算面积(67) calculating overturning point:计算倾覆点(46)calculation of load-carrying capacity of member:构件承载能力计算(10) camber of structural member:结构构件起拱(22)cantilever beam :挑梁(42)cap of reinforced concrete column:钢筋混凝土柱帽(27)carbonation of concrete:混凝土碳化(30)cast-in—situ concrete slab column structure :现浇板柱结构cast-in—situ concrete structure:现浇混凝土结构(25)cavitation:孔洞(39)cavity wall:空斗墙(42)cement:水泥(27)cement content:水泥含量(38)cement mortar:水泥砂浆(43)characteriseic value of live load on floor or roof:楼面、屋面活荷载标准值(14) characteristi cvalue o fwindload:风荷载标准值(16)characteristic value of concrete compressive strength:混凝土轴心抗压强度标准值(30) characteristic value of concrete tensile strength:混凝土轴心抗拉标准值(30) characteristic value of cubic concrete compressive strength:混凝土立方体抗压强度标准值(29)characteristic value of earthquake action:地震作用标准值(16)characteristic value of horizontal crane load:吊车水平荷载标准值(15) characteristic value of masonry strength:砌体强度标准值(44)characteristic value of permanent action·:永久作用标准值(14)characteristic value of snowload:雪荷载标准值(15)characteristic value of strength of steel:钢材强度标准值(55)characteristic value of strength of steel bar:钢筋强度标准值(31)characteristic value of uniformly distributed live load:均布活标载标准值(14) characteristic value of variable action:可变作用标准值(14)characteristic value of vertical crane load:吊车竖向荷载标准值(15)charaeteristic value of material strength:材料强度标准值(18)checking section of log structural member:原木构件计算截面(67)chimney:烟囱(3)circular double—layer suspended cable:圆形双层悬索(6)circular single—layer suspended cable:圆形单层悬索(6)circumferential weld:环形焊缝(60)classfication for earthquake—resistance of buildings :建筑结构抗震设防类别(9) clear height:净高(21)clincher:扒钉(0)coefficient of equivalent bending moment of eccentrically loaded steel memher(beam-column) :钢压弯构件等效弯矩系数(58)cold bend inspection of steelbar:冷弯试验(39)cold drawn bar:冷拉钢筋(28)cold drawn wire:冷拉钢丝(29)cold—formed thin—walled sectionsteel:冷弯薄壁型钢(53)cold-formed thin-walled steel structure:冷弯薄壁型钢结构(50)cold—rolled deformed bar:冷轧带肋钢筋(28)column bracing:柱间支撑(7)combination value of live load on floor or roof:楼面、屋面活荷载组合值(15) compaction:密实度(37)compliance control:合格控制(23)composite brick masonry member:组合砖砌体构件(42)composite floor system:组合楼盖(8)composite floor with profiled steel sheet:压型钢板楼板(8)composite mortar:混合砂浆(43)composite roof truss:组合屋架(8)compostle member:组合构件(8)compound stirrup:复合箍筋(36)compression member with large eccentricity:大偏心受压构件(32) compression member with small eccentricity:小偏心受压构件(32) compressive strength at an angle with slope of grain:斜纹承压强度(66) compressive strength perpendicular to grain:横纹承压强度(66) concentration of plastic deformation:塑性变形集中(9)conceptual earthquake—resistant design:建筑抗震概念设计(9) concrete:混凝土(17)concrete column:混凝土柱(26)concrete consistence:混凝土稠度(37)concrete floded—plate structure:混凝土折板结构(26)concrete foundation:混凝土基础(27)concrete mix ratio:混凝土配合比(38)concrete wall:混凝土墙(27)concrete-filled steel tubular member:钢管混凝土构件(8)conifer:针叶树材(65)coniferous wood:针叶树材(65)connecting plate:连接板(52)connection:连接(21)connections of steel structure:钢结构连接(59)connections of timber structure:木结构连接(68)consistency of mortar:砂浆稠度(48)constant cross—section column:等截面柱(7)construction and examination concentrated load:施工和检修集中荷载(15) continuous weld:连续焊缝(60)core area of section:截面核芯面积(33)core tube supported structure:核心筒悬挂结构(3)corrosion of steel bar:钢筋锈蚀(39)coupled wall:连肢墙(12)coupler:连接器(37)coupling wall—beam :连梁(12)coupling wall—column:墙肢(12)coursing degree of mortar:砂浆分层度(48)cover plate:盖板(52)covered electrode:焊条(54)crack:裂缝()crack resistance:抗裂度(31)crack width:裂缝宽度(31)crane girder:吊车梁()crane load:吊车荷载(15)creep of concrete:混凝土徐变(30)crook:横弯(71)cross beam:井字梁(6)cup:翘弯curved support:弧形支座(51)cylindrical brick arch:砖筒拱(43)decay:腐朽(71)decay prevention of timber structure:木结构防腐(70)defect in timber:木材缺陷(70)deformation analysis:变形验算(10)degree of gravity vertical for structure or structural member·:结构构件垂直度(40) degree of gravity vertical forwall surface:墙面垂直度(49)degree of plainness for structural memer:构件平整度(40)degree of plainness for wall surface:墙面平整度(49)depth of compression zone:受压区高度(32)depth of neutral axis:中和轴高度(32)depth of notch:齿深(67)design of building structures:建筑结构设计(8)design value of earthquake-resistant strength of materials:材料抗震强度设计值(1 design value of load—carrying capacity of members·:构件承载能力设计值(1 designations 0f steel:钢材牌号(53designvalue of material strength:材料强度设计值(1destructive test:破损试验(40detailing reintorcement:构造配筋(35detailing requirements:构造要求(22diamonding:菱形变形(71)diaphragm:横隔板(52dimensional errors:尺寸偏差(39)distribution factor of snow pressure:屋面积雪分布系数dogspike:扒钉(70)double component concrete column:双肢柱(26)dowelled joint:销连接(69)down-stayed composite beam:下撑式组合粱(8)ductile frame:延性框架(2)dynamic design:动态设计(8)earthquake-resistant design:抗震设计(9:earthquake-resistant detailing requirements:抗震构造要求(22)effective area of fillet weld:角焊缝有效面积(57)effective depth of section:截面有效高度(33)effective diameter of bolt or high-strength bolt:螺栓(或高强度螺栓)有效直径(57) effective height:计算高度(21)effective length:计算长度(21)effective length of fillet weld:角焊缝有效计算长度(48)effective length of nail:钉有效长度(56)effective span:计算跨度(21)effective supporting length at end of beam:梁端有效支承长度(46)effective thickness of fillet weld:角焊缝有效厚度(48)elastic analysis scheme:弹性方案(46)elastic foundation beam:弹性地基梁(11)elastic foundation plate:弹性地基板(12)elastically supported continuous girder:弹性支座连续梁(u)elasticity modulus of materials:材料弹性模量(18)elongation rate:伸长率(15)embeded parts:预埋件(30)enhanced coefficient of local bearing strength of materials·:局部抗压强度提高系数(14)entrapped air:含气量(38)equilibrium moisture content:平衡含水率(66)equivalent slenderness ratio:换算长细比(57)equivalent uniformly distributed live load:等效均布活荷载(14)etlectlve cross—section area of high-strength bolt:高强度螺栓的有效截面积(58) ettectlve cross—section area of bolt:螺栓有效截面面积(57)euler's critical load:欧拉临界力(56)euler's critical stress:欧拉临界应力(56)excessive penetration:塌陷(62)fiber concrete:纤维混凝仁(28)filler plate:填板门2)fillet weld:角焊缝(61)final setting time:终凝时间()finger joint:指接(69)fired common brick:烧结普通砖(43)fish eye:白点(62)fish—belly beam:角腹式梁(7)fissure:裂缝(0)flexible connection:柔性连接(22)flexural rigidity of section:截面弯曲刚度(19)flexural stiffness of member:构件抗弯刚度(20)floor plate:楼板(6)floor system:楼盖(6)four sides(edges)supported plate:四边支承板(12)frame structure:框架结构(2)frame tube structure:单框筒结构(3)frame tube structure:框架—简体结构(2)frame with sidesway:有侧移框架(12)frame without sidesway:无侧移框架(12)frange plate:翼缘板(52)friction coefficient of masonry:砌体摩擦系数(44)full degree of mortar at bed joint:砂浆饱满度(48)function of acceptance:验收函数(23)gang nail plate joint:钉板连接()glue used for structural timberg:木结构用胶glued joint:胶合接头glued laminated timber:层板胶合木()glued laminated timber structure:层板胶合结构‘61)grider:主梁grip:夹具grith weld:环形焊缝(6)groove:坡口gusset plate:节点板(52)hanger:吊环hanging steel bar:吊筋heartwood :心材heat tempering bar:热处理钢筋(28)height variation factor of wind pressure:风压高度变化系数(16)heliral weld:螺旋形僻缝high—strength bolt:高强度螺栓high—strength bolt with large hexagon bea:大六角头高强度螺栓high—strength bolted bearing type join:承压型高强度螺栓连接,high—strength bolted connection:高强度螺栓连接high—strength bolted friction—type joint:摩擦型高强度螺栓连接high—strength holted steel slsteel structure:高强螺栓连接钢结构hinge support:铰轴支座(51)hinged connection:铰接(21)hlngeless arch:无铰拱(12)hollow brick:空心砖(43)hollow ratio of masonry unit:块体空心率(46)honeycomb:蜂窝(39)hook:弯钩(37)hoop:箍筋(36)hot—rolled deformed bar:热轧带肋钢筋(28)hot—rolled plain bar:热轧光圆钢筋(28)hot-rolled section steel:热轧型钢(53)hunched beam:加腋梁impact toughness:冲击韧性(18)impermeability:抗渗性(38)inclined section:斜截面(33)inclined stirrup:斜向箍筋(36)incomplete penetration:未焊透(61)incomplete tusion:未溶合(61)incompletely filled groove:未焊满(61)indented wire:刻痕钢丝(29)influence coefficient for load—bearing capacity of compression member:受压构件承载能力影响系数(46)influence coefficient for spacial action :空间性能影响系数(46)initial control:初步控制(22)insect prevention of timber structure:木结构防虫inspection for properties of glue used in structural member:结构用胶性能检验(71)inspection for properties of masnory units:块体性能检验(48)inspection for properties of mortar:砂浆性能检验(48)inspection for properties of steelbar:钢筋性能检验(39)integral prefabricated prestressed concrete slab—column structure:整体预应力板柱结构(25)intermediate stiffener:中间加劲肋(53)intermittent weld:断续焊缝(60)joint of reinforcement:钢筋接头(35)key joint:键连接(69)kinetic design:动态设计(8)knot:节子(木节)(70)laced of battened compression member:格构式钢柱(51)lacing and batten elements:缀材(缀件)(51)lacing bar:缀条(51)lamellar tearing:层状撕裂(62)lap connectlon:叠接(搭接)(59)lapped length of steel bar:钢筋搭接长度(36)large pannel concrete structure:混凝土大板结构(25)large-form cocrete structure:大模板结构(26)lateral bending:侧向弯曲(40)lateral displacement stiffness of storey:楼层侧移刚度(20)lateral displacement stiffness of structure:结构侧移刚度(20)lateral force resistant wallstructure:抗侧力墙体结构(12)leg size of fillet weld:角焊缝焊脚尺寸(57)length of shear plane:剪面长度(67)lift—slab structure:升板结构(25)light weight aggregate concrete:轻骨料混凝土(28)limit of acceptance:验收界限(23)limitimg value for local dimension of masonry structure:砌体结构局部尺寸限值(47) limiting value for sectional dimension:截面尺寸限值(47)limiting value for supporting length:支承长度限值(47)limiting value for total height of masonry structure :砌体结构总高度限值(47) linear expansion coeffcient:线膨胀系数(18)lintel:过梁(7)load bearing wall:承重墙(7)load-carrying capacity per bolt:单个普通螺栓承载能力(56)load—carrying capacity per high—strength holt:单个高强螺桂承载能力(56) load—carrying capacity per rivet:单个铆钉承载能力(55)log:原木(65)log timberstructure:原木结构(64)long term rigidity of member:构件长期刚度(32)longitude horizontal bracing:纵向水平支撑(5)longitudinal steel bar:纵向钢筋(35)longitudinal stiffener:纵向加劲肋(53)longitudinal weld:纵向焊缝(60)losses of prestress:‘预应力损失(33)lump material:块体(42)main axis:强轴(56)main beam:主梁(6)major axis:强轴(56)manual welding:手工焊接(59)manufacture control:生产控制(22)map cracking:龟裂(39)masonry:砌体(17)masonry lintel:砖过梁(43)masonry member:无筋砌体构件(41)masonry units:块体(43)masonry—concrete structure:砖混结构masonry—timber structure:砖木结构(11)mechanical properties of materials:材料力学性能(17)melt—thru:烧穿(62)method of sampling:抽样方法(23)minimum strength class of masonry:砌体材料最低强度等级(47)minor axls:弱轴(56)mix ratio of mortar:砂浆配合比(48)mixing water:拌合水(27)modified coefficient for allowable ratio of height to sectionalthickness of masonry wall :砌体墙容许高厚比修正系数(47)modified coefficient of flexural strength for timber curved mem :弧形木构件抗弯强度修正系数(68)modulus of elasticity of concrete:混凝土弹性模量(30)modulus of elasticity parellel to grain:顺纹弹性模量(66)moisture content:含水率(66)moment modified factor:弯矩调幅系数monitor frame:天窗架mortar:砂浆multi—defence system of earthquake—resistant building·:多道设防抗震建筑multi—tube supported suspended structure:多筒悬挂结构nailed joint:钉连接,net height:净高lnet span:净跨度net water/cementratio:净水灰比non-destructive inspection of weld:焊缝无损检验non-destructive test:非破损检验non-load—bearingwall:非承重墙non—uniform cross—section beam:变截面粱non—uniformly distributed strain coefficient of longitudinal tensile reinforcement:纵向受拉钢筋应变不均匀系数normal concrete:普通混凝土normal section:正截面notch and tooth joint:齿连接number of sampling:抽样数量obligue section:斜截面oblique—angle fillet weld:斜角角焊缝one—way reinforced(or prestressed)concrete slab:单向板open web roof truss:空腹屋架,ordinary concrete:普通混凝土(28)ordinary steel bar:普通钢筋(29)orthogonal fillet weld:直角角焊缝(61)outstanding width of flange:翼缘板外伸宽度(57)outstanding width of stiffener:加劲肋外伸宽度(57)over-all stability reduction coefficient of steel beam:钢梁整体稳定系数(58) overlap:焊瘤(62)overturning or slip resistance analysis :抗倾覆、滑移验算(10)padding plate:垫板(52)partial penetrated butt weld:不焊透对接焊缝(61)partition:非承重墙(7)penetrated butt weld:透焊对接焊缝(60)percentage of reinforcement:配筋率(34)perforated brick:多孔砖(43)pilastered wall:带壁柱墙(42)pit:凹坑(62)pith:髓心plain concrete structure:素混凝土结构(24)plane hypothesis:平截面假定(32)plane structure:平面结构(11)plane trussed lattice grids:平面桁架系网架(5)plank:板材(65)plastic adaption coefficient of cross—section:截面塑性发展系数(58)plastic design of steel structure:钢结构塑性设计(56)plastic hinge:塑性铰(13)plastlcity coefficient of reinforced concrete member in tensile zone:受拉区混凝土塑性影响系数(34)plate—like space frame:干板型网架(5)plate—like space truss:平板型网架(5)plug weld:塞焊缝(60)plywood:胶合板(65)plywood structure:胶合板结构(64)pockmark:麻面(39)polygonal top-chord roof truss :多边形屋架(4)post—tensioned prestressed concrete structure:后张法预应力混凝土结构(24) precast reinforced concrete member:预制混凝土构件(26)prefabricated concrete structure:装配式混凝土结构(25)presetting time:初凝时间(38)prestressed concrete structure:预应力混凝土结构(24)prestressed steel structure:预应力钢结构(50)prestressed tendon:预应力筋<29)pre—tensioned prestressed concrete structure:先张法预应力混凝土结构(24)primary control:初步控制(22)production control:生产控制(22)properties of fresh concrete:可塑混凝土性能(37)properties of hardened concrete:硬化混凝土性能(38)property of building structural materials:建筑结构材料性能(17)purlin:檩条(4)qlue timber structurer:胶合木结构(㈠)quality grade of structural timber:木材质量等级(0)quality grade of weld:焊缝质量级别(61)quality inspection of bolted connection:螺栓连接质量检验(63)quality inspection of masonry:砌体质量检验(48)quality inspection of riveted connection:铆钉连接质量检验(63)quasi—permanent value of live load on floor or roof:楼面、屋面活荷载准永久值(15) radial check:辐裂(70)ratio of axial compressive force to axial compressive ultimate capacity of section:轴压比(35)ratio of height to sectional thickness of wall or column:砌体墙柱高、厚比(48) ratio of reinforcement:配筋率(34)ratio of shear span to effective depth of section:剪跨比(35)redistribution of internal force:内力重分布(13)reducing coefficient of compressive strength in sloping grain for bolted connection:螺栓连接斜纹承压强度降低系数(68)reducing coefficient of liveload:活荷载折减系数(14)reducing coefficient of shearing strength for notch and tooth connection:齿连接抗剪强度降低系数(68)regular earthquake—resistant building:规则抗震建筑(9)reinforced concrete deep beam:混凝土深梁(26)reinforced concrete slender beam:混凝土浅梁(26)reinforced concrete structure:钢筋混凝土结构(24)reinforced masonry structure:配筋砌体结构(41)reinforcement ratio:配筋率(34)reinforcement ratio per unit volume:体积配筋率(35)relaxation of prestressed tendon:预应筋松弛(31)representative value of gravity load:重力荷载代表值(17)resistance to abrasion:耐磨性(38)resistance to freezing and thawing:抗冻融性(39)resistance to water penetration:抗渗性(38)reveal of reinforcement:露筋(39)right—angle filletweld:直角角焊缝(61)rigid analysis scheme:刚性方案(45)rigid connection:刚接(21)rigid transverse wall:刚性横墙(42)rigid zone:刚域(13)rigid-elastic analysis scheme:刚弹性方案(45)rigidity of section:截面刚度(19)rigidly supported continous girder:刚性支座连续梁(11)ring beam:圈梁(42)rivet:铆钉(55)riveted connecction:铆钉连接(60)riveted steel beam:铆接钢梁(52)riveted steel girder:铆接钢梁(52)riveted steel structure:铆接钢结构(50)rolle rsupport:滚轴支座(51)rolled steel beam:轧制型钢梁(51)roof board:屋面板(3)roof bracing system:屋架支撑系统(4)roof girder:屋面梁(4)roof plate:屋面板(3)roof slab:屋面板(3)roof system:屋盖(3)roof truss:屋架(4)rot:腐朽(71)round wire:光圆钢丝(29)safety classes of building structures:建筑结构安全等级(9) safetybolt:保险螺栓(69)sapwood:边材(65)sawn lumber+A610:方木(65)sawn timber structure:方木结构(64)saw-tooth joint failure:齿缝破坏(45)scarf joint:斜搭接(70)seamless steel pipe:无缝钢管(54)seamless steel tube:无缝钢管(54)second moment of area of tranformed section:换算截面惯性矩(34) second order effect due to displacement:挠曲二阶效应(13) secondary axis:弱轴(56)secondary beam:次粱(6)section modulus of transformed section:换算截面模量(34) section steel:型钢(53)semi-automatic welding:半自动焊接(59)separated steel column:分离式钢柱(51)setting time:凝结时间(38)shake:环裂(70)shapefactorofwindload:风荷载体型系数(16)shear plane:剪面(67)shearing rigidity of section:截面剪变刚度(19)shearing stiffness of member:构件抗剪刚度(20)short stiffener:短加劲肋(53)short term rigidity of member:构件短期刚度(31)shrinkage:干缩(71)shrinkage of concrete:混凝干收缩(30)silos:贮仓(3)skylight truss:天窗架(4)slab:楼板(6)slab—column structure:板柱结构(2)slag inclusion:夹渣(61)sloping grain:‘斜纹(70)slump:坍落度(37)snow reference pressure:基本雪压(16)solid—web steel column:实腹式钢柱(space structure:空间结构(11)space suspended cable:悬索(5)spacing of bars:钢筋间距(33)spacing of rigid transverse wall:刚性横墙间距(46)spacing of stirrup legs:箍筋肢距(33)spacing of stirrups:箍筋间距(33)specified concrete:特种混凝上(28)spiral stirrup:螺旋箍筋(36)spiral weld:螺旋形焊缝(60)split ringjoint:裂环连接(69)square pyramid space grids:四角锥体网架(5)stability calculation:稳定计算(10)stability reduction coefficient of axially loaded compression:轴心受压构件稳定系数<13)stair:楼梯(8)static analysis scheme of building:房屋静力汁算方案(45)static design:房屋静力汁算方案(45)statically determinate structure:静定结构(11)statically indeterminate structure:超静定结构(11)sted:钢材(17)steel bar:钢筋(28)steel column component:钢柱分肢(51)steel columnbase:钢柱脚(51)steel fiber reinforced concrete structure:钢纤维混凝土结构(26)steel hanger:吊筋(37)steel mesh reinforced brick masonry member:方格网配筋砖砌体构件(41)steel plate:钢板(53)steel plateelement:钢板件(52)steel strip:钢带(53)steel support:钢支座(51)steel tie:拉结钢筋(36)steel tie bar for masonry:砌体拉结钢筋(47)steel tube:钢管(54)steel tubular structure:钢管结构(50)steel wire:钢丝(28)stepped column:阶形柱(7)stiffener:加劲肋(52)stiffness of structural member:构件刚度(19)stiffness of transverse wall:横墙刚度(45)stirrup:箍筋(36)stone:石材(44)stone masonry:石砌体(44)stone masonry structure:石砌体结构(41)storev height:层高(21)straight—line joint failure:通缝破坏(45)straightness of structural member:构件乎直度(71)strand:钢绞线(2)strength classes of masonry units:块体强度等级(44)strength classes of mortar:砂浆强度等级(44)strength classes of structural steel:钢材强度等级(55)strength classes of structural timber:木材强度等级(66)strength classes(grades) of concrete:混凝土强度等级(29)strength classes(grades) of prestressed tendon:预应力筋强度等级(30) strength classes(grades) of steel bar :普通钢筋强度等级(30)strength of structural timber parallel to grain:木材顺纹强度(66) strongaxis:强轴(56)structural system composed of bar:杆系结构(11)structural system composed of plate:板系结构(12)structural wall:结构墙(7)superposed reinforced concrete flexural member:叠合式混凝土受弯构件(26) suspended crossed cable net:双向正交索网结构(6)suspended structure:悬挂结构(3)swirl grain:涡纹()tensile(compressive) rigidity of section:截面拉伸(压缩)刚度(19)tensile(compressive) stiffness of member:构件抗拉(抗压)刚度(20)tensile(ultimate) strength of steel:钢材(钢筋)抗拉(极限)强度(18)test for properties of concrete structural members:构件性能检验(40):thickness of concrete cover:混凝土保护层厚度(33)thickness of mortarat bed joint:水平灰缝厚度(49)thin shell:薄壳(6)three hinged arch:三铰拱(n)tie bar:拉结钢筋(36)tie beam 系梁(22)tie tod:系杆(5)tied framework:绑扎骨架(35)timber:木材(17)timber roof truss:木屋架(64)tor-shear type high-strength bolt:扭剪型高强度螺栓(54)torsional rigidity of section:截面扭转刚度(19)torsional stiffness of member:构件抗扭刚度(20)total breadth of structure:结构总宽度(21)total height of structure:结构总高度(21)total length of structure:结构总长度(21)transmission length of prestress:预应力传递长度(36)transverse horizontal bracing:横向水平支撑(4)transverse stiffener:横向加劲肋(53)transverse weld:横向焊缝(60)transversely distributed steelbar:横向分布钢筋(36)trapezoid roof truss:梯形屋架(4)triangular pyramid space grids:三角锥体网架(5)triangular roof truss:三角形屋架(4)trussed arch:椽架(64)trussed rafter:桁架拱(5)tube in tube structure:筒中筒结构(3)tube structure:简体结构(2)twist:扭弯(71)two hinged arch:双铰拱(11)two sides(edges) supported plate:两边支承板(12)two—way reinforced (or prestressed) concrete slab:混凝土双向板(27)ultimate compressive strain of concrete:混凝土极限压应变(31)unbonded prestressed concrete structure:无粘结预应力混凝土结构(25)undercut:咬边(62)uniform cross—section beam:等截面粱(6)unseasoned timber:湿材(65)upper flexible and lower rigid complex multistorey building:上柔下刚多层房屋(45) upper rigid lower flexible complex multistorey building:上刚下柔多层房屋(45) value of decompression prestress :预应力筋消压预应力值(33)value of effective prestress:预应筋有效预应力值(33)verification of serviceability limit states:正常使用极限状态验证(10)verification of ultimate limit states :承载能极限状态验证(10)vertical bracing:竖向支撑(5)vierendal roof truss:空腹屋架(4)visual examination of structural member:构件外观检查(39)visual examination of structural steel member:钢构件外观检查(63) visual examination of weld:焊缝外观检查(62)wall beam:墙梁(42)wall frame:壁式框架(门)wall—slab structure:墙板结构(2)warping:翘曲(40)warping rigidity of section:截面翘曲刚度(19)water retentivity of mortar:砂浆保水性(48)water tower:水塔(3)water/cement ratio:水灰比(3g)weak axis:弱轴(56)weak region of earthquake—resistant building:抗震建筑薄弱部位(9) web plate:腹板(52)weld:焊缝(6)weld crack:焊接裂纹(62)weld defects:焊接缺陷(61)weld roof:焊根(61)weld toe:焊趾(61)weldability of steel bar:钢筋可焊性(39)welded framework:焊接骨架()welded steel beam:焊接钢梁(welded steel girder:焊接钢梁(52)welded steel pipe:焊接钢管(54)welded steel strueture:焊接钢结构(50)welding connection:焊缝连接(59)welding flux:焊剂(54)welding rod:焊条(54)welding wire:焊丝(54)wind fluttering factor:风振系数(16)wind reference pressure:基本风压(16)wind—resistant column:抗风柱wood roof decking:屋面木基层(64)yield strength (yield point) of steel:钢材(钢筋)屈服强度(屈服点)。
关于建筑术语翻译英文1
常见的建筑术语的英文翻译集之一以下是一些常见的建筑术语的英文翻译集合之一:1. 建筑设计- Architectural Design2. 建筑结构- Building Structure3. 建筑材料- Building Materials4. 建筑施工- Building Construction5. 建筑成本- Construction Cost6. 建筑风格- Architectural Style7. 建筑师- Architect8. 建筑规划- Building Planning9. 建筑模型- Architectural Model10. 建筑面积- Building Area11. 建筑高度- Building Height12. 建筑容积率- Plot Ratio13. 建筑法规- Building Codes and Regulations14. 建筑节能- Energy Efficiency in Buildings15. 建筑智能化- Intelligent Buildings16. 绿色建筑- Green Buildings17. 可持续建筑- Sustainable Buildings18. 建筑声学- Architectural Acoustics19. 建筑光学- Architectural Optics20. 室内设计- Interior Design21. 景观设计- Landscape Design22. 结构设计- Structural Design23. 给排水设计- Water Supply and Drainage Design24. 暖通空调设计- HVAC Design25. 电气设计- Electrical Design26. 消防设计- Fire Protection Design27. 智能化系统设计- Intelligent System Design28. 施工组织设计- Construction Organization Design29. 施工图设计- Construction Drawing Design30. 装饰装修设计- Decoration and Finishing Design31. 建筑声学设计- Architectural Acoustics Design32. 建筑光学设计- Architectural Optics Design33. 建筑热工设计- Architectural Thermal Design34. 建筑美学设计- Architectural Aesthetic Design35. 建筑环境设计- Architectural Environment Design36. 建筑风水学- Feng Shui37. 建筑日照分析- Solar Analysis for Buildings38. 建筑通风分析- Ventilation Analysis for Buildings39. 建筑声环境分析- Acoustic Environment Analysis for Buildings40. 建筑光环境分析- Daylighting Environment Analysis for Buildings41. 建筑热环境分析- Thermal Environment Analysis for Buildings42. 建筑面积计算- Building Area Calculation43. 建筑楼层高度- Storey Height44. 建筑消防设计- Fire Protection Design for Buildings45. 建筑结构安全评估- Structural Safety Evaluation for Buildings46. 建筑抗震设计- Seismic Design for Buildings47. 建筑防洪设计- Flood-resistant Design for Buildings48. 建筑工程招标- Building Engineering Tendering49. 建筑工程施工许可- Construction Permission for Building Projects50. 建筑工程造价咨询- Engineering Cost Consulting for Building Projects51. 建筑工程监理- Project Supervision for Building Projects52. 建筑工程验收- Acceptance of Building Projects53. 建筑工程质量检测- Quality Detection of Building Projects54. 建筑工程质量评估- Quality Evaluation of Building Projects55. 建筑工程质量保修- Quality Guarantee of Building Projects56. 建筑工程档案- Construction Project Archives57. 建筑工程安全- Construction Safety58. 建筑工程管理- Construction Project Management59. 建筑工程合同- Construction Contract60. 建筑工程保险- Construction Insurance61. 建筑工程材料- Construction Materials62. 建筑工程机械- Construction Machinery63. 建筑工程劳务- Construction Labor64. 建筑工程施工组织设计- Construction Organization Design for Building Projects65. 建筑工程施工图设计- Construction Drawing Design for Building Projects66. 建筑工程施工进度计划- Construction Progress Plan for Building Projects67. 建筑工程施工质量控制- Construction Quality Control for Building Projects68. 建筑工程施工安全管理- Construction Safety Management for Building Projects69. 建筑工程施工现场管理- Construction Site Management for Building Projects70. 建筑工程施工成本管理- Construction Cost Management for Building Projects71. 建筑工程施工环境保护- Environmental Protection in Building Construction72. 建筑工程施工节能管理- Energy-saving Management in Building Construction73. 建筑工程施工水土保持- Soil and Water Conservation in Building Construction74. 建筑工程施工质量控制要点- Key Points of Construction Quality Control for Building Projects75. 建筑工程施工安全控制要点- Key Points of Construction Safety Control for Building Projects76. 建筑工程施工质量验收规范- Acceptance Specification for Construction Quality ofBuilding Projects77. 建筑立面设计- Façade Design78. 建筑剖面设计- Section Design79. 建筑立面分析图- Façade Analysis Diagram80. 建筑剖面分析图- Section Analysis Diagram81. 建筑结构分析图- Structural Analysis Diagram82. 建筑平面图- Floor Plan83. 建筑立面图- Façade Drawing84. 建筑剖面图- Section Drawing85. 建筑轴测图- Axonometric Drawing86. 建筑渲染图- Architectural Rendering87. 建筑模型制作- Model Making88. 建筑绘画- Architectural Drawing89. 建筑表现图- Architectural Representation90. 建筑动画- Architectural Animation91. 建筑摄影- Architectural Photography92. 建筑信息模型- Building Information Modeling (BIM)93. 建筑环境评估- Building Environmental Assessment94. 建筑节能评估- Building Energy Efficiency Assessment95. 建筑可持续性评估- Building Sustainability Assessment96. 建筑健康评估- Building Health Assessment97. 建筑设备系统设计- Building Equipment System Design98. 建筑电气系统设计- Electrical System Design for Buildings99. 建筑给排水系统设计- Water Supply and Drainage System Design for Buildings 100. 建筑暖通空调系统设计- HVAC System Design for Buildings一般建筑术语英文翻译之二101. 建筑燃气系统设计- Gas System Design for Buildings102. 建筑消防报警系统设计- Fire Alarm System Design for Buildings103. 建筑智能化系统集成设计- Intelligent System Integration Design for Buildings 104. 建筑幕墙设计- Curtain Wall Design105. 建筑石材幕墙设计- Stone Curtain Wall Design106. 建筑玻璃幕墙设计- Glass Curtain Wall Design107. 建筑绿化设计- Greening Design for Buildings108. 建筑景观设计- Landscape Design for Buildings109. 建筑室内环境设计- Indoor Environmental Design for Buildings110. 建筑声学装修设计- Acoustic Decoration Design for Buildings111. 建筑光学装修设计- Optical Decoration Design for Buildings112. 建筑材料装修设计- Decorative Materials Design for Buildings113. 建筑历史与理论- Architectural History and Theory114. 建筑美学史- History of Architectural Aesthetics115. 现代建筑设计- Modern Architectural Design116. 后现代建筑设计- Postmodern Architectural Design117. 当代建筑设计- Contemporary Architectural Design118. 解构主义建筑设计- Deconstructivist Architectural Design119. 装饰艺术建筑设计- Art Deco Architectural Design120. 功能主义建筑设计- Functionalist Architectural Design121. 结构主义建筑设计- Structuralist Architectural Design122. 新古典主义建筑设计- Neoclassical Architectural Design123. 折衷主义建筑设计- Eclectic Architectural Design124. 绿色建筑设计- Green Architectural Design125. 人文主义建筑设计- Humanist Architectural Design126. 新地域主义建筑设计- New Regionalist Architectural Design127. 参数化建筑设计- Parametric Architectural Design128. 数字建筑设计- Digital Architectural Design129. 未来主义建筑设计- Futurist Architectural Design130. 智能化建筑设计- Intelligent Building Design131. 生态建筑设计- Ecological Architectural Design132. 城市设计- Urban Design133. 景观设计- Landscape Design134. 城市规划- Urban Planning135. 城市更新- Urban Renewal136. 城市改造- Urban Transformation137. 城市意象- Urban Image138. 城市设计理论- Urban Design Theory139. 城市生态设计- Urban Ecological Design140. 城市交通设计- Urban Transportation Design141. 城市基础设施设计- Urban Infrastructure Design142. 城市天际线设计- Urban Skyline Design143. 城市夜景设计- Urban Nightscape Design144. 城市滨水区设计- Urban Waterfront Design145. 城市开放空间设计- Urban Open Space Design146. 城市街道景观设计- Urban Streetscape Design147. 城市公园设计- Urban Park Design148. 城市居住区设计- Urban Residential District Design149. 城市商业区设计- Urban Commercial District Design150. 城市文化区设计- Urban Cultural District Design151. 城市行政中心设计- Urban Governmental District Design152. 城市会展中心设计- Urban Exhibition and Convention Center Design 153. 城市体育馆设计- Urban Stadium Design154. 城市图书馆设计- Urban Library Design155. 城市博物馆设计- Urban Museum Design156. 城市大剧院设计- Urban Theater Design157. 城市机场设计- Urban Airport Design158. 城市火车站设计- Urban Train Station Design159. 城市地铁站设计- Urban Subway Station Design160. 城市公交车站设计- Urban Bus Stop Design161. 城市景观照明设计- Urban Landscape Lighting Design162. 城市标识系统设计- Urban Signage System Design163. 城市公共艺术装置设计- Public Art Installation Design164. 城市家具设计- Urban Furniture Design165. 城市花坛设计- Urban Flower Bed Design166. 城市儿童游乐设施设计- Urban Playground Design167. 城市植栽设计- Urban Planting Design168. 城市排水系统设计- Urban Drainage System Design169. 城市防洪系统设计- Urban Flood Control System Design170. 城市消防系统设计- Urban Fire Protection System Design171. 城市应急救援系统设计- Urban Emergency Rescue System Design172. 城市废弃物处理系统设计- Urban Waste Management System Design 173. 城市给水系统设计- Urban Water Supply System Design174. 城市污水处理系统设计- Urban Wastewater Treatment System Design 175. 城市雨水排放系统设计- Urban Stormwater Management System Design 176. 城市空调系统设计- Urban Air Conditioning System Design177. 城市供暖系统设计- Urban Heating System Design178. 城市燃气供应系统设计- Urban Gas Supply System Design179. 城市电力供应系统设计- Urban Electrical Power Supply System Design180. 城市智能化管理系统设计- Urban Intelligent Management System Design 181. 城市绿色建筑认证体系- Green Building Certification Systems182. 城市绿色建筑评价体系- Green Building Evaluation Systems183. 可持续城市发展理论- Sustainable Urban Development Theory 184. 生态城市理论- Eco-city Theory185. 低碳城市理论- Low-carbon City Theory186. 紧凑城市理论- Compact City Theory187. 智慧城市理论- Smart City Theory188. 韧性城市理论- Resilient City Theory189. 多规合一城市规划体系- Integrated Urban Planning System 190. 城市设计哲学- Urban Design Philosophy191. 城市设计心理学- Urban Design Psychology192. 城市设计社会学- Urban Design Sociology193. 城市设计地理学- Urban Design Geography194. 城市设计经济学- Urban Design Economics195. 城市设计生态学- Urban Design Ecology196. 城市设计符号学- Urban Design Semiotics197. 城市设计现象学- Urban Design Phenomenology198. 城市设计未来学- Urban Design Futures Studies199. 城市设计艺术史- Urban Design Art History200. 城市设计与公共政策- Urban Design and Public Policy。
钢结构英文翻译对照
Steel structure面积:area结构形式:framework坡度:slope跨度:span柱距:bay spacing檐高:eave height屋面板:roof system墙面板:wall system梁底净高: clean height屋面系统: roof cladding招标文件: tender doc建筑结构结构可靠度设计统一标准: unified standard for designing of architecture construction reliablity建筑结构荷载设计规范: load design standard for architecture construction建筑抗震设计规范: anti-seismic design standard for architecture钢结构设计规范: steel structure design standard冷弯薄壁型钢结构技术规范: technical standard for cold bend and thick steel structure门式钢架轻型房屋钢结构技术规范: technical specification for steel structure of light weight building with gabled frames钢结构焊接规程: welding specification for steel structure钢结构工程施工及验收规范: checking standard for constructing and checking of steel structure 压型金属板设计施工规程: design and construction specification for steel panel荷载条件:load condition屋面活荷载:live load on roof屋面悬挂荷载:suspended load in roof风荷载:wind load雪荷载:snow load抗震等级:seismic load变形控制:deflect control柱间支撑X撑:X bracing主结构:primary structure钢架梁柱、端墙柱: frame beam, frame column, and end-wall column钢材牌号为Q345或相当牌号,大型钢厂出品:Q345 or equivalent, from the major steel mill 表面处理:抛丸除锈Sa2.5级,环氧富锌漆,两底两面,总厚度为125UM。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Across-wind loads and effects of super-tall buildings and structuresGU Ming & QUAN YongSCIENCE CHINA Technological Sciences,2011,54(10):2531~2541超高层建筑结构横向风荷载效应顾明全勇中国科学技术科学,2011,54(10):2531~2541摘要随着建筑高度的不断增加,横向风荷载效应已经成为影响超高层建筑结构设计越来越重要的因素。
高层建筑结构的横向风荷载效应被认为由空气湍流,摇摆以及空气流体结构相互作用所引起的。
这些都是非常复杂的。
尽管30年来,研究人员一直关注这个问题,但横向风荷载效应的数据库以及等效静力风荷载的计算方法还没有被开发,大多数国家在荷载规范里还没有相关的规定。
对超高层建筑结构的横向风荷载效应的研究成果主要包括横向风荷载的动力以及动力阻尼的测定,数据库的开发和等效静力风荷载的理论方法的等等。
在本文中,我们首先审查目前国内外关于超高层建筑结构风荷载的影响的研究。
然后我们在阐述我们的研究成果。
最后,我们会列举我们研究成果在超高层建筑结构中应用的的案例。
1 引言随着科技的发展,建筑物也越来越长、高、大,越来越对强风敏感。
因此,风工程研究人员面临着更多新的挑战,甚至一些未知的问题。
例如,超高层建筑现在在全世界普遍流行。
高度为443米的芝加哥希尔斯塔保持了是世界上最高建筑物26年的记录,现在还有几十个超过400米的超高层建筑被建造。
828米高的迪拜塔已经建造完成。
在发达国家,甚至有人建议建造数千米的“空中城市”。
随着高度的增加,轻质高强材料的使用,风荷载效应特别是具有低阻尼的超高层建筑横向风动力响应将变得更加显著。
因此,强风荷载将成为设计安全的超高层建筑结构中的一个重要的控制因素。
达文最初引入随机的概念和方法应用发哦顺风向荷载效应的建筑物和其他结构的抗风研究。
之后,研究人员完善了相关的理论和方法,并且主要的研究成果已经反映在一些国家的结构设计荷载规范里。
对现代超高层建筑结构,横风向风荷载的作用可能已经超过顺风向荷载效用。
虽然研究人员已经关注这个方向已经30多年了,但能够被广泛接受的横风向荷载数据库以及等效静力荷载的计算方法还没有形成。
只有少数国家在他们的荷载规范里有相关的内容和规定。
因此,研究超高层建筑结构横风向风振和等效静力荷载在超高层建筑设计领域内具有重要的理论意义和实用价值。
2 研究现状2.1 横风向荷载及作用机制过去的研究主要集中在横风向荷载机制。
郭指出横风向荷载的激发主要由于被公认为空气动力阻尼的尾流、空气湍流以及风荷载耦合作用。
索拉里认为横风向荷载主要由于尾流的原因所引起。
卡里姆声称横风向的效应主要是由分离剪切层和尾流波动引起的横向均匀压力波动所引起的。
目前,高层建筑横风向荷载机制已被人为是流入湍流激发、尾流激发、以及气动弹性影响。
湍流以及尾流激励一般是外部空气动力,在本文章中,所涉及的统称为空气动力。
同时,气体的弹性效应可以被认为是气体动力阻尼。
横风向气体动力不再像顺向风一样符合准稳态假设。
因此,横向风荷载谱不能直接作为一个脉动风速谱。
对不稳定风压力来说,风洞试验技术是目前研究横向风动力的主要技术。
风洞试验技术主要包括气体弹性模型试验、高频力平衡试验以及对多点压力测量的刚性模型实验技术。
用横风向外部动力,横风向气动阻尼,横向风响应和建筑结构等效静力风荷载的数据可以对超高层建筑结构进行计算。
2.2 横风向气动力如上所述,横风向气动力基本上可以通过以下途径获得:从气动弹性模型在一个风洞的横风向响应确定横风向气动力;通过刚性模型风压空间一体化获得横向风动力;使用高频测力天平技术测量基底弯矩来获得广义的气动力。
2.2.1 从气动弹性模型的动态响应确定横风向气动力这种方法采用的是气动弹性模型的横风向风振响应,结合动态特性的模型识别横风向气动力。
墨尔本对对一系列圆形、方形、六角形、多边形沿高度分布进行气动弹性模型风洞试验。
然而进一步试验表明您横风向气动阻力与气动力混合在一起,使他难以准确地提取气动阻尼力。
因此,该方法很少使用。
2.2.2 风压积分法研究人员建议用风压积分法获取更准确的高层建筑横风向气动力。
伊斯兰等人采用这种方法得到横风向气动力,陈等人研究了典型建筑结构在不同风场条件横风向气动力。
影响横风向气动力的因素主要有湍流强度、湍流尺度。
湍流强度被发现扩大带气动力和降低峰值。
然而,湍流强度被认为对总能量几乎没有影响。
因此,研究人员在某种程度上已经意识到了在风力条件定量规则的变化横风气动力。
梁等人使用这种方法检查了建筑物上的典型矩形边界层风洞横风向气动力,从而提出高大的建筑物的经验公式和横风向动态响应模型。
结果表明, 横风向湍流对于横风向气动力的贡献比那些激励要小的多。
基于大量的结果,导出横风向湍流激励和激发后的PSD计算公式。
第一广义的横风向气动力计算可以通过在刚性建筑模型整合压力分布得到,这是该方法一个重要的优越性。
然而,考虑到在这类方法需要大量的大规模的结构测压,同步测量风压是很难实现的。
此外,对于建筑和结构复杂的配置,准确的风压分布和空气动力难以使用这种方法。
2.2.3 高频测力平衡技术与压力测量技术相比,高频力平衡技术对于得到总气动力有其独特的优势,检测和数据分析过程都很简单。
因此这项技术通常应用于初期设计阶段的建筑外观的选择。
目前这项技术被广泛应用于作用在超高层建筑结构的全风荷载以及动力响应计算。
高频力平衡技术自从1970年已经逐渐发展起来。
赛马可等人是第一批把此技术应用到模型测量的人。
他们最初提出平衡模型系统应有一个比风力频率更高的固有频率。
由常和达文发展的平衡技术标志着平衡设备的成熟。
卡里姆进行了一项实验研究。
对于在城市和郊区具有不同截面形式的高层建筑的横风向气动力研究表明对于建筑物风的不确定以及结构参数对横风向空气动力的设计有很小的影响并且顺风向和横风向气动力或扭矩之间的联系时微不足道的。
但横风向动力和扭矩之间的联系是非常密切的。
这个结论对于三维方向精确的风荷载模型是很重要的。
特别是石和全等人做了一系列关于矩形建筑的边率,建筑物横截面形状,建筑的面率的效应以及用五元平衡的高层建筑横风向动力设计的风域条件。
事实上,基于大量的风隧道检测结果典型高层建筑横风向气动力系数的公式已经被我们建立了。
2.3 横风向气动阻尼1978年卡里姆对基于气动弹性模型技术和风压积分法的高层建筑横风向动力响应做了一次调查研究。
他指出由在一定范围内风压力测试获得的横风向气动力计算而得到的横风向风振响应总是比那些相同建筑模型的气动弹性模型要小。
这个重要的研究成果使得研究人员认识到横风向气动负阻尼的存在。
后来,研究人员对这个问题进行了大量的研究并且找到了有效的方案来确定气动阻尼。
第一种方法是通过比较基于来自刚性模型试验和气动弹性模型试验的气动力所得到的到哪个台响应。
第二种方法是从由气动弹性模型或强迫振动模型所得到的总气动力中分离出气动阻力。
第三种方法是从气动弹性模型分离气动阻尼的的识别方法。
此外,研究人员意识到风因素的影响规律。
这些因素包括结构形状、结构动力参数、风条件等等。
卡里姆等人是第一批提出通过比较来确定气动阻尼的方法。
陈等人采用这种技术来研究横风向效应和高层建筑结构的动态阻尼并提出了一个气动阻尼公式。
史迪克最初制造了一批测定总气动力、气动阻尼力与气动力的强迫振动测量设备。
他测量高层建筑模型基底弯矩是通过一个专门的设计装置产生振动所产生的有关的气动力从总气动力脱离进而分解为气动应力和气动阻尼力获得气动阻尼。
柯伯试图对谐波振动建筑模型测量风压获得总气动力。
然后用类似史迪克的方法计算空气阻尼。
这种方法的优点是真实的建筑特性并非必须被考虑到。
这种方法更方便更实用,特别是在推广实验结果。
这种方法的的主要缺点是它需要复杂的设备,尤其是直到现在多元耦合装置是不可用的。
确定气动阻尼的随机振动响应的气动弹性模型课采用适当的系统识别技术,其中包括频域法,时域的方法以及时域频域的方法。
在这些方法中随机减量法、时域方法被广泛采用以确定高层建筑的气动阻尼。
杰瑞介绍随机减量法来识别结构阻尼。
马克采用随机减量法确定高层建筑顺横风向气动阻尼。
他们分析了影响建筑长宽比、边比、气动阻尼、结构阻尼。
田村等人用随机减量技术确定超高层建筑气动阻尼。
全等人通过实验确定在不同的风领域具有不同结构中阻尼方形截面的横风向气动阻尼,并得出了一个经验公式。
这些研究成果已通过相关的中国规范。
秦和谷是第一个引入随机空间识别方法于气动参数的确认的研究人员。
这些气动参数包括大跨度桥梁气动刚度和阻尼。
于随机变量法相比,随机空间识别方法具有更多的优点。
它能克服随机变量法的弱噪音抵抗力和需要大量实验数据的缺点。
秦采用这种方法来确定高层建筑的气动阻尼。
2.4规范的实用性如上所说,虽然研究者一直关注高层建筑风荷载超过30年了,但被广泛接受的横风向风荷载数据库和计算方法,等效静力风荷载尚未开发。
此外,只有少数国家采用相关的规定和代码。
于其他国家相比,日本建筑协会提供了计算高层建筑结构横风向荷载的最好方法。
然而公式的横风向代码知适用于高层建筑高宽比小于六,这似乎很难满足实际需要。
而且此方法在这种方法里气动阻尼没有被考虑。
在目前的中国建筑结构荷载规范只提供了一个简单的方法来计算涡激共振的高耸结构,而一般不适用于高层建筑结构抗风设计。
在题为“高层建筑钢结构设计详细说明”里,我们的研究成果已经通过。
2.5 总结随着建筑高度不断增加,横风向荷载效应已经成为超高层建筑结构设计的重要因素。
目前,对超高层建筑结构横风向荷载的研究主要包括横风向风荷载的机制,横风向气动力、气动阻尼和在规范中的应用。
因此我们的一些研究成果主要有典型建筑结构的横风向力,气动阻尼以及在中国规范的应用。
最后介绍了典型的案例,在这个案例中建造更高层建筑的趋势预示着风工程研究人员将面临着更多更新的挑战,甚至到现在他们都没有意识到的问题。
因此需要更多地努力去解决工程设计问题,同时进一步发展风工程。
附件:英文原文Across-wind loads and effects of super-tall buildings and structure sGU Ming & QUAN YongAbstractAcross-wind loads and effects have become increasingly important factors in the structural design of super-tall buildings and structures with increasing height. Across-wind loads and effects of tall buildings and structures are believed to be excited by inflow turbulence, wake, and inflow-structure interaction, which are very complicated. Although researchers have been focusing on the problem for over 30 years, the database of across-wind loads and effects and the computation methods of equivalent static wind loads have not yet been developed, most countries having no related rules in the load codes. Research results on the across-wind effects of tall buildings and structures mainly involve the determination of across-wind aerodynamic forces and across-wind aerodynamic damping, development of their databases, theoretical methods of equivalent static wind loads, and so on. In this paper we first review the current research on across-wind loads and effects of super-tall buildings and structures both at home and abroad. Then we present the results of our study. Finally, we illustrate a case study in which our research results are applied to a typical super-tall structure.1 IntroductionWith the development of science and technology, structures are becoming larger, longer, taller, and more sensitive to strong wind . Thus, wind engineering researchers are facing with more new challenges, even problems they are currently unaware of. For example, the construction of su-per-tall buildings is now prevalent around the world. The Chicago Sears Tower with a height of 443 m has kept the record of the world’s tall est building for 26 years now. Dozens of super-tall buildings with heights of over 400 m are set to be constructed. Burj Dubai Tower with a height of 828 m has just been completed. In developed countries,here are even proposals to build “cities in the air” with thousands of meters of magnitude. With the increase in height and use of light and high-strength materials, wind-induced dynamic responses, especially across-wind dynamic responses of super-tall buildings and structures with low damping, will become more notable. Hence, strong wind load will become an important control factor in designing safe super-tall buildings and structures. Davenport initially introduced stochastic concepts and methods into wind-resistant study on along-wind loads and effects of buildings and other structures. Afterward, researchers developed related theories and methods [8–17], and the main research results have already been reflected in theload codes of somecountries for the design of buildings and structures [18–23]. For modern super-tall buildings and structures, across-wind loads and effects may surpass along-wind ones. Al-though researchers have been focusing on the complex problem for over 30 years now, the widely accepted data-base of across-wind loads and computation methods of equivalent static wind loads have not been formed yet. Only a few countries have accordingly adopted the related con-tents and provisions in their codes [18, 20]. Therefore, studying across-wind vibration and the equivalent static wind loads of super-tall buildings and structures is of great theoretical significance and practical value in the field of structural design of super-tall buildings and structures. The current paper thus reviews the research situation of across-wind loads and effects of super-tall buildings and structures both at home and abroad. Then, the research results given by us are presented. Finally, a case study of across-wind loads and effects of a typical super-tall structure is illustrated.2 Research situation2.1 Mechanism of across-wind loads and effectsPrevious researches focused mainly on the mechanism of across-wind load. Kwok [24–26] pointed out that across-wind excitation comes from wake, inflow turbulence, and wind-structure interaction effect, which could be recog-nized as aerodynamic damping. Solari [27] attributed the across-wind load to across-wind turbulence and wake exci-tations, considering wake as the main excitation. Islam et al. [28] and Kareem [13] claimed that across-wind responses are induced by lateral uniform pressure fluctuation due to separation shear layer and wake fluctuation. Currently, the mechanism of across-wind load on tall buildings and struc-tures has been recognized as inflow turbulence excitation, wake excitation, and aeroelastic effect. Inflow turbulence and wake excitation are essentially the external aerody-namic force, which is collectively referred to in the present paper as aerodynamic force. Meanwhile, aeroelastic effect can be treated as aerodynamic damping. Across-wind aero-dynamic force no longer conforms to quasi-steady assump-tion as the along-wind one; thus, the across-wind force spectra cannot be directly expressed as a function of inflow fluctuating wind velocity spectra. Wind tunnel test tech-nique for unsteady wind pressures or forces is presently a main tool for studying across-wind aerodynamic forces. The wind tunnel experiment technique mainly involves the aeroelastic building model experiment technique, high fre-quency force balance technique, and rigid model experiment technique for multi-point pressure measurement. Using data of across-wind external aerodynamic force and across-wind aerodynamic damping, across-wind responses and the equivalent static wind load of buildings and structures can be computed for the structural design of super-tall buildingsand structures.2.2 Across-wind aerodynamic forceAs stated above, the across-wind aerodynamic force can be obtained basically through the following channels: (i) iden-tifying across-wind aerodynamic force from across-wind responses of an aeroelastic building model in a wind tunnel; (ii) obtaining across-wind aerodynamic force through spa-tial integration of wind pressure on rigid models; (iii) ob-taining generalized aerodynamic force directly from meas-uring base bending moment using high frequency force balance technique.2.2.1 Identification of across-wind aerodynamic force from dynamic responses of aeroelastic building modelThis method employs across-wind dynamic responses of the aeroelastic building model, combining the dynamic charac-teristics of the model to identify across-wind aerodynamic force. Saunders [29], Kwok [24], Kwok and Melbourne [30], Kwok [25], and Melbourne and Cheung [31] performed aeroelastic model wind tunnel tests on a series of circular, square, hexagon, polygon with eight angles, square with reentrant angles and fillets, and tall or cylindrical structures with sections contracting along height. However, further studies showed that across-wind aerodynamic damping force and aerodynamic force mixed together make it diffi-cult to extract aerodynamic damping force accurately. As such, the method has been seldom used.2.2.2 Wind pressure integration methodResearchers have recommended wind pressure integration to obtain more accurately the across-wind aerodynamic forces on tall buildings. Islam et al. [28], Cheng et al. [32], Nishimura and Taniike [33], Liang et al. [34, 35], Ye [36], Tang [37], Zhang [38], and Gu et al.[39] adopted this method to obtain across-wind aerodynamic forces on tall buildings and structures. Cheng et al. [32] experimentally studied across-wind aerodynamic forces of typical buildings under different wind field conditions and derived empirical formulas for the power spectrum density (PSD) of the across-wind aerodynamic force reflecting the effects of tur-bulent intensity and turbulent scale. Turbulent intensity was found to widen the bandwidth of PSD of the across-wind aerodynamic force and reduce the peak value. However, tur-bulent intensity was determined to have almost no effects on total energy. Thus, researchers have recognized the quantita-tive rules of variation of across-wind aerodynamic force with wind condition to some extent. Liang et al. [34, 35] examined across-wind aerodynamic forces on typical rectangular buildings in a boundary layer wind tunnel using this method, thus proposing empirical formulas for PSD of across-wind aerodynamic forces of tall rectangularbuildings and an ana-lytical model for across-wind dynamic responses. Ye [36] and Zhang [38] decomposed across-wind turbulence excita-tion and vortex shedding excitation in across-wind aerody-namic forces on typical super-tall buildings. The resultsshowed that the across-wind turbulence contributed much less to across-wind aerodynamic force than the wake excita-tion. Based on a large number of results, we derived PSD formulas for the across-wind turbulence excitation and the wake excitation, and further derived a new formula for the across-wind aerodynamic force. The first- and higher-mode generalized across-wind aerodynamic forces can be calculated through the integra-tion of pressure distribution on rigid building models, which is an important advantage of this method. However, given the need for a large number of pressure taps for very large-scale structures in this kind of method, synchronous pressure measurements are difficult to make. Moreover, for buildings and structures with complex configurations, ac-curate wind pressure distribution and aerodynamic force are difficult to obtain using this kind of method.2.2.3 High frequency force balance techniqueCompared with the pressure measuring technique, high fre-quency force balance technique has its unique advantage for obtaining total aerodynamic forces. The test and data analy-sis procedures are both very simple; hence, this technique iscommonly used for selection studies on architectural ap-pearance in the initial design stage of super-tall buildings and structures. Currently, this technique is widely used for total wind loads acting on super-tall buildings and structures, and for dynamic response computation as well. The high frequency force balance technique has been gradually developed since the 1970s. Cermak et al. [40] were the first to use this technique for building model measurement. They initially pointed out that the bal-ance-model system should have a higher inherent frequency than the concerned frequency of wind forces. The five-component balance developed by Tschanz and Daven-port [41] marked the maturity of balance facility.Kareem] conducted an experimental study on across- wind aerodynamic forces on tall buildings with various sec-tion shapes in urban and suburban wind conditions. The research showed that for the buildings with aspect ratios of 4–6, uncertainties of wind and structural parameters have small effects on PSD of the across-wind aerodynamic force, and the correlation between the along-wind aerodynamic force and the across-wind aerodynamic force or the torsion moment is negligible, but there is a strong correlation be-tween the across-wind aerodynamic force and the torsion moment. This conclusion is important for the development of three-dimensional refined wind load model. Particularly, Gu and Quan [42] and Quan et al. [43] made detailed stud-ies on the effects of the side ratio of a rectangular building, cross-section shape of a building, aspect ratio of a building, and wind field conditionon the PSD of the across-wind aerodynamic force of tall buildings using a five-component balance. In fact, based on a large number of wind tunnel test results, formulas for across-wind aerodynamic force coeffi-cients of the typically tall buildings have been derived by us and other researchers, some of which are listed in Table 1. In addition, in Table 1, the formula derived by Gu and Quan [42] has already been adopted in related design codes in China.2.3 Across-wind aerodynamic dampingIn 1978, Kareem [44] performed an investigation on across-wind dynamic responses of tall buildings based on both of the aeroelastic model technique and the wind pres-sure integration method. He found out that the across-wind dynamic responses calculated with the across-wind aerody-namic forces obtained from the wind pressure tests at a certain test wind velocity range were always smaller than those of the aeroelastic model of the same building model. This important result made researchers realize the existence of across-wind negative aerodynamic damping.Subsequently, researchers carried out numerous studies on the problem and developed effective methods for identi-fying aerodynamic damping. The first kind of method ob-tains aerodynamic damping by comparing the dynamic re-sponses computed based on the aerodynamic forces from rigid building model tests and those from aeroelastic model tests. The second one separates aerodynamic damping force from the total aerodynamic force measured from aeroelastic building models or forced vibration building models. The third kind employs identification methods for extracting aerodynamic damping from random responses of aeroelastic models. Moreover, researchers realized the effect law of factors, including structural shape, structural dynamic pa-rameters, wind conditions, and so on, on aerodynamic damping, Isyumov et al. [45] were the first researchers to propose a method for aerodynamic damping through com-paring responses from a rigid building model test using HFFB technique with those of an aeroelastic model of the same building. Cheng et al. [46] adopted the method to study across-wind responses and aerodynamic damping of tall square buildings and proposed an aerodynamic damping formula.Steckley [47, 48] initially developed a set of forced vi-bration devices for measuring total aerodynamic forces, including aerodynamic damping force and aerodynamic force. He measured the base bending moment of a tall building model, which was vibrated by a specially designed device. The aerodynamic force related to structure motion was separated from the total aerodynamic force, and then it was decomposed into aerodynamic stiff force and aerody-namic damping force to obtain aerodynamic damping. Vickery and Steckley [49] proposed a negative aerody-namic damping model. Cooper et al. [50] attempted to measurewind pressure on a harmonically vibrating build-ing model to obtain total aerodynamic force. Aerodynamic damping was then computed using a method similar to Steckley’s. The advantage of this kind of method is that the characteristics of real buildings do not have to be taken into consideration in wind tunnel tests, which makes this kind of method more convenient to use, especially in populariz-ing the test results. The main shortcoming of this kind of method is that it requires complicated devices, especially because a multi-component coupling device was not avail- able until now.Identifying aerodynamic damping based on the stochastic vibration responses of aeroelastic building models can be performed using appropriate system identification tech-niques, which include frequency domain methods, time domain methods, and frequency-time domain methods. Among these methods, the random decrement method, one of the time domain methods, is broadly adopted to identify the aerodynamic damping of tall buildings and structures. Jeary [51, 52] introduced the random decrement technique to identify structural damping. Marukawa et al. [53] em-ployed the random decrement method to identify along- wind and across-wind aerodynamic dampings of tall build-ings with rectangular sections. They analyzed the effects of building aspect ratio, side ratio, and structural damping on aerodynamic damping. Tamura et al. [54] conducted a de-tailed study on the application of random decrement tech-nique to identify the aerodynamic damping of super-tall buildings. Quan [43] and Quan et al. [55] adopted RDT to identify across-wind aerodynamic damping of the square- section tall buildings with different structural dampings in different wind fields and derived an empirical formula. These research results have been adopted into the related China Codes [23, 56]. Gu and Qin [57] and Qin and Gu [58] were the first researchers to introduce stochastic sub-space identification method into identification of aerodynamic parameters including aerodynamic stiffness and damping of long-span bridges, obtaining satisfying results. Compared with random decrement method, the stochastic sub-space identification method has more merits than RDT and MRDT and can overcome their main shortcomings i.e., weak noise-resistantce ability and need for large experi-mental data. Qin [59] adopted this method to identify the aerodynamic damping of tall buildings. 2.4 Application to the codesAs stated above, although researchers have been focusing on across-wind loads on tall buildings for over 30 years now, the widely accepted database of across-wind loads and computation methods of equivalent static wind loads have not been developed yet. Moreover, only a few countries have adopted related contents and provisions in their codes.Compared with the codes of other countries, the Archi-tectural Association of Japan [18]provides the best method for across-wind loads for structural design of tall buildings. Nevertheless, the formula for PSD of the across-wind force in the code can only be applied to tall buildings with aspect ratios of less than six, which seems difficult to meet the actual needs. In addition, the method takes across-wind in-ertia load of fundamental mode as across-wind equivalent static wind load including background and resonant com-ponents, making it seem questionable. Moreover, aerody-namic damping has not been considered in the method.In the present load code for the design of building struc-tures (GB50009-2001) of China [23], only a simple method for calculating vortex-induced resonance of chimney-like tall structures with a circular section is provided, which is not applicable to the wind-resistant design for tall buildings and structures in general. In the design specification titled “Specification for Steel Struc ture Design of Tall Buildings” [56], our related research results [42, 43, 55] have been adopted.5 Concluding remarksWith the continuing increase in the height of buildings, across-wind loads and effects have become increasingly important factors for the structural design of super-tall buildings and structures. The current paper reviews re-searches on across-wind loads and effects of super-tall buildings and structures, including the mechanism of across-wind loads and effects, across-wind aerodynamic forces, across-wind aerodynamic damping, and applications in the code. Consequently, some of our research achieve-ments involving across-wind forces on typical buildings, across-wind aerodynamic damping of typical buildings, and applications to the Chinese Codes are presented. Finally, a case study of a real typical tower, where strong across-wind loads and effects may be observed, is introduced. The recent trend in constructing higher buildings and structures implies that wind engineering researchers will be faced with more new challenges, even problems they are currently unaware of. Therefore, more efforts are necessary to resolve engi-neering design problems, as well as to further the develop-ment of wind engineering.References1 Gu M. Wind-resistant studies on tall buildings and structures. Sci China Tech Sci, 2010, 53: 2630–26462 Song L L, Pang J B, Jiang C L, et al. Field measurement and analysis of turbulence coherence for Typhoon Nuri at Macao Friendship Bridge. Sci China Tech Sci, 2010, 53: 2647–26573 Li Y, Ye J H. The interaction between membrane structure and wind based on the discontinuous boundary element. Sci China Tech Sci, 2010, 53: 486–5014 Wang H, Li A Q, Guo T, et al. Field measurement on wind charac-teristic and buffetingresponse of the Runyang Suspension Bridge during typhoon Matsa. Sci China Ser E-Tech Sci, 2009, 52: 1354– 13625 Davenport A G. The application of statistical concepts to the wind loading of structures. Proc Inst Civil Eng, 1961a, 19: 449–4726 Davenport A G. The spectrum of horizontal gustiness near the ground in high winds. J Royal Meteorol Soc, 1961, 87: 194–2117 Davenport A G. Gust loading factors. J Struct Div ASCE, 1967, 93:11–348 Simiu E. Gust factors and alongwind pressure correlations. ASCE J Struct Div, 1973, 99: 773–7839 Solari G. Alongwind response estimation: Closed form solution. J Struct Div ASCE, 1982, 108: 225–24410 Solari G. A generalized definition of gust factor. J Wind Eng Ind Aerodyn, 1990, 36: 539–54811 Solari G, Gust buffeting. II: Dynamic alongwind response. J Struct Eng New York, 1993, 119: 383–39812 Kareem A. Synthesis of fluctuating along-wind loads on buildings. J Eng Mech, 1986, 112: 121–12513 Kareem A. Dynamic response of tall buildings to stochastic wind loads. J Wind Eng Ind Aerodyn, 1992, 42: 1101–111214 Zhou Y, Gu M, Xiang H. Alongwind static equivalent wind loads and responses of tall buildings. Part I: Unfavorable distributions of static equivalent wind loads. J Wind Eng Indu Aerodyn, 1999a, 79: 135– 141。